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PREFACE

This book is intended as a text for undergraduate students majoring in
mathematics and physics. It presents the material ordinarily covered in a
course on linear algebra and subsequently drawn upon in various branches of
mathematical analysis. However, it should be noted that the term “linear
algebra’ has for some time ceased to describe the actual content of the course,
representing as it does a synthesis of various ideas from algebra, geometry
and analysis. And although analysis in the strict sense of the term (i.e., the
branch of mathematics concerned with li:aits, differentiation, integration,
etc.) plays only a background role in this ook, it is in fact the actual organiz-
ing principle of the course, since the problems of “linear algebra” can be
regarded both as “finite-dimensional projections” and as the “support” for
the basic problems of analysis.

The text stems in part from my previous book An Introduction to the
Theory of Linear Spaces (Prentice-Hall, 1961), henceforth denoted by LS.
Briefly, the differences between LS and the present book are the following:
LS is entirely concerned with real spaces, while this book considers spaces
over an arbitrary number field, with the real and complex spaces being con-
sidered as closely related special cases of the general theory. A chapter has
been introduced on the Jordan canonical form of the matrix of a linear
operator in a real or complex space. Moreover, we also study the canonical
form of the matrix of a normal operator in a complex space equipped with a
scalar product, deducing as special cases the canonical forms of the matrices
of Hermitian, anti-Hermitian and unitary operators and their real analogues.
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The final lengthy chapter in LS on the geometry of infinite-dimensional
Hilbert space has been omitted, since a more systematic treatment of this
topic (in a functional analysis context) is available in a number of other
books. Instead, further new material bearing directly on the basic content
of the course has been added, namely Chapter 11 on the structure of matrix
algebras (written at my request by A. Y. Khelemski) and an appendix on the
structure of matrix categories, based on my article with I. M. Gelfand
(Vestnik MGU, Ser. Mat. Mekh., No. 4 (1963), pp. 27-48). Chapter 11 and
the appendix, although completely elementary in method, are nevertheless
somewhat higher in level than the rest of the book (as indicated by the
asterisks) and represent advanced developments in the theory of linear
algebra.

Each chapter is equipped with a set of problems, and hints and answers to
these problems appear at the end of the book. To a certain extent, the prob-
lems help to develop necessary technical skill, but they are primarily intended
to illustrate and amplify the material in the text. Certain groups of problems
can serve as the basis for seminar discussions. The same is true of Chapter 11
and the appendix, as well as of the starred sections (the latter contain ancillary
material that can be omitted on first reading).

It is my pleasant duty to acknowledge the painstaking efforts of M. S.
Agranovich, the editor of the book, and to thank him for a number of valu-
able suggestions. I also wish to thank I. Y. Dorfman for checking the
solutions to all the problems.
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DETERMINANTS

I.1. Number Fields

1.11. Like most of mathematics, linear algebra makes use of number
systems (number fields). By a number field we mean any set K of objects,
called “numbers,” which, when subjected to the four arithmetic operations
again give elements of XK. More exactly, these operations have the following
properties (field axioms):

a. To every pair of numbers « and @ in X there corresponds a (unique)
number « + B in X, called the sum of « and 8, where

1) « + B =B + o for every « and B in K (addition is commutative);

2) (e +B)+y=a+ @ +v) for every a, B, vy in K (addition is
associative);

3) There exists a number 0 (zero) in K such that 0 4 « = « for every «
in K;

4) For every « in K there exists a number (negative element) v in K such
that « + y = 0.

The solvability of the equation « 4 y = O for every « allows us to carry
out the operation of subtraction, by defining the difference § — o as the sum
of the number $ and the solution y of the equation « 4 y = 0.

b. To every pair of numbers « and  in K there corresponds a (unique)
number « * § (or «f) in X, called the product of « and 8, where

5) «f = Ba for every « and B in K (multiplication is commutative);
6) (aB)y = a(Py) for every «, B, v in K (multiplication is associative);
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7) There exists a number 1 (# 0) in K such that 1 -« = « for every «
in K;

8) For every « # 0 in K there exists a number (reciprocal element) v in
K such that ay = 1.

c. Multiplication is distributive over addition, i.e.,
9) «(B + v) = «f + ay for every «, B, v in K.}

The solvability of the equation ay = 1 for every « 7 0 allows us to carry
out the operation of division, by defining the quotient /x as the product of
the number @ and the solution y of the equation ay = 1.

The numbers 1, 1 + 1 = 2,2 4+ | = 3, etc. are said to be natural; it is
assumed that none of these numbers is zero.{ By the integers in a field X we
mean the set of all natural numbers together with their negatives and the
number zero. By the rational numbers in a field K we mean the set of all
quotients p/g, where p and g are integers and g # 0.

Two fields K and K’ are said to be isomorphic if we can set up a one-to-one
correspondence between K and K’ such that the number associated with every
sum (or product) of numbers in X is the sum (or product) of the corresponding
numbers in K’'. The number associated with every difference (or quotient)
of numbers in K will then be the difference (or quotient) of the corresponding
numbers in K’.

1.12. The most commonly encountered concrete examples of number
fields are the following:

a. The field of rational numbers, i.c., of quotients p/g where p and ¢ 0
are the ordinary integers subject to the ordinary operations of arithmetic.
(It should be noted that the integers by themselves do not form a field,
since they do not satisfy axiom 8).) It follows from the foregoing that every
field K has a subset (subfield) isomorphic to the field of rational numbers.

b. The field of real numbers, having the set of all points of the real line
as its geometric counterpart. An axiomatic treatment of the field of real
numbers is achieved by supplementing axioms 1)-9) with the axioms of order
and the least upper bound axiom.§

t Note that axioms 5) and 9) also imply (« + B)y = ay + By.

1 Given two elements N and E, say, we canconstruct a field by the rules N + N = N,
N-+-E=E E-+E=NN-N=N,N-E= N, E-E = E. Then, in keeping with our
notation, we should write N=0, E=1 and hence 2 =1+ 1 = 0. To exclude such
number systems, we require that all natural field elements be nonzero.

§ For a detailed treatment of real numbers, see, for example, G. H. Hardy, Pure
Maihematics, ninth edition, The Macmillan Co., New York (1945), Chap. 1.
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c. The field of complex numbers of the form a + ib, where a and b are
real numbers (i is not a real number), equipped with the following operations
of addition and multiplication (Hardy, op. cit., Chap. 3):

(ay + iby) + (a; + iby) = (a; + an) + i(by + by),
(@, + ib))(a; + iby) = (@18, — b1bs) + ilab, + anby).

For numbers of the form a + i0, these operations reduce to the corresponding
operations for real numbers; briefly we write a + i0 = a and call complex
numbers of this form real. Thus it can be said that the field of complex
numbers has a subset (subfield) isomorphic to the field of real numbers.
Complex numbers of the form 0 + /b are said to be (purely) imaginary and
are designated briefly by i. It follows from the multiplication rule that

= ii=(0+i)0+il)= —L.

1.13. Henceforth we will designate the field of real numbers by R and
the field of complex numbers by C. According to the “fundamental theorem
of algebra” (Hardy, op. cit., Appendix II, p. 492), we can not only carry
out the four arithmetic operations in C but also solve any algebraic equation

2"+ azt 1t + -4 a, =0.

The field R of real numbers does not have this property. For example, the
equation z2 4 1 = 0 has no solutions in the field R.

Many of the subsequent considerations are valid for any number field.
In what follows, we will use the letter X to denote an arbitrary number field.
If some property is true for the field X, then it is automatically true for the
field R and the field C, which are special cases of the general field XK.

1.2. Problems of the Theory of Systems of Linear Equations

In this and the next two chapters, we shall study systems of linear
equations. In the most general case, such a system has the form

3%y + ageXs + 000+ agX, = by,
apXy + Xy + ¢ + Gy, %, = by, (1)
QX + QpaXo + 0+ GpXy, = by

Here x,, x;, ..., x, denote the unknowns (elements of the field X) which

are to be determined. (Note that we do not necessarily assume that the
number of unknowns equals the number of equations.) The quantities
ayy, Gy, - . - , Gy, taken from the field K, are called the coefficients of the
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system. The first index of a coefficient indicates the number of the equation
in which the coefficient appears, while the second index indicates the number
of the unknown with which the coefficient is associated.t The quantities
by, b, ..., b, appearing in the right-hand side of (1), taken from the same
field K, are called the constant terms of the system; like the coefficients, they
are assumed to be known. By a solution of the system (1) we mean any set
of numbers ¢;, ¢, . . . , ¢, from the same field X which, when substituted for
the unknowns x;, X,,...,x, turns all the equations of the system into
identities.

Not every system of linear equations of the form (1) has a solution. For
example, the system

2x; + 3x, = 5, @)
2x; +3x, =6
obviously has no solution at all. Indeed, whatever numbers c¢;, ¢, we
substitute in place of the unknowns x;, x,, the left-hand sides of the equations
of the system (2) are the same, while the right-hand sides are different. There-
fore no such substitution can simultaneously convert both equations of the
system into identities.

A system of equations of the form (1) which has at least one solution is
called compatible; a system which does not have solutions is called incom-
patible. A compatible system can have one solution or several solutions. In
the latter case, we distinguish the solutions by indicating the number of the
solution by a superscript in parentheses; for example, the first solution will

be denoted by ¢V, ¢, ..., ¢, the second solution by ¢, ¢, ..., c?,
and so on. The solutions ¢V, ¢V, ... ,c!¥ and ¢{®,c®,...,c!® are
regarded as distinct if at least one of the numbers ¢V’ does not coincide with
the corresponding numbers ¢!* (i = 1,2,...,n). For example, the system
2%, 4+ 3%, =0
1T 2 s (3)
4x, + 6x, =0
has the distinct solutions
V= =0 and ¢ =3, ¥ = -2

(and also infinitely many other solutions). If a compatible system has a
unique solution, the system is called determinate; if a compatible system has
at least two different solutions, it is called indeterminate.

t Thus, for example, the symbol a3, should be read as “a three four’” and not as “a
thirty-four.”

1 We emphasize that the set of numbers ¢y, ¢, . . . , ¢, represents one solution of the
system and not # solutions.
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We can now formulate the basic problems which arise in studying the
system (1):

a) To ascertain whether the system (1) is compatible or incompatible;

b) If the system (1) is compatible, to ascertain whether it is determinate;

c) If the system (1) is compatible and determinate, to find its unique
solution;

d) If the system (1) is compatible and indeterminate, to describe the set of
all its solutions.

The basic mathematical tool for studying linear systems is the theory of
determinants, which we consider next.
1.3. Determinants of Order n

1.31. Suppose we are given a square matrix, i.e., an array of n2 numbers
a; (i,j=1,2,...,n), all elements of a field X:

A G2 T Gy
Ay Qg "' Ay

“)
[ R A (S

The number of rows and columns of the matrix (4) is called its order. The
numbers a,; are called the elements of the matrix. The first index indicates
the row and the second index the column in which a;; appears. The elements
ayy, 4y, . . . , @, form the principal diagonal of the matrix.

Consider any product of » elements which appear in different rows and
different columns of the matrix (4), i.e., a product contairing just one element
from each row and each column. Such a product can be written in the form

azllaaﬂ e aa,,n' (5)

Actually, for the first factor we can always choose the element appearing in
the first column of the matrix (4); then, if we denote by «, the number of the
row in which the element appears, the indices of the element will be «;, 1.
Similarly, for the second factor we can choose the element appearing in the
second column; then its indices will be «,, 2, where «, is the number of
the row in which the element appears, and so on. Thus, the indices «,;, «,,
.., a, are the numbers of the rows in which the factors of the product (5)
appear, when we agree to write the column indices in increasing order.
Since, by hypothesis, the elements «, ;, @,,0, . . -, @,,, appear in different
rows of the matrix (4), one from each row, then the numbers o, o, ..., «,
are all different and represent some permutation of the numbers 1,2, ..., n.
By an inversion in the sequence «,, «,, . . . , x,, We mean an arrangement
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of two indices such that the larger index comes before the smaller index. The
total number of inversions will be denoted by N(a, a,...,,). For
example, in the permutation 2, 1, 4, 3, there are two inversions (2 before 1,
4 before 3), so that

N(2,1,4,3)=2.

In the permutation 4, 3, 1, 2, there are five inversions (4 before 3, 4 before 1,
4 before 2, 3 before 1, 3 before 2), so that

N@4,3,1,2) =5.

If the number of inversions in the sequence a,, «,, . . . , «, is even, we put a
plus sign before the product (5); if the number is odd, we put a minus sign
before the product. In other words, we agree to write in front of each product
of the form (5) the sign determined by the expression

(;1)N(a1.az.....an)‘

The total number of products of the form (5) which can be formed from the
elements of a given matrix of order n is equal to the total number of permuta-
tions of the numbers 1,2, ..., n. As is well known, this number is equal
ton!.

We now introduce the following definition:

By the determinant D of the matrix (4) is meant the algebraic sum of the n!
products of the form (5), each preceded by the sign determined by the rule
Just given, ie.,

D= z (*1)N(“'“"'"a")aallaugz S g, (6)
Henceforth, the products of the form (5) will be called the terms of the
determinant D. The elements a;; of the matrix (4) will be called the elements
of D, and the order of (4) will be called the order of D. We denote the deter-
minant D corresponding to the matrix (4) by one of the following symbols:

apn G T 4y,
P - a

D =|" "= | = det lla;li- @)
Any Qua 7" Qug

For example, we obtain the following expressions for the determinants of
orders two and three:

apn G

ds;  ap

’ = Q1183 — 491452,

Q11 Gz Qi3
= @y,d9933 + Qo133 + 3012803

ay; Ay a
2 T T — Q31099013 — A9 A12d33 — Q13032023

a3 Az 4j3
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We now indicate the role of determinants in solving systems of linear
equations, by considering the example of a system of two equations in two
unknowns:

aypX; + apx; = by,

Ay Xy + AgeXy = by.

Eliminating one of the unknowns in the usual way, we can easily obtain the
formulas

byag, — beayy aub, — anb,
Xy = —, Xy= ——,
Q1dyy — Agye Al — Andye
assuming that these ratios have nonvanishing denominators. The numerators
and denominators of the ratios can be represented by the second-order

determinants

ay; 4

A g — Ayl = ?
gy Ay
b, ayp

biags — byayy = »
by ay
a;, b

ayby — ayb, = .
as b,

It turns out that similar formulas hold for the solutions of systems with an
arbitrary number of unknowns (see Sec. 1.7).

1.32. The rule for determining the sign of a given term of.a determinant
can be formulated somewhat differently, in geometric terms. Corresponding
to the enumeration of elements in the matrix (4), we can distinguish two
natural positive directions: from left to right along the rows, and from top to
bottom along the columns. Moreover, the slanting lines joining any two
elements of the matrix can be furnished with a direction: we shall say that
the line segment joining the element a,; with the element a,, has positive
slope if its right endpoint lies lower than its left endpoint, and that it has
negative slope if its right endpoint lies higher than its left endpoint.f Now
imagine that in the matrix (4) we draw all the segments with negative slope
joining pairs of elements a, ;, @,,2, . . .  @,,, Of the product (5). Then we put
a plus sign before the product (5) if the number of all such segments is even,
and a minus sign if the number is odd.

t This definition of “slope™ is not to be confused with the geometric notion with the
same name. In fact, the sign convention adopted here is the opposite of that used in
geometry.
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For example, in the case of a fourth-order matrix, a plus sign must be
put before the product ay,a,,a435, since there are two segments of negative
slope joining the elements of this product:

A i3 Ay

gy Q3 Ay

Qs Q3 dag @
Aq Qg @ [

However, a minus sign must be put before the product a,;a3a;3a,4, since in
the matrix there are five segments of negative slope joining these elements:

In these examples, the number of segments of negative slope joining the
elements of a given term equals the number of inversions in the order of
the first indices of the elements appearing in the term. In the first example, the
sequence 2, 1, 4, 3 of first indices has two inversions; in the second example,
the sequence 4, 3, 1, 2 of first indices has five inversions.

We now show that the second definition of the sign of a term in a determinant
is equivalent to the first. To show this, it suffices to prove that the number of
inversions in the sequence of first indices of a given term (with the second
indices in natural order) is always equal to the number of segments of negative
slope joining the elements of the given term in the matrix. But this is almost
obvious, since the presence of a segment of negative slope joining the elements
a,,; and a, ;means that «; > &, for/ < j, i.e., there is an inversion in the order
of the first indices.

1.4. Properties of Determinants
1.41. The transposition operation. The determinant
Ay 4y 't adpy

Ay Ay " Ay ®)

Ay Qpn 0 gy
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obtained from the determinant (7) by interchanging rows and columns with
the same indices is said to be the transpose of the determinant (7). We now
show that the transpose of a determinant has the same value as the original
determinant. In fact, the determinants (7) and (8) obviously consist of the
same terms; therefore it is enough for us to show that identical terms in
the determinants (7) and (8) have identical signs. Transposition of the matrix
of a determinant is clearly the result of rotating it (in space) through 180°
about the principal diagonal a,;, Qgay ... s a,,. As a result of this rotation,
every segment with negative slope (e.g., making an angle « << 90° with the
rows of the matrix) again becomes a segment with negative slope (i.e., making
the angle 90° — « with the rows of the matrix). Therefore the number of
segments with negative slope joining the elements of a given term does not
change after transposition. Consequently the sign of the term does not change
either. Thus the signs of all the terms are preserved, which means that the
value of the determinant remains unchanged.

The property just proved establishes the equivalence of the rows and
columns of a determinant. Therefore further properties of determinants
will be stated and proved only for columns.

1.42. The antisymmetry property. By the property of being antisymmetric
with respect to columns, we mean the fact that a determinant changes sign
when two of its columns are interchanged. We consider first the case where
two adjacent columns are interchanged, for example columns j and j + 1.
The determinant which is obtained after these columns are interchanged
obviously still consists of the same terms as the original determinant.
Consider any of the terms of the original determinant. Such a term contains
an element of the jth column and an element of the (j + 1)th column. If
the segment joining these two elements originally had negative slope, then
after the interchange of columns, its slope becomes positive, and conversely.
As for the other segments joining pairs of elements of the term in question,
cach of these segments does not change the character of its slope after the
column interchange. Consequently the number of segments with negative
slope joining the elements of the given term changes by one when the two
columns are interchanged ; therefore each term of the determinant, and hence
the determinant itself, changes sign when the columns are interchanged.

Suppose now that two nonadjacent columns are interchanged, e.g.,
column j and column & (j < k), where there are m other columns between.
This interchange can be accomplished by successive interchanges of adjacent
columns as follows: First column j is interchanged with column j 4 1, then
with columns j + 2, j+ 3,...,k Then the column k& — 1 so obtained
(which was formerly column k) is interchanged with columns k — 2,k — 3,

.»/. Inall, m 4+ 1 4+ m=2m + 1 interchanges of adjacent columns are
required, each of which, according to what has just been proved, changes the
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sign of the determinant. Therefore, at the end of the process, the deter-
minant will have a sign opposite to its original sign (since for any integer m,
the number 2m + 1 is odd).

1.43. COROLLARY. A determinant with two identical columns vanishes.

Proof. Interchanging the columns does not change the determinant D.
On the other hand, as just proved, the determinant must change its sign.
Thus D = — D, which implies that D = 0. [}t

1.44. Thelinear property of determinants. This property can be formulated
as follows:

a. THEOREM. If all the elements of the jth column of a determinant D
are “linear combinations” of two columns of numbers, i.e., if

a; = \b; + e, (i=12,...,n
where X and y. are fixed numbers, then D is equal to a linear combination of
two determinants:
D = AD; + uD;. ©)
Here both determinants D, and D, have the same columns as the determinant

D except for the jth column; the jth column of D, consists of the numbers b;,
while the jth column of D, consists of the numbers c,.

Proof. Every term of the determinant D can be represented in the form
aallaazz e aa,-J e aann = aallaa22 e ()‘bal + y'ca;) o aann
= )‘aallaaﬂ e ba,- e aann + L‘Laallaqz e ca,- e aa“n'

Adding up all the first terms (with the signs which the corresponding terms
have in the original determinant), we clearly obtain the determinant D,,
multiplied by the number A. Similarly, adding up all the second terms, we
obtain the determinant D,, multiplied by the number u. §

It is convenient to write this formula in a somewhat different form. Let
D be an arbitrary fixed determinant. Denote by D,(p,) the determinant
which is obtained by replacing the elements of the jth column of D by the
numbers p; (/ = 1,2, ..., n). Then (9) takes the form

D,(2b; + wpc;) = ADy(b,) + uDy(c).

b. The linear property of determinants can easily be extended to the case
where every element of the jth column is a linear combination not of two
terms but of any other number of terms, i.e.

a; =M, + uc, + -+ f.
t The symbol § means Q.E.D. and indicates the end of a proof.
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In this case,
Dj(a;;) = D;(Ab; + pe; + -+ - + 1f)
= AD;(b)) + uDylc)) + - -+ + TDH(f). (10)

1.45. COROLLARY. Any common factor of a column of a determinant can
be factored out of the determinant.

Proof. If a,; = Ab,, then by (10) we have
Dy(a;;) = D,(Ab;) = 1D;(b,). |

1.46. CoROLLARY. If a column of a determinant consists entirely of zeros,
then the determinant vanishes.

Proof. Since 0 is a common factor of the elements of one of the columns,
we can factor it out of the determinant, obtaining

D;(0)=D;0-1)=0-Dy1)=0. |
1.47. Addition of an arbitrary multiple of one column to another column.

a. THEOREM. The value of a determinant is not changed by adding the
elements of one column multiplied by an arbitrary number to the corresponding
elements of another column.

Proof. Suppose we add the kth column multiplied by the number A to the
jth column (k # j). The jth column of the resulting determinant consists
of elements of the form a;; + 2a;, (i = 1,2,..., n). By (9) we have

Dy(a; + M) = Dya;) + AD,(ay).
The jth column of the second determinant consists of the elements a,;, and
hence is identical with the kth column. It follows from Corollary 1.43 that
D;(a;) = 0, so that
Dy(a;; + 2ay) = Dy(ay). |

b. Naturally, Theorem 1.47a can be formulated in the following more
general form: The value of a determinant is not changed by adding to the
elements of its jth column first the corresponding elements of the kth column
multiplied by ), next the elements of the Ith column multiplied by y., etc., and
finally the elements of the pth column multiplied by ©~ (k = j, 1 # J, ..., p #))-

1.48. Because of the invariance of determinants under transposition
(Sec. 1.41), all the properties of determinants proved in this section for
columns remain valid for rows as well.

t Corollary 1.43 refers to the (unique) corollary in Sec. 1.43, Theorem 1.47a to the
theorem in Sec. 1.47a, etc.
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1.5. Cofactors and Minors

1.51. Consider any column, the jth say, of the determinant D. Let a,;
be any element of this column. Add up all the terms containing the element
a,; appearing in the right-hand side of equation (6)

D= z(_ l)lV(al'ai'"”a”)a‘lllaﬂzz"'a“vun

and then factor out the element a,;. The quantity which remains, denoted by
Ay, is called the cofactor of the element a,; of the determinant D.

Since every term of the determinant D contains an element from the jth
column, (6) can be written in the form

D = aydy; + apAy; + -+ + a3, a1n

called the expansion of the determinant D with respect to the (elements of the)
Jjth column. Naturally, we can write a similar formula for any row of the
determinant D. For example, for the ith row we have the formula

D=audy +apdpn+ - + a;,4;,. 12)
This gives the following

THEOREM. The sum of all the products of the elements of any column (or
row) of the determinant D with the corresponding cofactors is equal to the
determinant D itself.

Equations (11) and (12) can be used to calculate determinants, but first
we must know how to calculate cofactors. We will show how this is done in
Sec. 1.53.

1.52. Next we note a consequence of (11) and (12) which will be useful
later. Equation (11) is an identity in the quantities a,;, a,;, . . . , a,;. There-
fore it remains valid if wereplacea,; (i = 1, 2, . . . , n) by any other quantities.
The quantities 4,;, A,;, . . . , A,; remain unchanged when such a replacement
is made, since they do not depend on the elements a;;. Suppose that in the
right and left-hand sides of the equality (11) we replace the elements a,;, a,;,

,a,; by the corresponding elements of any other column, say the kth.
Then the determinant in the left-hand side of (11) will have two identical
columns and will therefore vanish, according to Corollary 1.43. Thus we
obtain the relation

ayAy; + ag Ay + -+ apd,; =0 (13)
for k # j. Similarly, from (12) we obtain

apdyg + apdp + 0 + a4y, =0 (14
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for I # i. Thus we have proved the following

THEOREM. The sum of all the products of the elements of a column (or row)
of the determinant D with the cofactors of the corresponding elements of
another column (or row) is equal to zero.

1.53. If we delete a row and a column from a matrix of order », then, of
course, the remaining elements form a matrix of order » — 1. The deter-
minant of this matrix is called a minor of the original nth-order matrix (and
also a minor of its determinant D). If we delete the ith row and the jth column
of D, then the minor so obtained is denoted by M,; or M (D).

We now show that the relation

Aid = (— l)iﬂMﬁ (15)

holds, so that the calculation of cofactors reduces to the calculation of the
corresponding minors. First we prove (15) for the case i =1, j = 1. We
add up all the terms in the right-hand side of (6) which contain the element
ay,, and consider one of these terms. It is clear that the product of all the
elements of this term except a;, gives a term ¢ of the minor My;. Since in
the matrix of the determinant D, there are no segments of negative slope
joining the element a;; with the other elements of the term selected, the sign
ascribed to the term aj;c of the determinant D is the same as the sign
ascribed to the term ¢ in the minor My,. Moreover, by suitably choosing a
term of the determinant D containing a,; and then deleting a,,, we can
obtain any term of the minor M;;. Thus the algebraic sum of all the terms
of the determinant D containing a,;, with a,; deleted, equals the product
M. Butaccording to Sec. 1.51, this sum is equal to the product 4;;. There-
fore, A;; = M,; as required.

Now we prove (15) for arbitrary / and j, making essential use of the fact
that the formula is valid for i =j == 1. Consider the element a; = a,
appearing in the ith row and the jth column of the determinant D. By
successively interchanging adjacent rows and columns, we can move the
element a over to the upper left-hand corner of the matrix; to do this, we
need

i—1l+j—1l=i+j—2

interchanges. As a result, we obtain the determinant D, with the same
terms as those of the original determinant D multiplied by

(—1)i+i—2 == (—1)i+,

The minor M,;(D,) of the determinant D, is clearly identical with the
minor M;;(D) of the determinant D. By what has been proved already,
the sum of the terms of the determinant D, which contain the element a,
with a deleted, is equal to M,,(D,). Therefore the sum of the terms of the
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original determinant D which contain the element a;; = a, with a deleted, is
equal to
(=D My (Dy) = (—1)* M (D).

According to Sec. 1.51, this sum is equal to 4,;;. Consequently
Az‘j = (_1)i+jMi55
which completes the proof of (15).

1.54. Formulas (11) and (12) can now be written in the following
commonly used variants:
D = (—D)"ay;My; + (—D)*ayMy; + + - - + (—=1)"Pa, M, (11)
D = (—DagMy + (D) PapMy + - - - + (=) e, M, (12)
1.55. Examples

a. A third-order determinant has six distinct expansions, three with
respect to rows and three with respect to columns. Forexample, the expansion
with respect to the first row is

ayy Gy g3

) gy Qa Qg Az Qg Az
@y G axp|=ay — ayg + a5
dzp  dsg Qs g a3y ag
3y dgy Adgg
b. An nth-order determinant of the form
aq, 0 0 --- 0
Gy an O
D,=|ay ap ap -+ 0
Ayy Qu2 Quz * " Ay,

is called triangular. Expanding D, with respect to the first row, we find
that D, equals the product of the element a;; with the triangular determinant

apy 0 -+ 0
ag a3 "0 0
Dn—l =
Apz Qpg ~° 7 Auy

of order » — 1. Again expanding D,_; with respect to the first row, we find
that
D, , =anD, ,,
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where D,,_, is a triangular determinant of order n — 2. Continuing in this
way, we finally obtain
D= AyyQgp " " " Apps

i.e., a triangular determinant equals the product of the elements appearing
along its principal diagonal.

c. Calculate the Vandermonde determinant

1 1 . 1
Xy Xe X,
W(xgy ..oy X,) = x} x2 e X2
x{‘_l x;z—l . x:—l
Solution. W(x,,...,x,) is a polynomial of degree n — 1 in x,, with
coefficients depending on x;, . . . , x,_;. This polynomial vanishes if x,, takes
any of the values x;, X, . . . , X,_;, since then the determinant has two identical
columns. Hence, by a familiar theorem of elementary algebra, the poly-
nomial W(x,, ..., x,) is divisible by the product (x, — x;) -+ - (x, — x,_;),
so that
n—1
Wy ooy X)) = a(xy, ..., X, y) TT G — Xz).
k=1

The quantity a(x,,...,x,;) is the leading coefficient of the polynomial
W(xy,...,x,). Expanding the Vandermonde determinant with respect to
the last column, we see that this coefficient is just W(x,,...,x, ). It
follows that

n—1

W(xgyy ooy X)) = W(xy, oo x,9) | |1 (x, — Xp)-
R
Similarly,

W(xy, x3) = W(x)(xa — Xy),
and obviously
W(x,) = 1.

Multiplying all these equalities together, we get the desired result

W(xgs ...y X,) = 1T G — x).
“E<m<in

In particular, if the quantities x,, . . . , x, are all distinct, then

Wxy,...,x,)#0.
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1.6. Practical Evaluation of Determinants

1.61. Formula (12) takes a particularly simple form when all the elements
of the ith row vanish except one element, say a;. In this case
D = agAdy, (16)
and the calculation of the determinant D of order n reduces at once to the
calculation of a determinant of order » — 1. If in addition to a,,, there is
another nonzero element a,; in the ith row, then multiplying the kth column
by A = a,,/a;; and subtracting it from the ith column, we obtain a deter-
minant which is equal to the original one (cf. Sec. 1.47) but which now has a
zero in the ith row and jth column. By a sequence of similar operations,
we change any determinant with a nonzero element a,, in the ith row into
a determinant in which all the elements of the ith row equal zero except a;;.
This new determinant can then be evaluated by (16). Of course, similar
operations can also be performed on the columns of a determinant.

1.62. Example. Calculate the following determinant of order five:
-2 5 0 —1 3
1 0 3 7 =2
D=| 3 -1 0 5 —=5].
2 6 —4 1 2
0 -3 -1 2 3

Solution. There are already two zeros in the third column of this
determinant. In order to obtain two more zeros in this column, we multiply
the fifth row by 3 and add it to the second row and then multiply the fifth
row by 4 and subtract it from the fourth row. After performing these
operations and expanding the determinant with respect to the third column,
we obtain

-2 5 0 -1 3
1 =9 o0 13 7

3 -1 0 5 —5|=(=1)P*5(-1)
2 18 0 —7—10

0 -3 —1 2 3

-2 5 -1 3

1 —9 13 7

3 -1 5 —5{°

2 18 —7 —10
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The simplest thing to do now is to produce three zeros in the first column;
to do this, we add twice the second row to the first row, subtract three times

the second row from the third row and subtract twice the second row from
the fourth row:

2 5 -1 3 0 —13 25 17
1 -9 13 7 1 -0 13 7
P=7l s s 51T T o a5 34 26
2 18 —7 —10 0 36 —33 —24
~13 25 17
(12| 26 —34 26,
36 —33 —24

To simplify the calculation of the third-order determinant just obtained,
we try to decrease the absolute values of its elements. To do this, we factor
the common factor 2 out of the second row, add the second row to the
first and subtract twice the second row from the third row:

—13 25 17 0 8 4
D=2} 13 —-17 —13|=2|13 —-17 —13
36 —33 —24 10 1 2
0 2 1
=2-4113 —17 —13].
10 1 2

There is already one zero in the first row. To obtain still another zero,
we subtract twice the third column from the second column. After this, the
evaluation of the determinant is easily completed.

o 2 1 0o 0 1
D=8|13 —17 —13|=8{13 9 —I3|=8(—I+
10 -3
o 1 2 0 -3 2
13

3
=8-3’ [:8'3(—13—30):—8-3-43=—1032.

10 —1
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1.7. Cramer’s Rule

1.71. We are now in a position to solve systems of linear equations.
First we consider a system of the special form

apx, + apx; + 0+ ayx, = by,
AnXy + AgXe + * + az,x, = by, an
anlxl + an2x2 + * + annxn - bm

i.e., a system which has the same number of unknowns and equations. The
coefficients a;; (i, j = 1,2, ..., n) form the coefficient matrix of the system;
we assume that the determinant of this matrix is different from zero. We
now show that such a system is always compatible and determinate, and we
obtain a formula which gives the unique solution of the system.

We begin by assuming that c;, ¢, . . ., ¢, is a solution of (17), so that

ay6y + ayeCe + 0 aye, = by,
5101 + Ay 4 + ag,c, = by, (18)
anlcl + A2l + e + anncn = bn'

We multiply the first of the equations (18) by the cofactor 4,, of the element
ay, in the coefficient matrix, then we multiply the second equation by A,,,
the third by A3, and so on, and finally the last equation by A4,,. Then we
add all the equations so obtained. The result is

(@ndy + ands + -+ aydn)a
F (@r2Adyy + Goedyy + 000 A @A )0 00 a9
+ (@141 + @ep Ao + -+ @ da)e, = bidy + bedy + -+ A,
By Theorem 1.51, the coefficient of ¢, in (19) equals the determinant D itself.

By Theorem 1.52, the coefficients of all the other ¢; (j = 1) vanish. The
expression in the right-hand side of (19) is the expansion of the determinant

by an - ay

D, = by ayp - ay,
L=

bn Apa * 7 dpy

with respect to its first column. Therefore (19) can now be written in the
form
D¢, = D,,
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so that

¢, =—.

D

In a completely analogous way, we can obtain the expression

D, .
c;=—7  (=12,...,n), (20)
D
where
ay 4 Gy b o4y o ay,
_l@n Gt Gy by G G,
D;= = D;(b))
Ay Qpz "7 Q5 bn 95 I Ay

is the determinant obtained from the determinant D by replacing its jth
column by the numbers by, b,, . . ., b,. Thus we obtain the following result:

If a solution of the system (17) exists, then (20) expresses the solution in
terms of the coefficients of the system and the numbers in the right-hand side
of (17). In particular, we find that if a solution of the system (17) exists, it is
unique.

1.72. We must still show that a solutjon of the system (17) always exists.
Consider the quantities

== (j=12,...,n),

and substitute them into the system (17) in place of the unknowns x,, x, . . .,
x,. Then this reduces all the equations of the system (17) to identities. In
fact, for the ith equation we obtain

D, D, D,
A0+ Qo+ @, =ay— +ap— + -+ a, —
1*1 2t 2 lD 2D D

1
= "D“ [an(b14yy + bodsy + -+ + b,4,)

+ ap(b1dyy + bodyy + -+ b, Ap) 0
+ ain(blAln + b2A2n + o + bnAnn)]

1
= D {byandy + apdyy + -+ + @A) + 0

+ bylag Ay + @Ay + -0+ @ de,) + 00
+ b(anA,y + apd,e + 0+ a,4,.))
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By Theorems 1.51 and 1.52, only one of the coefficients of the quantities
by, by, ..., b, is different from zero, namely the coefficient of b,, which is
equal to the determinant D itself. Consequently, the above expression
reduces to

L=,
D

i.e., is identical with the right-hand side of the ith equation of the system.

1.73. Thus the quantities ¢; (j == 1, ..., n) actually constitute a solution
of the system (17), and we have found the following prescription (Cramer’s
rule) for obtaining solutions of (17):

If the determinant of the system (17) is different from zero, then (17) has a
unique solution, namely, for the value of the unknown x; (j=1,...,n) we
take the fraction whose denominator is the determinant D of (17) and whose
numerator is the determinant obtained by replacing the jth column of D by the
column consisting of the constant terms of (17), i.e., the numbers in the right-
hand sides of the system.

Thus finding the solution of the system (17) reduces to calculating
determinants. Ways of solving more general systems (with vanishing deter-
minants, or with a number of equations different from the number of
unknowns) will be given in the next two chapters.

1.74. Remark. One sometimes encounters systems of linear equations
whose constant terms are not numbers but vectors, e.g., in analytic ggometry
or in mechanics. Cramer’s rule and its proof remain valid in this case as
well; one must only bear in mind that the values of the unknowns x,, x,, . . .,
x,, will then be vectors rather than numbers. For example, the system

X + x, =1— 3,
x; — X, =14+ 5§
has the unique solution
¢ =14 j, ¢ = —4j.

1.8. Minors of Arbitrary Order. Laplace’s Theorem

1.81. Theorem 1.54 on the expansion of a determinant with respect to
a row or a column is a special case of a more general theorem on the
expansion of a determinant with respect to a whole set of rows or columns.
Before formulating this general theorem (Laplace’s theorem), we introduce
some new notation.

Suppose that in a square matrix of order n we specify any k£ < n different
rows and the same number of different columns. The elements appearing
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at the intersections of these rows and columns form a square matrix of order
k. The determinant of this matrix is called a minor of order k of the original
matrix of order n (also a minor of order k& of the determinant D); it is
denoted by

M = Ml_l.iz....,it

J1.d20.000000
where 7y, iy, . . . , i, are the numbers of the deleted rows, and jj, ji, . . . , ji
are the numbers of the deleted columns.

If in the original matrix we delete the rows and columns which make up
the minor M, then the remaining elements again form a square matrix, this
time of order n — k. The determinant of this matrix is called the comple-
mentary minor of the minor M, and is denoted by the symbol

M — Mz:l.iz 11

Juadzedn

In particular, if the original minor is of order 1, i.e., is just some element
a;; of the determinant D, then the complementary minor is the same as the
minor M;; discussed in Sec. 1.53.

Consider now the minor

formed from the first £ rows and the first k& columns of the determinant D;
its complementary minor is
M, = M, = 300

In the right-hand side of equation (6), p. 6 group together all the
terms of the determinant whose first & elements belong to the minor M, (and
thus whose remaining n — k elements belong to the minor M,). Let one
of these terms be denoted by c¢; we now wish to determine the sign which
must be ascribed to c. The first k& elements of ¢ belong to a term ¢, of the
minor M;. If we denote by N, the number of segments of negative slope
corresponding to these elements, then the sign which must be put in front of
the term ¢, in the minor M; is (—1)™'. The remaining # — k elements of
¢ belong to a term ¢, of the minor M,; the sign which must be put in front
of this term in the minor M, is (—1)V2, where N, is the number of segments
of negative slope corresponding to the n — k elements of c,. Since in the
matrix of the determinant D there is not a single segment with negative
slope joining an element of the minor M, with an element of the minor M,,
the total number of segments of negative slope joining elements of the
term ¢ equals the sum N, + N,. Therefore the sign which must be put in
front of the term c is given by the expression (—1)"*-, and hence is equal
to the product of the signs of the terms ¢; and ¢, in the minors M, and M,.
Moreover, we note that the product of any term of the minor M, and any
term of the minor M, gives us one of the terms of the determinant D that
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have been grouped together. It follows that the sum of all the terms that
we have grouped together from the expression for the determinant D given
by (6) is equal to the product of the minors M, and M ,.
Next we solve the analogous problem for an arbitrary minor
M =M :i l]’z ..... 'Ia

with complementary minor M,. By successively interchanging adjacent
rows and columns, we can move the minor M, over to the upper left-hand
cormner of the determinant D; to do so, we need a total of

(i1_1)+(f2_2)+"'+(ik_k)
+Gh—D+e—2)+ -+ (r—k

interchanges. As a result, we obtain a determinant D, with the same terms
as in the original determinant but multiplied by (—1)**/, where

i=i+i+-+i, J=h+tit+ -t
By what has just been proved, the sum of all the terms in the determinant
D, whose first k£ elemefits appear in the minor M, is equal to the product

M M,. It follows from this that the sum of the corresponding terms of
the determinant D is equal to the product

(— DM M, = M A,,
where the quantity
Ay = (— l)iMMz

is called the cofactor of the minor M, in the determinant D. Sometimes
one uses the notation

Ay = Atk

it dgee n’

where the indices indicate the numbers of the deleted rows and columns.

Finally, let the rows of the determinant D with indices i, i, ..., i; be
fixed; some elements from these rows appear in every term of D. We group
together all the terms of D such that the elements from the fixed rows
iy, Iz, . .. , I belong to the columns with indices jj, j5, . .., ji. Then, by
what has just been proved, the sum of all these terms equals the product of
the minor

M

with the corresponding cofactor. In this way, all the terms of D can be
divided into groups, each of which is characterized by specifying £ columns.
The sum of the terms in each group is equal to the product of the corre-
sponding minor and its cofactor. Therefore the entire determinant can be
represented as the sum

D= z Mu Jig,. Ik A‘u 2.0

Fledzen. J1.72.. )7’

D
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where the indices iy, iy, . . . , i (the indices selected above) are fixed, and the
sum is over all possible values of the column indices j,,j,, ..., j;
(I < j, <ja<'--<jp< n). The expansion of D given by (21) is called
Laplace’s theorem. Clearly, Laplace’s theorem constitutes a generalization
of the formula for expanding a determinant with respect to one of its rows
(derived in Sec. 1.54). There is an analogous formula for expanding the
determinant D with respect to a fixed set of columns.

1.82. Example. The determinant of the form

ay o ay, 0 e 0
as1 Aoy 0 0
D= a, - a, 0 e 0
Ar1,1 7T Oppir Qerrk+l 7T Qpgan
an tte Ay an,k+1 Tt Aun

such that all the elements appearing in both the first & rows and the last
n — k columns vanish, is called quasi-triangular. To calculate the deter-
minant, we expand it with respect to the first & rows by using Laplace’s
theorem. Only one term survives in the sum (21), and we obtain

Gy "t ag Aptrerr "7 Grgan
D= . e . X

Ay "7 G L

1.9. Linear Dependence between Columns

1.91. Suppose we are given n1 columns of numbers with n numbers in
each:

ay ays Ay

asy dao Aom
Al = ) Az = s ) Am =

2% ) 2

We multiply every element of the first column by some number A;, every
element of the second column by A,, etc., and finally every element of the
last (mth) column by A,,; we then add corresponding elements of the columns.
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As a result, we get a new column of numbers, whose elements we denote by

€3, €25 - .., €,. We can represent all these operations schematically as
follows:
Hau I ag || \ Aim Cy
sy Az Ao Ca
A + Aq R W = ,
[ZF%) 3%} Anm Cy

or more briefly as
MAy+ XAy + - A Apdy = C,

where C denotes the column whose elements are ¢;, ¢,, .. . , ¢,. The column
C is called a linear combination of the columns A, A,, ..., A, and the
numbers A, A,, ..., A, are called the coefficients of the linear combination.
As special cases of the linear combination C, we have the sum of the columns
if Ay =% =---=2,=1 and the product of a column by a number if
m=1.

Suppose now that our columns are not chosen independently, but rather
make up a determinant D of order n. Then we have the following

THEOREM. If one of the columns of the determinant D is a linear combi-
nation of the other columns, then D = 0.

Proof. Suppose, for example, that the gth column of the determinant D
is a linear combinatjon of the jth, kth, ..., pth columns of D, with coeffi-
cients A;, A4, ..., A,, respectively. Then, according to Sec. 1.47, by sub-
tracting from the gth column first the jth column multiplied by 2;, then the
kth column multiplied by 2, etc., and finally the pth column multiplied by
A,, we do not change the value of the determinant D. However, as a result,
the gth column consists of zeros only, from which it follows that D = 0. |}

It is remarkable that the converse is also true, i.e., if a given determinant
D is equal to zero, then (at least) one of its columns is a linear combination
of the other columns. The proof of this theorem requires some preliminary
considerations, to which we now turn.

1.92. Again suppose we have m columns of numbers with 7 elements in
each. We can write them in the form of a matrix

Ay G "7 Gy

- Qg1 Qg " Qg

Apy Qpz """ @A

nm
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with n rows and m columns. If k columns and & rows of this matrix are
held fixed, then the elements appearing at the intersections of these columns
and rows form a square matrix of order &, whose determinant is a minor
of order & of the original matrix A4 (see p. 21); this determinant may either
be vanishing or nonvanishing. If, as we shall always assume, not all of the
a,, are zero, then we can always find an integer r which has the following
two properties:

1) The matrix A has a minor of order r which does not vanish;
2) Every minor of the matrix 4 of order r + 1 and higher (if such
actually exist) vanishes.

The number r which has these properties is called the rank of the matrix
A. If all the a;, vanish, then the rank of the matrix A is considered to be
zero (r = 0). Henceforth we shall assume that » > 0. The minor of order
r which is different from zero is called the basis minor of the matrix A.
(Of course, A can have several basis minors, but they all have the same
order r.) The columns which contain the basis minor are called the basis
columns.

1.93. Concerning the basis columns, we have the following important

THEOREM (Basis minor theorem), Any column of the matrix A is a linear
combination of its basis columns.

Proof. To be explicit, we assume that the basis minor of the matrix is
located in the first r rows and first r columns of 4. Let s be any integer from
1 to m, let k be any integer from 1 to n, and consider the determinant

Ay G "t 4y Ay

L N T
D =

Ary Gz " G Gy

[ I B P

of order r 4 1. If k < r, the determinant D is obviously zero, since it
then has two identical rows. Similarly, D =0 for s< r. If K > r and
s > r, then the determinant D is also equal to zero, since it is then a minor
of order r + | of a matrix of rank r. Consequently D = 0 for any values
of k and s.

We now expand D with respect to its last row, obtaining the relation

A + Gpdie + - 4 @Ay, + 0y = 0, (22)

where the numbers A, Aps, - - . > Ay, Ay, denote the cofactors of the
elements a,,, @ys, - - - , ay,, 4 appearing in the last row of D. These cofactors
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do not depend on the number k, since they are formed by using elements
a;; with i < r. Therefore we can introduce the notation

Ay = ¢, Aye = €35 . s Ay = €, Ay = €,

Substituting the values k = 1,2, ..., n in turn into (22), we obtain the
system of equations
€1y + ¢ty + 00+ cay, + 6, =0,
€yl + Collge + * ¢ iy, + €83, = 0, 23)
€8, + €8+ 0+ ca,, +ca,, = 0.

The number ¢, = A, is different from zero, since 4, is a basis minor of the
matrix 4. Dividing each of the equations (23) by c,, transposing all the terms
except the last to the right-hand side, and denoting —¢;/c, by 4, (j=1,2,...,
r), we obtain

Ay = May + et + 000+ May,,

Ay == M@y; + Aoy + -+ + A ay,,

ps = My + Aelye + - - + X4,

(24)

These equations show that the sth column of the matrix A is a linear com-
bination of the first » columns of the matrix (with coefficients A,, 2, ..., A,).
The proof of the theorem is now complete, since s can be any number from
ltom. |}

1.94. We are now in a position to prove the converse of Theorem 1.9]
(already mentioned at the end of Sec. 1.91);:

THEOREM. If the determinant D vanishes, then it has at least one column
which is a linear combination of the other columns.

Proof. Consider the matrix of the determinant D. Since D = 0, the basis
minor of this matrix is of order r < n. Therefore, after specifying the r
basis columns, we can still find at least one column which is not one of the
basis columns. By the basis minor theorem, this column is a linear
combination of the basis columns. Thus we have found a column of the
determinant D which is a linear combination of the other columns. |

Note that we can include all the remaining columns of the determinant D
in this linear combination by assigning them zero coefficients (say).

1.95. The results just obtained can be formulated in a somewhat more
symmetric way. If the coefficients 2;, 2,,..., 2, of a linear combination
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of m columns 4, 4, . . ., A, (see Sec. 1.91) are equal to zero, then obviously
the linear combination is just the zero column, i.e., the column consisting
entirely of zeros. But it may also be possible to obtain the zero column
from the given columns by using coefficients 2,, 2, . . ., A,, which are not
all equal to zero. In this case, the given columns 4,, 4,, ..., 4, are called
linearly dependent. For example, the columns

1 ' 2 1
4=’ 4| a—||!
Y e’ T

4 8 1

are linearly dependent, since the zero column can be obtained as the linear

combination
2-4,— 1A, 4+ 0- 4,

A more detailed statement of the definition of linear dependence is the
following: The columns

an a1z Am1

an Az [}
Al = > Az - > B Am =

an1 %) 2

are called /inearly dependent if there exist numbers A, 2, ..., A, not all
equal to zero, such that the system of equation

May + M + 0+ Aa, =0,
)‘1a21 + )‘2a22 + e + )‘ma2m = 07

May + R+ 0+ Al =0
is satisfied, or equivalently such that
MAy + KAy + 0+ A A, =0,

where the symbol 0 on the right-hand side denotes the zero column. /f one
of the columns A, A,, . . ., A,, (e.g., the last column) is a linear combination
of the others, i.e.,

Am = )‘IAI + )‘2"42 + e + )‘m—lAm—lv (25)
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then the columns Ay, A,, ..., A, are linearly dependent. In fact, (25) is
equivalent to the relation

MAy+ deds + -0+ 24, — A4, = 0.

Consequently, there exists a linear combination of the columns 4, 4,, .. .,
A,,, whose coefficients are not equal to zero (e.g., with the last coefficient
equal to — 1) whose sum is the zero column; this just means that the columns
Ay, Ay, ..., A, are linearly dependent.

Conversely, if the columns Ay, A,, . . . , A,, are linearly dependent, then (at
least) one of the columns is a linear combination of the other columns. In fact,
suppose that in the relation

MAp+ Dode + 0 A Mg Ay + 2,4, =0 (26)

expressing the linear dependence of the columns 4,, 4,, ..., 4, the co-
efficient 2, say, is nonzero. Then (26) is equivalent to the relation
M Ag At

A, = ——A —— A, — - — A,y

R Y e
which shows that the column A4, is a linear combination of the columns
Ay, Ay, ... A, . Thus, finally, the columns Ay, As, ..., A,, are linearly
dependent if and only if one of the columns is a linear combination of the

other columns.

1.96. Theorems 1.91 and 1.94 show that the determinant D vanishes if
and only if one of its columns is a linear combination of the other columns.
Using the results obtained in Sec. 1.95, we have the following

THEOREM. The determinant D vanishes if and only if there is linear de-
pendence between its columns.

1.97. Since the value of a determinant does not change when it is trans-
posed (see Sec. 1.41), and since transposition changes columns to rows, we
can change columns to rows in all the statements made above. In particular,
the determinant D vanishes if and only if there is linear dependence between
its rows.

PROBLEMS

1. With what sign do the terms
a) agay1d4a56914965,
b) agya.,3a, 405156025
appear in the determinant of order 6?
2. Write down all the terms appearing in the determinant of order four which
have a minus sign and contain the factor a,,.
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3. With what sign does the term a;,a; 1 - - a,; appear in the determinant of
order n?

4, Show that of the n! terms of a determinant of order n, exactly half (n!/2)
have a plus sign according to the definition of Sec. 1.3, while the other half
have a minus sign.

5. Use the linear property of determinants (Sec. 1.44) to calculate

am - bp an + bq

cm -dp cn + dg

6. The numbers 20604, 53227, 25755, 20927 and 78421 are divisible by 17.
Show that the determinant

20 6 0 4
53227
25755
209 27
78 4 2 1
is also divisible by 17.
7. Calculate the determinants
211 11
246 427 327| 1 3 1 11
A; =1 1014 543 443, A, =111 4 1 1
—342 721 621 1 1151
1 1 11686
8. Calculate the determinant
1 1 2 3

P(x) =

9. Calculate the nth-order determinant

X a a -+ a
a x a -+ a
A=lg 4 x - a
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10. Prove that

1 . el . 1 1 - 1
X, X5 Xn X, X5 Xn
2 2 PN 2 2 2 . 2
X x2 x2 x3 x2 x2 y i
= X5,
k=1
n—2 n—2 ... n—2 n—2 n—2 ... n—=2
x} x X X7 X3 x5
n n - n n—1 n—2 ... n—1
X1 X2 *n *1 X2 *n

11. Solve the system of equations
Xy + 2x5 + 3x3 + 4x, + Sx5 =13,
2%, + Xy + 2x3 + 3xy + 4x5 = 10,
2% + 2xy + xg A+ 2x4 + 3x5 =11,
2xy + 2%y + 2% + Xy +2x5 = 6,
2x) + 2x5 + 2x3 + 2y + x5 = 3.

12. Formulate and prove the theorem which bears the same relation to Laplace’s
theorem as Theorem 1.52 bears to Theorem 1.51.

13, Construct four linearly independent columns of four numbers each.

14. Show that if the rows of a determinant of order » are linearly dependent,
then its columns are also linearly dependent.



chapter 2

LINEAR SPACES

2.1. Definitions

2.11. In analytic geometry and mechanics one uses vectors (directed line
segments) subject to certain suitably defined operations. The reader IS
undoubtedly already familiar with the meaning of the sum of two vectors and
the product of a vector and a real number, operations obeying the usual
laws of arithmetic.t

The concept of a linear space generalizes that of the set of all vectors.
The generalization consists first in getting away from the concrete nature of
the objects involved (directed line segments) without changing the properties
of the operations on the objects, and secondly in getting away from the
concrete nature of the admissible numerical factors (real numbers). This
leads to the following definition: A set K is called a l/inear (or affine) spaceé
over a field K if

a) Given any two elements x, y € K, there is a rule (the addition rule)
leading to a (unique) element x + y € K, called the sum of x and y;}

t For the time being, we are not concerned with the other vector operations, namely
scalar and vector products. In any event, these two products cannot play as basic a role
as that played by the product of a vector and a real number. In fact, the scalar product
of two vectors is no longer a vector, while the operation of forming a vector product,
although leading to a vector, is noncommutative.

1 Here and subsequently, we use some notation from set theory. By a € 4 we mean that
the element a belongs to the set 4; by B © A we mean that the set B is a subset of the set A
(B may coincide with 4). The two relations B = A4 and 4 < B are equivalent to the asser-
tion that the sets 4 and B coincide. The symbols € and < are called inclusion relations-
The fact that ac 4 (or 4 < B) is sometimes written 43 a (or B > A). By a¢ 4 we mean
that the element a does nor belong to the set 4.

31
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b) Given any element x € K and any number A € K, there is a rule (the
rule for multiplication by a number) leading to a (unique) element Ax € K,
called the product of the element x and the number 2;

¢) These two rules obey the axioms listed below in Secs. 2.12 and 2.13.

The elements of a linear space will be called vectors, regardless of the
fact that their concrete nature may be quite unlike the more familiar directed
line segments. The geometric notions associated with the term *vector”
will help us explain and often anticipate important results, as well as find a
direct geometric interpretation (which would otherwise not be obvious) of
various facts from algebra and analysis. In particular, in the next chapter
we will obtain a simple geometric characterization of all the solutions of a
homogeneous or nonhomogeneous system of linear equations.

2.12. The addition rule has the following properties:

1) x + y=y + x forevery x, y€K;

2) (x+y)+z=x+ (y + z) forevery x, y, z€K;

3) There exists an element 0 € K (the zero rector) such that x +- 0 = x
for every x € K;

4) For every x €K there exists an element y € K (the negative element)
such that x 4 y = 0.

2.13. The rule for multiplication by a number has the following properties:

5) 1:x = x forevery x €K;

6) «(Bx) = («f)x for every x € K and every «, § € K;

7) (¢ + B)x = ax + Bx for every x € K and every «, B € K;
8) u(x + y) = ax -+ ay for every x, ye K and every w € K.

2.14. Axioms 1)-8) have a number of simple implications:
a. THEOREM. The zero vector in a linear space is unique.

Proof. The existence of at least one zero vector is asserted in axiom 3).
Suppose there are two zero vectors 0, and 0, in the space K. Setting x = 0,,
0 = 0, in axiom 3), we obtain

0, + 0, = 0,.
Setting x = 0,, 0 = 0, in the same axiom, we obtain

0, + 0, = 0,.
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Comparing the first of these relations with the second and using axiom 1),
we find that 0, = 0,. |}

b. THEOREM. Every element in a linear space has a unique negative.

Proof. The existence of at least one negative element is asserted in
axiom 4). Suppose an element x has two negatives y, and y,. Adding y, to
both sides of the equation x +y,=0 and using axioms 1)—3), we get

+teE+y)=0:4+x)+n=0+y, =y,
Yot X+ y) =y + 0=y,

whence y; = y,. |
c. THEOREM. The relation
0-x=0
holds for every element x in a linear space.t

Proof. Consider the element 0- x 4 1-x. Using axioms 7) and 5), we
get
O:x+1-x=0+1)-x=1-x=x,
0-x+1-x=0-x+x,
whence
x=0-x4+x.
Let y be the negative of x, and add y to both sides of the last equation.
Then
O0=x4+y=0'x4+x)+y=0x+x+py)=0-x+0=0"x,
whence
0=0-x. }

d. THEOREM. Given any element x of a linear space, the element

y=(—-1-x
serves as the negative of x.

Proof. Form the sum x + y. Using the axioms and Theorem 2.14c,
we find that

x+y=1lx4+(D)x=0—-1D-x=0-x=0. |

t In the right-hand side of the equation, 0 denotes the zero vector, and in the left-hand
side the number 0.
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e. The negative of a given element x will now be denoted by — x, since
Theorem 2.14d makes this a natural notation. The presence of a negative
allows us to introduce the operation of subtraction, i.e., the difference x —y
is defined as the sum of x and —y. This definition agrees with the
definition of subtraction in arithmetic.

2.15. A linear space over the field R of real numbers will be called real
and denoted by the symbol R. A linear space over the field C of complex
numbers will be called complex and denoted by the symbol C. If the nature
of the elements x, y, z, .. . and the rules for operating on them are specified
(where axioms 1)-8) must be satisfied), then we call the linear space concrete.
As a rule, such spaces will be denoted by their own special symbols.

The following four kinds of concrete spaces will be of particularimportance
later:

a. The space V,;. The elements of this space are the free vectors studied
in three-dimensional analytic geometry. Each vector is characterized by a
length and a direction (with the exception of the zero vector, whose length
is zero and whose direction is arbitrary). Addition of vectors is defined in
the usual way by the parallelogram rule. Multiplication of a vector by a
number 2 is also defined in the usual way, i.e., the length of the vector is
multiplied by |z}, while its direction remains unchanged if A > 0 and is
reversed if A <C 0. It is easily verified that all the axioms 1)-8) are satisfied
in this case. We denote the analogous sets of two-dimensional and one-
dimensional vectors, which are also linear spaces, by ¥, and V7, respectively;
V1, Ve and ¥V are linear spaces over the field R of real numbers.

b. The space K,. An element of this space is any ordered n-tuple

x:(il,iz,---9£n)

of n numbers from the field X. The numbers £;, £,,..., &, are called the
components of the element x. The operations of addition and multiplication
by a number A € X are specified by the following rules:

(apiz,--- sgm)—i_(yh’yh"" ’nn):(il—i_ 7}17 £2+ 7125"'7 £n+71n) (1)
)‘(Els 227 cee s En) = ()‘Els )‘229 ] )‘En)' (2)

It is easily verified that axioms 1)-8) are satisfied. In particular, the element
0 is the n-tuple consisting of n zeros:

0=(0,0,...,0).

Actually, we dealt with elements of this space in Sec. 1.9, except that we
wrote them there in the form of columns of numbers rather than rows of
numbers. If K is the field R of real numbers, we write R, instead of X,
while if K is the field C of complex numbers, we write C, instead of K.
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c. The space R(a, b). An element of this space is any continuous real
function x = x(¢) defined on the interval a < ¢ < b. The operations of
addition of functions and multiplication of functions by real numbers are
defined by the usual rules of analysis, and it is obvious that axioms 1)-8) are
satisfied. In this case, the element O is the function which is identically zero.
The space R(a, b) is a linear space over the field R of real numbers.

d. Correspondingly, the space C(a, b) is the space of all continuous
complex-valued functions on the interval a < ¢ < b. This space is a linear
space over the field C of complex numbers.

2.16. We note that all the properties of elements of concrete spaces (e.g.,
the vectors of the space V) which are based only on axioms 1)-8) are also
valid for the elements of an arbitrary linear space. For example, analyzing
the proof of Cramer’s rule for solving the system of linear equations

ayx; + apx, + -+ ax, = by,
anX; + Xy + 0+ az, %, = by,

apyXy + ApaXs + T + AppXp = bn’

we observe that insofar as the quantities by, b, . . ., b, are concerned, the
proof is based only on axioms 1)-8) and the fact that these quantities can be
added and multiplied by numbers in XK. As has already been pointed out in
Sec. 1.74, this permits us to generalize Cramer’s rule to systems in which the
quantities by, b,, . . . , b, are vectors (elements of the space V). Furthermore,
this permits us to assert that Cramer’s rule is also valid for systems in which
the elements b,, b,, . .., b, are elements of any linear space K. We note
only that then the values of the unknowns x,, x,, . . . , x, are also elements
of the space K, and in fact can be expressed linearly in terms of the quantities
by, by, ..., b,

2.17. Remark. In analytic geometry, it is sometimes convenient to con-
sider vectors which are not free but have their initial points attached to the
origin of coordinates. The convenience of this approach is that every vector
is then associated with a point of space, namely its end point, and every
point of space can be specified by giving the corresponding vector, called the
radius vector of the point. With this picture in mind, we sometimes call the
elements of a linear space points instead of vectors.f Of course, this change
in terminology is not accompanied by any change whatsoever in the definitions,
and merely appeals to our geometric intuition.

T We then talk of the “coordinates’” of a point, rather than of the “components” of a
vector.
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2.2, Linear Dependence

2.21. Let xy, X, .. ., x;, be vectors of the linear space K over a field X,

and let o, «,, . . . , @, be numbers from K. Then the vector

Y =X+ aeXy 4t 4 X
is called a linear combination of the vectors x,, X,, . . . , X;, and the numbers
%y, &, . . . , &, are called the coefficients of the linear combination.

If ¢ =ay="---=a,=0, then y=0 by Theorem 2.14c. However,
there may exist a linear combination of the vectors x,, x,, . . . , x, which
equals the zero vector, even though its coefficients are not all zero. In this
case, the vectors x,, X, . . . , X, are called linearly dependent. In other words,
the vectors x;, x,, . .., X, are said to be linearly dependent if there exist
numbers «,, ¢, . . . , %, not all equal to zero, such that

Xy 4 %X + 0 4 o4x, = 0. (3)
If (3) is possible only in the case where
0 =y =""*=0a,. =0,

the vectors x;, xs, . . . , X, are said to be linearly independent (over K).

2.22. Examples

a. In the linear space V;, linear dependence of two vectors means that
they are parallel to the same straight line. Linear dependence of three
vectors means that they are parallel to the same plane. Any four vectors
are linearly dependent.

b. We now explain what is meant by linear dependence of the vectors
X1, Xg, - - . , X, of the linear space K,. Let the vector x; have components
B, 80, .. E® (i=1,2,..., k). Then the linear dependence expressed
by

Xy + %X + 0 - oyx, =0
means that the » equations

(48] @2 . .. wlk) __
R e + 28" =0,

»(1) (2) ] (k)
0Zs + %Ey + + oty =0,

....................... 4)
R R
hold, where the constants «,, «s, . . . , o, are not all equal to zero. This is

the same definition of linear dependence as that given in Sec. 1.95 for
columns of numbers.
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Thus the problem of whether or not the vectors x;, x,, ..., x, are
linearly dependent reduces in the general case to the problem of whether or
not there exists a nontrivial solution of the homogeneous system of equations
(4),t with coefficients equal to the corresponding components of the given
vectors. This problem will be solved completely in Sec. 3.21, where we will
find a rule allowing us to decide whether or not given vectors in the space X,
are linearly dependent from an examination of their components.

¢. In some cases, however, we can even now decide whether or not a
given system of vectors is linearly dependent. For example, consider the n
vectors

e, =(1,0,0,...,0),

e, =(0,1,0,...,0),

e,=(0,0,0,...,1)
in the space K,. For these vectors, the system (4) has the form
a1+ e 040304+ 4 2,-0=0,
% 04+ o 1l +a°04--+02,-0=0,

o 0+ 004 az: 04" +4a,-1=0,
and obviously has the unique solution
=y ="""=a,=0.
Thus the vectors ey, e,, . . . , e, in the space K, are linearly independent.
d. Linear dependence of the vectors
x; = x1(8), X3 = xo(1), . . ., X = X,(2)

in the space R(a, b) (or C(a, b)) means that the functions x;(¢), x.(¢), - - .,
x,(t) satisfy a relation of the form

a Xy (1) + apxo(t) + - + (1) = 0,

where the constants «,, «,, . . . , , are not all equal to zero. For example,
the functions

x,(t) = cos?t, Xy(t) = sin? ¢, X (1) =1
are linearly dependent, since the relation

x,(t) + x(1) — x3(1) =

+ Concerning the terms ‘‘homogeneous’’ and “nontrivial,” see Sec. 2.42e.
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holds. On the other hand, as we now show, the functions 1,¢,2,...,¢*
are linearly independent. In fact, suppose there exists a relation

og 1 4 ot + -0 + gttt = 0. 5)

Then, by successively differentiating (5) k times, we obtain a system of
k + 1 equations in the quantities ag, &y, . . . , &, with a determinant which
is clearly different from zero (recall Sec. 1.55b). Solving this system by
Cramer’s rule (Sec. 1.75), we find that

g =0y =-+"*=a,=0,

Consequently, the functions 1, ¢,¢%, ..., t* are linearly independent in the
space R(a, b), as asserted.

2,23, Next we note two simple properties of systems of vectors, both
involving the notion of linear dependence.

a. LEmMA. If some of the vectors x, X, . . ., X, are linearly dependent,
then the whole system Xy, X, . . . , Xy, is also linearly dependent.

Proof. Without loss of generality, we can assume that the vectors
X1, X3, - - . , X; (j < k) are linearly dependent. Thus there is a relation

Xy 4 %Xe + 0 4 ax; = 0,

where at least one of the constants «,, a,, . . . , «; is different from zero. By
Theorem 2.14¢ and axiom 3) of Sec. 2.12, we have

Xy + #Xe + 0 Fax; +0 x5, + 00 +0-x,=0.

But then the vectors xy, X,, ..., x; are also linearly dependent, since at
least one of the constants o, «s, ..., «;,0,..., 0 is different from zero. |}

b. LEMMA. The vectors X1, X, . . . , X;, are linearly dependent if and only if
one of the vectors can be expressed as a linear combination of the others.

Proof. A similar statement has already been encountered; in fact, it was
proved for columns of numbers in Sec. 1.95. Inspecting the proof given
there, we see that it is based only on the possibility of performing on columns
the operations of addition and multiplication by real numbers. Hence the
proof can be carried through for the elements of any linear space, ie., our
lemma is valid for any linear space. |

2.3. Bases, Components, Dimension

2.31. By definition, a system of linearly independent vectors e, e, . . .,
e, in a linear space K over a field K is called a basis for K if, given any x € K,



SEC. 2.3 BASES, COMPONENTS, DIMENSION 39

there exists an expansion
x=£1e1+£2e2+"'+i,,e,, (EJ-GK,J.II,Z,...,"). (6)

It is easy to see that under these conditions the coefficients in the expansion
(6) are uniquely determined. In fact, if we can write two expansions

x=Ee; + &+ -+ &8,
X =78 + N+ Nl
for a vector x, then, subtracting them term by term, we obtain the relation
0= —ner+ G —na)ea + - + (En — Mwlens
from which, by the assumption that the vectors e, e, . .., e, are linearly
independent, we find that
G=M8 ="M, & =1,
The uniquely defined numbers&,,£,, . . . £, , are called the components of the
vector x with respect to the basis e, e,, . . ., e,.
2.32. Examples
a, A familiar basis in the space V; is formed by the three orthogonal unit

vectors i, j, k. The components £, &,, £; of a vector x with respect to this
basis are the projections of x along the coordinate axes.

b. An example of a basis in the space K, is the system of vectors

e, =(1,0,...,0),

e, = (0,1,...,0),

e,=(0,0,...,1),
already considered in Sec. 2.22c. Indeed it is obvious that the relation

x=8(,0,...,0) +&0,1,...,0) +---+£,0,0,...,1)
holds for every vector
x=(,8,...,E)EK,.

This fact, together with the linear independence of the vectors e, e,, . . . , e,
already proved, shows that these vectors form a basis in the space K,. In

particular, we see that the numbers &, &,, ..., &, are just the components
of the vector x with respect to the basis e;, 5, ... , e,.

c. In the space R(a, b) there does not exist a basis in the sense defined
here. The proof of this statement will be given in Sec. 2.36¢c.

2.33. The fundamental significance of the concept of a basis for a linear
space consists in the fact that when a basis is specified, the originally ab-
stract linear operations in the space become ordinary linear operations with
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numbers, i.e., the components of the vectors with respect to the given basis.
In fact, we have the following

THEOREM. When two vectors of a linear space K are added, their components
(with respect to any basis) are added. When a vector is multiplied by a number
A, all its components are multiplied by A.

Proof. Let

x==E8e +&e + -+ Ee,
Y =rhe + N+ - 4 e,
Then
x+y=CE+)e + E+ e, + - + E, + ey,
Ax = AE e, + Mgy + 000 4 2E.e,,

by the axioms of Secs. 2.12 and 2.13. }

2.34. If in a linear space K we can find » linearly independent vectors
while every n + | vectors of the space are linearly dependent, then the number
n is called the dimension of the space K and the space K itself is called n-
dimensional. A linear space in which we can find an arbitrarily large number
of linearly independent vectors is called infinite-dimensional.

THEOREM. In a space K of dimension n there exists a basis consisting of n
vectors. Moreover, any set of n linearly independent vectors of the space K is a
basis for the space.

Proof. Let e, e, ..., e, be a system of n linearly independent vectors
of the given n-dimensional space K. If x is any vector of the space, then the
set of n 4+ | vectors

X, 81,85, ...,8€,

is linearly dependent, i.e., there exists a relation of the form

agX + 18 + w8y A e, =0, @)
where at least one of the coefficients «,, «,, ..., «, is different from zero.
Clearly «, is different from zero, since otherwise the vectors e;, e,, ... , ¢,

would be linearly dependent, contrary to hypothesis. Thus, in the usual
way, Le., by dividing (7) by «, and transposing all the other terms to the
other side, we find that x can be expressed as a linear combination of the
vectors e, e, . . . , e,. Since x is an arbitrary vector of the space K, we have
shown that the vectors ey, e,, . . . , e, form a basis for the space. |

2.35. The preceding theorem has the following converse:

THEOREM. If there is a basis in the space K, then the dimension of K equals
the number of basis vectors.
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Proof. Let the vectors e, e, . . . , e, be a basis for K. By the definition
of a basis, the vectors e,, e, . . . , e, are linearly independent ; thus we already
have n linearly independent vectors. We now show that any n 4 1 vectors
of the space K are linearly dependent. —

Suppose we are given n + | vectors of the space K:

1) [$8] e (1)
x, = &V, 4 EMey + -+ 1 E Ve,
»(2) (2} . (2)
Xy =g + & + - &,
—_ p(ntl) (n+1) .. (n+1)
Xpp = Ei" e - £ Ve, 4 L g e,

Writing the components of each of these vectors as a column of numbers, we
form the matrix

Eil) 2;2) . E{"“)
4 2;1) 2(22) . E(zn+l)
E(nl) 222) . E("nﬂ)

with r rows and n + 1 columns. The basis minor of the matrix 4 (see Sec.
1.92) is of order r < n. If r =0, the linear dependence is obvious. Let
r > 0. After specifying the r basis columns, we can still find at least one
column which is not one of the basis columns. But then, according to the
basis minor theorem, this column is a linear combination of the basis
columns. Thus the corresponding vector of the space K is alinear combination
of some other vectors among the given x,, x,, ..., x,,,. But in this case,
according to Lemma 2.23b, the vectors x;,X,,...,x,,, are linearly
dependent. |}

a. The space V; is three-dimensional, since it has a basis consisting of
the three vectors i, j, k (see Example 2.32a). Similarly, V, is two-dimensjonal
and ¥V, is one-dimensional.

b. The space K, is n-dimensional, since it contains a basis consisting of
the n vectors ey, e,, . . . , e, (see Example 2.32b).

c. In each of the spaces R(a, b) and C(a, b), there is an arbitrarily large
number of linearly independent vectors (see Example 2.22d), and hence these
spaces are infinite-dimensional. Therefore neither space has a basis, for the
presence of a basis would contradict Theorem 2.35.

d. Every complex linear space C is obviously a real space as well, since
the domain of complex numbers contains the domain of real numbers.
However, the dimension of C as a complex space does not coincide with that
of C asareal space. In fact, if the vectors ey, . . . , e, are linearly independent
in C regarded as a complex space, then the vectors ey, iey, . . . , €,, fe, are
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linearly independent in C regarded as a real space. Hence the dimension of
C regarded as a real space is twice as large as that of C regarded as a
complex space (provided the dimension is finite).

2.4. Subspaces

2.41. Suppose that a set L of elements of a linear space K has the following
properties:

a) IfxeL,yeL, thenx + yeL;
b) If x e L and A is an element of the field K, then Ax.€ L.

Thus L is a set of elements with linear operations defined on them. We now
show that this set is also a linear space. To do so, we must verify that the
set L with the operations a) and b) satisfies the axioms of Secs. 2.12 and
2.13, Axioms 1), 2) and 5)-8) are satisfied, since they hold quite generally
for all elements of the space K. It remains to verify axioms 3) and 4). Let
x be any element of L. Then, by hypothesis, Ax € L for every A € K. First
we choose A = 0. Then, since 0 - x = 0 by Theorem 2.14c, the zero vector
belongs to the set L, i.e., axiom 3) is satisfied. Next we choose A = —1.
Then, by Theorem 2.14d, (—1)x is the negative of the element x. Thus, if
an element x belongs to the set x, so does the negative of x. This means
that axiom 4) is also satisfied, so that L is a linear space, as asserted.
Consequently, every set LCK with properties a) and b) is called a linear
subspace (or simply a subspace) of the space K.

2.42. Examples

a. The set whose only element is the zero vector of the space K is obviously
the smallest possible subspace of K.

b. The whole space K is the largest possible subspace of K.

These two subspaces of K, the whole space and the set {0} consisting of
the zero vector alone, are sometimes called trivial subspaces. All the other
subspaces of K are then said to be pontrivial,

c. Let L, and L, be two subspaces of the same linear space K. Then the
set of all vectors x € K belonging to both L, and L, forms a subspace called
the intersection of the subspaces L, and L,. The set of all vectors of the form
¥ + z, where y € L, z € L, forms a subspace, denoted by L, + L, and called
the sum of the subspaces L, and L,.

d. All the vectors in the space V; parallel to a plane (or a line) form a
subspace. If we talk about points rather than about vectors, as in Sec. 2,17,
then the subspaces of V, are the sets of points lying on some plane (or line)
passing through the origin of coordinates.
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e. Consider the set L of all vectors (£,, &, . . . , &,) in the space K, whose
coordinates satisfy a system of linear equations of the form

apX, + Xy 4 -+ ax, =0,
anXy + @peXy + ¢ + GpX, = 0,

....................... (8)

Xy + GoXy + * 0+ GnXn = 0,

with coefficients in the field K and constant terms equal to zero. Such a
system is called a homogeneous linear system. A homogeneous linear system
is always compatible, since it obviously has the “trivial” solution

X =Xp="+-=Xx,=0,

Let ¢V, ¢V, ..., ¢ and ¢@, ¢, ..., ci?’ be two solutions of this system,
and form the numbers

— A {2} — A0 (2) _ A1) {(2)
=6+ c=¢c +¢,. ..., =¢; +c,.

Then clearly ¢, ¢s, . .., ¢, is again a solution of the system (8). In fact,
substituting these numbers into the ith equation of the system, we obtain

anC + @t + * 4 a0,
_ 0 (2) (1 (2) . @ (2)
= ay(ei’ + 6”) + apes’ +¢2) + + a; (¢’ + ¢i)
_ 0 W ... (1)
= (au¢1 + apc’ + + a:,C°)

(2 (23 | ... (2n _
+ (@y6® + as0c5” + + a;,¢,) =0,

as asserted ; this solution will be called the sum of the solutions ¢, ¢V, . .. |
cland ¢, ¢, .., . Similarly, if ¢;, ¢, . . . , ¢, is an arbitrary solution
of the system (8), then the numbers Acy, Acs, . . . , Ac,, also form a solution of
(8) for every fixed A € K; this solution will be called the product of the solution
€1, Cyy - - - 5 C, and the number A. Thus solutions of a homogeneous linear
system (8) with coefficients and constant terms in a given field K can be added
to one another and multiplied by numbers from the same field K, with the
result still a solution of (8). In other words, the set L is a subspace of the
space K, and hence a linear space in its own right. We will call L the solution
space of the system (8). In Sec. 3.41 we will calculate the dimension of this
space and construct a basis for it.

2.43. We now consider some properties of subspaces which are related
to the definitions of Secs. 2.2 and 2.3. First of all, we note that every linear
relation which connects the vectors x, y, . .., z in a subspace L is also valid
in the whole space K, and conversely. In particular, the fact that the vectors
X,y,...,z€L are linearly dependent holds true simultaneously in the
subspace L and in the space K. For example, if every set of n 4 1 vectors is



44  LINEAR SPACES CHAP. 2

linearly dependent in the space K, then this fact is true a fortiori in the sub-
space L. It follows that the dimension of any subspace L of an n-dimensional
space K does not exceed the number n. According to Theorem 2.34, in any
subspace L < K there exists a basis with the same number of vectors as the
dimension of L. Of course, if a basis ey, e, . . . , e, is chosen in K, then in the
general case we cannot choose the basis vectors of the subspace L from the
vectors e, e,,...,e,, because none of these vectors may belong to L.
However, it can be asserted that if a basis fi, fs, ..., f; is chosen in the
subspace L (which, to be explicit, is assumed to have dimension | < n), then
additional vectors fy,., . . . , f,, can always be chosen in the whole space K such
that the system f\, fo, . . ., f1s . - - s [ is a basis for all of K.

To prove this, we argue as follows: In the space K there are vectors which
cannot be expressed as linear combinations of fi,fs,...,f;. Indeed, if
there were no such vectors, then the vectors f3, f5, . . . , fi, which are linearly
independent by hypothesis, would constitute a basis for the space K, and then
by Theorem 2.35 the dimension of K would be / rather than n. Let f;,, be
any of the vectors that cannot be expressed as a linear combination of
Ju, fas o« o5 fi. Then the system £, /3, . . ., f1, fi,1 is linearly independent. In
fact, suppose there were a relation of the form

wfi+oaofs + o Fafi F o fia =0

Then if «;,, = 0, the vector f;,; could be expressed as a linear combination
of f1, /fas - - - » f1, while if &, ; = O, the vectors f1, /5, . . . , f; would be linearly
dependent. But both these results contradict the construction. If now every
vector of the space K can be expressed as a linear combination of f1, /5, . . .,
fifi1, thenthe system f1, /s, . . . , f1, f1,4 forms a basis for K (and / 4- 1 = n),
which concludes our construction. If / 4- 1 < n, then there is a vector f,_,
which cannot be expressed as a linear combination of 11, /5, . . . , f3, /1.1, and
hence we can continue the construction, Eventually, after n — I steps, we
obtain a basis for the space K.

2.44. We say that the vectors gy, ..., g, are linearly independent over
the subspace L < K if the relation

a1g1+"'+°‘kgkeL (al,...,“kEK)
implies
g == o, = 0.

If L is the subspace consisting of the zero vector alone, then linear independ-
ence over L means ordinary linear independence. Linear dependence of the
vectors gi,...,g, over the subspace L means that there exists a linear
combination «;g; + - - - 4 «,g, belonging to L, where at least one of the
coefficients ay, . .. , o, is nonzero.
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The largest possible number of vectors of the space K which are linearly
independent over the subspace L < K is called the dimension of K over L.

If the vectors g, ..., g are linearly independent over the space L = K
and if the vectors f}, . . . , f; are linearly independent in the subspace L, then
the vectors gy, . .., g4, /1, . . . , f; are linearly independent in the whole space
K. In fact, if there were a relation of the form

afy b oSy 4 Bug b Buge =0,

or equivalently

Bgi+ -+ B = —(ufi+ -+ f)eL,

then
= =p=0,
by the assumed linear independence of the vectors g,,..., g, over L. It
follows that «; = - -- = «; = 0, by the linear independence of the vectors
Ju- S
The vectors fy,,, . . . , f,, constructed in Sec. 2.43 are linearly independent

over the subspace L. In fact, if there were a relation of the form

fi + o F e fi=awfi o o f

with at least one of the numbers «,,4, ..., «, not equal to zero, then the
vectors f1, . . . , f, would be linearly dependent, contrary to the construction.
Hence the dimension of the space K over L is no less than n — /. On the
other hand, this dimension cannot be greater thann — /, since if n — / 4 1
vectors hy, ..., h, .1, say, were linearly independent over L, then the
vectors hy, . .., by 141, /15 - . . 5 f1, Of which there are more than n, would be
linearly independent in K. Therefore the dimension of K over L is precisely
n— 1

2.45. The direct sum. We say that a linear space L is the direct sum
of given subspaces Ly, ..., L, < L if

a) For every x € L there exists an expansion
X=X+ Xy,

where x, €Ly, ..., x,,€L,;
b) This expansion is unique, ie., if

X=x;+ " tx, =yt At Vn
where x,eL;, y;€L, (j=1,...,m), then

x1:yl’-~~’xm:ym'
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However, the validity of condition b) is a consequence of the following
simpler condition:

b’) If
0=2z+-"+2z,
where z; €L, ..., z, €L,, then
zy=-=2,=0.
In fact, given two expansions x = x; + -+ 4+ Xp, X =y + " * + Y,

suppose b’) holds. Then subtracting the second expansion from the first,
we get
0= (xl _Y1) + -+ (xm _ym)’

and hence x, = y,,..., x, = yn, because of b"). Conversely, b’) follows
fromb) if wesetx =0, x, =---=x, = 0.
It follows from condition b) that every pair of subspaces L,,...,L,,

has only the element 0 in common. In fact, if z€L; and z € L,, then using
b) and comparing the two expansions

z=2z+40, zeL,, 0eL,,

z=0+4 z, 0eL,, zeL,,
we find that z = 0.

Thus an n-dimensional space K, is the direct sum of the » one-dimensional
subspaces determined by any # linearly independent vectors. Moreover, the
space K, can be represented in various ways as a direct sum of subspaces not
all of dimension 1.

2.46. Let L be a fixed subspace of an n-dimensional space K,. Then there
always exists a subspace M < K, such that the whole space K, is the direct
sum of L and M. To prove this, we use the vectors f; ,, ... , f, constructed
in Sec. 2.43, which are linearly independent over the subspace L. Let M be
the subspace consisting of all linear combinations of the vectors f,,,, ..., f,.
Then M satisfies the stipulated requirement. In fact, since the vectors
fi,---,f, form a basis in K, (see Sec. 2.43), every vector x €L has an
expansion of the form

x=ufit ot oufitaafint o+ afa=y+z,
where
=ufi+ -+ wfiel,
Z=°‘l+1fl+1+ R “nanM'

Moreover x = 0 implies «, = --* = a«, = 0, since the vectors fi,..., [,
are linearly independent. Therefore conditions a)-b’) of Sec. 2.45 are
satisfied, so that K, is the direct sum of L and M.
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2.47. a. If the dimension of the space L, equals r, (k =1,...,m) and
if r, linearly independent vectors f, . . . , f,, are selected in each space L,,
then every vector x of the sum L =L, + - - - + L, can be expressed as a
linear combination of these vectors. Hence the dimension of the sum of the
spaces Ly, . . ., L, does not exceed the sum of the dimensions of the separate
spaces. If the sumL; + - - - 4 L, is direct, then the vectors fyy, . . . ,fl,l, e,
Juar -+ sSirgs -+ s Smis - -+ 5 fr,, are all linearly independent, so that in this
case the dimension of the sum is precisely the sum of the dimensions.

b. In the general case, the dimension of the sum is related to the dimen-
sions of the summands in a more complicated way. Here we consider only
the problem of determining the dimension of the sum of two finite-dimensional
subspaces P and Q of the space K, of dimensions p and g, respectively. Let
L be the intersection of the subspaces P and Q, and let L have dimension /.
First we choose a basis e, e,, ..., e, in L. Then, using the argument of
Sec. 2.43, we augment the basis e, e,, . . ., e, by the vectors £y, fi40. . .., f}
to make a basis for the whole subspace P and by the vectors g;.;, g142,. .., &,
to make a basis for the whole subspace Q. By definition, every vector in the
sum P 4 Q is the sum of a vector from P and a vector from Q, and hence can
be expressed as a linear combination of the vectors

e e S s S B 0 8o ®
We now show that these vectors form a basis for the subspace P + Q. To
show this, it remains to verify their linear independence. Assume that there
exists a linear relation of the form
wmey + -+ e + B S + 0
+ Bafp + Yuagua + 0+ Vg =0, (10)

where at least one of the coefficients «,, . . ., v, is different from zero. We
can then assert that at least one of the numbers v,,,, . .., v, is different from
zero, since otherwise the vectors

e en S-Sy
would be linearly dependent, which is impossible in view of the fact that they
form a basis for the subspace P. Consequently the vector
X =Yg+ "+ Y8 0 an

for otherwise the vectors g,.,,...,g, would be linearly dependent. But it
follows from (10) that

—x=owe + -+ B,fL€P,

while (11) shows that x € Q. Thus x belongs to both P and Q, and hence
belongs to the subspace L. But then

X =Ygt T Y8 = Mo+t Ay,
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and since the vectors

€1, € 81155 80
are linearly independent, we have

Y= =y, = 0.

This contradiction shows that the vectors (9) are actually linearly independent,
and hence form a basis for the subspace P + Q. It follows from Theorem
2.35 that the dimension of P 4 Q equals the number of basis vectors (9).
But this number equals p 4- ¢ — I. Thus, finally, the dimension of the sum
of two subspaces is equal to the sum of their dimensions minus the dimension
of their intersection.

c. CoROLLARY. Let R, and R, be two subspaces of dimensions p and q,
respectively, of an n-dimensional space R,, and suppose p 4 q > n. Then
the intersection of R, and R, is of dimension no less than p + q — n.

2.48. Factor spaces

a. Given a subspace L of a linear space K, an element x € K is said to be
comparable with an element y € K (more exactly, comparable relative to L)
if x — y e L. Obviously, if x is comparable with y, then y is comparable
with x, so that the relation of comparability is symmetric. Every element
x € K is comparable with itself. Moreover, if x is comparable with y and y
is comparable with z, then x is comparable with z, since

x—z=x—y)+(y—2 el

b. The set of all elements y € K comparable with a given element x € K
is called a class, and is denoted by X. As just shown, a class X contains the
element x itself, and every pair of elements y € X, z € X are comparable with
each other. Moreover, if u ¢ X, then u is not comparable with any element
of X. Therefore two classes either have no elements in common or else
coincide completely. The subspace L itself is a class. This class is denoted
by 0, since it contains the zero element of the space K.

c. The whole space K can be partitioned into a set of nonintersecting
classes X,Y,.... This set of classes will be denoted by K/L. We now
introduce linear operations in K/L as follows: Given two classes X, Y and
two elements «, B of the field K, we wish to define the class X + BY. To do
this, we choose arbitrary elements x € X, y € Y and find the class Z con-
taining the element z = ax + By. This class is then denoted by «X + BY.
Clearly, «X + BY is uniquely defined. In fact, suppose we choose another
element x, of the class X and another element y, of the class Y. Then

(axy - Byy) — (2x + By) = 2(xy — %) + B — )
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belongs to the space L, since x, — x and y; — y both belong to L. It follows
that ax; + By; belongs to the same class as ax + By.

In particular, the above prescription defines addition of two classes X
and Y, as well as multiplication of a class by a number x € K. We now show
that these operations obey the axioms of a linear space, enumerated in Secs.
2.12 and 2.13. In fact, the validity of axioms 1) and 2) of Sec. 2.12 and
axioms 5)-8) of Sec. 2.13 for classes follows at once from their validity for
elements of the space K. Moreover, the zero element of the space K/L is the
class O (consisting of all elements of the subspace L), while the inverse of the
class X is the class consisting of all inverses of elements of the class X. Thus
axioms 3) and 4) of Sec. 2.12 are also satisfied for the set of classes K/L.
The resulting linear space K/L is called the factor space of the space K with
respect to the subspace L.

2.49. THEOREM. Let K = K, be an n-dimensional linear space over the
field K, and let L =L, < K be an l-dimensional subspace of K. Then the
Sactor space K|L is of dimension n — 1.

Proof. Choose any basis fi, . . . ,f; € L, and augment it, as in Sec. 2.43,
by vectors fy,4,...,f, to make a basis for the whole space K. Then the
classes X313 f141, - - - » X,, 3.1, form a basis in the space K/L. To see this,

we note that given any x € K, there is a representation

"
x =2 %f,
k=1
and hence a representation
X =73 «X;
k=1+1
for the class X 3 x. Moreover, the classes X,., ... , X, are linearly indepen-

dent. In fact, if
Xy + o+ ¢, X, =0€K/L

for any a;.,, ..., «, in K, then, in particular, there would be a relation
V’lflflﬁLl 4 -+ g’nfn eL.

But f;.4, ... ,f, are linearly independent over L (see Sec. 2.44), and hence

®pq =+ = a, =0, as required. Thus the n — [/ classes X, ,4,...,X,

form a basis in K/L. It follows from Theorem 2.35 that K/L is of dimension
n—1 |

2.5. Linear Manifolds

2.51. An important way of constructing subspaces is to form the linear
manifold spanned by a given system of vectors. Let x, y, z, . .. be a system
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of vectors of a linear space K. Then by the linear manifold spanned by
X,¥,2,...is meant the set of all (finite) linear combinations

ax 4 By +yz 4 (12)

with coefficients =, B, v, . . . in the field K. It is easily verified that this set has
properties a) and b) of Sec. 2.41. Therefore the linear manifold spanned by a
system x, y, z, ... is a subspace of the space K. Obviously, every subspace
containing the vectors x, y, z, . . . also contains all their linear combinations
(12). Consequently, the linear manifold spanned by the vectors x,y, z, . .. is
the smallest subspace containing these vectors. The linear manifold spanned
by the vectors x, y, z, . .. is denoted by L(x, y, z, . . .).

2.52. Examples

a. The linear manifold spanned by the basis vectors e, e,, ..., e, of a
space K is obviously the whole space K.

b. The linear manifold spanned by two (noncollinear) vectors of the
space V; consists of all the vectors parallel to the plane determined by the
two vectors.

c. The linear manifold spanned by the system of functions 1, ¢, 2, ..., t*
of the space K(a, b) (K is R or C) consists of the set of all polynomials in ¢
of degree no higher than k. The linear manifold spanned by the infinite
system of functions 1, ¢, 2, . . . consists of all polynomials (of any degree) in
the variable ¢ with coefficients in the field K.

2.53. We now note two simple properties of linear manifolds.

a. LEmMA. If the vectors x', y', . . . belong to the linear manifold spanned
by the vectors x,y, ... ,then the linear manifold L(x,y, ...) contains the
whole linear manifold L(x', y', . . .).

Proof. Since the vectors x’, y’, ... belong to the subspace L(x, y,...)
then all their linear combinations, whose totality constitutes the linear
manifold L(x', y', . . .), also belong to the subspace L(x,y,...). |

b. LeMMA. Every vector of the system x, y, . . . which is linearly dependent
on the other vectors of the system can be eliminated without changing the
linear manifold spanned by x, y, . . ..

Proof. If the vector x, say, is linearly dependent on the vectors y, z, . . .,
this means that x e L(y, z, . ..). It follows from Lemma 2.53a that

LGy, z,..) < L, 2.,
On the other hand, obviously
L(y,z,..)< Lx,y,2,...).
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Together these two relations imply
L(y,z,..)=L(x,y,z,...). 1

2.54. We now pose the problem of constructing a basis for a linear
manifold and determining the dimension of a linear manifold. In solving this
problem, we will assume that the number of vectors x, y, . .. spanning the
linear manifold L(x, y, . . .) is finite, although some of our conclusions do not
actually require this assumption.

Suppose that among the vectors x, y, . .. spanning the linear manifold
L(x,y,...) we can find r linearly independent vectors x;, xs, . . ., x,, say,
such that every vector of the system x,y,... is a linear combination of
Xy Xgs . .« » X, Then the vectors xy, xs, ..., x, form a basis for the space
L(x,y,...). Indeed, by the very definition of a linear manifold, every
vector z € L{x, y,...) can be expressed as a linear combination of a finite
number of vectors of the system x, y, . ... But, by hypothesis, each of these
vectors can be expressed as a linear combination of x,, x,, ..., x,. Thus
eventually the vector z can also be expressed as a linear combination of the
vectors X, X,, . . . , X,. This, together with the assumption that the vectors
X1, X3, . .., X, are linearly independent, shows that x,, x,, ..., x, indeed
form a basis, as asserted.

According to Theorem 2.35, the dimension of the space L(x, y,...) is
equal to the number r. Since there can be no more than r linearly independent
vectors in an r-dimensional space, we can draw the following conclusions:

a. If the number of vectors x, y, ... spanning L(x,y,...) is larger than
the number r, then the vectors x, y, . .. are linearly dependent. If the number
of these vectors equals r, then the vectors are linearly independent.

b. Every set of r + 1 vectors from the system x, y, . . . is linearly dependent.

c. The dimension of the space L(x, y, . ..) can be defined as the maximum
number of linearly independent vectors in the system x, y, . . ..

2.6. Hyperplanes

2.61. As already noted in Sec. 2.42d, if we adopt the “point™ rather
than the “vector’ interpretation in the space V3, then the geometric entity
corresponding to the notion of a subspace is a plane (or a straight line)
passing through the origin of coordinates. But it is also desirable to include
in our scheme of things planes and straight lines which do not pass through
the origin of coordinates. Noting that such planes and straight lines are
obtained from planes and straight lines passing through the origin of co-
ordinates by means of a parallel displacement in space, i.e., by a shift, we
are led in a natural way to the following general construction:
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Let L be a subspace of a linear space K, and let x, € K be a fixed vector
which in general does not belong to L. Consider the set H of all vectors of
the form

X=X+

where the vector y ranges over the whole subspace L. Then H is called a
hyperplane, more specifically, the result of shifting the subspace L by the vector
Xo. We note that in general a hyperplane is itself not a linear space.

2.62. Examples

a. In the space V; the set of all vectors starting from the origin of co-
ordinates and terminating on a plane y forms a hyperplane. It is easily
verified that this hyperplane is a subspace if and only if the plane y passes
through the origin of coordinates.

b. In the space K, consider the set A consisting of the vectors x =
(&1, &, . .., &,) whose components satisfy the compatible nonhomogeneous
system of linear equations

apxy + apXs 4 0 F ayx, = by,
Ay1Xy 4 Xy 4 * 0 A9, X, = by, (13)
Xy peXy 0 A B X = by,

and the set L consisting of the vectors y = (v, 7, ..., %,) whose com-

ponents satisfy the homogeneous system of linear equations with the same
coefficients:

auyy + apys + 0 4 Ay, =0,
anyy + Apys + 0 T @y, =0, (139

Y1 Geys + gy, = 0.

As we already know from Example 2.42e, the set L is a subspace of the space
K, Let xo= (0, E® ..., £©) be a solution of the system (13). Then
the set H is identical with the set of all sums x, -+ y where y ranges over the
whole subspace L. In fact, if y = (41, %2,..., 7,) is a solution of the
system (13"), then the vector

o z(0y »(0 N = (0 -
x=x+y=0CE" + 7. &0 4 e, LD 1)

is obviously a solution of the system (13), i.e., belongs to the set #. Con-
versely, if x is any vector of the set H, then the difference y = x — x,
certainly satisfies the system (13"), i.e., the vector y belongs to the subspace
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L. In view of the definition given above, the set H is a hyperplane, namely
the result of shifting the space L by the vector x,.

2.63. We can assign a dimension to every hyperplane, even if it is not a
subspace, i.e., we consider the dimension of the hyperplane H to be equal to
the dimension of the subspace L from which H was obtained by shifting.
For this definition to be suitable, we must show that the given hyperplane
H can be obtained as a shift of only one subspace. To prove this, suppose H
is both the result of shifting the subspace L by the vector x, and the result of
shifting the subspace L’ by the vector x;. Then for any z € H we have both
z =Xy + y where ye L and z = x; 4 y’ where y’ eL’. It follows that L’
is the set of vectors of the form y’ = (x, — x;) + y where y is an arbitrary
vector in L, i.e., the subspace L' is the result of shifting the subspace L by
the vector x; = x, — x;. Clearly x,; belongs to the subspace L. In fact, the
zero vector, just like any other element of the space L', can be represented in
the form x; + y, where y, € L (since L’ is the subspace L shifted by the vector
x;). Therefore x; = —y,, so that x; € L, as asserted. But then every vector
y" €L’ also belongs to the subspace L, since y’ is the sum of a vector x; € L
and a vector y € L. It follows that L’ = L. Because of the complete symmetry
of the hypothesis, we can prove similarly that L < L’. Together with
L’ = L, this implies L = L', as required.

In what follows, hyperplanes of dimension 1 will be called straight lines,
and hyperplanes of dimension 2 will be called planes.

2.7. Morphisms of Linear Spaces

2.71. Let w be a rule which assigns to every given vector x’ of a linear
space K’ a vector x” in a linear space K”. Then « is called a morphism (or
linear operator)t if the following two conditions hold:

a) o(x’' +y) = o(x) + o(y') for every x’, y' e K’;
b) w(xx") = aw(x’) for every x’ € K’ and every « € K.

A morphism & mapping the space K’ onto the whole space K" is called an
epimorphism. A morphism «» mapping K’ onto part (or all) of K” in a one-
to-one fashion (so that x’ # y’ implies w(x’) £ w(y") is called a mono-
morphism. A morphism » mapping K’ onto all of K" in a one-to-one fashion
(i.e., a morphism which is both an epimorphism and a monomorphism) is
called an isomorphism, and the spaces K’ and K" themselves are said to be
isomorphic (more exactly, K-isomorphic). The usual notation for a morphism
is
oK' - K"

t More exactly, a morphism of K’ into K" (or a linear operator mapping K’ into K").
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2.72. Examples

a. Let L be a subspace of a space K. Then the mapping w which assigns
to every vector x € L the same vector x € K is a morphism of L into K, and
in fact a monomorphism (but not an epimorphism if L # K). This morphism
is said to embed L in K.

b. Let L be a subspace of a space K, and let K/L be the factor space of K
with respect to L (see Sec. 2.48). Then the mapping @ which assigns to every
vector x €K the class X € K/L containing x is a morphism of « into K/L,
and in fact an epimorphism (but not a monomorphism if L 5= 0). This
morphism  is called the canonical mapping of K onto K/L.

2.73. a. Let the space K’ be n-dimensional with basis e/, ..., e;, and

choose n arbitrary vectors e, . . . , €/ in K". With every given vector
n
! !
x' =2Ee
k=1

in K’ we associate the vector

n

o(x') = x" = 3 bl
k=1

in K" with the same components &, (k =1,...,n). Then the mapping
o(x")y = x" is a morphism of the space K’ into the space K". In fact, given
any two vectors

3

n
' v ’ '
X = 2, s y =E"zkek
1 r=1

a
J

in K, it follows from Theorem 2.33 that
X'+ y =23 E + me
e=1
But !
o(x) =&, o) = Zne
k=1 k=1
by the definition of the mapping », and moreover
(' 4+ y) =3 (& + ey = D Eael + el = o(x') 4 (),
k=1 k=1 k=1
so that condition a) of Sec. 2.71 is satisfied. Similarly,
o(ax’) = m(azike,'c) = m(zaike,'c)
k=1 k=1

abper = o2 Eefl = aw(x")
1 k=1

=

k
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for every « € K, so that condition b) is also satisfied. Therefore « is a
morphism of K’ into K", as asserted.

b. Obviously, the morphism « just described is an epimorphism if and
only if every vector x” € K" can be represented in the form

z Eke;(,:’
k=1

ie., if and only if K" coincides with the linear manifold spanned by the vectors
ell ell‘
..., e

c. Similarly, our morphism « is a monomorphism if and only if every
pair of vectors

n n
z Eke;:’ z "lkGZ
k=1 k=1

differing in at least one component (i.e., such that &, =~ v, for at least one
value of k) are distinct vectors of K”. But this is equivalent to linear
independence of the vectors ey, ..., e.. Therefore the morphism w is a
monomorphism if and only if the vectors €}, . .. , e, are linearly independent.

d. It follows that the morphism « described above is an isomorphism if
and only if the vectors e'l', ey e:: are linearly independent and the linear
manifold spanned by them coincides with the whole space K”. In other
words, the morphism  is an isomorphism if and only if the vectors e'l', R e:
form a basis in the space K".

2.74. THEOREM. Any two n-dimensional spaces K' and K" (over the same
field K) are K-isomorphic.

Proof. Let e, ..., e, be a basis in the space K’ and e}, ..., e, a basis
in the space K”, and use these two systems of vectors to construct a morphism
o of K" into K" in the way described in Sec. 2.73a. Then w is an isomorphism,
by Sec. 2.73d. |I

2.75. COROLLARY. Every n-dimensional linear space over a field K is
K-isomorphic to the space K, of Sec. 2.15b. In particular, every n-dimensional
complex space is C-isomorphic to the space C,, and every n-dimensional real
space is R-isomorphic to the space R,.

2.76. We now discuss further properties of epimorphisms and mono-
morphisms.

a. Given a morphism «:K'— K", consider the set L” of all vectors
w(x") e K" such that x" € K’. The set L”, which is obviously a subspace of
K", is called the range of the morphism w. It is clear that the mapping o
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of K’ into L” is an epimorphism. If the morphism w:K’— K" is a monomor-
phism, then the morphism «:K' — L" is an isomorphism.

b. Given a morphism w:K’'— K", consider the set L' of all vectors
x" € K’ such that w(x") = 0. The set L', which is obviously a subspace of K’,
is called the null space (or kernel) of the morphism w.

We now construct the factor space K'/L’ (see Sec. 2.48). All the elements
x’ belonging to the same class X" € K’/L’ are carried by the morphism e into
the same element of the space K”. In fact, given two such elements x” and y’,
we have x’ — y’ =z’ e L', and hence

o) () =0(@)=0, ox)=ow0).

Suppose that with every class X’ e K'/L’ we associate the element x” =
w(x") € K" where x" is an arbitrary element of X’ (as just shown x” is uniquely
determined). Let x" = Q(X’). Then it is easy to see that Q is a morphism
of K'/L’ into K". Moreover 2 is a monomorphism, since it follows from
X' #£Y,x eX,y eY that

QX') — QY') = 0(x') — () = o’ — ) £ 0.

Thus any morphism w:K’ — K" generates a monomorphism Q:K'/L’ — K".
If the morphism w is an epimorphism, then, obviously, the monomorphism £2
is also an epimorphism, so that the epimorphism w:K’— K" generates an
isomorphism Q:K'/L’ — K".

We will continue the study of morphisms in Chapter 4.

PROBLEMS

1. Consider the set of vectors in the plane whose initial points are located at the
origin of coordinates and whose final points lie within the first quadrant. Does
this set form a linear space (with the usual operations) ?

2. Consider the set of all vectors in the plane with the exception of the vectors
which are parallel to a given straight line. Does this set form a linear space?

3. Consider the set P consisting of the positive real numbers only. We introduce
operations according to the following rules: By the “sum’ of two numbers we
mean their product (in the usual sense), and by the *“product” of an element
r € P and a real number A we mean r raised to the power 2 (in the usual sense).
If P a linear space (with these operations) ?

4. Show that a criterion for the linear independence of n given vectors in the
space K, is that the determinant formed from the coordinates of the vectors
does not vanish.

5. Show that the functions ¢71, ™2, . . ., ¢"+ are linearly independent in the space
K(a, b), where 0 < a < band ry,r,,...,r; are distinct real numbers.
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6. The following is known about a system of vectors e;, e,, ... , e, in a linear
space K:
a) Every vector x € K has an expansion of the form

x = Eie; + Epey + - - + Epey;

b) This expansion is unique for some fixed vector x, € K.
Show that the system e,, ¢, . . ., ¢, forms a basis in K.

7. Does there exXist a basis in the space P of Problem 3?
8. What is the dimension of the space P of Problem 3?

9. Find the intersection and sum of two distinct two-dimensional subspaces of
the space V; (two distinct planes passing through the origin of coordinates).

10. Prove that if the dimension of the subspace L < K is the same as that of the
space K, then L = K.

11. Is the shift vector x, figuring in the construction of a hyperplane uniquely
determined by the hyperplane itself ?

12. Show that every hyperplane H < K has the following property: If x € H,
y €H, then ax + (1 — &)y € H for every element of the field XK. Conversely,
show that if a subset H < K has this property, then H is a hyperplane. What
geometric characteristic of a hyperplane is expressed by this property?

13. The hyperplanes H, and H, have dimensions p and ¢, respectively. What is
the (smallest) dimension which the hyperplane H; must have in order to be sure
to contain both H, and H,?

14. Solve the analogous problem for three hyperplanes H;, H, and Hj, with
dimensions p, g and r, respectively.

15. According to Theorem 2.74, the one-dimensional spaces R, and P (see
Problem 3) are isomorphic. How can one establish this isomorphism in practice?



chapter 3

SYSTEMS OF
LINEAR EQUATIONS

3.1. More on the Rank of a Matrix

3.11. We have already touched upon the subject of matrices several times.
In this section we will study in more detail those properties of matrices which
are connected with the concept of rank (see Sec. 1.9). This will allow us to
give a general solution of the basic problems of the theory of systems of
linear equations, posed in Sec. 1.2.

We begin by recalling some basic definitions from Sec. 1.9. Suppose we
have a matrix

an G " Ay
Ay Gy "~ Ay (

= 1)
anl an2 e ank

with # rows and & columns, consisting of the numbers a;; from the field X,
where i is the row index ranging from | to » and j is the column index ranging
from | to k} If we choose any m rows and m columns of this matrix, then
the elements which appear at the intersections of these rows and columns

+ Sometimes the indices of an element of the matrix 4 will be writter differently, i.e.,
sometimes we will denote the element appearing in the ith row and jth column of 4 by the

symbol af.

58
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form a square matrix of order m. The determinant of this matrix is called
a minor of order m of the matrix A. The integer m is said to be the rank of the
matrix A if A has a nonvanishing minor of order r and all its minors of order
r 4+ 1 and higher vanish. If the matrix 4 has rank r > 0, then each of its
nonvanishing minors of order r is called a basis minor. The columns and
rows of the matrix which intersect at the elements of the basis minor are
called the basis columns and basis rows.

The considerations that follow are based on the possibility of regarding
any column of numbers as a geometric object, i.e., as a vector in the »-
dimensional space K, of Sec. 2.15b. With this geometric interpretation, the
matrix A4 itself corresponds to a certain set of k vectors of the space X,.
Let x; (=1, ..., k) denote the vector corresponding to the jth column of
A. Then any linear relation between the columns of 4 can be interpreted as the
same linear relation between the corresponding vectors (see Sec. 2.22b).

Let L(x;, X3, ..., %) be the linear manifold spanned by the vectors
X1, Xa, . .. , X Of K, (see Sec. 2.51). We now prove that the véctors corre-
sponding to the basis columns of the matrix A form a basis for this linear
manifold. To be explicit, suppose that the first r columns of 4 are basis
columns. Then, to prove our assertion, it suffices to show first that the
vectors X, X,, . . . , X, are linearly independent, and secondly that any of
the other vectors x,,,, ..., X, is a linear combination of the first r vectors
(see Sec. 2.54). To prove the first assertion, suppose that the vectors x,, x,,
..., x, are linearly dependent, or equivalently, that the first r columns of 4
are linearly dependent. Then, by Theorem 1.96, any determinant of order r
constructed from these columns and any r rows of 4 would vanish. In
particular, the basis minor of 4 would vanish, contrary to its very definition.
This contradiction establishes the first assertion. The second assertion, as
applied to columns of the matrix 4, has already been proved in Sec. 1.93
under the guise of the “basis minor theorem.”” This completes the proof
that the vectors x,, X,, . . . , X, form a basis for the space L(x, X, . . . , X3).
According to Theorem 2.35, the dimension of this space equals the number
r, i.e., the rank of the matrix A. Thus we have established the following
important

THEOREM. The dimension of the linear manifold spanned by the vectors
corresponding to the columns of the matrix A equals the rank of A. Moreover,
the vectors corresponding to the basis columns of A form a basis for this
linear manifold.

3.12. The following propositions are obvious consequences of conclusions
a)-c) of Sec. 2.54:

a. THEOREM. If the rank of the matrix A is less than the number of columns
in A (r < k), then the columns of A are linearly dependent. If the rank of A
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equals the number of columns in A (r = k), then the columns of A are linearly
independent.

b. THEOREM. Any r + | columns of the matrix A are linearly dependent.

c. THEOREM. The rank of any matrix A equals the maximum number of
linearly independent columns in A.

This last theorem is of fundamental importance, since it constitutes a
new definition of the rank of a matrix.

3.13. Suppose we transpose the matrix 4, i.e., suppose we go over to the
matrix A" whose rows are the columns of A4 (cf. Sec. 1.41). Clearly, the rank
of the transposed matrix A’ is the same as the rank of 4. But according to
Theorem 3.12¢, the rank of A’ equals the maximum number of linearly
independent columns in A’, or equivalently, the maximum number of
linearly independent rows in 4. Thus we arrive at the following somewhat
unexpected conclusion:

THEOREM. The maximum number of linearly independent rows in a matrix
A is the same as the maximum number cf linearly independent columns in A.

We note that this theorem is not trivial. In fact, any direct proof of the
theorem would require a chain of reasoning equivalent to the proof of
Theorems 1.93 and 3.11.

3.14. Finally we note the following result, which is a consequence of
Theorem 3.11 and Lemma 2.53b:

THEOREM. Any column of the matrix A which is a linear combination of
the other columns can be deleted without changing the rank of A.

3.2. Nontrivial Compatibility of a Homogeneous Linear System

3.21. Suppose we have a homogeneous linear system

apX, + apx, + - - - T ayx, =0,
Xy - GppXy + 0+ dapx, =0, 2
Xy + GaXy + ¢+ @Xy, = 0.

As we know, this system is always compatible, since it has the trivial solution

X, =Xp=-+-= X, =0.
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The basic problem encountered in studying homogeneous linear systems is
the following: Under what conditions is a homogeneous linear system “non-
trivially compatible,” i.e., under what conditions does such a system have
solutions other than the trivial solution? The results of Sec. 3.1 allow us to
solve this problem immediately. In fact, as we have seen in Sec. 2.22b, the
existence of a nontrivial solution of the system (2) is equivalent to the
columns of the matrix

iy @G "7 i,

Ay 4y - a
4 = |[F G 20

Ay Gxp T Gyg

being linearly dependent. But, according to Theorem 3.12a, this occurs if
and only if the rank of the matrix A is less than the number of columns in 4.
Thus we obtain the following

THEOREM. The system (2) is nontrivially compatible, i.e., has nontrivial
solutions if and only if the rank of the matrix A is less than n. If the rank of
the matrix A equals n, the system (2) has no nontrivial solutions.

3.22. In particular, if the number of equations in the system (2) is less
than the number of unknowns (k < n), the rank of the matrix A4 is certainly
less than n, and in this case nontrivial solutions always exist. If k = n, the
question of whether or not nontrivial solutions exist depends on the value
of det A. If det A # 0, there are no nontrivial solutions (r = n), while if
det A = 0, there are nontrivial solutions (r < n). If k > n, we have to
examine all possible determinants of order » which are obtained by fixing
any n rows of the matrix 4. If all these determinants vanish, then r < n and
nontrivial solutions exist. If at least one of these determinantsisnonvanishing,
then r = n and there is only the trivial solution.

3.3. The Compatibility Condition for a General Linear System

3.31. Suppose we have a general (i.e., nonhomogeneous) system of
linear equations

apX, + apX, + 70+ ax, = bl,

Xy + Xy + * 0 4 Ay, = by,

&)

@GaXy + QpeXe + 0+ QX = by
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With this system we associate two matrices, the matrix

an G " 4y,

A1 Gy """ Ay
A= s

A Gxe " gy

called the coefficient matrix of the system (3), and the matrix

ay ap o a, b
__|8a Qg - 4z, b,
A, = s

G G2 T G by

called the augmented matrix of the system (3). Regarding the compatibility
of the system (3), we then have the following basic

THEOREM (Kronecker-Capelli). The system (3) is compatible if and only
if the rank of the augmented matrix of the system equals the rank of the
coefficient matrix.

Proof. Assume first that the system (3) is compatible. Then if ¢}, ¢5, .. .,
¢, is a solution of the system, we have the equations

aney + @6y + 0+ Ay, = by,
@yCy + A5pCy + - -+ Gy,C, = by,
@€y + GaCy + -7+ apuc, = by

These equations imply that the last column of 4, is a linear combination of
the other columns of 4, (with coefficients ¢;, ¢,, . . ., ¢,). By Theorem 3.14,
we can delete the last column of A4; without changing its rank. But when
the last column of 4, is deleted, it becomes just 4. Hence if the system (3)
is compatible, the matrices 4 and A4, have the same rank.

We now assume that the matrices A and A, have the same rank, and show
that the system (3) is compatible. Let r be the rank of the matrix 4 (and
consequently also of the matrix 4,). Consider r basis columns of A; they
will also be basis columns of A4,. By Theorem 1.93, the last column of 4,
can be written as a linear combination of the basis columns, and hence
it can be written as a linear combination of all the columns of A. If we
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denote the coefficients of this linear combination by ¢;, ¢c,, ..., ¢,, we find
that the equations

ancy + apce + - 4 ayc, = by,
Ay €y + GyCy + - -+ + @uc, = by,
A€y + GaCy + 7 A @€ = by

are satisfied. Thus the values
Xp =€y Xg == Cgy - - ., X, = Cp

satisfy the system (3), which is therefore compatible. |

3.4. The General Solution of a Linear System

3.41. The Kronecker-Capelli theorem, which gives the general condition
for the compatibility of a linear system, does not give a method for solving
the system. We now derive a formula which constitutes a general solution
of a linear system.

By a general solution of the system (3) we mean a set of expressions

xi:f;‘(all""5akn’bl"‘-5bk5q17---5qs) (j: 1,.--,"),

where the right-hand sides are functions depending on the coefficients a;; of
the system (3), the constant terms b; of (3) and certain undetermined
parameters qy, . . . , g,, such that

1) The quantities x; = ¢; (j=1,...,n) obtained for arbitrary fixed
values of the parameters gy, . .., g, (from the field K) constitute a solution
of the system (3);

2) Any given solution of the system (3) can be obtained in this way by
suitably choosing the values of the parameters¢q,, ..., ¢, in K

As shown in Sec. 2.62b, the set of all sums of the form x, + y, where x, is
any (“particular™) solution of the system (3) and y ranges over the set of
all solutions of the corresponding homogeneous system, is just the set of
all solutions of (3). This fact can now be expressed as follows: The general
solution of the nonhomogeneous system (3) is the sum of any particular
solution of (3) and the general solution of the corresponding homogeneous
system (2).

Suppose we have a compatible linear system (3) with a coefficient matrix
A = |la;| of rank r. It can be assumed that the basis minor M of the matrix
A appears in its upper left-hand corner; otherwise, we can achieve this
configuration by interchanging rows and columns of 4, which corresponds



64 SYSTEMS OF LINEAR EQUATIONS CHAP. 3

to renumbering some of the equations and unknowns in the system (3). We
take the first r equations of the system (3) and rewrite them in the form

anx, + apXy -+ ax, = by — Ay 1 Xppl T T T Xy,

AnX; + GyeXs + - -+ @yx, = by — A2y 1 Xyl — ° 70 gy Xy,
4)

anx =+ Qp9Xo T+ T Ay Xy = br - ar,r+1xr+l T T QX
Next we assign the unknowns x,.,..., x, completely arbitrary values
Crp1s - - - » €. Then (4) becomes a system of r equations in the r unknowns

X1, Xy, . . . 5 Xp, With a determinant M which is nonvanishing (a basis minor
of the matrix 4). This system can be solved by using Cramer’s rule (see
Sec. 1.73). Hence there exist numbers ¢;, ¢, . . . , ¢, which, when substituted
for the unknowns x;, X,, . . ., x, of the system (4), reduce all the equations
of the system to identities. We now show that these values ¢;, ¢,, ..., ¢,
satisfy all the other equations of the system (3) as well.

The first r rows of the augmented matrix 4, of the system (3) are basis
rows of this matrix, since by the compatibility condition, the rank of the
augmented matrix is r, while by construction, the nonvanishing minor M
appears in the first r rows of A,. By Theorem 1.93 (applied to rows), each
of the last n — r rows of A, is a linear combination of the first r rows. This
means that every equation of the system (3) beginning with the (r + 1)st
equation is a linear combination of the first r equations of the system.
Therefore, if the values

X1 =Cp,...,X,=¢C,

satisfy the first r equations of the system (3), they also satisfy all the other
equations of (3).

3.42. To write an explicit formula for the solution of the system (3) just
constructed, let M,(«;) denote the determinant obtained from the basis minor

Mzde':”aij” (i’j:‘-l’z,"‘yr)

by replacing its jth column by the column consisting of the quantities
1, Xy, - - . 5 &, Then, using Cramer's rule to write the solution of the
system (4), we obtain

¢;= = Myb; ~ a;,.1Cp1 —~ 7 = a;C,)

I

Rl- XI=

Myb) ~ c,.aM (@ ,10) ~ -~ ~ ¢, Ma,,)] G=12...,n.

(5)
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These formulas express the values of the unknowns x; = ¢, (j=12,...,r)
in terms of the coefficients of the system, the constant terms and the arbitrary
quantities (parameters)

cr+17 cr+27 L ] cn'

Finally, we show that (5) comprises any solution of the system (3). In fact,
letcl®, i, ..., c® ¢, . ., c bean arbitrary solution of the system (3).
Obviously, it is also a solution of the system (4). But, using Cramer’s rule
to solve the system (4), we obtain unique expressions for the quantities
¢, ¢, ..., ¢ interms of the quantitiesc®¥), . . . , ¢/, namely the formulas
(5). Thus, choosing

(0)

— __ al0)
cr+1 - cr+17 R ] cn - cn

in (5), we get just the solution ¢, ¢{?, .. ., ¢!, as asserted. Thus (5) is the
general solution of the system (3).

3.5. Geometric Properties of the Solution Space

3.51. Consider first the case of the homogeneous linear system (2). As
we have already seen (Sec. 2.42e), the set of all solutions of this system forms
a linear “solution space,” which we denote by L. We now calculate the
dimension of L and construct a basis for L.

For a homogeneous system, the equations (5) become

—Me; = c,.aMi(a; p40) + - - + c,M(a;,) (j=1,2,...,r), (6

since M(b;) = M;(0) = 0. With every solution ¢;, ¢s, ..., Cp, Cryas - - . 5 €y
of the system (2) we associate a vector (¢, 4, . . . , ¢,) of the space K,,_, (see
Sec. 2.15b). Since the numbers c,,,,. .., ¢, can be chosen arbitrarily and
since they uniquely define a solution of the system (2), the correspondence
between the space of solutions of the system (2) and the space K,,_, is one-to-
one. This correspondence is an isomorphism, since it preserves linear
operations, as is easily verified. Thus the space L of solutions of a homo-
geneous system of linear equations in n unknowns with a coefficient matrix of
rank r is isomorphic to the space K,_,. In particular, the dimension of the
space Lisn — r.

3.52. Any system of n — r linearly independent solutions of a homo-
geneous linear system of equations (which, by Theorem 2.34, forms a basis
in the space of all solutions) is called a fundamental system of solutions. To
construct a fundamental system of solutions, we can use any basis of the
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space K,,_,. Then, because of the isomorphism, the corresponding solutions
of the system (2) will form a basis in the space of all solutions of the system.
The simplest basis of the space K,,_, consists of the vectors

€1=(1,0,...,0),
622(0,1,...,0),

n—r:(O’Oa---al)

(see Sec. 2.32c). For example, to obtain the solution of the system (2)
corresponding to the vector e;, we set ¢,y = 1, ¢,o = --- = ¢, = 0 in the
formulas (6) and determine the corresponding values

e

¢, =V (i=1,2,...,n).

Similarly, we construct the solution corresponding to any other basis vector
e;(j=2,...,n~—r). The set of solutions of the system (2) constructed
in this way is called a normal fundamental system of solutions. If we denote
these solutions by x, x® . x{"= then by the definition of a basis, any
solution x is given by the formula

X = oy XM A4 apx® 4 - o, x0T, O]

Since any solution of the system (2) is a special case of (7), this formula
gives the general solution of (2).

3.53. Consider now the general case of a nonhomogeneous system (3).
As shown in Sec. 2.62b, the geometric object H corresponding to the set of
all solutions of a nonhomogeneous system is a hyperplane in the n-dimensional
space K,. This hyperplane is obtained by shifting the subspace L of all
solutions of the corresponding homogeneous system (L has been shown to be
isomorphic to the space K,_,) by a vector x, which is an arbitrary particular
solution of the nonhomogeneous system. From this we conclude that the
dimension of the hyperplane H is the same as the dimension of the subspace
L. Moreover, if r is the rank of the coefficient matrix of the system (3), then
any vector y of the subspace L can be represented as a sum

yo=oy® At apy® a0,

where y®M, y@ |y are basis vectors of the space L (a fundamental
system of solutions). Consequently, any vector x of the hyperplane / can be
represented as a sum

X=X by = X b ay® o ay® ey,

In the language appropriate to solutions of the systems (2) and (3), this
agrees with the prescription established in Sec. 3.41, i.e., the general solution
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of the nonhomogeneous system (3) is the sum of any particular solution of (3)
and the general solution of the corresponding homogeneous system (2).

3.6. Methods for Calculating the Rank of a Matrix

3.61. To make practical use of the methods for solving systems of linear
equations developed in the preceding sections, one must be able to calculate
the rank of a matrix and find its basis minor. Obviously, the definition of
the rank of a matrix given in Sec. 1.92 cannot serve per se as a reasonable
practical means of calculating the rank. For example, a square matrix of
order five contains one minor of order five, 25 minors of order four, 100
minors of order three, and 100 minors of order two. Clearly, it would be a
very laborious task to find the rank of such a matrix by direct calculation of
all its minors. In this section, we will give simple methods for calculating
the rank of a matrix and determining its basis minor. These methods are
based on a study of certain operations on rows and columns of a matrix
which do not change its rank; these operations will be called elementary
operations. Since, as already noted, the rank of a matrix does not change
when it is transposed, we will define these operations only for the columns
of a matrix. In keeping with this, our proofs will make use of the geometric
interpretation of a matrix with n rows and k columns as the matrix formed
from the components of a system of k vectors xi, X, ..., x; in the n-
dimensional (real) space R,. We will also make use of Theorem 3.11, which
asserts that the rank of this matrix equals the dimension of the linear manifold
spanned by the vectors x,, X, . . . , X;.

We now study the following elementary operations:

a. Permutation of columns. Suppose the columns of the matrix 4 are
permuted in any way. This operation does not change the rank of 4. In fact,
the dimension of the linear manifold spanned by the vectors x;, x,, . . . , X
does not depend on the order in which they are written, and hence the rank
of the matrix does not depend on the order of its columns.

b. Dividing out a nonzero common factor of the elements of a column.
Suppose the number A = 0 being divided out is a common factor of the
elements of the first column of the matrix A. This operation is equivalent
to replacing the system of vectors Axy, x,, . . . , X; by the system x;, x, .. .,
X;. But obviously the linear manifolds spanned by these two systems have
the same dimension (since the linear manifolds themselves are the same).
Therefore the rank of the matrix 4 does not change as a result of this elemen-
tary operation.

c. Adding an arbitrary mulitiple of one column to another column. Suppose
we multiply the mth column of the matrix 4 by the number A and add it to
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the jth column. This means that the system of vectors x;, ..., x;, ..
. .., x; has been replaced by the system

R

Xy ooy X5 Ay ooy Xy ey X

We have to show that the linear manifolds L, and L, spanned by these two
systems are the same. In the first place, all the vectors of the second system
lie in the linear manifold spanned by the vectors of the first system. Hence,
by Lemma 2.53a, we have L, = L,. On the other hand, the equation

X = (X M) — A,

shows that the vector x; lies in the linear manifold spanned by the vectors of
the second system. Since all the other vectors of the first system obviously
belong to this linear manifold, we have L, < L,. It follows that L, = L,.
Therefore the rank of 4 does not change as a result of this elementary
operation.

d. Deletion of a column consisting entirely of zeros. A column consisting
entirely of zeros corresponds to the zero vector of the space R,. Obviously,
eliminating the zero vector from the system x,, x,, . . ., x; does not change
the linear manifold L(x,, xs, . .., x;) and hence does not change the rank
of the matrix A.

e. Deletion of a column which is a linear combination of the other columns.
The legitimacy of this elementary operation was proved in Theorem 3.14.

3.62. Calculation of the rank of a matrix and determination of a basis
minor. We now show how to calculate the rank and find a basis minor of a
given matrix 4 by using the elementary operations just enumerated. If the
matrix A consists only of zeros, then its rank is obviously zero. Suppose 4
contains a nonzero element. Then, by suitably permuting the rows and
columns, we can bring this element over to the upper left-hand corner of the
matrix. Then, subtracting from every column the first column multiplied
by a suitable coefficient, we can make all the other elements of the first row
vanish. We shall make no further changes in the first row and first column
(except for the rearrangements described below). If there are no nonzero
elements among the remaining elements (i.e., the elements which do not
belong to the first row and the first column), then the rank of the matrix 4
is obviously 1. If there is a nonzero element among the remaining elements,
then by suitably rearranging rows and columns, we can bring this element
over to the intersection of the second row and the second column and then
make all the elements following it in the second row vanish, just as before.
(We note that these operations do not affect the first row and the first column.)
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Continuing in this fashion, and assuming that the number of columns in A4
does not exceed the number of rows in A4 (this can always be achieved by
transposition), we reduce A4 to one of the following two forms:

o 0 0 s 0 0o --- 0
Cn oy 0 s 0 0 --- 0
Ca1 Cas o3 0 0 0
Ay =
Cr1 Cr2 Cg " %y 0 ---0
Ch411 Ca2 Cialsz 7 Ceag O 0
cnl Cuz Cr3 Cax 0 0
or
o 0 0 0
C1 @, O 0
€1 C3p X3 0
Ay =
Cmi Cm2 Cm3 Em
Car Cpz Cpz """ Cppy

Here the numbers «,, «,, etc. are nonzero. In the first case, the rank of
A, equals k and its basis minor (in the transformed matrix) stands in the
upper left-hand corner. In the second case, the rank of A, equals m (the
number of columns) and its basis minor (in the transformed matrix) appears
in the first m rows. This determines the rank of 4. The location of the
basis minor of A is easily found by following back in reverse order all the
operations performed on 4.
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As an example, consider the following matrix with five columns and six
rows:

1 2 6 -2 -1
-2 -1 0 -5 -1

There is one zero in the second row of A4; by using the general method
described above, we can produce three more zeros in this row. However,
for convenience, we first interchange the first and second rows. Then,
interchanging the first and second columns (so that an element —1 with
the smallest nonzero absolute value again appears in the upper left-hand
corner), we obtaint

-2 —~1 0 =5 -1 -1 =2 0 =5 —1

1 2 6 —2 -1 2 1 6 —2 —1

31 -1 8 1 1 3 =1 8 1
A~ ~

-1 0 2 —4 -1 0 -1 2 —4 —1

-1 =2 =7 3 2 —2 —1 =7 3 2

-2 -2 =5 -1 1 -2 -2 =5 —1 1

To obtain three more zeros in the first row, we multiply the first column by
2, 5, and 1, and subtract the results from the second, fourth, and fifth
columns, respectively. This gives

—2 3 -7 13 4
—2 2 =5 9 3

The simplest thing to do next is to produce additional zeros in the third
row. First we interchange this row with the second row. Then we multiply

1 Here the symbol ~ written between two matrices means that they have the same rank.
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the second column by 1 and —3 and add the results to the third and fourth

columns, respectively. Thus we have

—1

0

0 -1 0 0 0 0
1 1 -1 3 0 1 1 0 0 o0
2 -3 6 —I2 =3 2 -3 3 =3 -3

A~ — 4,
0 -1 2 —4 —] 0 —1 1 -1 —1
-2 3 =7 13 4 -2 3 —4 4 4
-2 2 -5 9 3 -2 2 -3 3 3

The fourth and fifth columns of the matrix 4, are proportional to the third
column and can be deleted. The matrix which is left obviously has rank 3,
so that the original matrix 4 also has rank 3. Moreover, 4, has a basis
minor in its first three rows and first three columns. By reversing the suc-
cessive transformations which led from A4 to A;, we can easily verify that
none of the transformations which were carried out has any effect on the
absolute value of this minor. Therefore the minor appearing in the first
three rows and the first three columns of the original matrix is also a basis

minor.

PROBLEMS

1. Prove the following theorem: A necessary and sufficient condition for a
matrix lla;;|| of order mto have rank r < 1 is that there exist numbersa,, a,, . .
a,, and by, b,, . . ., b,, such that

a; = ab; Gj=12,...,m).

2. Let x;, x5, ..., xx be k linearly independent vectors in an n-dimensional
space K,, and let 4 = ||a§">l| be the matrix made up of the components of the
vectors xy, X,, - . . , X with respect to some basis e, e, - . . , e,. Show that the
linear manifold L(xy, x,, . . . , X) is uniquely determined, provided one knows
the values of all the minors of A of order k.
3. Show that when k = n, the system (2), p. 60 has the solution

€ = Aih Co = A, ...

xcn:Ain (l<i<n)a

where A;; is the cofactor of the element a;; (i fixed), provided that the rank of
the matrix A is less than n.

4. Solve the system of equations

X+ Xo + X3+ X4+ x5 =17,

3x; + 2x5 + x5+ x4 — 3x5 = —2,
xy + 2x3 + 2x4 + 6x5 = 23,
Sx; + 4xy + 3x3 + 3x4 — x5 = 12.
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5. Study the solutions of the system
+y+z=1,
x +ry+z =2,

x+y+rz=2>x
as a function of A.

6. What is the condition for the three straight lines
apx + by +¢, =0, ax + by + ¢, =0, ayx +byy +¢3 =0
to pass through one point?
7. What is the condition for the 7 straight lines
ax + by +¢, =0, ax + by +¢,=0,...,a,x +by+c,=0
to pass through one point?
8. Find the normal fundamental system of solutions for the system of equations
X; + Xy + X34+ x4+ x5 =0,
3x; + 2%, + X3 + x4 — 3x5 =0,
X, + 2x3 + 2x4 + 6x5 =0,
S5xy + 4xp + 3x3 + 3x4 — x5 = 0.
9. Write down the general solution of the system given in Problem 4, using the

normal fundamental system of solutions of the corresponding homogeneous
system (found in Problem 8).

10. Determine the rank and basis minor of the following matrices:

1 -2 3 -1 =1 -2 1 0100
2 -1 1 0 -2 -2 11000
Ay =H-2 =5 8 —4 3 —1}|, A, =||0 1 1 0 0
6 0 -1 2 -7 -5 00110

-1 -1t 1 -1 2 1 01011

11. Suppose the matrix 4 has a nonvanishing minor M of order r, while every
minor of order r + 1 containing all the elements of M vanishes. Prove that 4

has rank r.
12. Construct a matrix

a. a. a.
11 12 13
A=

ay Gp dyg
such that the minors

a, Gy an di dyy i3

-0,

s

az dap g g Gz Qg3

have the indicated values P, O and R.
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13. For the system of equations
Q .
zajkxk:bj G=1,...,n (8)
k=1

with a square coefficient matrix, prove “Fredholm’s alternative,” which asserts
that (8) either has a unique solution for arbitrary b,, ... , b, Or else the corre-
sponding homogeneous system

n
zaikxkzo G=1,...,n
¥=1

has a nontrivial solution.
14. Prove that the system of equations

A Xy + 0 G Xy = bn7
App13%) + 0 Gpgy X = bayg,

subject to the condition

an a1n
# 0,
an Ann
is solvable if and only if
an T i b,
=0.
an e Apn b,
Ani11 77 Angan [

15 (Elimination of unknowns). Prove that the system

Xy o @Xy = by 0 by 6y
@nXy - GupXn = bm}’l + -+ bnkyk + Cp,
Appy1X) t T gy Xn = Opyr )1t bn+1,k}’k + Cpya

containing the parameters y,, - - . , yx, subject to the condition

#0
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is solvable if and only if the parameters y,, ...

an R T by
e . + n
h any Aun byn Y
Gpin1 7 Gy Dnarn

a5

CHAP.

, & satisfy the equation

(51



chapter 4

LINEAR FUNCTIONS
OF A VECTOR
ARGUMENT

In courses on mathematical analysis one studies functions of one or more
real variables. Such functions can be regarded as functions of a vector
argument. For example, a function of three variables can be regarded as a
function whose argument is a vector of the space V3. This suggests studying
functions whose arguments are vectors from an arbitrary linear space. In
making this study, we will for the time being restrict ourselves to the simplest
functions of this kind, namely l/inear functions. We will study both linear
numerical functions of a vector argument, i.e., functions whose values are
numbers, and linear vector functions of a vector argument, i.e., functions
whose values are vectors. Linear vector functions, otherwise known as
linear operators, are of great importance in linear algebra and its applications.

4.1. Linear Forms

4.11. A numerical function L(x) of a vector argument x, defined on a
linear space K over a number field X, is called a linear form if it satisfies the
following conditions:

a) L(x + y) = L(x) + L(y) for every x, y € K;
b) L(xx) = aL(x) for every x € K and every x € K.

In other words, a linear form L(x) is a morphism of the linear space K into
the one-dimensional space K; = K (cf. Sec. 2.71). By using induction, we
easily verify that conditions a) and b) imply the formula

Liagx) + - - - + ayx) = o L(xy) + - - - 4 . L(x), 1)

75
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where x,, ..., x; are arbitrary vectors in K and «,, ..., o, are arbitrary
numbers in K.

4.12. Examples

a. Suppose a basis is chosen in an #-dimensional space K, so that every
vector x €K can be specified by its components &, &, ..., &, Then
L(x) = &, (the first component) is obviously a linear form in x.

b. A more general linear form in the same space is given by the expression

L(x) = zlkib
k=1
with arbitrary fixed coefficients /;, L, . . . , /,.

c. An example of a linear form in the space K(a, b) (where K is R or C)t
is the expression

L(x) = x(z,),
where ¢, is a fixed point of the interval a < ¢ < b.

d. In the same space we can study the linear form

b
L(x) :f I(0)x(¢) dt,
where I(¢) is a fixed continuous function.

e. In the space V; the scalar product (x, x,) of the vector x with a fixed
vector x, € V; is a linear form in x.

Linear forms defined on infinite-dimensional spaces are usually called
linear functionals.

4.13. We now find the general representation of a linear form L(x)
defined on an n-dimensional space K,. Let ¢, e,,..., e, be an arbitrary
basis of the space K,,, and denote the quantity L(e;) by /, (k = 1,2, ..., n).
Then, by (1), given any

n
x = lLe,
k=1
we have

L(x) = L(élikek) :élik]d(ek) :kngllkik,

i.e., the value of the linear form L(x) is a linear combination of the com-
ponents of the vector x, with the fixed coefficients /;, I, . . ., I,. Thus the

t Recall Secs. 2.15¢ and 2.15d.
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most general representation of a linear form in an n-dimensional linear space
has already been encountered in Example 4.12b.

4.14. In a complex linear space C we can also consider another type of
linear form, called a linear form of the second kind (in this context, the
linear form defined in Sec. 4.11 is called a linear form of the first kind). A
numerical function L(x) of a vector argument x, defined on a complex linear
space C, is called a linear form of the second kind if it satisfies the following
two conditions:

a') L(x + y) = L(x) + L(y) for every x, y € C;
b") L(ax) = aL(x) for every x € C and every complex number « = «, +
iy (here & = a, — ia, is the complex conjugate of «).

For a linear form of the second kind, the analogue of formula (1) becomes

L(apxy + - - + oxy) = & Lxy) + - - - + & L(x), 1"
valid for arbitrary x,, . . . , x; in C and arbitrary complex numbers «,, . . . , %
4.15. An example of a linear form of the second kind in an #-dimensional

complex space C, with basis e,, . . . , e, is given by the function

L(x) = Elkzk,
k=1

where /,, ..., 1/, are arbitrary fixed complex numbers and &,,..., &, are
the components of the vector x with respect to the basis ey, . . . , e,. More-

over, this formula gives the general representation of a linear form of the
second kind defined on the space C,. In fact, let L(x) be an arbitrary linear
form of the second kind, and let ,; = L(e,), ..., !/, = L(e,). Then, given
any x € C,, it follows from (1’) that

L(x) = L(kgikek) zlész(ek) zkélkék’

as required.

4.2. Linear Operators

4.21. As just shown, a linear form L(x) defined on a linear space K is
just a morphism of K into the one-dimensional space K,. More generally,
we now consider a morphism A = A(x) of a linear space X into another linear
space Y over the same field K (X and Y may coincide). As already noted in
Sec. 2.71, A(x) is also called a linear operator, mapping X into Y. Instead of
A(x), we will often write simply Ax. By the definition of a morphism, A(x)
satisfies the following conditions:

a) A(x + y) = Ax 4 Ay forevery x, y € X;
b) A(xx) = xAx for every x € X and every « € K.
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Just as for linear forms, conditions a) and b) imply the more general formula
Alax + -+ o) = 0Ax + -0 4 GAX,

for arbitrary x,, . . ., x, in X and arbitrary «;, ..., a,in K.

4.22. Examples

a. The operatorf associating the zero vector of the space Y with every
vector x of the space X is obviously a linear operator. This operator is
called the zero operator, denoted by 0.

b. Given any linear operator A mapping the space X into the space Y,
let
Bx = —Ax.

It is easy to see that the operator B so defined is also a linear operator
mapping X into Y. This operator is called the negative of the operator A.

c.Lete,,...,e, be a basis in the space X, and let vectors f;, ..., f, in
the space Y be associated with the vectors e;, .. ., e, in an arbitrary way.
Then there exists a unique linear operator A mapping X into Y and carrying
every vector ¢, into the corresponding vector f; (k =1, ..., n). In fact, if
such an operator A exists, then, given any vector

X == z gL eX, 2)
k=1
we have

Ax = A(ézkek) :élikAek :élzkfk,

thereby proving the uniqueness of A. On the other hand, given any vector
(2), we can set

Ax = i Ekfk’

k=1
by definition. The resulting operator, as is easily verified, is linear, maps X
into Y, and at the same time carries every vector e, into the corresponding
vector fi, (k =1,...,n).

d. Suppose that with every vector x of the space X we associate the same
vector x, thereby obtaining a linear operator E, mapping X into itself. Then
E is called the identity operator or unit operator.

4.23. Matrix representation of linear operators. Let A be a linear operator
mapping a space X of dimension 7 into a space Y of dimension m. Let

t Here we use the term operator as a synonym for function (mapping one linear space
into another).
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ey, ...,e, be a fixed basis in X and f3,...,f,, a fixed basis in Y. The
vector e, is mapped by A into some vector Ae, of the space Y, which, like
every vector of Y, has an expansion

Aey = a(xl)fx + af(_)”fz R a(nlL)fm
with respect to the basis vectors f,, . .., f,. The operator A has a similar
effect on the other basis vectors:

Ae, = a(xz)fx + afzz)fz R a(ri)fmv

Ae, = af"f + alfy

These formulas can be written more concisely as

m
( .
Ae,-=_2;a,-”f,» G=12,...,n). 3)
=
The coefficients aﬁ"’ (i=1,...,m;j=1,...,n) define an m X n matrixf
aV g al
ay (n)
a,’ as a,
A=A,y = >
LI BN
called the matrix of the operator A relative to the bases {e} = {e,, ..., e,}

and {f} = {fi, ... .S m}. The components of the vectors Ae,, Ae,, ..., Ae,
with respect to the basis {f} serve as the columns of this matrix.}
Now, given any vector

let
y=Ax= Zn;ﬁ-

With a view to expressing the components v, ..., 1, of the vector y in
terms of the components &, ..., £, of the vector x, we observe that

y =§1“’hfs = Ax = A(]gijej) =§1£,»Ae,-

=,§ 63 a3 (éaif’z,)ﬁ.

1 Le., a matrix with m rows and »n columns.
1 Note the distinction between the symbol A (boldface Roman) for an operator and the
corresponding symbol A (lightface Italic) for the marrix of A.
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Comparing coefficients of the vector f;, we find that
n
1 = > alk; (i=12...,m), 4

7=1

or, in expanded form
— g (2) A (
n = a8 + aE, + + @V,

n= e’ + @+ + eV,
_________________________ )

= a3+ aDE A,
Therefore from a knowledge of the matrix of the operator A relative to the
basis ey, e, . . . , e, we can determine the result of applying A to any vector

n
x=2Ee;

=1
of the space X. In fact, the equations (5) express the components of the
vector y = Ax as linear combinations of the components of x. Note that
the coefficient matrix of the system of the equations (5) is just the matrix A, .
Next let [|a!”| be an arbitrary m X n matrix, where the superscript is
the column number and the subscript is the row number. Given any vector

n
xX = z E]el’
=1
we construct the vector ’
y =2l

with components %, 7,, ..., %, determined by (5). It is easy to see that
the operator A effecting this mapping of the vector x into the vector y is a
linear operator. We now construct the matrix of the operator A relative to
the basis e, e, . . ., e,. Since the vector e, has components £, = 1, £, = 0,

., £, =0, it follows from (5) that the components of the vector Ae, will
be the numbers a{’, alV, . . ., a!l’, so that

Aey = aVfy + ad'fo 4+ - + a0
Similarly,

Aey=afi +alfo -+ alfn  (G=12....n).

Therefore the matrix of the operator A coincides with the original matrix
llai?||. Thus every m X n matrix is the matrix of a linear operator A mapping
an n-dimensional space X into an m-dimensional space Y, with fixed bases
e,...,e,inXandf;,...,f,inY. Thus (3), or equivalently (4), establishes
a one-to-one correspondence between linear operators mapping a space X
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(with basis e;,...,e,) into a space Y (with basis f;,...,f,) and m X n
matrices made up of numbers from the field K. In particular, identical
operators A and B (i.e., operators such that Ax = Bx for every x € X) have
identical matrices.

Finally we note that (5) can be used to construct the operator A directly
(and uniquely) from the matrix 4 = ||a{”|. In fact, A4 is just the coefficient
matrix of the system (5).

4.24. Examples

a. Clearly, the matrix of the zero operator (see Example 4.22a) relative
to any basis in the space X and any basis in the space Y consists entirely of
zZeros.

b. If |la{?’| is the matrix of A, then the matrix of the negative operator
(see Example 4.22b) is obviously just —[la?|.

c. Let m > n and suppose the operator A carries the vectors of the basis
ey, ..., e, of the space X into linearly independent vectors f;, . . . , f, of the
space Y. We augment the vectors f,, . . ., f, by the vectors £, ..., f, tO
make a basis for the whole space Y. Then the matrix of the operator A
relative to the bases ey, . .. , e, and f;, . . ., f,, is clearly of the form

n
m—T—
1 0 -~ 0
0 1 0
n
m 00 1
00 0
00 -+ 0

d. In particular, the matrix of the identity operator E (see Example
4.22d) relative to the basis e,, . . . , e, of the space X (the domain of E) and
the basis ey, . . . , e, of the same space (the range of E) is just

10 -+ 0
0 1 0
00 1

A matrix of this form is called the unit matrix or identity matrix of order n.
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4.3. Sums and Products of Operators

We now consider addition of operators and multiplication of operators
both by numbers and by other operators. First we note that two operators
A and B mapping a space X into a space Y are said to be equal (written
A = B) if Ax = Bx for every x € X.

4.31. Addition of operators. Given two linear operators A and B mapping
a space X into a space Y, the operator C = A + B s defined by the formula

Cx = (A 4+ B)x = Ax + Bx. 6)

Obviously, C also maps the space X into the space Y. To verify that C is
again a linear operator, let x = a,x; 4 «,x,. Then
Cloyxy + ag%y) = A(oyXy + @pxa) + B(oyx + apxs)
= o AXy + %A%, + «,Bx, + «,Bx,
= o;(Ax; + Bx) + a3(Ax; + Bx,) = o, Cx; + ,Cx,,
so that both conditions-a) and b) of Sec. 4.21 are satisfied. The linear

operator C defined by (6) is called the sum of the operators A and B.
It is easily verified that

A+B=B+A,
(A+B)+C=A+ (B+C),
A4 0=A,
A+ (—A)=0,

Q)

where A, B and C are arbitrary linear operators, 0 is the zero operator (see
Example 4.22a), and —A is the negative of the operator A (see Example
4.22b), i.e., the operator carrying the vector x € X into the vector —Ax.

4.32. Multiplication of an operator by a number. Let A be a linear
operator mapping a space X into a space Y, and let A be a number from the
field K. Then the operator B = aAA, called the product of the operator A and
the number 1, is defined by the formula

Bx = (AA)x = A(AX).

It is easily verified (just as in Sec. 4.31) that this operator is linear, and
moreover that
M(GA) = (MR)A,
1-A=A,
M + 2)A =2A + ReA,
MA + B) = A 4 AB.

@)
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The relations (7) and (7') show that the set of all linear operators mapping
a linear space X into a linear space Y is itself a linear space.

4.33. Multiplication of operators. Let A be a linear operator mapping
the space X into the space Y and B a linear operator mapping the space Y
into the space Z (where all the spaces are over the same number field X).
Then the operator P = BA, called the product of the operator B and the
operator A (in that order), is defined as the operator mapping X into Z such
that

Px = (BA)x = B(Ax)

(note that first the operator A acts on the vector x and then the operator B
acts on the resulting vector in the space Y). The operator P is again linear,
since

P(eyxy + 25%,) = BlA(2yx; + @5x5)] = B(2,AX; + 2,AXs)
= o,BAX; 4+ 2,BAX, = ¢, Px; 4+ a,Px,.

4.34. The following relations are easily verified:

a) A(BA) = (AB)A for every number A € K and arbitrary operators A
mapping the space X into the space Y and B mapping the space Y into the
space Z;

b) (A 4+ B)C = AC + BC for arbitrary operators A and B mapping the
space Y into the space Z and C mapping the space X into the space Y;

c) A(B 4 C) = AB + AC for arbitrary operators B and C mapping the
space X into the space Y and A mapping the space Y into the space Z;

d) (AB)C = A(BC) for arbitrary operators C mapping the space X into
the space Y, B mapping the space Y into the space Z, and C mapping the
space Z into the space W.t

For example, to verify d), according to the definition of operator
equality we must prove the identity

[A(BC)x] = [(AB)C]x
for every x € X. But by the very definition of the operator product, we have
[ABC)x] = A[(BC)x] = A[B(Cx)],
[(AB)C]x = (AB)(Cx) = A[B(Cx)],

which implies the required formula. The other formulas are proved similarly.

t The associative law for operator multiplication is expressed by d), and the distributive
law by b) and ¢).
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4.4. Corresponding Operations on Matrices

We now study the matrix analogues of the algebraic operations on linear
operators described in Sec. 4.4.

4.41. Addition of operators. Let A and B be two linear operators mapping
a space X with basis ey, . .., e, into a space Y with basis f;, . . ., f,,. More-
over, let A = |a’|| be the matrix of the operator A and B = 6| the matrix
of the operator B, relative to these bases. Then

Ae, =3 af, Be;=3b"f (j=12...,n),
i=1 i=1
and hence

(A + By, = Ae, + Be, = 5 (a? + by,
i=1

It follows that the matrix corresponding to the operator A + B is just
la? + b |. This matrix is called the sum of the matrices ||ai"| and |b{"|-
Thus the sum 4 + B is defined for every pair of matrices 4 and B with the
same number of rows and the same number of columns.

4.42. Multiplication of an operator by a number. With the same notation
as before, we have

(M)e; = MAe)) = > ralf,.
i=1

It follows that the matrix corresponding to the operator AA is just the matrix
[2a{”||, obtained by multiplying all the elements of the matrix [[a{”| by
the number A. This matrix is called the product of the matrix ||| and the
number .

Since there is a one-to-one correspondence between m X n matrices and
linear operators mapping an n-dimensional space into an m-dimensional
space (see Sec. 4.22), there is a one-to-one correspondence between algebraic
operations involving operators and the analogous operations involving
matrices. Hence, since operators obey the rules (7) and (7), the same is also
true of matrices (of course, this can easily be verified directly). Thus we see
that the set of all m X n matrices is itself a linear space, which, by its very
construction, is isomorphic to the linear space of all linear operators mapping
an n-dimensional space X into an m-dimensional space Y.

4.43. Multiplication of operators. Let X, Y and Z be linear spaces, and
let e;,...,e, be a basis in X, f;,...,f,abasisinY,and g,,...,g, 2
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basis in Z. Let B be a linear operator mapping X into Y with m X n matrix
1], so that

i=

B€a=21b§”ff G=1...,n),

and let A be a linear operator mapping Y into Z with ¢ X m matrix [la{®|.
so that

q
Af, = zla,(c"gk (i=1,...,m).
k=

Then for the product P = AB we have

(AB)e; = A(Be,) = A 3 b'f, = 3 b;"Af,
i=1 i=1

m a . a m . )
= 360 San =3 ( Saw s

k=1 k=1 \i=

Hence the elements p{/’ of the matrix P of the operator P == AB are given by

p;"’=§1a,‘j’b;” G=1...,0:k=1,...,9). ®)
This is the desired result, which can be expressed as follows: The element
of the matrix P belonging to the kth row and jth column equals the sum of the
products of the elements of the kth row of the matrix A with the corresponding
elements of the jth column of the matrix B. The matrix P = |[p!?|| which is
obtained from the matrices 4 = |a{”’|| and B = ||b{|| in accordance with
formula (8) is called the product of the matrices A and B (in that order).

It should be noted that for the product P = 4B to make sense, the number
of columns in 4 must equal the number of rows in B. Then P will have the
same number of rows as 4 and the same number of columns as B. This fact
can be expressed more strikingly in the “m X n notation,” namely, the
product AB of a ¢ X !/ matrix 4 and an m X n matrix B is defined if I = m,
in which case 4B is a ¢ X n matrix. Both products AB and BA are defined
if ] = m and ¢ = n, in which case 4B is a square n X n matrix while B4 a
square m X m matrix. Moreover, if / = m = ¢ = n, i.e., if both matrices
A and B are square n X n matrices, then 4B and BA are also n X n matrices.
However, these products need not be equal. For example,

o 1|t o o o
10‘00210
Looffo 1] (o
00‘102‘00"
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Thus multiplication of square matrices is in general noncommutative. As
for the associative and distributive laws, the situation ijs more favorable.
In fact, as shown in Sec. 4.34, operator multiplication obeys the associative
and distributive laws, and hence we can assert that the same is true of
matrix multiplication, since there is a one-to-one correspondence between
operators and matrices associating sums and products of operators with the
sums and products of the corresponding matrices.

4.44. Examples

In the following examples, we write both indices of matrix elements as
subscripts, so that the element a;, of the matrix 4 = [la;;| belongs to the
jth row and the kth column. In this notation, formula (8) for the matrix
product P = AB takes the form

pkagakibﬁ G=1L....mk=1,...,9). 89
a. Suppose we multiply an m X n matrix 4 = |a;| from the left by an

m X m matrix B, = ||b;| with all its elements b, equal to zero except the
single element b, = 1. Then by (8') we get the m X n matrix

(s)
a,  ap a,
B A= --1--- a, a, - a,
Ay Ay a,.
0 0 0
=(r)|ay a, - a,,
o 0 --- 0

so that the rth row of the matrix B,.4 consists of the elements of the sth row
of the matrix 4 while all other elements of B, A vanish.

b. Suppose we multiply an m X n matrix A = [la,] on the right by an
n X n matrix C,, = |lc;; [l with all its elements c;; equal to zero except the
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single element c,, = 1. Then by (8') we get the m X n matrix

@
ay @, Qyp
Ay Gy, G,
AC,e = S 7 . @1
Ay @y Ay
@

0 - a, 0

_ a, 0
0 a 0

mp

so that the gth column of the matrix A C,, consists of the elements of the pth
column of the matrix 4 while all other elements of AC,, vanish.

c. With the same matrices B,,, 4 and C,, we have

@
BrsACpa:(r) o - Asp " 0

Thus B, AC,, is an m X n matrix all of whose elements vanish with the
(possible) exception of the single element, equal to a,,, appearing in the rth
row and gth column.

d. By what m X m matrix D must we multiply an m X n matrix 4 from
the left to make the matrix DA coincide with the matrix obtained from A4 by
interchanging its rth and sth rows?

Solution. Example 4.44a shows that the matrix whose rth row is the sth
row of the matrix 4 is obtained by multiplying A4 on the left by the
m X m matrix B, But the other rows of the resulting matrix vanish. It is
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now clear that to get the required matrix, we must multiply 4 from the
left by the m X m matrix

®) (s)
1
1
1
D=B1‘s+Bsr+zBﬁ= o
iFr
i#s P
1
1 -0 -
1
1

e. By what #n X n matrix G must we multiply an m X n matrix 4 from the
right to make the matrix AG coincide with the matrix obtained from 4 by
interchanging its pth and gth columns?

Solution. By an argument like that in Example 4.44d, we have

G= CM + C{w + zckk-
k¥ED
k¥ q

f. By what m X m matrix F must we multiply an m X n matrix 4 from
the left to make the matrix FA coincide with the matrix obtained from A4 by
adding A times its sth row to its rth row?

Solution. Using Example 4.44a, we obviously have F = E 4 AB,, where
E is the unit matrix of order m.

g. By what n X n matrix # must we multiply an m X n matrix 4 from
the right to make the matrix A H coincide with the matrix obtained from A4 by
adding A times its pth column to its gth column?

Solution. Clearly, H = E 4+ uC,, where E is the unit matrix of order ~.

4.5. Further Properties of Matrix Multiplication

4,51, Multiplication of block matrices. In multiplying matrices, it is
sometimes convenjent to partition the matrices into blocks and afterwards
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deal with the blocks as separate entities. Suppose we are given an m X n
matrix A and an # X p matrix B, partitioned into blocks as follows:

n P
—
Ap || - By | By,| -

Ayt A B, | B,

A=m 21 22 , B=n 21 ! 22

Suppose further that every “block-row” of the matrix 4 contains the same
number of blocks as every “block-column” of the matrix B, and that the
“width” of every block A of the matrix 4 coincides with the “height’” of
every block By, of the matrix B. Then the products 4;B,, all make sense,
and in fact are rectangular matrices of size depending on the indices j and s
(but not on the index k). We then have the following multiplication rule:
The product matrix AB is made up of blocks constructed from the blocks of
the matrices A and B in the same way as the elements of AB are constructed
from the elements of A and B, i.e.,

A11311+A12321+"‘|A11312+A12322+"'
AgyByy + ApoBoy + | AgyBrs + AppBoy + <+ *] - -
4B = || 22on 22021 i 21812 22022 - 9)

..........

..........

To prove (9), let i be the index of a block-row of 4 containing the kth
ordinary row of 4, and let j be the index of a block-column of B containing
the gth ordinary column of B. By the general rule of Sec. 4.43, the elements
of the product matrix P = AB are of the form

Pre = Aubig + +  + agby,
= (aklblq + e + akrbm) + e + (akrbrq + e + aknbnq)v

where parentheses are inserted in keeping with the widths of blocks of 4
(and heights of blocks of B). But the first term in parentheses is the element
in the kth row and gth column of the block 4,,B,;, the second term in paren-
theses (not written) is the element in the kth row and gth column of the block
A;Bsy, and so on. Thus p,, is the element in the kth row and gth column of
the block A;B,;, + -+ + A,.B,; itself the block in the ith row and jth
column of the matrix P = 4B regarded as a block matrix. The proof of (9)
is now complete.
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4.52. Multiplication of quasi-diagonal matrices. A matrix is said to be
quasi-diagonal if it is of the form

All

Ay |

s

where the “off-diagonal” blocks consist entirely of zeros. Suppose the block
Ay is an my, X n, matrix (k = 1,...,s), and consider the quasi-diagonal
matrix

By

)

|B

58
where the block By, is an n, X p, matrix (k =1, ...,s). Then, using the
rule of Sec. 4.5] to multiply the matrices 4 and B, we immediately get

AuBll

A22322

. Ay B,

Thus in this case the matrix 4B js again a quasi-djagonal matrix, where the
block A;;B;, has m; rows and p, columns.

4.53. Multiplication of transposed matrices. Given an m X n matrix
A = Jlagll, by the transpose of A (cf. Sec. 1.41) is meant the n X m matrix
A" = |lag || such that

’ pa—
Aj = Ay

G=1...,nk=1,...,m).

Let A be anm X nmatrix and Bann X p matrix. Then the product P = 4B
is defined and is an m X p matrix. Moreover, the product B'A" of the trans-
posed matrices A" and B’ is also defined and is a p X m matrix. We now
show that

B'A’ = (ABY. (10)
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Let the elements of the matrices A, B, P = AB, A', B’ and P’ be denoted by
ay, by, piy» a; = a;, by = by, p,. = p;. Then, by the rule for matrix
multiplication,

n n
R (s
% = Pii = Zau i = zlaiibki = Ebkfan,
j= =1

where the summation is over the index j with the indices i and j held-fixed.
Thus to form the element p,, of the matrix P’, the elements of the kth row
of B" are multiplied by the corresponding elements of the ith column of A’
and then added. In other words, using the rule for matrix multiplication
once again, we see that P’ is the product of B’ and A’ (in that order), thereby
proving (10).

4.54. Minors of the product of two matrices. Given an m X n matrix

A = |la|l and an n X p matrix B = ||b,,|l, we construct the m X p matrix
P = AB = |pyl|. Fixing the rows with indices a,, ..., &, (¢, < -+ < o)
and the columns with indices B,,..., B, (B < - < By), Where k < m,
ko < p, we now consider the problem of calculating the minor
adublBl +-+ aambﬂBI o a°‘11blﬁk +-+ aamank
MU IZHAB) =| Ganbig, T dagabig,  Ganbig, 0 Gaybag,
a11.~1b181 . a:‘k’ﬂbﬁel T a“xlblﬁr; o+ a%nank
1y

formed from these rows and columns. To make this calculation, we use the
linear property of determinants (Sec. 1.44). The vth column of the minor (11)
is the sum of k “elementary columns” with elements of the form a, ;b;,
(where the column indices i and v are fixed, and the row index j varies from
1 to k). Hence the whole minor (11) is the sum of k* “‘elementary determin-
ants” consisting only of elementary columns. Since in each elementary
column the factor b,;, does not change as we go down the column, it can be
factored out of the elementary determinant. After this, each elementary
determinant takes the form

a"lil a11i2 e a“l"k

a,, a,;, ‘°° a,;

R sty aAgte dztr
bHBxblsz b'r;ﬁk ’ (12)

opiy Quay "~ 77 Qo

where iy, iy, . . . , i, are certain numbers from | to n. If some of these numbers
are the same, then clearly the corresponding elementary determinant vanishes.
Moreover, this is always the case if k > n. Therefore if the matrix AB has
minors of order k > n, they must all vanish.
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Returning to the case k < n, we note that it is only necessary to consider
elementary determinants for which the indices iy, i, . . . , i;, are all different.
In this case, the determinant

Aoy, Aoyiy Aoy,
aa,il aa2i2 aazz‘k (1 3)
aakil aakig aakik

is the same (except possibly for sign) as the minor M -~%(A) where the
indices jy, ..., j, (j, <'--<j,) are the indices i, ..., J rearranged in
increasing order. To find the sign which must be ascribed to (13) to get
M2 A), we successively interchange adjacent columns of (13) until we
arrive at the normal arrangement of the columns, i.e., the arrangement they
have in the matrix A itself. At each interchange of two adjacent columns, the
determinant (13) changes sign and the number of inversions in the per-
mutation i, i,, ..., i changes by unity. Since in the final arrangement of
the columns, the subscripts are in natural order (i.e., without inversions),
the number of successive changes of sign is equal to the number of inversions
in the permutation iy, i,, . . . , it Let N(i) denote the number of sign changes.
Then the expression (12) takes the form

(—1)YNVDb, g brg, B, MITHA). 14)

To obtain (11), we must now add up all the expressions of the form (14).

First we add up all the expressions with the same set of indices jy, . . . , j,
taking out the common factors M7 "'%(A). The remaining expression is
then

(_I)Nmbilﬁxbizﬁz e bikBk’
where the summation is over all distinct sets of indices iy, i, . . . , i, (these
indices range from | to n). But this expression is just the minor M%:---% (B)
Thus finally we get the formula
Mgi8(AB) = 3 M3 i AME4B), (15)

where the summation is over all distinct sets of indices ji,ja, ...,/
(I < jiL<ja<<+++<j, < n). The total number of terms in the sum (15) is
just the binomial coefficient

n!
Cp=—=,
k!'(n — k)!
t It is assumed that the change in the indices iy, iy, . . . , i; produced by every column

interchange causes a smaller index to appear before a larger index, with the result that the
total number of inversions changes by exactly one.
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Our result can be summarized in the following

THEOREM. Every minor of order k < n of the matrix AB can be expressed
in terms of the minors of the same order of the matrices A and B, in the way
given by formula (15).

4.6. The Range and Null Space of a Linear Operator

4.61. Let A be a linear operator mapping a linear space X into a linear
space Y (in the notation of Sec. 2.71, this is expressed by writing A;X — Y).
Let n be the dimension of X and m the dimension of Y, and choose an arbitrary
basise;,...,e,inXandf,,...,f,inY. Then, by the method of Sec. 4.23,
we can associate the operator A with an m X n matrix

A = |a?| Gi=1,....mj=1,...,n).

Let T(A) be the range of A, i.e., the set of all vectors y = Ax, x € X. We
now consider the problem of finding the dimension of the subspace T(A)
from a knowledge of the matrix 4,

Writing

we have
y = Ax = £, Ae,
r=1

Hence the range of the operator A coincides with the linear manifold spanned
by the vectors Ae,,..., Ae,. As noted on p. 51, the dimension of this
linear manifold L(Ae,, ..., Ae,) equals the maximum number of linearly
independent vectors in the system Aey, ..., Ae,. We know from Sec, 4.23
that the columns of the matrix of the operator A consist of the components
of the vectors Ae,, . .., Ae, with respect to the basis e, . . . , e,, and hence
the problem of finding the maximum number of linearly independent vectors
in the system Ae,, . . ., Ae, reduces at once to that of finding the maximum
number of linearly independent columns of the matrix 4. But by Theorem
3.12¢, the latter quantity is just the rank of the matrix of the operator A.
Thus the dimension of the range of a linear operator A mapping an n-dimensional
space X into an m-dimensional space Y equals the rank of the matrix of A
relative to any basis {e} in X and any basis {f} in Y.

We note that the choice of bases does not matter here. Therefore the
rank of the matrix of an operator A does not depend on the choice of bases,
i.e,, depends only on the operator A itself. In what follows, the rank of the
matrix of the operator A (relative to any bases) will simply be called the
rank of the operator A, denoted by r,.
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4.62. Next let N(A) be the null space of the operator A, i.e., the set of all
vectors x € X such that Ax = 0, and as before let A = |la!?|| be the matrix
of A. We now consider the problem of finding the dimension of the subspace
N(A) from a knowledge of the matrix 4. Let

X = iiiei e N(A).
Then the system (5), p. 80 takes the form
a8 + aP% + -+ a"E, =0,
a8 +aPl + -+ aE, =0,

ane, + aRg, + 0 4 aE, = 0.

Moreover, it is obvious that, conversely, every vector x € X whose compo-
nents satisfy (16) belongs to the null space of the operator A. Thus the problem
of finding the dimension of the null space of the operator A is equivalent to
the problem of finding the dimension of the subspace of X consisting of all
solutions of the system (16). But according to Sec. 3.51, the dimension n,
of this subspace equals n — r, where r is the rank of the coefficient matrix
of the system, or equivalently, the rank of the operator A. It follows that
n, = n — r,. Thus the dimension of the null space of the operator A equals
the rank of the space X (on which A acts) minus the rank of the operator A.

(16)

4.63. In particular, if the morphism A:X — Y is an epimorphism, then
T(A) = Y and hencer, = m. Ifthe morphism A:X — Y is a monomorphism,
then N(A) = {0} and hence r, = n. The converse assertions are also true:
If the rank of the matrix 4 equals the number m of its rows, then the dimension
of T(A) coincides with the dimension of the whole space Y and hence
T(A) = Y. Therefore the morphism A is an epimorphism if and only ifr, = m.
If the rank of the matrix 4 equals the number of its columns, then the
vectors f, = Ae,, ..., f, = Ae, are linearly independent and hence the
operator A is a monomorphism (see Sec. 2.73c). Therefore the morphism A
is a monomorphism if and only if ri = n.

4.64. The following proposition is the converse of the results of Secs.
4.6] and 4.62:

THEOREM. Let X be an n-dimensional linear space and Y an arbitrary
linear space. Then, given any subspaces N < X and T < Y the sum of whose
dimensions equals n, there exists a linear operator A:X —Y such that
N(A) =N, T(A) =T.
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Proof. Let the dimensions of N and T be k and m = n — k, respectively.

Moreover, letfi, f5, . . . , f,, be m linearly independent vectors in the subspace
T, and let ey, e,, . . . , €, be any basis in the space X whose first k vectors lie
in the subspace N (see Sec. 2.43). Defining an operator A by the conditions
Ae, =0 (i=1,2,...,k), an

Ae; . = f; (i=1,2,...,m),

we now show that A satisfies the requirements of the theorem. First of all,
itis obvious that T(A) is the linear manifold spanned by the vectors f,, £, . . . ,
fm and hence coincides with the subspace T. Moreover, by (17), every
vector of the subspace N belongs to N(A), and it remains to show only that
every vector of N(A) belongs to N. Suppose Ax = 0 for some

Then, by (17),

0=Ax=Ae; + "+ &) =Eufi+ + s
and hence &,,, =---=§, =0since f;,...,f, are linearly independent.
But then

x==58e+ -+ ELeeN |

4.65. The following theorem on the rank of the product of two matrices
is a consequence of the geometric notions just introduced:

THEOREM. The rank of the product AB of two matrices A and B does not
exceed the rank of each of the factors.

Proof. Naturally, we must assume that the number of columns of the
matrix A coincides with the number of rows of the matrix B, since otherwise
the product AB could not be formed. Thus let 4 be an m X n matrix and B
an X p matrix, and introduce linear spaces X, Y and Z with dimensions #,
m and p, respectively. Choose a basis e,, ..., e, in the space X, a basis
fis -+ fm in the space Y and a basis g, ..., g, in the space Z. Using
these bases, we associate a linear operator A:X — Y with the matrix 4 and a
linear operator B:Z — X wiht the matrix B (see Sec. 4.23). Then the product
operator AB:Z — Y corresponds to the product matrix 4B. The range of
the operator AB is contained in the range of the operator A, by the very
definition of AB. Since by Sec. 4.61 the dimension of the range of any
operator equals the rank of its matrix, we find that the rank of the product of
two matrices does not exceed the rank of the first factor. To prove that it also
does not exceed the rank of the second factor, we go over to transposed
matrices. Using equation (10), p. 90, we find that

rank AB = rank (4B)’ = rank B’A’ < rank B’ =rank B. |
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4.66. The rank of the product of two matrices can actually be less than
the rank of each factor. For example, the matrices

01 1 0
"o o’ "o o
both have rank one, but their product
00
AB =
00

has rank zero. Therefore the following theorem, which gives a lower bound
rather than an upper bound for the rank of the product of two matrices, is
of interest:

THEOREM. Let A be an m X n matrix of rank r4 and B an n X p matrix
of rank rp. Then the rank of them X p matrix ABisno less thanry + rp — n.

Proof. First we show that any operator A:X — Y of rank r carries every
k-dimensional subspace X' < X into a subspace Y’ < Y of dimension no
less than r — (n — k). Choose a basis ey, e,, . . . , €, in the space X such that
the first & basis vectors lie in the subspace X’ (see Sec, 2.43), The components
of the vectors Ae,, Ae,, . . . , Ae, generating the space Y’ occupy the first k
columns of the matrix of the operator A, By hypothesis, there are r linearly
independent columns in the matrix of A, We divide these columns into two
groups, the first consisting of columns whose numbers lie in the range 1 to &,
the second consisting of columns whose numbers lie in the range k 4 1 to n.
The second group contains no more than n — k columns, and hence the first
group contains no more than r — (n — k) columns. Thus the subspace Y’
has no more than r — (n — k) linearly independent vectors, as asserted.

Now let A:X — Y and B:Z — X be linear operators corresponding to the
matrices A and B. By Sec. 4.61, the rank of the matrix of the operator AB
is just the dimension of the range of AB. The operator B maps the whole
space Z into the subspace T(B) < X of dimension rg. But as shown above,
the operator A maps the subspace T(B) into a subspace of dimension no less
than r, — (n — rg) = r, + ry — n. Thus the range of the operator AB,
and hence the rank of the matrix of AB, is no less thanr, + ry — n. |

4.67. CoROLLARY. Let A be anm X nmatrix and B an n X p matrix, and
suppose the rank of one of these matrices equals n. Then the rank of AB
equals the rank of the other matrix.

Proof. In this case, the upper and lower bounds for the rank of 4B,
given by Theorems 4.65 and 4.66, have the same value, equal to the rank of
the other matrix. |
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4.68. Let A be a linear operator mapping a linear space X into a linear
space Y. A linear operator B mapping Y into X is called a left inverse of the
operator A if

BA=E

is the unit operator in the space X. The operator A is then called a right
inverse of the operator B. The following theorem gives conditions under
which the operator A (or B) has a left (or right) inverse:

THEOREM. The operator A:X — Y has a left inverse if and only if A is
a monomorphism. The operator B:Y — X has a right inverse if and only if B
is an epimorphism.

Proof. Let A be a monomorphism with range T(A) < Y. Then for every
y € T(A) there is an x € X such that Ax = y, where x is uniquely determined
by y since A is a monomorphism by hypothesis. Let Q < Y be the subspace
whose direct sum with T(A) is the whole space Y (see Sec. 2.46). We now
define an operator B:Y — X by the following rule: For y € T(A) we set By
equal to the (unique) vector x for which Ax = y, while otherwise we set

By=0 if yeqQ,
By =By, if y=y +y,3»eTA)y,cQ.

Then it is easy to see that the operator B is linear and that BAx = x, for
every x € X, so that B is the left inverse of A. However, if A is not a mono-
morphism, there exists a nonzero vector x € X such that Ax = 0. Then for
any B:Y — X we have (BA)x = B(Ax) = B(0) = 0, so that A indeed fails
to have a left inverse.

Next let B:Y —~ X be an epimorphism and let N(B) < Y be the null
space of B, while Q < Y is the subspace whose direct sum with N(B), denoted
by N(B) + Q, is the whole space Y. Since

X = B(Y) = B(N(B) + Q) = B(Q),

the mapping B:Q — X is also an epimorphism and in fact an isomorphism,
since no nonzero element y € Q is mapped into zero by the operator B. We
now define an operator A:X — Y by the following rule: Given any x € X,
we set Ax equal to the (unique) vector y € Q for which By = x. Then it is
easy to see that the operator A is linear and that BAx = x for every x € X,
so that A is the right inverse of B. However, if B:Y — X is not an epimor-
phism, then BAx # x for any operator A:X — Y and any vector x € X such
that x ¢ T(B), so that B has no right inverse. [

4.69. a. As we know, the result of multiplying an n X m matrix P by an
m X n matrix A is a square n X n matrix

S = PA.
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If S is the unit n X n matrix (see Example 4.24d), we call P the left inverse
of the matrix 4. Similarly, the result of multiplying an m X n matrix 4 by
an n X m matrix Q is a square /n X m matrix

T=AQ,
and if T'is the unit m X m matrix, we call Q the right inverse of the matrix 4.

b. Using the results of Sec. 4.63, we can now formulate Theorem 4.68
in terms of the rank of a matrix:

THEOREM. An m X n matrix A has a left inverse if and only if its rank
equals n and a right inverse if and only if its rank equals m.

4.7. Linear Operators Mapping a Space K, into Itself

4.71. Let A be a linear operator mapping the space X into itself (this
corresponds to setting Y = X in Sec. 4.21). Such an operator is said to be
an operator (acting) in the space X.

Suppose the operator A acts in an n-dimensional space X = K,. Choosing
abasise,,. .. ,e,in the space X, we use the same basis in Y = X to construct
the matrix of the operator A. Then formula (3), p. 79 becomes

Ae; =3 alle, (18)
i=1

(after setting f; = e,), so that the coefficients a/’ now form a square n X n
matrix A, called the matrix of the operator A in (or relative to) the basis
{e} ={es,...,e,}. We will sometimes denote this matrix by A4, The
corresponding formula relating the components of the vectors x and y, where

n 7
y = Ax, X =z£jej: y= zvljei
i=1 j=1

n =2 ag; (19)
j=1

(cf. formula (4), p. 80). For a fixed basis {e} ={e,,...,e,}, we get a
one-to-one correspondence between all linear operators acting in the space
K, (i.e., mapping K, into itself) and all square » X n matrices made up of
clements of the underlying field K.

4.72. Examples

a. The operator associating the zero vector with every vector of the
space X is obviously linear. As in Example 4.22a, this operator is called the
zero operator. It is clear that the matrix of the zero operator relative to any
basis consists entirely of zeros.
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b. The identity (or unit) operator E, associating the vector x itself with
every vector x € X, has already been considered in Example 4.22d. Its
matrix is the unit (or identity) matrix of the form

10 -0
£_|l0 0
00 - 1

(cf. Example 4.24d).

c. The operator A which carries every vector x € X into Ax, where A isa
fixed number from the field K, is obviously linear. This operator is called
the similarity operator (with ratio of similitude 3). As in the preceding
example, the similarity operator has the matrix

00 A

in any basis.

d. We can specify a vector in the Euclidean plane ¥, by giving its polar
coordinates ¢ and . The operator A carrying the vector x = (p, ¢) into
Ax = (p, ¢ + o), where ¢, is a fixed angle, is linear (as can easily be
verified by drawing a figure). This operator is called the rotation operator
through the angle <.

To construct the matrix of A, we choose a basis in V; consisting of two
orthogonal unit vectors e, and e,. Drawing a figure, we easily see that after
rotation through the angle ¢, the vector e, goes into the vector e, cos ¢, +-
e, sin ¢, while the vector e, goes into —e; sin @, + e, cos ¢, Hence the
matrix of the rotation operator A has the form

COS o —Sin @

sin @, €OS @

in the basis e,, e,.

e. Let e),e,,...,e, be a basis in an n-dimensional space K,, and
suppose that with the vector

-
=
S,

X ==

,,
1=

x€x
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we associate the vector

Px =3 &6
k=1
where m << n. Then P is a liear operator, called the projection operator
onto the subspace K,, spanned by the vectors e, e, . .. , e,,.
To construct the matrix of P, we note that it carries the vectors ey, e,, . . . ,
e,, into themselves and the vectors e, . . . , e, into the zero vector. Hence
the matrix of the projection operator P in the basis ey, €, . . . , e, is just

10 ... 00 --- 0
01 --- 00 ... 0
mllo o 10 0
00 00 0
00 .- 00 --- 0
f. Let e), €;,...,e, be a basis in an n-dimensjonal space K,,, and let

A, A, ..., A, be n fixed numbers. Defining an operator A for the basis
vectors by the conditions

Ae, = Mey, Aey, = Moy, ..., Ae, = e,
we then of course use linearity to define A for any other vector
x=23Ee
E=1
by the condition

n
Ax =31k
o

The resulting operator A is said to be diagonal relative to the basis e, e,, . . . ,
e,; we also call A a diagonalizable operator.

The matrix of an operator which is diagonal relative to the basis e, e,,
..., e, is of the form

A 0 e 0
0 Ao o 0
0O 0 ... A

n

in the same basis. Such a matrix, which can have nonzero elements only on
its principal diagonal, is said to be diagonal (hence the corresponding
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terminology for the operator itself). It should be noted that the matrix of
an operator which is diagonal relative to the basis e;, e;,..., e, will in
general not be diagonal in another basis f1, f3, . - . , fa-

4.73. a. Using the rules of Secs. 4.31 and 4.32 to add lmear operators
acting m a space X and multiply them by numbers, we again get linear
operators acting in X. The rules (7) and (7), p. 82 show that the set of all
linear operators acting in a space X (equipped with the indicated operations
of addition and multiplication by numbers) is again a linear space over the
same field K. Moreover, the operation of multiplication described in Sec.
4.33 can always be defined for operators acting i a space X, and the result
is again an operator acting in X. In particular, we can define the powers of a
given operator A by the rules

Al — A,

A? = AA,

A? = A”A = (AA)A = A(AA) = A(A2).

A" = A"TA = AA™T,
We then have the formula

A™ = ATAT  (myn=1,2,...), (20)
which can easily be proved by induction. Next we define
A= E,

where E is the identity operator, and show that (20) remains valid in the case

where one of the indices is zero. In fact, if B is any operator, we have

(BE)x = B(Ex) = Bx = E(Bx),
so that
BE = EB = B.

Setting B = A™, we obtain

A"E = EA" = A",
as required.

b. Let X = K, be a finite-dimensional space, and let e, ..., e, be an
arbitrary basis in X. Then with every linear operator A acting in the space X
we can associate the matrix of A in the basis e, ..., e, Just like the
operators themselves, the corresponding matrices can be added, multiplied
and raised to powers in accordance with the rules of Secs. 4.41-4.43. The
dimension of the linear space of all matrices of order » can easily be found.
In fact, let E,; be the matrix whose elements are all zero except for the
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element in the ith row and jth column, which, to be explicit, we choose to
be 1. Then the matrices E;; (i,j =1,...,n) are obviously linearly inde-
pendent. On the other hand, every matrix of order # is a linear combination
of the matrices E;;. Hence the matrices E;, form a basis in the space of all
matrices of order n. Since the number of matrices E,; is n%, the dimension
of the space of all matrices of order # is just n* (see Sec. 2.35). The space of
all linear operators acting in X = K,, obviously has the same dimension n2

4.74. Examples

a. Multiplication by the complex number w = « + iB is a linear trans-
formation in the xy-plane, which can be described by a real matrix of order
two. It follows from the multiplication formula

(o + B)(x + iy) = (ox — By) + i(Bx + ap)
that this matrix is of the form
« —f
B o

This rule establishes a one-to-one correspondence between complex numbers
® = « + i and real matrices = of order two, where (as is easily verified)
the sum (or product) of two numbers goes mto the sum (or product) of the
corresponding matrices. This is described by saymg that the matrices = form
an exact representation of the field of complex numbers (see Sec. 11.21).

b. Let B, (k > 0) denote the operator which “lowers indices by k,” i.e.,
the operator carrying each basis vector e,, (m =1,...,n) into the basis
vector e,,_; if m — k > 0 and into 0 if m — k£ < 0. Obviously

B, =E, B,B. =B, ,,

and, in particular,

B! =B,.
The matrix of the operator B, is
010 0
0 01 0
00 1
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while that of the operator B, (k < n) is

k+1
0O --- 10 --- 0
0O - 01 --- 0
0 -+~ 00 -« 1|(m—4k)
0 -«- 00 --- 0

4.75. The determinant of the product of two matrices. Let 4 = |la,| and
B = ||b;| be any two n X n matrices, and let C = AB be their product.
Applying Theorem 4.54 to the minor M}--*(4B), which is just the deter-
minant of the matrix 4B, we get

det AB = det A det B. 21)
Thus we have proved the following

THEOREM. The determinant of the product of two n X n matrices equals
the product of the determinants of the matrices.

There also exist direct proofs of this theorem, i.e., proofs which do not
rest on a proposition like Theorem 4.54. Here is one such proof. Consider
the determinant

by -+ by, —1 0 ... 0
byy - by, O —1 ... 0
b, b,, 0 0 —1
D=
0 0 an g Ain
0 0 Qa1 Qgy Qs
0 e 0 a4, ap e a,,

of order 2n. By Sec. 1.32, the determinant D equals the product of the deter-
minants of the matrices

[ I by o by,
A= . .. ., B=|-. ... .|
2% BN b - bnn

so that
D = det A det B. (22)
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But there is another way of evaluating D. Using the elements —1 in the first
n rows and last n columns of D, we can make all the elements in the last n
rows and last # columns of D vanish. This is done by adding to the (7 + 1)st
row of D the first row multiplied by ay,, the second row multiplied by ay,, . . . ,
the nth row multiplied by a,,, then adding to the (» 4 2)nd row of D the
first row multiplied by a,,, the second row multiplied by as,, . .., the nth
row multiplied by a,,, and so on, until we finally arrive at the last (2nth) row.
This gives

bu e b“ —1 o - 0
by ce ban 0—-1 -+ 0
bay [ 0 0 —1

D= R
b + bl 4 0 A batin 0 bia@ + 0t baalia o 0 -+ 0
b11Gs1 + boy@es 4 4 bpr@ea 0 b1a@ei 0+ bunGs. 0 0 -0 0
bulny + ber@us + 0 + bar@an 0 b1aGar+ t + bpa@an 0 0 - 0

and hence, by Laplace’s theorem Sec. (1.81)

=1 0 - 0byay+- "+ ba@in "+ b1+ + bunlin
0 —1 -+ 0bu@u+ "4 bnban - braGar+** + bpnen
D = (—1)t+a+imm
0 0 “++ —1b3an~+ " +bulnn *** bralGur+ "~ 4 bpallnn
anbn 4 0 4 Quabm 0 Gubia + 0 + Qiaban
= |@aib1s + ** + Gzabmy 00 Guibin + 00+ Gguban | = det (AB). (23)
by + 4 Quabar 0 Guibin 4 0 4 Gunban

Comparing (22) and (23), we get (21), thereby proving the theorem.

A square matrix A is said to be nonsingular if det A # 0 and singular if
det A = 0. It follows from (21) that if the matrices 4 and B are nonsingular,
then so is the product matrix AB, while if at least one of the matrices 4 and
B is singular, then so is AB. These conclusions can also be deduced from
Theorem 4.65 and Corollary 4.67.

4.76. The inverse operator. In keeping with the definition given in Sec.
4.68, an operator B acting in a space X is called a /eft inverse of the operator
A acting in the same space X if

BA =E,

where E is the identity operator. The operator A is then called a right inverse
of the operator B.
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a. It is possible for an operator A to have many left inverses and no
right inverses at all (see Problems 25 and 26) or, conversely, many right
inverses and no left inverses at all. However, suppose A has both a left inverse
P and a right inverse Q, so that

P = PE = P(AQ) = (PA)Q = EQ = Q.

Fixing Q, we see that every left inverse coincides with P and hence is uniquely
determined. In just the same way, the right inverse Q is uniquely determined
under these circumstances. The uniquely determined operator P = Q, which
is simultaneously both a left and a right inverse of the operator A, is called
the inverse of the operator A and is denoted by A~%. The operator A itself,
with the imverse A, is said to be invertible (or nonsingular).

b. Let A be an operator acting in an n-dimensional space X = K,,, and
let A be the matrix of A in some fixed basise;, . .., e, Then eitherdet 4 %0
or det A = 0. In the first case, the rank of the matrix A4 equals » and it
follows from Theorem 4.69b that 4 has both a left and a right inverse.
Correspondingly, the operator A then has both a left and a right inverse, and
hence is invertible. However, if det A = 0, then, by Theorem 4.69b again,
the matrix A4 has neither a left nor a right inverse, and hence the operator A
acting in K,, has neither a left nor a right inverse.

4.77. The matrix of the inverse operator. Let A be an invertible operator
acting in an n-dimensional space X, and let B = A~ be its inverse. Choosing
a basis ey, ..., e, let A =|a?| and B= |[b{| be the matrices of the
operators A and B in this basis.

We now find an explicit formula for the elements b{’ in terms of the
elements a!”’. Fixing the row number i, we use formula (8), p. 85 to write
down expressions for the elements of the ith row of the matrix B4 = E:

(1) (1 (2) (1 e ( 1y __
bi )al) + bi )az) + + bin)a") — 0,

VG L pPg o pigD — 1
t 1 k2 n ’
b(l)a{n) + b(z)a;n) e 4 b(n)a(n) =0
1 k2 k2 n .
The unknowns b, . . ., b{™ can be determined from this system of equations
by using Cramer’s rule (Sec. 1.73), since det A # 0 by hypothesis. Expanding
the determinant in the numerator of the resulting expression for b with
respect to the jth column, we get
() _ 4P
’ detd’
where A{" is the cofactor of the element a{” in the matrix 4. In words, the
element b’ of the inverse matrix A~ equals the ratio of the cofactor of the

(24)
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element a¥ of the original matrix A to the determinant of A. Thus we have
proved the following.

THEOREM. Every nonsingular matrix A = |la?| has a unique inverse
matrix B = ]!bi”N such that
AB = BA = E.

The elements of the matrix B are given by formula (24).

4.78. Let A~' be the mverse of the operator A, as in Sec. 4.76a. Then by
A~* we mean the operator (A~')*. It is easily proved by induction that
formula (20) continues to hold for negative powers. Powers of the inverse
matrix are defined in just the same way, and then the validity of the formula

A™r =A™ A" (mon=1,2,..)

for negative powers of matrices is an immediate consequence of the validity
of (20) for negative powers of operators.

4.8. Invariant Subspaces

4.81. Given a linear operator A acting in a linear space K, we say that a
subspace K’ < K is invariant with respect to (or under) A if x € K’ implies
Ax eK'. In particular, the trivial subspaces, i.e., the whole space and the
space whose only element is the zero vector, are invariant with respect to every
linear operator. Naturally, we will be interested only in nontrivial mvariant
subspaces.

4.82. The linear operators given in the examples of Sec. 4.72 will now
be examined from this point of view.

a-c. Every subspace is invariant with respect to the operators of Examples
4.72a-c (the zero operator, the identity operator, and the similarity operator).

d. The rotation operator in the plane (Example 4.72d) has no nontrivial
invariant subspaces, unless the angle of rotation equals mm where m is an
integer (in which case, every one-dimensional subspace is invariant).

e. The projection operator (Example 4.72¢) has the following invariant
subspaces (among others): The subspace K’ of vectors

m
x =3 Ee
K=t

which remain unchanged and the subspace K” of vectors

n
y = E Exer
. . . k=m+1
which are carried into zero.
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f. Every subspace spanned by some of the basis vectors e, e,, .. ., e,
is invariant under a diagonal operator (Example 4.72f).

4.83. Suppose an operator A acting in an n-dimensional space K,, has an
invariant m-dimensional subspace K,. Choose a basis e;,..., e, for K,
such that the first m vectors e, ..., e, lie in K. Then

(1 ce (1
Ae, = atle, + + alle,,

Ae, =a™e, + 4+ a'™e,,

and hence the matrix of the operator A is of the form

1

a; | N agm) a(1m+1) PN a(ln)
1

a(m) T a(":n) aiﬂﬂH—U e a("?:)

A=
0 N 0 almtb .. (n) (25)
m4.1 am+1

0 0 a("m+1) a;n)

in the given basis. Note that all the elements in the first m columns of this
matrix vanish if they appear in rows m 4 1 through n. Conversely, if the
matrix of an operator A is of the form (25), then the subspace spanned by

the vectors ey, . .., e,, is invariant under A.

4.84. Suppose the space K, can be represented as a direct sum of in-
variant subspaces E, F, ... H (see Sec. 2.45), and choose a basis for K,

such that the vectors
ey, ...,e lieinE,

fio.. fs lieinF,

hy, ..., h,lie in H.

Then the matrix of the operator A has the quasi-diagonal form

A(e)

A

(26)
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where the square matrices A,,, A¢)s - . - , A(n) along the diagonal are made
up of elements a/, b\, . .., ) in accordance with the formulast

T
— ()
Ae; = ae,
i=1

i=

u
Ah; = 3 dh,,
=1
while all the elements outside the matrices A, Ay, ..., Agy vanish.
Conversely, if the matrix of an operator A is of the form (26) in some basis,
then the space K, can be represented as the direct sum of the mvariant
subspaces spanned by the corresponding groups of basis vectors.

4.9. Eigenvectors and Eigenvalues

4.91. A special role is played by the one-dimensional invariant subspaces
of a given operator A; they are also called invariant directions (or eigenrays).
Every (nonzero) vector belonging to a one-dimensional mvariant subspace
of the operator A is called an eigenvector of A. In other words, a vector
x # 0 is called an eigenvector of the operator A if A carries x imto a collinear
vector, i.e., if

Ax = A\x.

The number A appearing in (27) is called the eigenvalue (or characteristic
value) of the operator A, corresponding to the eigenvector x.

4.92. We now reexamine the examples of Sec. 4.72 from this standpoint.

a-c. In Examples 4.72a—c, every nonzero vector of the space is an eigen-
vector and the corresponding eigenvalues 0, 1, A,

d. The rotation operator (Example 4.72d) has no eigenvectors unless the
angle of rotation equals m= where m is an integer.

e. The projection operator (Example 4.72¢) has eigenvectors of the form

E]

x =2 &l
r=1
and
n
y = z &l
keml

t Cf. formula (18), p. 98.
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with corresponding eigenvalues 1 and 0. It can be verified that the projection
operator has no other eigenvectors,

f. The diagonal operator (Example 4.72f) by its very definition has the
eigenvectors ey, e, . . . , e, with corresponding eigenvalues Ay, 2, . . . , Ay

4.93. Next we prove two simple properties of eigenvectors.

a. LEMMA. Given an operator A with eigenvectors Xy, X, ..., X,, and
corresponding eigenvalues A, Xg, . . ., Ay, Suppose A, % A; whenever i~ j.
Then the eigenvectors Xy, X, . . . , X, are linearly independent.

Proof. We prove this assertion by induction on the integer m. Obviously,
the lemma is true for m == 1. Assuming that the lemma is true for any m — 1
eigenvectors of the operator A, we now show that it remains true for any m
eigenvectors of A. In fact, assume to the contrary that x;, X,, ..., x,, are
linearly dependent, so that there is a linear relation

Xy + Xy + ¢ 4 2,X, =0

between the eigenvectors X, X, ..., X,,, With «; 7 0, say. Applying the
operator A to this relation, we get

X + HaheXs + ¢ 0+ oA X, = 0.

Multiplying the first equation by A, and then subtracting it from the second
equation, we find that

(A = )Xy + 2a(hg — A)Xe + 0+t (g — Ap)X oy =0,
which by the induction hypothesis implies that all the coefficients
e R e ) N )

vanish, in particular that
(A~ Ap) = 0,

contrary to the assumption that o, 5= 0, A, % A,,. This contradiction shows

that the eigenvectors x;, X,, . . . , X, must be linearly independent. |

In particular, a linear operator A acting in an n-dimensional space cannot
have more than n eigenvectors with distinct eigenvalues.

b. LEMMA. The eigenvectors of a linear operator A corresponding to a
given eigenvalue X span a subspace K» < K.

Proof. If
Axyp = Axy, Ax, = AX,,
then

A(ox; + Bxg)  oAx; + BAX, = ahx; + PAXy = Aax; + Bx,). |
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The subspace K™ is called the eigenspace (or characteristic space) of the
operator A, corresponding to the eigenvalue A

4.94. Next we show how to calculate the components of the eigenvectors
of an operator A, where A is specified by its matrix insome basise,, e,, . .. , e,
of the space K,. Suppose the vector

x=>Ee
k=1
is an eigenvector of A, so that
Ax = Ax 27
for some A. Using (5), p. 80, we can write (27) in component form as
a(LUEL + 0(12)52 + a(l"’in = A&y,
aEy + a8y + o+ aE, = My,

a(nUEL + a(ylz)iz + a(nn)an = A,
or
(@ — W& + aPE + - + aME, =0,

aMt + (@ — NEy + eV, =0,
............................. (28)

a(nUEL + a("2)£2 S (a(nn) - )‘)Eﬂ =0.

This homogeneous system of equations in the unknowns &, %,,..., &,
has a nontrivial solution if and only if its determinant vanishes (see Sec. 3.22):

a1 a® - a”
a a® - alm
AQ) = —0. (29)
a(”l) a(nZ) e a(n") —2

The polynomial A(3) of degree n in A is called the characteristic polynomial
of the matrix At To each of its roots A, € K there corresponds an eigenvector
of the operator A obtained by substituting A, for A in (28) and then solving
the resulting compatible system for the quantities &, &, . . . , £,. Moreover,
Ao is obviously the eigenvalue corresponding to this eigenvector. In particular,
it follows that although the matrix of the operator A depends on the choice
of the basis e;, e, . . . , €,, the roots of the characteristic polynomial of the

t+ Correspondingly, equation (29) itself is calied the characteristic equation of A.
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matrix no longer depend on the choice of basis. We will discuss this matter
further in Sec. 5.53.

4.95. We now study the various possibilities which can occur in solving
the characteristic equation (29).

a. The case of no roots in the field K. If equation (29) has no roots at all
in the field K, then the linear operator A has no eigenvectors in the space K,.
For example, as already noted, the rotation operator in the plane V,
corresponding to rotation through an angle

goEmn  (m=0, +1,+2,...) (30)

has no eigenvectors. This fact, which is geometrically obvious, is easily
proved algebraically. Indeed, for the rotation operator, equation (29) takes

the form

COS g — A —sin @ o
sin @, COS g — A

(see Example 4.72d), which becomes
1 —2xcos gy + A2 =0

after calculating the determinant. But this equation has no real roots if (30)
holds.

b. If K = C is the field of complex numbers, then by the fundamental
theorem of algebra, equation (29) always has a root X, € K. Thus in the
space C,, every linear operator has at least one eigenvector.

¢. The case of n distinct roots. If all n roots of equation (29) lie in the
field K and are distinct, we can find n distinct eigenvectors of the operator A
in the space K, by solving the system (28) for A = Ay, A, ..., A, In turn.
By Lemma 4.93a, the eigenvectors f;,f,, ..., f, so obtained are linearly
independent. Choosing them as a new basis, we can construct the matrix of
the operator A in this basis. Since

Afy = NS,
Afy = Ao/,
Af, = AnSns
the matrix A, has the form
AN O 0
0 % 0

(3D
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Recalling the definition of a diagonalizable operator (see Example 4.72f),
we can formulate this result as follows: Let A be an operator in the space K,
whose matrix (in any basis) has a characteristic polynomial with n distinct
roots in the field K. Then A is diagonalizable. The matrix of A in the basis
consisting of its eigenvectors is diagonal, with diagonal elements equal to the
eigenvalues of A.

d. On the other hand, if the operator A has a diagonal matrix of the
form (31) in some basis f1, f3, . . . ,f, Of the space K, with arbitrary, not
necessarily distinct numbers Ay, A, . .., A, along the diagonal, then the
vectors f1, fa, . . . , [ are eigenvectors of A and the numbers A;, Ag, ..., A,
are the corresponding eigenvalues.

To see that A has no eigenvalues other than Ay, ,, . .. , A,, suppose % is
an eigenvalue of A corresponding to the eigenvector

=38,

so that Af = Af. Then, comparing coefficients of f; in the equations
Af= A(Spf) = 3 0% = 3 8fe

W =23 8= 28
we get - )
M=AB  (i=12...,n). (32)

But at least one of the numbers B;, Bs, ..., B, Is nonzero, say B, # 0.
Thus, choosing i = 1 in (32), we find that 2 = X, i.e., A Is already one of the
numbers Ay, Ay, ..., Ay

e. The case of multiple roots. Let » = X, be a root of multiplicity r > 1
of the characteristic equation (29). The following question then arises:
What is the dimension of the corresponding eigenspace K*®, or in other
words, how many linearly independent solutions does the system (28) have
for A = %, ? This question can be answered exactly from a knowledge of the
rank of the matrix of the system (28), but we would like an answer which
involves only the multiplicity r of the root A,.

In Examples 4.72a— and 4.72¢, it is easily verified that the dimension of
each eigenspace K™ is the same as the multiplicity of A, as a root of the
characteristic equation of the given operator. However, this is not true in
general. For example, let A be the operator in R, with matrix

h O

>

TR
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where @ # 0 Is arbitrary. Here the characteristic polynomial is (Ag — A)?
and has a double root A = A, Correspondingly, the system (28) takes the
form

0-8,+0-8=0,
p B +0-8=0,

which, to within a numerical factor, has the unique solution
£, =0, Ea=1.

Thus the eigenspace of the operator A corresponding to the eigenvalue 2,
has dimension 1, which is less than the multiplicity of the root A,.

It can be shown that in the general case the dimension of the eigenspace
Ko does not exceed the multiplicity of the root A, (see Chapter 5, Problem 7).
A complete solution to the problem of finding the dimension of the space
K™ for the case K = C will be given in Chapter 6, after showing how to
determine the “canonical form” of the matrix of the given operator.

PROBLEMS

1. After defining in a natural way addition of linear forms and multiplication
of a linear form by a real number, construct a new linear space K* consisting of
all the linear forms defined on some linear space K. If the dimension of the space
K is n, what is the dimension of the space K*?

2. Which of the following vector functions defined on the space V, are linear

operators:
a) Ax = x + a (ais a fixed nonzero vector);
b) Ax = a;
¢) Ax = (a, X)a;t
d) Ax = (a, X)x;

) Ax = (&, &, + &, ), where x = (§;, &, &);
f) Ax = (sin &, cos &,, 0);
8) Ax = (2§, — &5, &y + &5, )7
3. Consider the following operations in the space of all polynomials in ¢:
a) Multiplication by ¢;
b) Multiplication by ¢2;
¢) Differentiation.
Are these linear operators ?
4. Suppose the operator A defined on ¥, carries the vectors

x; = (0,0, 1), x, = (0,1, 1), x3=(1,1,1)

t Here (a, x) denotes the usual scalar product of the vectors a and x, i.e., the number
equal to the product of the lengths of the vectors and the cosine of the angle between them.



114 LINEAR FUNCTIONS OF A VECTOR ARGUMENT CHAP. 4

into the vectors
»n=12,3,9), y2 = (1,0,0), ys=(0,1, —1).

Form the matrix of A in the following bases:

a) e; =(1,0,0), e, =(0,1,0), ¢35 = (0,0, 1);

b) xy, Xp, X3.
5. In three-dimensional space let A denote the operator corresponding to
rotation through 90° about the axis OX (taking OY into OZ), let B denote the
operator corresponding to rotation through 90° about the axis OY (taking OZ
into 0.X), and let C denote the operator corresponding to rotation through 90°
about OZ (taking OX into OY). Show that

A*=B*=C*=E, AB # BA, A?B? = B2AZ,
Is the relation ABAB = A?B? valid ?

6. In the space of all polynomials in ¢, let A denote the differentiation operator
and let B denote the operator corresponding to multiplication by the independent
variable ¢, so that

AP(t) = P'(1), BP(1) = tP(¢).

Is the relation AB = BA valid? Find the operator AB — BA.
7. Assuming that AB = BA, prove the formulas
(A + B)2 = A? + 2AB + B?,
(A + B)® = A3 + 3A%B + 3AB? + B3,
How must these formulas be changed if AB # BA?
8. Assuming that AB — BA = E, prove the formula
A"B — BA™ = mA™1  (m=1,2,..).

9. Find the dimension of the linear space K* of all linear operators mapping an
n-dimensional space K, into an m-dimensional space K,,, and construct a basis
for K,

10. Find the product 4B of the matrices 4 and B, where

1 2 3 -1 -2 -4
A=|l2 4 6|, B=||-1 -2 —4
3609 1 2 4

11. Raise the following matrices to the nth power:

11 COs ¢ —sin @
A= , =
01 sin ¢ cos ¢
12. Find all matrices 4 of order two satisfying the condition
0 0
Az = .

00
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13. Calculate AB — BA where

122 411

a) A={2 1 2§, B=|-4 2 of;
123 121
210 301 -2

b) A=| 11 2|, B=|| 3 -2 4
-1 21 -3 5 -1

14. The sum ay; + * * * + an, Of the diagonal elements of a matrix 4 = llaz|l
is called the trace of A, denoted by tr A. Prove that

tr(A+B)=trd + tr B,
tr (AB) = tr (BA).

15. Prove that the formula AB — BA = E is impossible for operators A and B
acting on an n-dimensional space K.

Comment. The result of Problem 6 shows that the assumption that the space
K, is finite-dimensional plays an essential role here.

16. Given a square matrix C of order two such that tr C = 0 (cf. Problem 14),
show that C can be represented in the form

C = AB — BA
where A and B are (unknown) matrices of order two.
17. Let
X =S i (=1,2...,m
i=1

be m linearly independent vectors in an n-dimensional space, and let A be the
operator defined on the linear manifold L(x,, x,, . . . , x,,) such that

m . .
yi=Ax; =>alx (=12,...,m.
k=1
Show that every minor of order m of the matrix made up of the components
of y; (with respect to the basis ey, e,, . .. , e,,) equals the product of det [a{|
with the corresponding minor of the matrix made up of the components of the
VECtors x;.

18. Show that if the basis minor of a matrix of rank r appears in the upper
left-hand corner, then the ratio of any minor M of order r to the minor appearing
in the same columns as M but in the first r rows depends only on the column
indices of the minor M.
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19. Show that if 4 is a matrix of rank r, then any second-order determinant of
the form

i1.82,0...3r Miiz,...ir

i1.82.000 . Ep k1.ke. .. kr

3
k1.kg.en ke R1,K2,0e0 kr
M-Sy Meer

consisting of minors of order r of the matrix A, vanishes.

20. Show thatevery minor of order k of the matrix ABC equals a sum of products
of certain minors of order k of the matrices A, B and C.

21. Find the inverses of the following matrices:

PN T T
1 2 -3
1 2 P -3
= , B =0 1 2h, C=
25 o o 1 P -3 3 -3
P 3 -3 3

22. Prove that
Ayt =@
for any nonsingular matrix 4.

23. Find all solutions of the equation X4 = 0, where 4 is a given second-order
matrix, X is an unknown second-order matrix and O is the zero matrix (the
matrix all of whose elements vanish).

24. Let 4 = ||| be any square matrix of order n, and let 4" be the cofactor
of the element a{”’ in the determinant of 4. The matrix 4 = | 4% is called the
adjugate of the matrix 4. Prove that

AA = AA = (det A)E.

25. In the space of all polynomials in the variable ¢, consider the operators A
and B defined by the relations

Alag +ayt + -+ +ag™l=ay + apt + -+ + ag™,
Blay + ayf + -+ + at"] = agf + ayt? + - + at™th
Show that A and B are linear operators and that
AB =E, BA # E.
Does the operator A have an inverse?
26. Show that the operator B of Problem 25 has infinitely many left inverses.

27. Prove that if A is a nonsingular linear operator acting in an n-dimensional
linear space, then every subspace invariant under A is also invariant under A%,

28. Prove that if the linear operators A and B commute (i.e., if AB = BA),
then every eigenspace of the operator A is an invariant subspace of the
operator B.
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29. Prove that if a direct sum (Sec. 2.45) of eigenspaces of an operator A
coincides with the whole space K and if each eigenspace of the operator A is
invariant under an operator B, then A and B commute.

30. Let x and y be eigenvectors of the operator A corresponding to distinet
eigenvalues. Show that ax + By (¢ # 0, B # 0) cannot be an eigenvector of A,

31. Prove that if every vector of the space K is an eigenvector of the operator A,
then A = AE (A€ K).

32. Prove that if the linear operator A commutes with a// linear operators acting
in the given space, then A = JE.

33. Let the linear operator A have the eigenvector e,, with eigenvalue A;. Show
that e, is also an eigenvector of the operator A?, with eigenvalue 32,

34. Even if a linear operator A has no eigenvectors, the operator A% may have
eigenvectors (e.g., the operator corresponding to rotation through 90° in the
plane). Show that if the operator A% has an eigenvector with a nonnegative
eigenvalue » = p?, then the operator A also has an eigenvector.

35. Find the eigenvalues and eigenvectors of the operators given by the following
matrices:

2 -1 -1 -1 -2 2
a) {0 —1 0l b) 0 1 ol ;
0 2 1 0 0 1
0 0 1 -1
2 -1 0
-1 0 1 —1
c) {0 1 —1]; d)
0 0 0 0
0 1 3
0 0 1

36. Verify the following facts:
a) The relation N(A) = T(A) is necessary and sufficient for the equality
A? = 0 to hold;
b) N(A) = N(A?) = N(A%) < - - - for any operator A;
c) T(A) > T(A?% = T(A?) > - -- for any operator A;
d) If T(A¥) > N(A™), then

T(A) = NA™1),  TA™*1) < N(A).

37. Show that every linear operator A of rank r can be represented as the sum
of r linear operators of rank one.

38. Find all the invariant subspaces of a diagonal operator with n distinct
diagonal elements, and show that there are 2" such subspaces.



chapter 5

COORDINATE
TRANSFORMATIONS

As is well known, in solving geometric problems by the methods of
analytic geometry a very important role is played by the proper choice of a
coordinate system. Proper choice of a coordinate system also plays a very
important role in a much wider class of problems connected with the geometry
of n-dimensional linear spaces. This chapter is devoted to a study of the
rules governing coordinate transformations in n-dimensional spaces. In
particular, the results obtained here are fundamental for the classification
of quadratic forms which will be made in Chapter 7.

5.1. Transformation to a New Basis

5.11. Let
{e} = {er,es,...,€,}

be a basis in an n-dimensional space K,,, and let

{.f} = {flsz’ e ’fn}

be another basis in the same space. The vectors of the system {f} are
uniquely determined by their expansions in terms of the vectors of the
original basis:

U (1) P (1)

Si=piey + pales + + Dy '€ns
(2} (2) “e (2)

fo=pey + ples + + Py €ns (1
— pin) ( e (n)

fo=p"er + pyey + + pyle,,

118
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or, more concisely,

fi=3oe  (G=L2...n. @
o
The coefficients p (i, j = 1,2, ..., n)in (1) and (2) define a matrix
pY pE .. plm
i (2 ... pln
Py = | PP P
PR

called the matrix of the transformation from the basis {e} to the basis {f}.
As was done previously in similar cases (Sec. 4.2 fI.), we write the components
of the vectors f; (with respect to the basis {e}) as the columns of the matrix P.
By the same token, the formulas (1) together with the matrix P specify a
corresponding linear operator P, defined by the relations f; = Pe,
(i=1,2,...,n) and called the operator of the transformation from the
basis {e} to the basis {f}.

The determinant D of the matrix P is nonvanishing, since otherwise the
columns of P, and hence the vectors f1, /3, - . . , f,,» would be linearly dependent
(Sec. 3.12a). A matrix with a nonvanishing determinant is said to be non-
singular (recall Sec. 4.75). Thus the transformation from one basis of the
n-dimensional space K, to another basis is always accomplished by using a
nonsingular matrix.

5.12. Conversely, let {e} = {e;,e,,...,e,} be a given basis of the
space K,,, and let P = | p{’| be a nonsingular matrix of order n. Using the
equations (1), construct the system of vectors f;, fo, . . ., f,. It is clear that

these vectors are linearly independent, since the columns of every non-
singular matrix are linearly independent (Sec. 3.12a). Consequently, the
vectors fy, f3, . . ., f, form a new basis for the space K,. Thus every non-
singular matrix P = |p'?| determines via (1) a transformation from one basis
of the n-dimensional space K, to another basis.

5.13. Next we note a particular case of a transformation to a new basis,
i.e., the case where every vector £, is just the corresponding vector e, multiplied
by a number 2, # 0 (k = 1, 2, ..., n). Then the equations (1) take the form

J1= Ney,
So= Ag€s,
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and the matrix P has the diagonal form

N O - 0
P 0 Ay - 0 (3)
0 0 - 1,
In particular, for A; == A, = --- = A, = 1, we obtain the matrix of the
identity transformation, namely the unit matrix
10 --- 0
E— o1 --- 0
00 --- 1

(the original basis is not changed by the identity transformation).

5.2. Consecutive Transformations
5.21. Let P = ||p{”| be the matrix of the transformation from the basis
{e} = {eb 62, LR ) en}

{f} = {f13f21 R afn}’

and let Q = ||¢®|| be the matrix of the transformation from the basis {f}
to the basis

to the basis

{8 = {81, 82 - >8n)

We now determine the matrix of the transformation from the basis {e}
directly to the basis {g}. By (2), the formula for transforming from the basis
{e} to the basis {f} is
Ep"’ (G=12,...,n) @
while that for transforming from the basis {f} to the basis {g} is
g =24%f (k=12,...,n). ©)
j=1

Substituting (4) into (5), we obtain

q (1) z p(J)

(Zpi”q‘,"’) . (k=1,2,...,n). 6)

Mq

j=

f
M= L

1

-
Il
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On the other hand, if T = ||[t¥| denotes the matrix of the transformation
from the basis {e} to the basis {g}, we can write

g, = > ti¥e (k=1,2,...,n). @)
i=1
Comparison of (6) and (7) gives
¥ = zp‘“ ® (i k=1,2,..., n). 8¥)

Recalling formula (8), p. 85 (where the choice of indices is somewhat
different, but not their role), we find that the desired matrix T is the product
PQ of the matrices P and Q.

5.22. Consider the following special case of consecutive transformations.
Since the matrix P is nonsingular, the system of equations (1) can be solved
for the vectors e, e, . . . , e,. The resulting system of equations

e =g"h + ai'fe + - + aVf
€y = 412)f + q(z) + -+ q(nZ)fn’

®

e, = qln)fl + q(n) 4+ -4 q(n)

obviously determines the transformation from the basis {f} to the basis {e}.
The consecutive transformation from the basis {e} to the basis {f} by using
the matrix P and then from the basis { /} to the basis {¢} by using the matrix
Q = |1¢'¥'] is equivalent to the transformation from the basis {e} to itself, i.e.,
to the identity transformation with unit matrix (3).

5.3. Transformation of the Components of a Vector

5.31. Let {e} = {e;.es,...,¢,} and {f} = {fi. /e, . .. , [} be two bases
in an n-dimensional linear space K,. Any vector x € K, has the expansions

x:£1e1+£2e2+...+£nen:7}lfl+yl2f‘;+...+71nfn’ (10)

where £, &,,. .., &, are the components of the vector x with respect to the
basis {e} and v, g, ..., v, are its components with respect to the basis
{f}. We now show how to calculate the components of the vector x with
respect to the basis {f} in terms of its components with respect to the basis
{e}.

Suppose we are given the matrix P = ||p{?’| of the transformation from
the basis {e} to the basis {f}. Then the vectors {e} are given in terms of the
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vectors {f} by (9) or, more briefly, by

e :glq;;yk k=1,2,...,n), (1

where the matrix @ = |igi”|| is the inverse of the matrix P. Substituting (11)
into the expansion (10), we get

X = i g€ zkéylkfk :)éia‘(kg q;cj)fk) = i(élq;f’ij)fk-

=1 . j= k=
It follows by the uniqueness of the expansion of the vector x with respect to
the basis {f} that

Mx :Zq{-”ij k=1,2,...,n), (12)

or, in expanded form

R I R N

M= g% + g8 + - + g¥E,,

T =40 8+ @08+ + g,
Thus the components of the vector x with respect to the basis {f} are linear
combinations of the components of the vector x with respect to the basis {e};
the coefficients of these linear combinations form a matrix which is the transpose
of the matrix of the transformation from the basis {f} to the basis {e}, i.e.,
the transpose of the inverse of the matrix P. Denoting the inverse of the matrix
P by P! and the transpose of a matrix by a prime, we find that the matrix §

describing the transformation from the components &, &,, ..., &, to the
components 7y, s, . . . » 7, is given by
S =(PY.

5.32. The converse proposition is also valid:

THEOREM. Let £, &,,...,&, be the components of an arbitrary vector x
with respect to the basis {e} = {e1, e;, ..., e,} of the n-dimensional space
K,, and let the quantities 'y, s, . . . , 1, be defined by the formulas

1 = suby + Spbe + 0+ 51,8,
Ne = S8y + Sopba + - 0 + 53,6,

Nn = snlil + sn2£2 + e + Snnin-

where det | s\ = 0. Then a new basis {f} = {f1, /2, . . . » f,,} can be found in
the space K, such that the numbers ¥, s, . . . , 1, are the components of the
vector x with respect to the basis {f}.
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Proof. Introduce the matrix S = |53/ and the matrix P = (S’)"! with
elements denoted by p!”. Substituting these elements into the formulas (1),
we get a new basis {f} = {f1, /5, ... ,f,}. We assert that this is the desired
basis. In fact, consider the transformation formulas (12), which give the
components of the vector x with respect to the new basis. As we have seen,
these formulas can be written in terms of the matrix (P~!)". But in the

present case, (P~*)’ coincides with S, since
(P =(USYTY) = (Y =S

Hence, given any vector x, the quantities v, s, . . . , 7, are just the com-
ponents of x with respect to the basis {f}. [

5.33. Just as in Sec. 5.21, we can construct the matrix corresponding to
consecutive transformations of the components of a vector. Let &;, &,, . ..,
&, be the components of the vector x with respect to the basis {¢}, and let
the quantities v, %3, ..., M, and 7, 7,5, . . . , 7, be defined by the equations

ni:zpjiii G=12...,n),
i=1

T = 2 Qe tk=1,2,...,n),
=1

respectively, where the matrices P = |p;,| and Q = |g,,]| are nonsingular.
Then, just as before, we can express the quantities 7, 75, ..., 7, directly
in terms of the quantities &,, &,, ..., £, by the formulas

T = Zl( 1‘11“'1’1'1')5.' = _zltkiii (k=12,...,n),
i=1 \j= i=

where the quantities #,; (i, k = 1,2,...,n) form a matrix T equal to the
product QP of the matrices Q and P.

5.4. Transformation of the Coefficients of a Linear Form

Let L(x) be a linear form defined on a space K,,.. As we saw in Sec. 4.1,
if a basis {e} = {e,, e, . . . , e,} is chosen in K,, then the values of L(x) can
be calculated from the formula

LG) = X1,

where &, (k= 1,2, ..., n) are the components of the vector x with respect
to the basis {e}, and the coefficients /, are given by

L=Lle) (k=1,2,...,n).
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The coefficients /, obviously depend on the choice of the basis {e}. We now
derive the rule governing the transformation of the coefficients of a linear
form when we go over to a new basis.

Suppose the formulas

Ep“’ (G=12....n) (13)
give the transformation from the basis {e} to the new basis {f}. We wish to

find the coefficients of the linear form L(x) in the basis { f}. These coefficients
are the numbers A, = L(f;), which can easily be found by using (13):

A = L(f) = E P,"”L(ei) = E Pﬁj)li-
i=1 i=1

Thus the coefficients of a linear form transform in the same way as the basis
vectors themselves.

5.5. Transformation of the Matrix of a Linear Operator

5.51. Given a linear operator A in an n-dimensional space K, let 4, =
lai]| be the matrix of A in the basis {e} = {e;, es, . .., €,}, while 4, =
llal?| is its matrix in the basis {f} = {f\, s, ... ,/,}. Moreover, suppose
the transformation formulas from the basis {e} to the basis { f} have the form

zp"“ (k=12...,n), (14)
and let P denote the matrix ||p{*'||. We now find the relation between the

matrices A,, A, and P.
The matrix A, is defined by the system of equations

Ae, =Y al%, (j=1,2,...,n), (15)
i=1
and the matrix 4, by the system of equations
Zoc(’"’ (m=12...,n).

In the last equation, we use (14) to replace the vectors f, by their expressions
in terms of the vectors e,. The result is

z“("”zp(k)e _ z (zp(k) (m))

i=1

after changing the index of summation fromj to i. Next we apply the operator
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A to both sides of (14), changing k to m and using the expansion for Ae;
given by (15):

n

._Azp(m) z gm)Ae

j=1 =

=S oS are =3 (Sarpm)e

i=1

Comparing coefficients of e, in the last two expansions, we find that

i (k) (m) zaU) (m)

F=1
or

PA; = AP (16)

in matrix form. This is the desired relation between the matrices 4,), 45
and P. Multiplying on the left by the matrix P~!, we get the following
expression for the matrix A4 ,:

Ay = P4, P.

5.52. It follows from (16) and the theorem on the determinant of a product
of two matrices (Sec. 4.75) that

det Pdet A;;) — det A, det P,
or, since det P £ 0,
det 4, = det A y.

Thus the determinant of the matrix of an operator does not depend on the
choice of a basis in the space. Therefore we can talk about the determinant
of an operator, meaning thereby the determinant of the matrix of the operator
in any basis.

5.53. Besides the determinant, there exist other functions of the matrix
elements of an operator which remain unchanged under transformation to a
new basis. To construct such functions, consider the operator A — )AE,
where 2 is a parameter. This operator obviously has the matrices 4,,, — AE
and A, — AE in the bases {e} and {f}. By what was just proved, we have

det (4, — AE) = det (4, — ME)

for any A. Both sides of this equation are polynomials of degree n in A. Since
these polynorials are identically equal, they have the same coefficients for
any power of A. Hence these coefficients, which are functions of the matrix
elements of the operator, are invariant under changes of basis.
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We now examine the nature of these functions. The determinant of the
matrix A, — AE has the form

all) — 2 al? . al™
a(zl) a(22) R a;”)
(1) (2) R
a, a, a, — A

=D AN 4 AL AL

It is an easy consequence of the definition of a determinant that the coefficient
A; of A"~1 equals the sum

a £ al® e gl

of the diagonal elements, taken with the sign (—1)*~1.1 The coefficient A,
of A% is the sum of all the principal minors of order 2, taken with the sign
(—1)m2.} Similarly, the coefficient A, of A»~% is the sum of all the principal
minors of order k, taken with the sign (—1)"-*. Finally, the coefficient A,
of 2%, i.e., the constant term, is obviously equal to just the determinant of the
operator. The polynomial det (4,,) — AE), which, as we have just seen, is

independent of the choice of basis, is called the characteristic polynomial of
the operator A.

*5.6. Tensors

5.61. The components of a vector, the coefficients of a linear form, the ele-
ments of the matrix of a linear operator, these are all examples of a general class
of geometric objects called tensors. Before giving the definition of a tensor, we
first revise and “‘rationalize”” our notation somewhat. The basis vectors of an
n-dimensional space K, will be denoted, as before, by the symbolse,, e, . . .,
e, (with subscripts). The components of vectors, e.g., x and y, will be denoted
by £, 8% ..., &" and v}, %3, ..., n" (with superscripts). The coefficients
of a linear form L(x) will be denoted by /,, I, . . ., /, (with subscripts). The
matrix elements of a linear operator will be denoted by a], where the super-
script designates the row number and the subscript designates the column
number (in contradistinction to the notation adopted in Sec. 4.23). The
convenience of this arrangement of indices is determined by the following
summation convention: If we have a sum of terms such that the summation
index i (say) occurs twice in the general term, once as a superscript and once

t The sum a{" + af{* + - - - + a{™ is called the trace of the operator A (cf. Problem
14, p. 115).

+ The minor Mji;::: is said to be a principal minor if iy = jy, iy = jau ...y ix = ji
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as a subscript, then we will omit the summation sign. For example, with our
convention, the expansion of the vector x with respect to the basis
{ei, ey, . . . , e,} takes the form

x = Ele;
(although the summation sign is omitted, summation over / is implied). The
expression for a linear form L(x) in terms of the components of the vector x
and the coefficients of the form becomes

L) = L

(summation over i is implied). The result of applying the operator A to the
basis vector e, takes the form

(summation over j is implied). The components v’ of the vector Ax are
expressed in terms of the components of the vector x as follows:

7’ = alf’!
(summation over i is implied).

We will denote quantities pertaining to a new coordinate system by the
same symbols as in the old coordinate system but with primes on the indices.
Thus we denote new basis vectors by ey, e,., . . . , e,,, new components of a
vector x by EY, E¥ ..., £", etc. The elements of the matrix of a trans-
formation from the basis e, to the basis e, will be denoted by p?., so that

e = ple; (17

(summation over i is implied). The elements of the matrix of the inverse
transformation will be denoted by ¢7', i.e.,

€; = q::’ei' (18)

(summation over i’ is implied). The matrix ¢¢ is the inverse of the matrix
p; this can be expressed by writing

o 0 for i # j,
L A (19)
1fori=j,
or
o 0 for i’ £ ',
pid; = { L (20)
1fori' =j.
To make the notation more concise, let 3! denote the quantity which depends
on the indices 7 and j in such a way that it equals 0 when the indices are
different and 1 when the indices are the same. Then we can write (19) in the
form

pigs =3; @n
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and (20) in the form
pial = 3. (22)
5.62. To show the advantages of using our new notation, we derive once
again the formulas by which the components of a vector, the coefficients of a
linear form and the matrix elements of an operator transform in going over
to a new basis. Thus suppose we have a vector
x = Ele; = E¥e.
Using (18) to replace e, byg}e; , we obtain
x = E'qfe, = E'e,,
which implies
£ =q; €, (23)
since the e, form a basis, This is just the transformation formula for the
components of a vector.
Next suppose we have a linear form L(x). The numbers /;, are defined

as usual by the relations /;, = L(e;-). Using (17) to substitute the expression
ple, for e;, we obtain

I, = L(p}e) = ppL(e;) = pil;,
so that

I, = pil, 24
which is the desired formula.

Finally suppose we have an operator A. The elements of its matrix in
the new basis are defined by the relations

Ae; = ale;.
Using (17) to substitute pi.e, and pl.e; for the quantities e, and e;., we get
pi-Ae; = alple,.
But Ae; = ale;, so that the result is
praje; = ajpje;.
Since the e; are basis vectors, we have
pial = alp.

To get ¥ on the right, we multiply both sides by ¢¥ and sum over the index
J- Using the relation (22), we obtain

LIRS0 L Y I S AN
praiq; = alplq; = apdj.

By the definition of the quantity 8%, the sum over ;' reduces to the single
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term corresponding to the value j* = k'. Then 8¥ =1 (no summation
implied) and we get

di = piqlal; (25)
which is the desired formula.

It is not hard to verify that the three transformation formulas just
derived are the same as those derived earlier in the ordinary way (see Secs.
5.3-5.5). Formulas (23)—~(25) have much in common. In the first place,
these formulas are linear in the transformed quantities. Secondly, the
coefficients in these formulas are elements of the matrix transforming the
old basis into the new basis or elements of the matrix of the inverse trans-
formation or, finally, elements of both matrices.

5.63. We are now in a position to give the definition of a tensor. Tensors
are divided into three classes, covariant, contravariant and mixed. Moreover,
every tensor has a definite order. We begin by defining a covariant tensor,
which, to be explicit, we take to have order three. Suppose there is a rule
which in every coordinate system of an n-dimensional space K,, allows us to
construct #n® numbers (components) T;;,, each of which is specified by giving
the indices i, j, k definite values from | to n. By definition, these numbers
T, form a covariant tensor of order three if in going to a new basis, the
quantities T, transform according to the formula

Torw = Pipy Pk Tunee
A covariant tensor of any other order is defined similarly; a tensor of order
m has n™ components instead of »* components, and in the transformation
formula there appear m factors of the form p! instead of three factors. In
particular, the coefficients of a linear form, which transform by formula
(24), constitute a covariant tensor of order one.

Next we define a contravariant tensor of order three. Suppose we have
a rule which in every coordinate system allows us to construct #n* numbers
T#* each of which is specified by giving the indices /, j, k definite values from
1 to n. By definition, these numbers T%* form a contravariant tensor of
order three if in going to a new basis, the quantities 7** transform according
to the formula

Ti':i'k' — q:'q;'q:'Tuk
A contravariant tensor of any other order is defined similarly. In particular,
the components of a vector form a contravariant tensor of order one.

The terms ““covariant” and “contravariant,” which have just been intro-
duced, are very simply explained. “Covariant” means “transforming in the
same way”’ as the basis vectors, i.e., by using the coefficients pi. “Contra-
variant” means “transforming in the opposite direction,” i.e., by using the
coefficients gi-.
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There is still the case of mixed tensors to consider. For example, n?
numbers T, specified in every coordinate system, form a mixed tensor of
order three, with two covariant indices and one contravariant index, if in going

to a new basis, the quantities T¥, transform according to the formula

Tk = pz p; qk T:ca
A mixed tensor with / covariant indices and m contravariant indices is de-
fined similarly. In particular, the elements of the matrix of a linear operator
form a mixed tensor of order two, with one covariant index and one contra-
variant index. Note the convenience of our arrangement of indices, which has
been deliberately chosen to indicate the character of any tensor at a glance.

5.64. Operations on tensors. We can define the operation of addition for
two tensors of the same structure, e.g., for two tensors T% and S% (with two
covariant indices and one contravariant index). In this case, the sum is a
tensor QF; of the same structure, defined as follows: In every coordinate
system, the component of Q% with fixed indices i, j, k is the sum of the corre-
sponding components of T}, and S%. The fact that the quantities Q¥ actually
form a tensor, and indeed one of the same structure as T% and S%, is implied
by the following equality:

£ = T5 + S5, = polab T + plplal's)

= pipydi (TS, + S5 = pipidr Oty

The operation of multiplication is applicable to tensors of any structure.
For example, let us multiply a tensor T,; by a tensor S/. The result is a
tensor Q! of order four. In any coordinate system its component with
fixed indices i,j, k, [ is defined as equal to the product of the corresponding
components of the factors T;; and S}. The tensor character of Q!,, can be
verified as follows:

Qi = TosSi = pipiTipid) Sk = PPy pid; TSt = Pipypid; Qi

Next we consider still another operation called contraction. This opera-
tion can be applied to tensors which have at least one covariant index and
one contravariant index. For example, suppose we have a tensor 7%. To
contract TF with respect to the superscript and the first subscript means to
form the quantity

T

in every coordinate system. Here summation over the index i is implied;
as a result, the quantity T; = T depends only on the index j. Contraction
of a tensor yields another tensor, whose order is two less than the order of the
original tensor. We verify this for the present example. We have

T - Tz it pz p: qk 1; — (p q;;)p;T, - Skpi
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Here the summation over k reduces to only one term, corresponding to the
value k = i. Since 3! = 1 (no summation implied), we obtain

Ty =pyTs = 0Ty
as required.

What is the result of contracting a mixed tensor T? of order’two with
respect to its two indices? The quantity 7 = 7% no longer has even a single
index, i.e., in every coordinate system it consists of just one number. This
number is the same in every coordinate system, since

T =T{=piqiT{=8T|=T,=T.

Such a scalar quantity, which does not depend on the coordinate system, is
called an invariant. Thus, by contracting tensors, we can obtain invariants
of the tensors.

For example, if we contract the tensor a} corresponding to the linear
operator A, the invariant 4 so obtained is the trace of the matrix of A, i.e.,
the sum of its diagonal elements. The invariance of this quantity has already
been proved in a different way in Sec. 5.53. As another example, the matrix
ct of the product of two operators with matrices a} and b}, respectively, is
the mixed second-order tensor obtained by contracting the fourth-order
tensor ajb! with respect to the indices k and /.

PROBLEMS
1. A vector x€ K, has components &, &,,..., &, with respect t0 a basis
ey, €y, ..., e, How does one construct a new basis in K, such that the com-
ponents of x with respect to this basis equal 1,0, ...,0?

2. A basis e, €, . .., e, is chosen in an n-dimensional space K,. Show that
every subspace K’ = K, can be specified as the set of all vectors x € K,, whose
components (with respect to the basis e,, e, . . . , ;) satisfy a system of equations
of the form

o
Yayt =0 (i=1,2,...,k.
i=1
3 (Continuation). Show that every hyperplane H = K, can be specified as the
set of all vectors x € K,, whose components (with respect to the basis e;, e,, . . .,
e,) satisfy a system of equations of the form

4. Let the components of a vector in the plane be £;, &, with respect to one basis,
M, %y With respect to another basis, and =;, 7, with respect to a third basis.
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Suppose that
= ank; + apk,, Ny = Gy k& + Gk,
7y = b€y + b8, Ty = by &y + bapbs,
A =llayll, B = llbyl.

Express the components =3, 7, in terms of the components &;, &,.

5. Given a linear form L(x) £ 0 in the space K,,, find a basis f;, f3, - . . , f» Such
that the relation

Lx) =
holds for every vector

n
X = z V)kfk-
k=1

6. Let the operator A acting in an n-dimensional space R have a k-dimensional
invariant subspace R’. Then, temporarily regarding A as defined only in the
subspace R’, we can construct the characteristic polynomial of degree & for A.
Show that this polynomial is a factor of the characteristic polynomial of the
operator A acting in the whole space R.

7. Let A = %, be an r-fold root of the equation det ||4,,) — AE| = 0. Show
that the dimension m of the eigenspace R™) of A corresponding to the root A,
does not exceed r.

8. Show that the quantity 8/ is a second-order tensor, with one covariant
index and one contravariant index.

9. A set of quantities S;; is defined in every coordinate system as the solution of
the system of equations

THS,; = 8,
where T is a contravariant tensor of order two and det || 7| # 0. Show that
S;; is a covariant tensor of order two.



chapter 6

THE CANONICAL
FORM OF THE MATRIX
OF A LINEAR
OPERATOR

Two operators A and B acting in an n-dimensional space K, are said to
be equivalent if there exist two bases in K, such that the matrix of the operator
A in the first basis coincides with the matrix of the operator B in the second
basis. Clearly, the “linear transformations”” in K, corresponding to equivalent
operators have identical properties. But how can we decide whether or not
the operators A and B are equivalent by examining their matrices in the same
basis?

In this chapter, starting from a given linear operator A in an n-dimensional
(real or complex) space, we will find a basis in which the matrix 4 of the
operator A has “canonical form,” i.e., a form which is the simplest possible
in a certain sense. This canonical form can be obtained directly from the
elements of the matrix of the operator A in any basis. Moreover, it turns
out that if the operators A and B are equivalent, then their matrices have the
same canonical form. Thus a necessary and sufficient condition for two
operators to be equivalent is that their canonical matrices coincide.

We begin our considerations by studying a special class of operators
(Sec. 6.1). The general case will be studied in Sec. 6.3.

6.1. Canonical Form of the Matrix of a Nilpotent Operator

6.11. A linear operator B acting in an n-dimensional space K, is said to
be nilpotent if BT = 0 (i.e., if Brx == 0 for every x €K,) for some positive

133
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integer r. Given a nilpotent operator B such that B” = 0, we will assume that
B! :£0, ie., that there are vectors x € K, such that B~'x £ 0. By the
height of a vector x € K,,, we mean the smallest positive integer m for which
B™x = 0. By hypothesis, every vector x € K, is of height <r, and there are
vectors of height equal to r. Given any k < r, let H,, denote the set of all
vectors of height <k. Obviously, H, is a subspace of K,. In fact, if x,
y € Hy, then B¥x = 0, B¥y = 0 and hence B*(«x + By) = 0 for arbitrary «,
B € K, so that the height of the vector «x + By does not exceed k, i.e., ax +
By € H,. Moreover, it is obvious that H, = K, and thatt

{0)=Hy«cH,<---<H.,, <H =K,
Let m, denote the dimension of H,, so that
O=my<m<- - -<m=n

Next we construct a basis in the space K, as follows: As we have seen,
H,_, does not coincide with the whole space K, = H,. Therefore we can
find vectors fi, ..., f,, lying in H, and linearly independent over H,_,,
where p, = m, — m,_; (see Sec. 2.44). The vectors Bf,, ..., Bf, ; lie in
H,_, and are linearly independent over H,_,. In fact, if we had

oclel—i—'-'—i-oc,,‘Bf,,‘:gEH,_z (g#o),
then application of the operator B"~* would give

B Y+ “m,Br&lfm =0,
or equivalently
“lfl R “p‘fp, € Hr——l’

which is impossible, by construction. It follows that the dimension m,_; —
m,_, of the space H,_, over H,_, (again see Sec. 2.44) is equal to or greater
than the dimension m, — m,_; of the space H, over H,_;. We now supplement
the vectors Bf;, ..., Bf, with vectors f, .q,...,f,, in H_; to make the
largest system which is linearly independent over H,_, (p, = m,_; — m,_,).
Applying the operator B to all these vectors, we get vectors

B, ..., B, . Bf, 1. ., Bf,,

lying in H,_, and linearly independent over H,_; (this is proved in the same
way as before). It follows that m,_, —m, 3 > m,_, —m,_,, and we can
construct vectors f, .y, . - ., f,, in H,_, which together with the preceding
system form a “full system’ of vectors linearly independent over H,_;.
Continuing this construction in the subspaces H, 3, . .. , Hy, = {0}, we finally

t {0} denotes the set whose only element is the zero vector.
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get a full system of # linearly independent vectors. This system can be written
in the form of a table

Joos fop

By, ... B, B, L B, f e fo

where the vectors in the first row are of height r, those in the second row are
of height r — 1, and so on, with the vectors in the last row being of height 1
(so that the operator B carries them all into the zero vector).

6.12. Every column of the above table determines an invariant subspace
of the operator B. The first p; invariant subspaces all have dimension r, the
next p, — p, invariant subspaces all have dimension » — 1, and so on, with
the last p, — p,; single-element columns determining one-dimensional
invariant subspaces. The whole space K, is the direct sum of these p,
invariant subspaces.

6.13. Next we write the matrix of the operator B in the subspace deter-
mined by the vectors of the first column. For a basis we choose the vectors
B-lf,, B™%f,, ... . Bf, fi, arranged in order of increasing height. With this
arrangement, the operator B carries the first vector of the basis into the zero
vector, the second vector into the first vector, etc., and finally the rth vector
into the (r — I)st vector. Therefore, according to Sec. 4.23, the matrix of
the operator B has r rows and  columns, and is of the form

010 --- 00
001 --- 00
e e e )
000 --- 01
000 --- 00

with zeros everywhere except for the elements (equal to 1) along the diagonal
just above the principal diagonal. The matrix of the operator B takes a
similar form in the other invariant subspaces, corresponding to the remaining
columns of the table, and in fact can differ from the matrix (1) only by
having a different number of rows and columns.

6.14. Thus the matrix of the operator B in the whole space K, is quasi-
diagonal (see Sec. 4.84), with blocks of the form (1) along the principal
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diagonal:
010 .-- 00
6ol .- 00
0 00 0 1
00 00
010 00
0 01 00
B= 000 01
000 00
0 1
00
9
[0
2
The number of blocks of size r equals p,, the number of blocks of size r — 1
equals p, — p;, - . . , the number of blocks of size (2) equals p,_; — p,_,, and

the number of blocks of size (1) equals p, — p,_;. Naturally, if p,_,,, = p,,
for some j, then the matrix (2) contains no blocks of size ;.

6.2. Algebras. The Algebra of Polynomials

6.21. We begin with some definitions. A linear space K over a number
field X is called an algebra (more exactly, an algebra over K) if there is defined
on the elements x, y, .. . of K an operation of multiplication, denoted by x « y
(or xy), which satisfies the following conditions:

1) a(xy) = («x)y = x(ay) for every x, y in K and every « in K;

2) (xy)z = x(yz) for every x, y, z in K (the associative law);
3) (x + y)z = xz + yz for every x, y, z in K (the distributive law).
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In general, multiplication may not be commutative, i.e., we may have
xy # yx. If multiplication is commutative, i.e., if

4) xy = yx for every x, y in K,

then the algebra K is said to be commutative.

An element e €K is called a left unit if ex = x for every x €K, a right
unit if xe = x for every x € K, and a two-sided unit or simply a unit (in K) if
ex = xe = x for every x K.

An element x € K is called a left inverse of the element y € K if xy is the
unit of the algebra K; in this case, yis called a right inverse of x. If an element
z has both a left and a right inverse, then the two inverses are unique and in
fact coincide (cf. Sec. 4.76a). The element z is then said to be invertible, and
its inverse is denoted by 2z~

The product zu of an invertible element z and an invertible element u is
an invertible element with inverse 1z, If the element « is invertible, then
the equation ux = v has the solution x = w~'v. This solution is unique,
being obtained by multiplying the equation ux = v on the left by ¥~ In the
commutative case, we write x == vfu or x = v:u, calling the element x the
quotient of the elements v and u.

The ordinary rules of arithmetic are valid for quotients, i.e.,

vy Up  Uyldy F Uy
= e e

U, Uz U Uy

(if u, and u, are invertible),

v Uy oy . . .
2.2 2 (if u, and u, are invertible),
Uy Uy ugls
PR L LE (if uy, u,, and v, are invertible).
Uy Uz Uyl
The proof of these facts is left to the reader.
An algebra K is said to have dimension n if K has dimension » regarded

as a linear space.

6.22. Examples

a. Given any linear space K, suppose we set x - y = 0 for every x, y e K.
This gives an algebra, called the. trivial algebra.

b. An example of a nontrivial commutative algebra over a field X is
given by the set IT of all polynomials

P = % a ¥

k=0
with coefficients in K, equipped with the usual operations of addition and
multiplication. This “polynomial algebra” has a unit, namely the poly-
nomial e(x) with a, =1 and all other coefficients equal to 0.
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c. The linear space M(K,) of all matrices of order n with elements in K,
with the usual definition of matrix multiplication, is an example of a finite-
dimensional noncommutative algebra of dimension n? (see Sec. 4.73b).

d. A more general example of a noncommutative algebra with a unit is
the linear space of all linear operators acting in a linear space K, with the
usual definition of operator multiplication (see Sec, 4.33).

6.23. a. A subspace L < K is called a subalgebra of the algebra K if
xeL, yeL implies xy e L. A subspace L < K is called a right ideal in K
if xeL, yeK implies xy € L and a left ideal in K if x e L, y € K implies
yx e L. An ideal which is both a left and a right ideal is called a two-sided
ideal. In a commutative algebra there is no distinction between left, right
and two-sided ideals. There are two obvious two-sided ideals in every algebra
K, i.c., the algebra K itself and the ideal {0} consisting of the zero element
alone.t All other one-sided and two-sided ideals are called proper ideals.
Every ideal is a subalgebra, but the converse is in general false. Thus the
set of all polynomials P(2) satisfying the condition P(0) = P(1)is a subalgebra
of the algebra IT which is not an ideal, while the set of all polynomials P(})
satisfying the condition P(0) = 0 is a proper ideal of the algebra II.

b. Let L < K be a subspace of the algebra K, and consider the factor
space K/L (Sec. 2.48), i.e., the linear space consisting of the classes X of
elements x € K which are comparable relative to L. If L is a two-sided ideal
in K, then, besides linear operations, we can introduce an operation of
multiplication for the classes X € K/L. In fact, given two classes X and Y,
choose arbitrary elements x € X, y€Y and interpret XY as the class
containing the product xy. This uniquely defines X Y, since if x’ X,
Y €Y, then

Xy —xy=x0 —y)+ & — Xy,
and hence x'y’ — xy belongs to L together with ' — y and x" — x. More-
over, since conditions 1)-3), p. 136 hold in K, the analogous conditions hold
for the classes X € K/L. Therefore the factor space K/L equipped with the
above operation of multiplication, is also an algebra, called the factor
algebra of the algebra K with respect to the two-sided ideal L. 1f the algebra
K is commutative, then obviously so is the factor algebra K/L.

6.24. Let K’ and K" be two algebras over a field K. Then a morphism
of the space K’ into the space K" (Sec. 2.71) is called a morphism of the
algebra K' into the algebra K" if besides satisfying the two conditions

a) w(x’ 4+ ') = w(x’) + w(y) for every x’, y' eK’,

b) w(ex’) = xw(x’) = aw(x’) for every x' K’ and every o € K

t As in Theorem 2.14c, 0 - x = 0 for every x €K.
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for the morphism of two spaces (see p. 53), it also satisfies the condition
¢) o(x'y") = o(x)w(y) for every x', y' eK'.

A morphism o which is an epimorphism, monomorphism or isomorphism
of the space K’ into the space K", as defined in Sec. 2.71, is called an epi-
morphism, monomorphism or isomorphism of the algebra K’ into the algebra
K’, provided condition ¢) is satisfied.

6.25. Examples

a. Let L be a subalgebra of an algebra K. Then the mapping » which
assigns to every vector x € L the same vector x €K is a morphism of the
algebra L into the algebra K, and in fact a monomorphism. As in Example
2.72a, this monomorphism is said to embed L in K.

b. Let L be a two-sided ideal of an algebra K, and let K/L be the corre-
sponding factor algebra (Sec. 6.23b). Then the mapping ® which assigns to
every vector x € K the class X € K/L containing x is a morphism of the
algebra K into the algebra K/L, and in fact an epimorphism. As in Example
2.72b, this epimorphism is called the canonical mapping of K onto K/L.

c. Let w be a monomorphism of an algebra K’ into an algebra K”. Then
the set of all vectors w(x") € K" is a subalgebra L" < K”, and the mono-
morphism « is an isomorphism of the algebra K’ onto the algebra L".

d. Let  be a morphism of an algebra K’ into an algebra K”. Then the
set L’ of all vectors x" € K’ such that w(x") = 0, which is obviously a subspace
of K’ (cf. Sec. 2.76b), is a two-sided ideal of the algebra K'. Infact, if x" e L',

’eK,thn I 1 ’
Y ¢ o(x'y) = w(x)e() =0,

so that x’y’ € L', and similarly y’x" e L', i.e., L' is a two-sided ideal of K',
as asserted. As in Sec. 2.76b, let Q be the monomorphism of the space
K’/L’ into the space K" which assigns to each class X' € K'/L’ the (unique)
efement »(x"), x’ € X'. Then Q is a monomorphism of the algebra K'/L’
into the algebra K". In fact, choosing x" € X', y' € Y’, we have x'y’ eX'Y’

and QX'Y) = w(x'y) = e()e() — AXIAY).

If the morphism o is an epimorphism of the algebra K’ into the algebra
K”, then the morphism £ is an isomorphism of the algebra K'/L’ onto the
algebra K"

e. Let A be a linear operator acting in a space K over a field K. Since
addition and multiplication by constants in K are defined for linear operators
acting in K, with every polynomial

PQ) =Y a)k

F=0
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(a, € K) we can associate an operator

P(A) = > a,A*
£=0
acting in the same space K as A itself. Then the rule associating P(A) with
P(A) has the three properties figuring in Sec. 6.24. In fact, if

PG) = P\(2) + P,(0) = zak F Db =3 (a, + b,
o= —
then clearly = =0

P(A) = 3(ax + b)A* = Sa,A* + ShA* — P(A) + Py(A),

k=0 k=0 k=0

and similarly for property b), while if

o) = P()P,(0) = zaﬂ\j Zbkx = z za B ATTE
then OR=0

0(A) = Ya;bA** =3 a,A’Y b A* = Py(A)Py(A),
=0 k=0 i=0 k=0

by the distributive law for operators (Sec. 4.34). Note that the operators
P,(A) and P,(A) always commute with each other, regardless of the choice of
the polynomials P;(A) and P,(*). The resulting morphism of the algebra II of
polynomials (Example 6.22b) into the algebra B(K) of linear operators acting
in K (Example 6.22d) is in general not an epimorphism, if only because
operators of the form P(A) commute with each other, while the whole algebra
B(K) is noncommutative.}

f. There exists an isomorphism between the algebra L(K,) of all linear
operators acting in the n-dimensional space K, and the algebra M(X,) of all
matrices of order n with elements from the field K. This isomorphism is
established by fixing a basis e, . . ., e, in the space K, and assigning every
operator A € L(K,) its matrix in this basis. Both algebras L(X,) and M(K,)
have the same dimension 2.

6.26. The set of all polynomials of the form P(A)Qy(2), where Qy(2) is a
fixed polynomial and P(») an arbitrary polynomial, is obviously an ideal in
the commutative algebra II of all polynomials P(A) with coefficients in a
field K (Example 6.22b). Conversely, we now show that every ideal I # {0}
of the algebra 11 is of this structure, i.e., is obtained from some polynomial
Qo(») by multiplication by an arbitrary polynomial P(2). To this end, we

t Except in the trivial case where K is one-dimensional.
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find the nonzero polynomial of lowest degree, say ¢, in the ideal I, and
denote it by Qy(A). We then assert that every polynomial Q(3) € I is of the
form P(3)Q(2), where P(2) €ll. In fact, as is familiar from elementary
algebra,

20 = P(MNQ,(») + R(), 3
where P(3) is the quotient obtained by dividing Q(2) by Qu(») and R(QA) is
the remainder, of degree less than the divisor Qy(2), i.e., less than the number
q. But the polynomials Q(2) and Qy(») belong to the ideal I, and hence, as
is apparent from (3), so does the remainder R(A). Since the degree of R(})
is less than g and since Qy(2) has the lowest degree, namely g, of all nonzero
polynomials in 7, it follows that R(A) = 0, and the italicized assertion is
proved.

The polynomial Qy(2) is said to generate the ideal I.

6.27. The polynomial Qy(2) is uniquely determined by the ideal I to within
a numerical factor. In fact, if the polynomial Q,(x) has the same property
as the polynomial Qy(2), then, as just shown,

Ql()‘) = Pl()‘)Qo()\),
Qo(}*) = PO()‘)QI()‘)‘

It follows that the degrees of the polynomials Q,(2) and Qy(2) coincide and
that P,(2) and P,(3) do not contain A and hence are numbers, as asserted.

6.28. Given polynomials 0,(2), ..., Q,.(%) not all equal to zero and with
no common divisors of degree > 1, we now show that there exist polynomials
Po(), ..., P° (3) such that

PYVOM) + -+ + PL(MQ. () = L. @
In fact, let I be the set of all polynomials of the form

PO + -+ - + Po(M)Q,(0)
with arbitrary P,(3), ..., P,(») in II. Then I is obviously an ideal in II.
By Sec. 6.26, the ideal 7 is generated by some polynomial

Q) = EPJS()‘)Qk()‘) (5)
x=1
In particular,
0:1(3) = 51()Qe(), - . - s Qu(d) = S,,(NQe(R),

where S;(3), ..., S,,(3) are certain polynomials, from which it follows that
0o(2) is a common divisor of the polynomials 0,(2), ..., Q,(). But, by
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hypothesis, the degree of Q,(») is zero, and hence Qy(}) is a constant q,,
where a4, #~ 0 since otherwise / = {0}. Multiplying (5) by l/a, and writing
PO(3) = PY(»)a,, we get (4), as required.

6.3. Canonical Form of the Matrix of an Arbitrary Operator

6.31. Let A denote an arbitrary linear operator acting in an n-dimen-
sional space K,. Since the operations of addition and multiplication are
defined for such operators (Secs. 4.31-4.33), with every polynomial

PQ) =Y a)
k=0
we can associate an operator
P(A) =Y a,A*
k=0
acting in the same space K,, (cf. Example 6.25¢), where addition and multipli-

cation of polynomials corresponds to addition and multiplication of the
associated operators in the sense of Sec. 4.4. 1n fact, if

PO) = P3) + Py(0) = Sap + Sbt = S(a, + b,

th k=0 k=0 k=0
en
P(A) = X (a; + b)A* = 3 a, A" + 3 bA* = Py(A) 4 Py(A).
x=0 x=0 ¥=0
Similarly, if
00) = PA(WP,(N) =2 a X 3b N =3 JabNt,
then k=0 i=0 k=0 j=0
0A) =3 Sab A" = zal.AkE b;A’ = P(A)P,(A),
k=0 =0 x=0 j=0

by the distributive law for operator multiplication (Sec. 4.34). In particular,
the operators P;(A) and P,(A) always commute.

Thus the mapping w(P(2)) = P(A) is an epimorphism (Sec. 6.24) of the
algebra II of all polynomials with coefficients in the field K into the algebra
IT, of all linear operators of the form P(A) acting in the space K,. By Sec.
6.25d, the algebra II, is isomorphic to the factor algebra II/I,, where I, is
the ideal consisting of all polynomials P(2) such that

w(P()) = P(A) = 0.

We now analyze the structure of this ideal.
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6.32. As noted in Example 6.25f, the set of all linear operators acting in
a space K,, is an algebra of dimension n* over the field K. Hence, given any
operator A, it follows that the first n2 + 1 terms of the sequence

A=E A A2, ... A" ...

s

must be linearly dependent. Suppose that

SaAf =0 (m < nd).

k=0
Then, by the correspondence between polynomials and operators established
in Sec. 6.31, the polynomial

oM = % ak)‘k
k=0

must correspond to the zero operator. Every polynomial Q(») for which the
operator Q(A) is the zero operator is called an annihilating polynomial of
the operator A. Thus we have just shown that every operator A has an
annihilating polynomial of degree < n®.

6.33. The set of all annihilating polynomials of the operator A is an
ideal in the algebra II. By Secs. 6.26-6.27 there is a polynomial Q,(2)
uniquely determined to within a numerical factor such that all annihilating
polynomials are of the form P(3)Q,(») where P(2) is an arbitrary polynomial
in II. In particular, Q,(») is the annihilating polynomial of lowest degree
among all annihilating polynomials of the operator A. Hence Qqy(2) is called
the minimal annihilating polynomial of the operator A.

6.34. THEOREM. Let Q(A) be an annihilating polynomial of the operator A,
and suppose that

o0 = G:(MQ:(3),

where the factors Q,()) and Q,(3) are relatively prime. Then the space K,
can be represented as the direct sum

Kn=T1+T2

of two subspaces T, and T, both invariant with respect to the operator At
where

Qu(A)x, =0,  Qx(A)x, =0

for arbitrary x, € Ty, x, € Ty, so that Q,(2) and Qx(2) are annihilating poly-
nomials for the operator A acting in the subspaces T, and Ty, respectively.

t Thus x, € T. implies Ax, € T, and similarly x, € T, implies Ax; € Ts.
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Proof. By Sec. 6.28 there exist polynomials P;(») and P,(») such that

Pi(M)G(3) + PN = 1,
and hence
P,(A)0,(A) + Py(A)Qx(A) = E.

Let T, (k = 1, 2) denote the range of the operator Q,(A), i.e., the set of all
vectors of the form Q,(A)x, x €K, (see Sec. 4.61). Then obviously y =
0,(A)x € T, implies Ay = Q,(A)Ax € T,, so that the subspace T, is invariant
with respect to the operator A. Given any x, € T,, there is a vector y €K,
such that

0:(A)x; = Q;(A)01(A)y = Q(A)y =0,
and similarly, given any x, € T,, there is a vector z € K, such that

O01(A)x; = Q1(A)Qx(A)z = Q(A)z = 0.
Moreover, given any x € K,,, we have

x = Q1(AP1(A)x 4 Qx(A)Py(A)x = x; + X,
where
X, = Q(A)P(A)x €T, k=1,2).

1t follows that K, is the sum of the subspaces T, and T,. If x,€ T, N Ty,
then Q,(A)x, = Qy(A)x, = 0, and hence

Xg = P,(A)Q,(A)x, + Py(A)Q:(A)x, = 0.
Therefore T, () T, = {0}, and the sum K, = T, + T, is direct.t ||

6.35. Remark. By construction, the operator Q,(A) annihilates the
subspace T,, while the operator Q,(A) annihilates the subspace T,. We now
show that every vector x annihilated by the operator Q,(A) belongs to T,,
while every vector x annihilated by the operator Q,(A) belongs to T,. In fact,
suppose Q,(A)x = 0. We have x = x; + x, where x,€T,, x,€T,, and
hence Q,(A)x; = Q;(A)x — Q,(A)x, = Osince Q;(A)x, = 0. But Q,(A)x, =
0 as well, since x; € T,. 1t follows that

x; = P (A)Q,(A)x, + Py(A)Qx(A)x, = 0, x=2x,€T,
Similarly, Q,(A)x = 0 implies x € T,, and our assertion is proved.
6.36. Representing the polynomials Q,(») and Q.(») themselves as

products of further prime factors, we can decompose the space K, into smaller
subspaces invariant with respect to the operator A and annihilated by the

t Naturally, the possibility is not excluded that one of the subspaces T, and T, consists of
the zero vector alone.
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appropriate factors of Q;(2) and Q,(3). Suppose the annihilating polynomial
Q(2) has a factorization of the form

00 = Ij O — 2 ©)

where Ay, . . ., X, are all the (distinct) roots of Q(3) and r, is the multiplicity
of A,. For example, such a factorization is always possible (to within a
numerical factor) in the field C of complex numbers. Then we have the
following

THEOREM. Suppose the operator A has an annihilating polynomial of the
form (6). Then the space K, can be represented as the direct sum

K,=T,+ - +T,

of msubspaces T, . . . , T, all invariant with respect to A, where the subspace
T, is annihilated by B, the r,th power of the operator
B,=A —)\E.

Proof. Apply Theorem 6.34 repeatedly to the factorization (6) of Q(})
into m relatively prime factors of the form (A —2,)%. |

6.37. By construction, the operator B, is nilpotent in the subspace T,.
Hence, by Sec. 6.14, in every subspace T, (#{0}) we can choose a basis in
which the matrix of B, takes the canonical form (2). In this basis, the
matrix of the operator A = B, + )\,E takes the form

M 1 0 .. 0 0

0 % 1 - 0 0

0 A 1

0 0 0 N
N 1 0 0
0 2 |1 0 %)
0 0 a1
00 0 -~ 0 2
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Hence the matrix of the operator A in the whole spaceK, =T, + --- + T,
takes the form

N1 - 0
0 X -+ 0
0 1
0 A
PSR | 0
0 A 0
00 1
00 -+ A
J(A) = . (8)

Am 1
0 n, -

in the basis obtained by combining all the canonical bases constructed in
the spaces Ty, . .., T,.. Thus finally we have the following

THEOREM. Given any operator A in an n-dimensional space K, with an
annihilating polynomial of the form (6) (in particular, any operator A in an
n-dimensional complex space C,), there exists a basis, called a Jordan basis,
in which the matrix of A takes the form (8), called the Jordan canonical form

of At

1n the case K, = C, the complex numbers 2, .. ., A, can be arranged in

t Synonymously, the Jordan normal form of A.
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accordance with any rule, e.g., in order of increasing absolute value.t The
representation (8) is not always possible in the case of an operator A acting
in a space K, # C,. In Sec. 6.6 we will consider the canonical form of the
matrix of an operator A acting in a real space K, = R,,.

6.4. Elementary Divisors

6.41. The matrix (8) can be specified by a table

L1 (1)
Ming', ..., n,

(@ (2)
rin® L, n

2 3 x (
(n! >n;)>“‘>nn", 9

) (m)

Apem™, o, n

which for each diagonal element %, indicates the sizes n®, ..., n{® of the
corresponding “‘elementary Jordan blocks™ of the form

M 1.0 - 0
0 2 1 -+ 0

n(,-k) . . . . (10)
0 00 - 1|
lo 0 0 -~ A

appearing in the matrix (8). We now show how to construct the table (9)
and thereby determine the form of the matrix J(A) of the operator A, from
a knowledge of the matrix A of the operator A in any basis of the space K.

6.42. As shown in Sec. 5.53, the characteristic polynomial of the operator
A does not depend on the choice of a basis. Forming this polynomial for the
Jordan basis, we get

det (4 — AE) = det (J(A) — AE) = [] O — ™ 42 (11)

k=1
since every element below the principal diagonal in (8) is zero. Thus the
numbers &, (kK = 1,..., m) are the roots of the characteristic polynomial,
and the numbers r, = n{® + - 4 n‘r’;’ are the multiplicities of these roots.

t Or in order of increasing argument 0 (varying in the interval 0 < 6 < 2m), in the case
of identical absolute values.
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Hence, by calculating the characteristic polynomial (which can be done by
using the matrix 4) and finding its roots, we can determine the quantities X,
andr, =n® 4+ .- 4+ ') in the table (9).

6.43. Next (here and in Sec. 6.44) we show how to use the matrix 4 of
the operator A in the original basis to calculate the numbers n{*' themselves.
Since J(A) and A are matrices of the same operator A in different bases, it
follows from Sec. 5.51 that

J(A) = T'4T,

where T is a nonsingular matrix, and hence that
J(A) — AE = T-'(4 — AE)T.

The minors of a fixed order, say p, of the matrix 4 — AE are certain poly-
nomials in A of degree < p. Let I (A) be the ideal in the algebra IT generated
by all these minors, and let I,(J(A)) have the analogous meaning. Then the
two ideals 7,(A4) and I (J(A)) coincide. In fact, according to Sec. 4.54, every
minor of order p of the matrix J(A) — AE is a sum of products of minors of
order p of the matrices A — AE, T and T—'. But the elements of T and T
are numbers. Thus every minor of order p of the matrix J(A) — AE is simply
a linear combination of minors of order p of the matrix A — AE, and hence
belongs to the ideal I,(4). By symmetry, every minor of order p of the
matrix A — AE belongs to the ideal I, (J(A)). It follows that the ideals
I,(A4) and I,(J(A)) coincide, as asserted.

Now let D,(2) be the polynomial generating this ideal. According to
Sec. 6.26, D,(2) is just the greatest common divisor of the polynomials
generating I,,(A4). Thus the greatest common divisor of the minors of order p
of the matrix J(A) — AE is the same as the greatest common divisor of the
minors of order p of the matrix 4 — AE, and hence can be regarded as
known. The greatest common divisor of the minors of order p of the matrix
J(A) — AE can be calculated directly as follows: Instead of the matrix
J(A) — AE, we can again consider a matrix of the form S(J(A) — AE)T,
where S and T are invertible numerical matrices (not containing A). The
operations of interchanging rows (or columns) and adding an arbitrary
multiple of one row (or column) to another lead to matrices of just this kind
(see Examples 4.44d-4.44g). We now assert that the elementary block

M—2 1 0 -+ 0
0 a—2 1 0
0 0 o0 1
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can be reduced to the form

10 0

LA 1 R 12
tk)
00 ~+ (p— N

by operations of the indicated type. In fact, to get (12) we first subtract the
first row multiplied by A, — A from the second row, then the second row
multiplied by A, — A from the third row, and so on. This gives the matrix

A — A 10 -0

—(—2* 01 - 0
(=120, —2)t 0 0 - 1
(=110 —2)¢ 0 0 --- 0

where ¢ = n{®. Then from the first column we subtract the second column
multiplied by A, — 2, the third column multiplied by —(&, — 2)?, etc., and
finally the (¢ — 1)th column multiplied by (—1)*2(%, — A)*1. This gives
the matrix

0 10 -~ 0

0 01 0

0 00 - 1
(=11 —2)¢ 0 0 -+ 0

from which the matrix (12) can be obtained by interchanging columns.}

We now calculate the greatest common divisor D,(2) of the minors of
order p of the matrix J(») with blocks of the form (12) along its principal
diagonal. Since all nondiagonal elements of J(3) vanish, the only minors of
J(») which can be nonzero are those with the same set of row and column
indices, and such a minor is simply equal to the product of its diagonal
elements. Among the elements along the principal diagonal of the matrix
J(2), a certain number, say N, are binomials of the form (3, — )\)"}“, while
the other n — N elements are all equal to 1. The number N is just the total
number of Jordan blocks in the matrix J(A), ie, N=r + -4 r,.
Clearly D,(») = 1 if p < n — N, since some of the minors of J() of order
p < n — N are certainly equal to 1. Suppose we replace the matrix J(3) by

t Except possibly for the sign of the element (A — 2)¢, which is irrelevant to the
subsequent determination of D ,(}).
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the diagonal matrix
Oq — WymY

y — 7‘)";:)
(ry — W™

JOy =

(i — i
1

1

which obviously has the same polynomial D,(A) as J(»). The greatest
common divisor of the minors of order p of the matrix J() are clearly of the

form .
P}

D, = H O — W™, (13)

with nonnegative exponents y,(p). The exponents in (13) are easily found.
For example, to determine w,(p), we note that w,(p) is the smallest exponent
with which A; — A appears in all minors of J(2) of order p. If p < n — ry,
then there is a minor of order p which does not contain 2; — A at all, so that
w(p) = 0. However, if p=n —r; + 1, then, bearing in mind that the
exponents ni', .. ., nill’ are arranged in decreasing order, we have

w(p) = n.

Moreover, each time p is increased further by 1, the exponent @,(p) increases,
first by nf!) |, then by n>) ,, and so on, until ﬁnally wegetu(p) =nd + -+
n® forp =n Slmllarly,

0 fp<n—r,
n® fp=n-—r+1,
wi(p) = n® 4 n® fp=n—r,+2
nx‘) 44 n if p=n.
Note that ")
weln) — w(n — 1) = my
w(n — 1) —p(n — 2) = "(zk),
wln — e+ 1) — w(n — rp) = np?,
so that

wn—j+ D —wn—H=n¥ (G=12...,n—1) (14
(we set n{¥) = 0 if j > ).
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6.44. The ratio

Ep()\) — DDIH-I()\)
])()\)
is called an elementary divisor of the operator A. The elementary divisors,
like the polynomials D,(2) themselves, do not depend on the choice of a
basis and hence can be calculated from the matrix of A in any basis. It
follows from (13) that

11

E(n) ="

_ )\)”-k(jﬂ-l)
()\k _ )\)!J-k(n—{-l)—u-k(ﬂ)

s

m
(e
1
m
IT 0w — ™ F
=1

1
k:

i

(p=12,...,n—1)
or equivalently,

E, ()= kHl O — Nl (12— D).

Using (14), we get

En ) =TI 0 — %" (G=12,....,n—1,
k=1
where the roots of E, ;(2) have multiplicities equal to the sizes of certain
Jordan blocks in the matrix J(A). Thus by calculating the elementary
divisors of A, we can find the numbers #{*), thereby finally solving the problem
of constructing the table (9).

6.45. Examples
a. The “Jordan matrix”’

010
011
001
11
01
R
21
0 2
2 1
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of order ten has three blocks of sizes 3, 2 and 1 corresponding to the root
A = 1, and two blocks of sizes 2 and 2 corresponding to the root 2, = 2.
Hence the elementary divisors are

Eg(2) = (1 — 22 — )%,
Eg() = (1 = M)*2 — V2,

EQ) =1—2,
E = =EMN=L1
b. Suppose a given matrix A = jla,| of order ten has elementary

divisors
Ey(\) = (3 — N4 — ),

Ey(3) = 3 — N4 — 2,

E,3)=4—2,
E() =4 -1,
E®=-=E®=1

(calculated from the minors of the matrix 4 — AE, as in Secs. 6.43-6.44).
Then, according to Sec. 6.44, the Jordan matrix J(A) has two blocks of sizes
2 and 2 corresponding to the root A, = 3, and four blocks of sizes 3, I, 1 and
1 corresponding to the root A, = 4. It follows that

31
03
301
03
&) — 410
041
00 4
-
N

6.46. Thus from a knowledge of the elementary divisors of an operator
A, we can determine all the numbers n{*) and hence the structure of the
Jordan canonical form of A. 1n particular, we see that the Jordan canonical
Jorm of an operator A is uniquely determined by A.
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On the other hand, since the elementary divisors of an operator A are
determined by the minors of the matrix 4 — AE in any basis, two equivalent
operators A and B, i.e., two operators with the same matrix in two (distinct)
bases, have the same Jordan canonical form. Conversely, it is obvious that
if two operators have the same Jordan canonical form, then they are equivalent.
This completely solves the problem of the equivalence of linear operators
(in a complex space), posed at the beginning of the chapter.

6.5. Further Implications

6.51. 1f it is known that the operator A can be reduced to diagonal form,
i.e., that its matrix has the form

N

M
;\2

in some ba'sis, then A is just the Jordan matrix of the operator A (all the
Jordan blocks are of size 1). 1n particular, the elementary divisors all have
simple roots. Conversely, if all the elementary divisors of an operator A
have only simple roots, then the Jordan matrix J(A) has blocks of size 1
only and hence is diagonal.

6.52. Given the Jordan canonical form of an operator A, we can easily
find its minimal annihilating polynomial. Suppose the operator B has the
matrix

01o0 .-.-0
oo01 --- 0
1
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in the basis e, . .. , e,, so that
Be, =0,Be; =e;,...,Be, =¢,_,.
Then
Brx =0
for every »
X =L
k=1

Thus A” is an annihilating polynomial of the operator B. The minimal
annihilating polynomial is a divisor of A7 (see Sec. 6.33), and hence must be
of the form A™, m < p. ButB?~le, = ¢; 5 0, so that A? js in fact the minimal
annihilating polynomial of B.

Now suppose the operator A has the matrix

N 1 0 -0 0
0 2 1 -+ 0
0 0 0 - 1
0 0 0 ..o 2

in the same basis e,, . . . , e,, so that A = B + A;E. As just shown,
(A—3Ey=B?=0,

and hence (A, — A)? is an annjhilating polynomial of A, in fact the minimal
annihilating polynomial, by the same argument as before.
Next suppose the operator A has the quasi-diagonal matrix

% 1 0 .- 0
0 2% 1 - 0
0 1
0 0 0 -+ 2

e 1 0 0
0 2 1 0
0 0 0 1
0 0 0 ho
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where the blocks along the diagonal have sizes p, > p, > -+ > p,. Then a
polynomial Q(3) annihilating the operator A must annihilate each block
separately. Clearly the polynomial (A, — 2)** has this property (cf. Sec. 4.52),
and in fact is the minimal annihilating polynomial, by the same argument as
before.

Finally, in the general case where the operator A has the Jordan matrix
described by the table (9), the polynomial

0() = Ij O — 25

is clearly an annihilating polynomial of A, in fact the minimal annihilating
polynomial, since none of the exponents n{*’ can be lowered, for the reasons
given above.

Thus the polynomial Q%) is the minimal annihilating polynomial of the
operator A. The degree of Q(2), equal to n{¥ + - - - 4 n{™, is the sum of
the sizes of the largest Jordan blocks, each corresponding to a root of the
characteristic polynomial. Note that this number cannot exceed the order of
the matrix 4, i.e., the dimension n of the space in which the operator A acts.
The characteristic polynomial

det (A — AE) = T (b — 2)™% ++7n
k=1

of the operator A (see Sec. 6.42) contains Q(2) as a factor, and hence s also
an annihilating polynomial (a result known as the Hamilton-Cayley theorem).
However, the characteristic polynomial is in general not the minimal
annihilating polynomial of A. Clearly, the characteristic polynomial
coincides with the minimal annihilating polynomial of A if and only if each
root of the characteristic polynomial figures in only one Jordan block, of
size equal to the multiplicity of the root.

6.6. The Real Jordan Canonical Form

6.61. Let A be a linear operator acting in a real n-dimensional space R,..
Then in general there is no canonical basis in which the matrix of A takes the
Jordan form (8), if only because the characteristic polynomial of A can have
imaginary roots. Nevertheless, we can still find a modification of the Jordan
matrix (8) suitable for the case of a real space.

Let A = [la{®]| be the matrix of the operator A in some basis e;, . .. , e,
of the space R,,, and consider the complex n-dimensional space C,, consisting
of the vectors

X = e + 0+ Eplp,
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where «,, . . ., «, are arbitrary complex numbers. The matrix A specifies a
linear operator A in the space C, in accordance with the formula

~ n n n
Rx=Sahe, =S Salve).
k=1 k=1 \j=1

the same formula specifying the operator A itself for vectors x with real
components o,

6.62. First we consider the case of an operator A with an annihilating
polynomial of the special form

PO = (3 + 792,

where 7 is a positive number. For the operator A it makes sense to talk about
polynomials Q(A) with complex coefficients, in particular, the polynomials
(X + i1)* and (K — it)?. The polynomial P(2) = (A% + t%)® is also an
annihilating polynomial of the operator A According to Theorem 6.34, the
factorization

(A4 )P = (A — inP(x + iD)?

corresponds to a decomposition of the space C, into a direct sum of two
subspaces C. and C2, both invariant with respect to A, in which A has
annihilating polynomials (A — it)® and (A + i7)?, respectively. Moreover,
if the subspace C! consists of the vectors

X =g+ F ae,

with arbitrary complex coefficients «,,...,«,, then the subspace C?
consists of the vectors
XY= 4+ &,e

where &, is the complex conjugate of «, (k = 1,..., m). In fact, if
(A — itEyrx = 0, (15)
then, taking complex conjugates in both factors of the left-hand side, we get
(A 1+ itE)% =0, (15

and conversely.t In particular, it follows that » is even, i.e., n = 2m where
m is the dimension of each of the subspaces C. and C2.

t The subspaces C) and C; are uniquely determined by (15) and (15%), respectively
(see Sec. 6.35).
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Now let f} be the Jordan basis of the operator A in the space C!, as in
Sec. 6.37. According to (7), the matrix of A in this basis is of the form

it 1. 0
(o ir 1
0 0 it]

it 1 0
0 it 1 |in

0 0 it

Hence the action of A on the basis vectors is described by the formulas

Afl infl, S Afl if1,
Af2:f1+”f21: "':Af2:f1+l‘rf§:

X 1 _rl sof 1 Aa — {4 if @
7, =S+ i AL = T,

The action of A on the complex conjugate vectors f? in C2 is described by
the complex conjugates of these formulas:

Kf_}——i‘rﬁ, cees Af{ ——i‘r}—g,
Afz fi— it s Aff=f{— if3,

Afaln :f11u—1 - l-‘ffi,p .- f’nq—l f:q—l - i‘ffqu-
Thus we see that the vectorsfc form a Jordan basis for the operator A in the

space C3. Hence all the vectors f7, V7 k taken together form a Jordan basis

for the operator A in the whole space C,,.
We now construct a basis in the real space R,, by replacing each pair of

complex vectors f* and f_f by a pair of real vectors

1 s 1 pr
=5+ hi=—5 -1 (16)
2 2i
1t follows from the formulas

Art =f’;_ + inft,

Aff=rt, — it (fE=fE=0)
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that
{ (f’°+f’°): Agh— gh, — i,

A{Z % —f’;)} ARE= e, +ugh (gh=hE=0).

Thus the action of the operator A on the vectors g¥ and A¥ is described by the
formulas

Agh = —hf,

Aht = g,

Ag= g —hs,

AR = K+ gk, a7

Ahy, = Hoiy + T80
Moreover, (16) implies
ff=g+ik, [fi=g—ih
Therefore the (complex) linear manifold spanned by all the vectors g%, A¥ is
the same as the linear manifold spanned by all the vectors f%, f*. F%. But the
number of vectors g*, h;.‘ is the same as the number of vectors f° ;‘ s f_;‘ Hence
the vectors g¥, k% are linearly independent over the field C, just like the vectors

f 3. Thus, a fortiori, the vectors g¥, A% are linearly independent over the
ﬁeld R, i.e., in the real space R,,.

It follows from the formulas (17) that the matrix of the operator A in the
basis g%, A¥ is a quasi-diagonal matrix, made up of blocks of the form

0 10
-1 0 01
0« 10
—1 0 0 1
0
—1 0
, (18)
0t 10
—7 0 0 1

of sizes 2n,, ..., 2n,, respectively.
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6.63. We now consider the general case. Let A be a linear operator in a
real n-dimensional space R,, and let P(3) be an annihilating polynomial of
P(2). Then P(}) has a factorization of the form

m s

PO) =TT O — W IT [ — )* + 7)™
k=1 1=1
(to within a numerical factor) in the real domain, where A, (k =1,...,n)

are the distinct real roots of P(2) and o, + it, = u,, 6; — it; = @, are the
distinct imaginary roots of P(A). According to the general theory (Sec. 6.36),
the space R,, can be represented as a direct sum

R,= > E,+ > F,
k=1 1=1

of subspaces invariant with respect to A, where (3, — A)™ is an annjhilating
polynomial of the operator A in the subspace E,, while (6, —2)2 4 77 is an
annihilating polynomial of A in the subspace F,. In the subspace E, the
operator A can be reduced to the Jordan canonical form (7). As for
the subspaceF,,letB, = A — 6;E. Then (A2 + 727t is an annihilating poly-
nomial for the operator B, in F,, and hence, by Sec. 6.62, there is a basis
in which the matrix of B, is of the form (18), with t replaced by t,. In this
same basis the matrix of the operator A = B, + 6,E is quasi-diagonal, made
up of blocks of the form

6, T 1 0
-1, q 0
6, = 0
-1, o 0
S
—T; O (19)
6, T 1 0
-7, o 0 1
6, T
—1; O
of sizes 2n,, . .., 2n,, respectively. Thus we can choose a basis in the space

R,, in which the matrix of the operator A consists of diagonal blocks of the
form (10) and (19). This “‘real Jordan matrix”’ will be denoted by Jx(A).

6.64. As in Sec. 6.4, the structure of the matrix J(A) can be deduced
from the elementary divisors of the operator A, which in turn can be calculated



160 THE CANONICAL FORM OF THE MATRIX OF A LINEAR OPERATOR CHAP. 6

from the minors of the matrix A — AE in the original basis. Since the poly-
nomials D,(3) and E,(2) are obtained from the minors 4 — AE by rational
operations, the polynomials E,(2) have real coefficients and hence are of the
form

d ey 8 (02}
E, ()= kII Qe =" T I — o) + 7717 G=L2....n—1)
= =1
(cf. Sec. 6.44). To every exponent n{¥ there corresponds a Jordan block of
size n{¥, and to every exponent p{" a block of the form (19) of size 2p'".

6.65. The above results can be summarized in the form of the following

THEOREM. Given any operator A in a real n-dimensional space R,, there
exist. a basis in which the matrix of A is quasi-diagonal, made up of blocks of
the form (10) and (19), where h, (k = 1, ..., m)are the real roots and 5, + it,
(=1,...,5) the complex roots of the characteristic polynomial of A. The
sizes of the blocks are uniquely determined by the elementary divisors of A in
the way indicated in Sec. 6.64.

6.66. COROLLARY. Every linear operator A in a real n-dimensional space
R,, has an invariant subspace of dimension 2.

Proof. The basis vectors g* and A% obviously generate a two-dimensional
invariant subspace of A (see (17)). [

The number of distinct two-dimensional subspaces of A can always be
estimated (from below). In fact, there are at least as many such subspaces
as there are distinct diagonal blocks (19) of size 2 in Jz(A).

*6.7. Spectra, Jets and Polynomials

In many problems of algebra and analysis, the need arises to calculate
various functions (in particular, polynomials) of given linear operators acting
in a finite-dimensional space. Such functions, which have a number of special
properties, will be investigated in the next two sections. A natural arithmetic
model for functions of a single operator is the algebra of jets, with which we
begin our discussion.

6.71. By a spectrum, denoted by S, we mean any set of points 2, ..., A,
where it is assumed that each point 2, is assigned a “multiplicity,” ie., a

positive integer r,, (k = 1, ..., m), a fact indicated by writing

S=0p,..., N
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Moreover, we assume that each point A, is assigned a set of r, numbers from
the field K, denoted by
FOD =00, f 0., [ 0).

Such a set of numbers will be called a jet f, defined on S.
We now introduce the following algebraic operations in #(S), the set of
all jets on a given spectrum S:

a. Addition of jets. By the sum f+ g of two jets f= {f*“)(a,)} and

g = {g"(2;)} we mean the jet defined by the set of numbers
(f+P0) =90 + gV 00)

k=1,...,m;j=0,1,...,r,—1).

b. Multiplication of a jet by a number. By the product af of a jet f=
{fY' (M)} and a number « € K we mean the jet defined by the set of numbers

(& )P (h) = af D).
These two operations obviously convert the set ,#(S) into a linear space,

whose zero element is the jet 0 whose “components’ are all zero.

c. Multiplication of jets. By the product fg of two jets f = {fV()} and
g = {g¥(3;)} we mean the jet defined byt

(f8)) = f()g().
(f2Y () = F(M)8' ) + ' (2)8(M),

j
(/270 = 2 Cf0wg" ")
=0
k=1,...,m;j=0,1,...,r —1), where Ci is the binomial coefficient

!
g -

It is easily verified that this operation is commutative and satisfies
conditions 1)-3) of Sec. 6.21. Therefore £ (S) is a commutative algebra over
the field K. This algebra has a unit, i.e., a jet e such that ef = f for every
f€ #(S). In fact, we need only choose

1 if j=0,
() = g
0 if 0<j<r,
k=1,...,m).

t These formulas are formally identical with Leibniz’s rule for repeated differentiation
of the product of two functions fand g.
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In what follows, we will set up a correspondence between the algebra ¢ (S)
and the algebra of all polynomials with coefficients in the field K, for the case
where the points 4,, . .., A, all belong to K.

6.72. Tt will be assumed that the field K has infinitely many distinct
elements. Making this assumption, we first show how to “reconstruct’ the
coefficients of a polynomial from a knowledge of its values.

a, Let »
P\ =3 a3
k=0

be a polynomial with coefficients in the field K, whose argument A also takes

values in K. Then the coefficients a,,a,,...,a, of P(A) are uniquely
determined by the values of P(2). In fact, let Ay, Ay, ..., 2, be distinct
elements of K, and consider the equations

ap + ahg + 0 4 ahg = P(h),

ag+ ayhy + 0+ aph] = P(hy),

ag + ahy, + 00 A+ aghy = PQy),

which can be regarded as a system of p + | equations in the unknowns
4y, ay, . .. ,a, The system has a nonvanishing determinant (see Example
1.55c), and hence, as asserted, has a unique solution by Cramer’s rule
(Sec. 1.73).

b. In particular, it follows that if two polynomials

2 P
P() =3 a', Q@) =3 by
k=0 k=0
coincide for every value A € K| then

a, =b, k=0,1,...,p).

6.73. We will subsequently need the concept of the derivative of a poly-
nomial P(3), and the notions of higher derivatives and Taylor’s formula as
well. In analysis these concepts are introduced for the case of polynomials
which are functions of a real (or complex) argument, but here we are con-
cerned with polynomials P(A) whose argument A varies in an arbitrary field
K. We must therefore introduce the corresponding definitions independently,
i.e., without recourse to the notion of a limit which may not exist in the field K.

a. Fixing a point ¢ € K, we write the formula

Sapt = Safu+ 0 — P =326 (20)
k=0 k=0

k=0 k!
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where the quantities
X0,
k!
are the polynomials in g obtained after expanding [x + (A — w)I*in powers

of 2 and A — g and collecting similar terms. The polynomials b,(u) are then
given the following names:

(k=0,1,...,p)

» .
bo(1t) = > ay* = P(), the polynomial P(y) itself,
k=0
P
by(p) = X kay* ™! = P'(w), the first derivative of P(w),
*=1

P
bo(w) = X k(k — Dau*~* = P"(w), the second derivative of P(i),
k=2

b(w) =p(p — 1)+ 1+ a, = P(u), the pth derivative of P(i).

For a polynomial of degree p, we set P®@(u) = 0if g > p.
In the new notation, formula (20) takes the form

POY =3 L PR — o, 20)

known as Taylor’s formula for the polynomial P(}).
b. In particular, for the polynomial

PQ)= (A —a) (a €K),
we have
P(a) = P'(a) = = P*(a) =0,
PP(p) = J2R
POOY=0  (g>p).
c. More generally, if

PO = ( — a0,

we have

00) = zbk(x —af, PO =z Bih — a)**?,
and hence B
Pa) = P'(a) = -+ - = P®(a) = 0. @l

d. Conversely, if it is known that (21) holds, then

PO =3 = PR —

=0 - a)”E /: PP(a)(h — )" = (» — a)’Q(0),
where Q(3) is a new polynomial.
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6.74. It should be noted that the representation of the polynomial P())
in the form

S = PO) =~ Sh0 ~

where the b,(2) are polynomials in w, is necessarily unique. 1n fact, suppose

we fix g =y, and give A the distinct values Ay, Ay, . .., A, in turn. Then
T = A — . takes the distinct values Ay — g, Ay — Mg, - - - , Ay — W, and the
values of the polynomial

P

> byt

k=0
are known for these values of 7, being equal to P(a,), P(2,), . . . , P(2,). But
then the quantities b,(t,) are uniquely determined, by Sec. 6.72a. Since this
is true for arbitrary g = g, € K, the polynomials b,(1) (k =0,1,...,p)

are themselves uniquely determined.

6.75. a. Given two polynomials P() and Q(%), we now verify the formulas

(P 4+ 0)®(w) = PP(p) + Q®(w), (22)
k
(POYP(w) =3 ChP()Q" " (w) 23)
=0

(k=0,1,2,...), where
" k!

Cf=rr——r.
JHk =t
In fact, by definition,

4

P+ oM =2 % (P + Q)P ~ wy,

»

PO) =3 - PH — 1,

k=0

o =3 L 0¥ - wy,
¥=0 k

D
1 .
PO) +00) =2 o [PR() + QW(WIR — w)s
=0 K.
so that (22) follows from the uniqueness theorem of Sec. 6.74. Similarly,

D

PO =3 ,i (PO () — ),
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while on the other hand,

POy =3 L P — w00y =S Lomwa —uy,
j=o j! =0 l!

POYOO) =3 3 PO B — wy

j=o1=0j11!

(s 1 D O*—7 k
=33 i e W) —
Thus the uniqueness theorem of Sec. 6.74 implies

1 J 1 X
L (POY® () = PO (),
k!( ) (W goj!(k Y (W2 (w)
which is equivalent to (23).

b. In particular, formula (23) implies the following important

THEOREM. If
Py () =0 k=0,1,...,m),
then
PQ®@W =0  (k=0,1,...,m)
Jfor any polynomial Q(2).

6.76. Now suppose we are given a spectrum
S={05...,Ap (r;€K)
and the corresponding algebra _#(S) of jets on S (see Sec. 6.71). Then with
every polynomial P()) we associate the jet P € #(S) which assigns to A, the

numbers
P(2), P(y), . .-, PUD(Ay),

where the Pt9(3,) are the derivatives of the polynomial P(3), as defined in
Sec. 6.73. It follows from formulas (22) and (23) that the operations on jets
defined in Sec. 6.71 correspond to the usual operations of addition and multi-
plication of polynomials. Thus the mapping P(A) — P is a morphism (Sec.
6.24) of the algebra of polynomials IT into the algebra of jets #(S). As we
now show, this morphism is an epimorphism, i.e., given any jet f, we can find
a polynomial P(}) such that

P(y) = f(), P'Oy) = '), - .- » PO(g) = ()
k=1,...,m).

To prove the assertion, it is enough to consider the case where all the numbers
S (%) vanish except one, corresponding to any given value k = k,. In fact,
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having solved the problem for this case, we need only construct a polynomial

P,(») for each k = 1, ..., m satisfying the conditions
Pu(h) =S ()s - s P00 = £7700), (24)
PP =0 (s#k;j=0,1,...,r,— 1), (25)

and the solution will then be given by the formula
Py = P() + -+ + P().

Thus we must find a polynomial P,(2) satisfying the conditions (24) and
(25). To this end, we look for P,(3) in the form

P,y = Q(MR(3), (26)
where Q. () is a new polynomial and
Ry = I;Ik(% — A" 27

By Sec. 6.73¢c, we have

RP0) =0  (s#£k;j=0,1,...,r,—1),
and hence, by Theorem 6.75b,
PP0) =0 (s#k;j=0,1,...,r,—1)
for any polynomial Q,(2). Hence the condition (25) is clearly satisfied. We
must still subject the polynomial P,(2) to the condition (24). Since
R(n) = I;.[ (A — ) #£0,
s#FEk
the condition
S ) = Pu) = C()R. ()
uniquely determines Q,(2;). Moreover, once Q,(2,) is known, the condition
J' () = Pi(v) = Qun)Re() + Q)R ()
uniquely determines Q,(3,). Continuing in this way, we are able to uniquely
determine all the numbers Q,(A), Qi (As), - - . » O+ V(3,). But once these

numbers are known, we can determine the desired polynomial Q,(2) by
using Taylor’s formula

%00 =3 ji,Q;“(xk)(x — ). 28)

Reasoning backwards, we see that the polynomial P,(2) defined by formulas
(26)-(28) satisfies the stipulated conditions (24) and (25).

6.77. Next, applying Sec. 6.52d, we find that the algebra #(S) of all
jets defined on the given spectrum S is isomorphic to the factor algebra I1/1,
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where [ is the ideal in IT consisting of all polynomials for which

PO =0 k=1,...,mj=0,1,...,r—1).
It follows from Sec. 6.73d that every polynomial P(3) € I is divisible by the
polynomial

T = ;H =2 29

and from Sec. 6.73c that every polynomial divisible by T() beloags to I.
The ideal I, like every ideal in the algebra II, is generated by the polynomial
in I of lowest degree (see Sec. 6.26), and this polynomial is just T(}) itself.
Hence the algebra #(S) is isomorphic to the factor algebra 11]I, where I is
the ideal generated by the polynomial T(X).

6.78. We now use the result of Sec. 6.77 to solve the problem of describing
all invertible elements (Sec. 6.21) of the algebra #(S).

Obviously, a jet f for which f(3,) = 0 for at least one value of k cannot
be invertible, since then

(B)) = f()g(a) = 0 5 1 = e(ly)
for every jet g. Thus let f be a jet such that
fON#£0  (k=1,...,m),
and let P(3) be the polynomial for which
POy =f(g), - .., PDQy) = fUrD(0y)  Kk=1,...,m)

(see Sec. 6.76). This polynomial clearly has no factors in common with the
polynomial 7(3) defined by (29), and hence, by Sec. 6.28, there are poly-
nomials Q(2) and S(») such that

POYQO) + TOISQ) = 1. (30)

Let ¢ be the jet corresponding to the polynomial Q(2). Applying the epimor-
phism IT— _#(S) constructed in Sec. 6.76 to equation (30), and using the
fact that this epimorphism carries the polynomial T(2) into 0, we find that
fa=1
i.e., the jet fe #(S) is invertible.
Let u be any invertible jet. Then, as we know from Sec. 6.21, the equation

ux =v

where x is an unknown jet and » any given jet, has the unique solution
x = vfu. We can find an explicit expression for the ratio v/u by successively
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solving the equations
u(d)x() = v(dy),
U)X’ () + 4 ()x() = v'(),

J .
z C’,u(”()\,,)x”"”()\k) —_ U(J)()\k)

=0

k=1,...,mj=0,1,...,n—1.

6.79. a. A spectrum S = {A7,..., A=} with complex A;,..., 2%, is
said to be symmetric if whenever S contains an imaginary number A, = o, +
iy, it also contains the complex conjugate number 2, = o, — it;, with the
same multiplicity r,. A jet f = {f¥(3,)} defined on a symmetric spectrum S
is said to be symmetric if the numbers f)(x,) and f(x,) are complex
conjugates (j=0,1,...,r, —1). If PQ) is a polynomial with real co-
efficients, then the jet defined on a symmetric spectrum by the numbers

P tk=1,... ,mj=0,1,...,r—1)
is symmetric, since the derivatives P¥(3) also have real coefficients and hence
PO(y) = PORY). €2))

Conversely, given a symmetric jet f= {f(3,)} on a symmetric spectrum
S ={An,...,Mr}, we can always find a polynomial Py(A) with real co-
efficients such that

PO =10  (k=1,...,m;j=0,1,...,r—1).

In fact, by Sec. 6.76, we can construct a polynomial P(}) with complex
coefficients satisfying the same conditions. Let P(x) denote the polynomial
whose coefficients are the complex conjugates of those of P(2). Then it
follows from (31) that

%[Pm(xk) + POy = %[Pm(xk) + POR)] = PO0) = 90,
i.e., the polynomial
P0) = 5(POY + POV
with real coefficients satisfies the required conditions.

b. The set of all symmetric jets f on a symmetric spectrum S obviously
forms an algebra over the field of real numbers. According to Sec. 6.25d,
this algebra is isomorphic to the factor algebra 111, where 11 is the algebra of
all polynomials with real coefficients and I < 11 is the ideal consisting of all
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polynomials P(\) e 11 for which
PO, =0 k=1,....mj=0,1,...,r,—1),

i.e., the ideal generated by the (real) polynomial

T = ﬁ()\ — M)

*6.8. Operator Functions and Their Matrices

In this section we investigate functions of operators, finding matrices
(and corresponding rules of operation) for polynomials of the form P(A)
and rational functions of the form P(A)/Q(A), where A is any linear operator
acting in an n-dimensional space C,, (or R,). In Sec. 6.89 we will extend the
“calculus of operators™ to the case of analytic functions of operators.

6.81. Given an operator A acting in an n-dimensional space K,,, let IT, be
the algebra of all operators of the form P(A), where P(3) is some polynomial.
Then I1, is isomorphic to the factor algebra I1/7,, where I1 is the algebra of all
polynomials and 7, is the ideal generated by the minimal annihilating poly-
nomial T(2) of the operator A (see Secs. 6.31-6.33). Suppose it is known
that the polynomial T((3) has the factorization

10) = IT 0~ 20 (32)

in the field K. Then, by Sec. 6.77, the factor algebra II/I, is isomorphic to
the algebra Z(S) of all jets defined on the spectrum

S= S, ={0. ..,

(called the spectrum of the operator A). Hence the algebra 11, is itself iso-
morphic to the algebra #(S). The explicit form of this isomorphism is the
following: To every jet f € #(S) there corresponds the class of polynomials
P(3) € I such that

POGY) = 90 (=1,...,mj=0,1...,ry, (33

and to each of these polynomials there corresponds the same uniquely
defined polynomial operator P(A), which we denote by f(A).

Below we will investigate the explicit form of the matrix of the operator
P(A) for a given minimal annihilating polynomial (32), in the case where the
matrix of A is in Jordan canonical form.
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6.82. First suppose the operator A has a matrix (of order 1) of the
special form

o 1 o 0
0 2 --- 0
(34)
0 0 e 1
0 0 - %

in some basis of the space K,. Then A is of the form AE + B, where the
operator B has the matrix

01 0
01 0
00 .- 1
00 0

According to Example 4.74b, the matrix of B* is

(k+1
0 10 0
0 0 1 0
35
0 -+ 00 - 1|(m—k), 9
0

where the diagonal consisting entirely of ones has moved over & steps to the
right from the principal diagonal. If P(3)is an arbitrary polynomial of degree
p. then

» -

PO =3 - PP — o)

by Taylor’s formula (20'). Replacing A by the operator A, we get the identity

D D

P(&) =3, L PR(YA — NEY =3 - PO

Then, taking account of the expression (35) for the matrix of B¥, we find that
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P(A) has the matrix

P() P'(%) %P"()\o) ('I__l& P"10y)

! 1 s . (36)
0 Pg) P() (.n_z)!P‘ o)
0 0 0 .- POy)

Note that to construct the matrix of P(A) from the polynomial P(3), we only
need the n values P(3), P'(xq), - . . , P""1(2,), where n is the order of the
matrix of A.

6.83. Next suppose the operator A has a quasi-diagonal matrix of order
n, made up of blocks of the form (34), where 2, takes the values A, ..., %,
with corresponding block sizes n,,. .., n,. By the rules for operating on
quasidiagonal matrices (Sec. 4.52), each block of the matrix of the operator
P(A) can be calculated independently. Applying Sec. 6.82, we find that the
matrix of P(A) is obtained by replacing each block (34) of the matrix of A by
the block (36). Thus to construct the matrix of P(A), we now need the values

PO  (k=1,...,m;j=0,1,...,m —1).

6.84. Let A be any operator acting in an n-dimensional complex space C,.
Then, as on pp. 146-147, there exists a basis in which the matrix of A is
quasi-diagonal, made up of blocks of the form

A L 0 -0 0
0 1 0

n® coeee s k=1,...,mj=1,...,r), 30
o 0 0 --- 1
0 0 0 - 2

where the numbers r,, and #{*’ are those figuring in table (9). Correspondingly,
the spectrum of the operator A is

S= S, ={4...,A7}
If
f={f20)} (k=1,...,mj=0,1,....n~1)

is any jet defined on S, then, by Secs. 6.81-6.83, the corresponding operator
f(A) has a quasi-diagonal matrix, in which each block of the form (37) is
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replaced by the block

"y 1 " 1 ‘n(.k)—l
S %) Ef () (n‘,’”———l)!f( 70
’ 1 niF—
0 fO SO o — 2)!f( R0 || (38)
0 0 0 s FOy)

The isomorphism between the algebras II, and _#(S) has now been made
perfectly explicit.

6.85. a. Next we consider functions of an operator A which has a matrix
of order 2m of the form

6 T 1 0
—T © 01
6 T
-1 ¢

(39)

G T

—T O
where o and © are elements of the field K. Introducing the 2 X 2 matrices
1 0

01
we can write the matrix of A as the following block matrix of order m:
A E O ... 0 O

G T

> >

—7T O

0O A E - 00

00 0 A E

00 0 0 A
A0 0 0 0 0 E 0 00
0 A 0 0 00 E 00

= +

0 0 0 A0 00 0 E
00 0 o Al fo o o 00
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Therefore it follows from Sec. 6.82 and the rule for multiplication of block
matrices (Sec. 4.51) that the matrix of P(A) can be written in the form of the
block matrix

P(A) P’(A) -;_P"(A) PR (7._1__1_)'. P(m—l)(A)
! e _.1 (m—2)
0 KA PA) et Ol | (40)

b. If the matrix of A is quasi-diagonal, made up of blocks of the form (34)
and (39), then, just as in Sec. 6.83, we deduce that the matrix of P(A) is
obtained by replacing each block by the corresponding block of the form
(36) or (40).

c. In the case where K = R, so that the numbers 6, T and the polynomial
P() are real, we can find the explicit form of the matrices P*)(A) figuring
in (40). In fact, introducing the matrix

0 1
I= ,
-1 0
we easily verify that 2 = —E, so that the algebra of real matrices
T Rex Ima
A=ocE+ = = A=0c+41i7)
—T © —Imi ReA

is isomorphic to the ordinary algebra of complex numbers (cf. Example 4.74a).
Hence for any polynomial P(2) with real coefficients we have

Re P(A) Im P()

\ )
—Im P(\) ReP() 0 =c+),

P(A) = P(cE + <) = ‘

and correspondingly
Re P®(3) ImP®(Q)
—Ilm P®(A) Re P®(Q)

PM(A) = PM(GE 4 <I) = H

6.86. Let K = R and K, = R,. Then, given any operator A acting in
K,, the minimal annihilating polynomial 7(A) has real coefficients and hence
has a symmetric spectrum S, (see Sec. 6.79a). The algebra II, of operators
of the form P(A) is isomorphic to the facior algebra II/I,, where II is the
algebra of polynomials with real coefficients and 7, is the ideal generated by the
minimal annihilating polynomial of the operator A. According to Sec. 6.79b,
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this factor algebra is isomorphic to the algebra of symmetric jets on the
spectrum S,. On the other hand, there is a basis in which the matrix of A
is quasi-diagonal, with diagonal blocks of the form (34) and (39). Let f be
any symmetric jet on the spectrum S,. Then it follows from the above
considerations that the corresponding matrix f(A) is obtained by replacing
every block (34) by a block (38) and every block (39) of size 2m by the block
matrix

’ 1 m—1
fD iy - mf‘ A
&) (m—iz—)!f""’z’(A)
0 0 sy

of order m, where the f™®(A) are 2 X 2 matrices of the form

Re /™) Im %)
—Im f®() Re f®0)

oo |

6.87. Given a linear operator A acting in a space C,, suppose A has the
Jordan canonical form (8) specified by the table (9), as on pp. 146-147. We
now look for all invertible operators of the form P(A), where P(3) is a poly-
nomial. It is clear from the form of the operator of the matrix of P(A) in the
Jordan basis of the operator A that the determinant of this matrix is just

PO Sro=n

(cf. Example 1.55b). Therefore the operator P(A) is invertible in the algebra
L.(C,) of all linear operators acting in the space C, if and only if

PO #£O0  (k=1,...,m). (1)

Moreover, if the condition (41) is satisfied, then the inverse operator [P(A)]™!
already belongs to the algebra II,. In fact, in this case the jet p corresponding
to the polynomial P(2) in the algebra of jets £ (S,), i.e., the jet consisting of
the numbers

PO, k=1,... . mj=0,1,....n—1),

is invertible in the algebra £ (S,), by Sec. 6.78. But then the operator P(A)

is invertible in the algebra II,, by the isomorphism between the algebras
F(S,) and I1,.
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Again using the isomorphism between the algebras #(S,) and II,, we
see that if P(A) is invertible, then the equation

P(A)X(A) = O(A),

where X(2) is an unknown polynomial and Q(2) any given polynomial, has
the unique solution X(A) = Q(A)/P(A). Let x, p and g be the jets corre-
sponding to the polynomials X(2), P(A) and Q(), respectively, so that in
particular px = ¢, x = g/p. Then, according to Secs. 6.78 and 6.84, the matrix
of the operator X(A) in the Jordan basis of the operator A is obtained by
replacing every block of the form (36) by a block of the form

POy \p(A)/=x 2\p(R)/n-3,
p(Ay) PN/ 2=2, (42)
0 0 90

)

6.88. The above result can be interpreted somewhat differently. Given a
spectrum S = {A7, ..., A~} in the complex plane, let R(S) denote the set of
all complex rational functions

A
fQ) = o) ,
PR
where P()) and Q(2) are polynomials, and P(2) has no roots at the points of
the set S. In the set%R(S) we define the operations of addition of two functions,
multiplication of a function by a complex number, and multiplication of two
functions in accordance with the usual rules, thereby making ®(S) into an
algebra over the field C. Moreover, we note that every function f(2) eR(S)
has derivatives f’(2), f"(2), . .. in the usual sense of analysis. Assigning to
each function f(2) eR(S) the jet

f={"0 G=1,...,mj=0,1,...,n-1,

where f)(),) denotes the usual jth derivative of f(A), we get a morphism of
the algebra R(S) of rational functions into the algebra #(S) of jets on the
spectrum S, in fact an epimorphism, since by Sec. 6.76 the jets corresponding
to just the polynomials Q(}) already fill the whole algebra #(S).

Now let S = S, be the spectrum of some operator A acting in the space
C,. Then the algebra II, of operators P(A) is isomorphic to the algebra of
jets #(S4), and we can extend the given epimorphism R(S,) — #(S,) to
an epimorphism R(S,) — II,. In other words, we can assign to each
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rational function f(A) €®R(S) a linear operator f(A)ell, such that the
correspondence f(A) — f(A) is again an epimorphism, where the matrix of
the operator f(A) is given by the rule (42).

6.89. Instead of the algebra of rational functions, we can consider the
algebra of analytic functions. Thus let %(S) be the set of all functions f(2)
analytic at the points A, ..., A,, i.e., analytic in a neighborhood of each
of the points A, ...,A,. Then the set %(S) equipped with the usual
operations of addition and multiplication is again an algebra over the field
C, in fact an algebra containing the algebra R(S). Analytic functions also
have derivatives of all orders (in the usual sense of analysis), and using them,
we can extend the epimorphism® (S,) — II, constructed in Sec. 6.88 to an
epimorphism %(S,)— II,. An important feature of this new epimorphism
is that it now involves many transcendental functions of analysis, like e®,
cos A, sin tA,etc. If f(A)denotes the operator corresponding to the function
f(3) € %(S,), then its matrix in the Jordan basis of the operator A is cal-
culated by the same rule (38) as before. We note in particular that the
operator formula

(£1+12)A LA teA

e =ee

is an immediate consequence of the identity

etttk  plikptak

and the fact that the mapping ¥ (S,) — II, is an epimorphism.

The results of Secs. 6.87-6.89, pertaining to linear operators in a complex
space, can be carried over to linear operators in a real space, by using the
real Jordan canonical form and the method of Secs. 6.85-6.86. We leave the
details of this extension to the reader, since no new ideas are involved.

PROBLEMS
1. The matrix of an operator A is of the form
»00 --- 00
1 »0 --- 00
o1 » - 00
000 -+ 20
000 -« 1 &

in a basis e, e,, . .., e,. In what basis does it have Jordan canonical form?
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2. Prove that the matrix 4 and the matrix 4’ (obtained by transposing A4) are

equivalent.

3. Find the Jordan canonical form of the matrix

-2 =1 =1 3 2

—4 I -1 3 2
1 1 0 -3 -2

-4 -2 -1 5 1
1 1 1 -3 0

4. Are the operators specified by the matrices

1 1 0 4 I -1
A=}H0 1| 0Of, B=}| -6 -1 2
00 2 2 1 1

equivalent?

5. Find the elementary divisors of the following matrices of order n:

1 2 3 n
l l e 1
01 2 n—1
01 1
A = , A, =10 0 1 0 >
00 1
0 0 0 1
n n—1 n-2 1 111 1
0 n n—1 -2 0 2 2 2
A4 =0 o n 3> 44=|o 0 3 3
0 0 0 R ] 000 --- n
6. Show that all matrices of the form
& Qyy Qg C T Gig
0 o ay an

b
i
o
.o
R
&
3

(=]
(=]
(=]
R
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with arbitrary elements ayy, 43, . .

Qy_1,n 1€ nonzero.

CHAP. 6

. are equivalent if the elements a;,, a3, .

7. Find the Jordan canonical form of the matrix 4 satisfying the equation
P(A4) = 0, where the polynomial P(3) has no multiple roots,

8. Find the Jordan canonical form of the matrix A4 satisfying the equation
P(A4) = 0, where the polynomial P(3) is an arbitrary polynomial.

9. Prove that if the annihilating polynomial of an operator A acting in the space
R, is of degree 2, then every vector x lies in a plane or line invariant with respect

to A.

10. Find all matrices commuting with the m x m matrix

al 0 00

0 a1 00
Ap(a@) =

000 - al

0 00 0 a

11. Find all m x n matrices B satisfying the condition

BA,(a) = A,(@)B.

12. Find all matrices commuting with quasi-diagonal matrices of the form

Ap(@) 0 - 0
0 Ap@ -+ 0
0 0 Ap, (@)

13. Find all matrices commuting with quasi-diagonal matrices of the form

where the numbers a,, 4,, . .

An@) 0 - 0
Amz(ag) v 0
0 0 Ay, (@)

. , a; are all distinct.

14. Find all matrices commuting with the general Jordan matrix (8).

15. Under what conditions is every matrix commuting with a given matrix 4

a polynomial in 4?



chapter 7

BILINEAR AND
QUADRATIC FORMS

In this chapter, we shall study linear numerical functions of two vector
arguments. Unlike the theory of linear numerical functions of one vector
argument, the theory of linear numerical functions of two vector arguments
(such functions are called bilinear forms) has rich geometric content. Setting
the second argument equal to the first in the expression for a bilinear form,
we get an important new kind of function of one variable, called a gquadratic
form, which is no longer linear.

The considerations of Secs. 7.1-7.8 pertain to a linear space K over an
arbitrary number field X, while those of Sec. 7.9 pertain to a real linear space.

7.1. Bilinear Forms

7.11. A numerical function A(x, y) of two vector arguments x and y in a
linear space K is called a bilinear form (or a bilinear function) if it is a linear
function of x for every fixed value of y and a linear function of y for every
fixed value of x. In other words, A(x, y) is a bilinear form in x and y if and
only if the following relations hold for any x, y and z:

ARx + 2, ) = A(x, y) + Az, »),
A(ax, y) = 2A(x, y),

A(x,y +2) = A(x, ) + A%, 2),
A(x, oy) = aA(x, y).

)

179
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The first two equations mean that A(x, y) is linear in its first argument, and
the last two equations that A(x, y) is linear in its second argument. Using
induction and the relations (1), we easily obtain the general formula

k m
A (Z %X, 2, (5:’)’5) =
i=1 j=1

where xy, . .., Xy, 1, ..., ¥, are arbitrary vectors of the space K and o,
., o, By, - - -, By, are arbitrary numbers from the field K.
Bilinear forms defined on infinite-dimensional spaces are usually called
bilinear functionals.

k. m

laiﬁa‘A(-xia Y 2

=1 j=

7.12. Examples

a. If Li(x) and L,(x) are linear forms, then A(x,y) = Ly(x)Ly(y) is
obviously a bilinear form in x and y.

b. An example of a bilinear form in an n-dimensional linear space with
a fixed basis ey, e,, . . ., e, is the function

A(x, y) = E} Elaikimk,
=
where
X = Zliiei, y = anex.
are arbitrary vectors and the a,, (i, k = 1,2, ..., n) are fixed numbers.

7.13. The general representation of a bilinear form in an n-dimensional
linear space. Suppose we have a bilinear form A(x, y) in an n-dimensional
linear space K,. Choose an arbitrary basis e;, e, .. . , e, in K,, and write

A(e;, ) = ay (G, k=1,2,...,n).
Then for any two vectors
X = z] Eiei: y = zlnkek,
i =

it follows from (2) that

Alx,y) = A (ﬁliiei: g‘%ek) = ,_E’uglimkA(ei, &)

M=

iaikimk' (3)

1 k=

i

Thus the most general representation of a bilinear form in an n-dimensional
linear space has already been encountered in Example 7.12b.
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The coefficients a,;, form a square matrix

Q1 Gy v Gy
Qa1 Qg+ Qg
A=A4,= 1 = llal

An1 Qpz *°° dpy

which we will call the matrix of the bilinear form A(x, y) in (or relative to)
the basis {e} = {e,, €5, ..., €,}.

7.14. Symmetric bilinear forms. A bilinear form is called symmetric if
A(x,y) = Ay, %)
for arbitrary vectors x and y. If the bilinear form A(x, y) is symmetric, then
az = Ale;, &) = Aley, ¢)) = ay,,

so that the matrix 4, of a symmetric bilinear form in any basis e;, e,,. .. , €,
of the space K,, equals its own transpose 4,). It is easily verified that the
converse is also true, i.e., if 4;,, = A, in any basis ¢,, e,, . . . , e,, then the

form A(x, y) is symmetric. In fact, we have

AW, x) =3 agny = 23 apnge = 2 agbo = Ax, ),
k=1 i, k=1 t.k=1
as required. In particular, we have the following result: If the matrix of the
bilinear form A(x, y) calculated in any basis equals its own transpose, then
the matrix of the form calculated in any other basis also equals its own
transpose. A matrix which equals its own transpose will henceforth be
called symmetric.

7.15. Transformation of the matrix of a bilinear form when the basis is
changed.

a. Of course, if we transform to a new basis, the matrix of a bilinear
form changes according to a certain transformation law. We now find this

law. Let A, = lla;| be the matrix of the bilinear form A(x, y) in the basis
{e} = {ela €2, - - -, en}:
and let A,y = ||b;;|| be the matrix of the same form in the basis

fy={ute-- o Sad

(i, k =1,2,...,n). Assuming that the transformation from one basis to
the other is described by the formula

S :jgpg”ea' (i=12...,n)
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with the transformation matrix P = ||p{(, we have
n i n
b = AU f) = A( S % 3, Ve
§= =1

n n
_ (i) (k) _ (4)_ (k)
= 2 pi pA(e, €)) _;; IPf Py aj.

jui=1

This formula can be written in the form

by =E E P?’lanl’;“, 4

j=1]=1

where p#" = p{#) is an element of the matrix P’ which is the transpose of P.

Equation (4) corresponds to the following relation between matrices (see
Sec. 4.43):
Ay =P’ AP ©)

b. Since the matrices P and P’ are nonsingular, it follows from Corollary
4.67 that the rank of the matrix 4, equals the rank of the matrix 4,, i.e.,
the rank of the matrix of a bilinear form is independent of the choice of a basis.
Hence it makes sense to talk about the rank of a bilinear form. A bilinear form
A(x, y) is said to be nonsingular if its rank equals the dimension n of the
space K,,.

c. Let A(x, y) be a nonsingular bilinear form. Then, as we now show,
given any vector x, # 0, there exists a vector y, € K, such that A(x,, y,) # 0.
Suppose to the contrary that A(x,, y) = 0 for every y €K,, and construct a
basis ey, ey, . . . , €, in the space K, such that e, = x,. Then the matrix of
the form A(x, y) in this basis is such that

Qim = A(ela em) = A(x(h em) =0,

so that the whole first row of the matrix consists of zeros. But then the rank
of the matrix is less than n, contrary to the hypothesis that A(x, y) is non-
singular. This contradiction proves our assertion.

d. Note that a form A(x, y) which is nonsingular in the whole space K
may be singular in a subspace K’ < K. For example, the form

A(x, y)=Eym — Eonp

is nonsingular in the space R,, where x = (&,, &,), y = (M1, n2). However, it
vanishes identically in the subspace R; = R, where £, = &, (and 7, = 72).

e. It follows from (5) and Theorem 4.75 on the determinant of the product
of two matrices that

det A(, = det A, (det P)%. 6)
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7.2. Quadratic Forms

One of the basic problems of plane analytic geometry is to reduce the
general equation of a second-degree curve to canonical form by transforming
to a new coordinate system. The equation of a second-degree curve with
center at the origin x = 0, y == 0, has the familiar form

Ax? 4 2Bxy + Cy* = D. )
A coordinate transformation is described by the formulas
x = apx’ + apy,
y=anx" + apy,

where ay,, ay,, ay, a,, are certain numbers (usually sines and cosines of the
angle through which the axes are rotated). As a result of this coordinate
transformation, (7) takes the simpler form

A'x'* + B'y? = D.
An analogous problem can be stated for a space with any number of dimen-
sions. The solution of this and related problems is the fundamental aim of
the theory of quadratic forms, which we now present.
7.21. We begin with the following definition:

A quadratic form defined on a linear space K is a function A(x, x) of one
vector argument x € K obtained by changing y to x in any bilinear form
A(x, y) defined on K.

According to (3), in an n-dimensional space K, with a fixed basis {e} =

{e, €2, . . . , €,}, every quadratic form can be written as
n n .
A(x, x) = E zaiktn'ika ®
i=1g=1
where £, &,, ..., £, are components of the vector x with respect to the

basis {e}. Conversely, every function A(x, x) of the vector x defined in the
basis {e} by formula (8) is a quadratic form in x. 1n fact, we need only introduce
the bilinear form
B(x’ y) = z zaikiink’
i=1g=1

where %, 1, . . ., 1, are the components of the vector y with respect to the
basis {e}. Then the function A(x, x) is obviously just the quadratic form
B(x, x).
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7.22. We can write the double sum (8) somewhat differently by combining
similar terms. Let b,; = a;; and b;; = a;; + ay; (i = k). Then, since

a8 + apExls = (@i + ar)8iEr = bk iEs,

the double sum (8) can be written as

AG %) =3 3 bt

k=1i<k
and has fewer terms. It follows that two different bilinear forms

n

A(x, y) = Elauimk, C(x, y) = Z by
k=

i, i.k=1
can reduce to the same quadratic form after y is replaced by x. All that is
necessary is that a;; 4 ay; = ¢;; + ¢, for arbitrary i and k.

Thus, in general, we cannot reconstruct uniquely the bilinear form
generating a given quadratic form. However, in the case where it is known
that the original bilinear form is symmetric, it can be reconstructed. In fact,
if a;; = a;, then the relation a;; + a;; = by, (1 £ k) uniquely determines the
coefficients a;;, i.e.,

1 ;
QGix = @i = 5 by (i £ k), )
while for i = k we have
a;; = by, ©"
so that the bilinear form itself is uniquely determined. This assertion can
be proved without recourse to bases and components. In fact, we have

A 4y, x +y) = A(x, x) + A(x, y) + Ay, x) + A(, )

by the definition of a bilinear form, and
1 1
AW, p) = 5[A@, ») + AQ, 0)] = 5[Ax +y, x + ) — Alx, x) ~ A, )]

by the assumption that A(x, y) is symmetric. Hence the value of the bilinear
form A(x, y) for any pair of vectors x, y is uniquely determined by the values
of the corresponding quadratic form for the vectors x, y and x + y.

On the other hand, to obtain all possible quadratic forms, we need only
use symmetric bilinear forms. In fact, if A(x, y) is an arbitrary bilinear form,
then

1
Ai(x, y) = 5 [A(x, y) + A, %)]
is a symmetric bilinear form, and
A(x,x) = % [A(x, x) + A(x, x)] = A(x, x),

i.e., the quadratic forms A;(x, x) and A(x, x) coincide.
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7.23. These considerations show that in using bilinear forms to study
the properties of quadratic forms, we need only consider symmetric bilinear
forms, with corresponding symmetric matrices [laull, a4 = ay. By the
matrix of the quadratic form A(x, x), we mean the symmetric matrix 4 =
flall of the symmetric bilinear form A (x, y) corresponding to A(x, x). When
the basis is changed, the matrix 4 of the quadratic form A(x, x) transforms
just like the matrix of the corresponding symmetric bilinear form A(x, y), i.e.,

Ay = P'AmP’

where P is the matrix of the transformation from the basis {e} to the basis
{f}. In particular, the rank of the matrix of a quadratic form does not depend
on the choice of a basis. Therefore we can talk about the rank of a quadratic
form A(x, x), understanding it to mean the rank of the matrix of A(x, x) in
any basis of the space K,.. A quadratic form whose rank equals the dimension
n of the space K, is said to be nonsingular.

7.3. Reduction of a Quadratic Form to Canonical Form

7.31. Suppose we are given an arbitrary quadratic form A(x, x) defined
on an n-dimensional linear space K,,. We now show that there exists a basis
{fy=A{fvfe,. .. [fn} in K, such that given any vector

X = znkfk’
k=1
the value of the quadratic form A(x, x) is given by
A(x’ x) = )‘lnf + )“an + e + )‘nni’ (10)
where Ay, Ay, . . ., A, are certain fixed numbers. Every basis with this property
will be called a canonical basis of A(x, x), and the expression (10) will be
called a canonical form of A(x, x). In particular, the numbers A, 2,, ..., X,
will be called canonical coefficients of A(x, x).
Let {e;, €5, . . . , e,} be an arbitrary basis of the space K. If
X = zikek’
k=1

then, as we have already seen, A(x, x) can be written in the form

AG, %) =3 3batie (11)

k=11i<k
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According to Sec. 5.22, our assertion will be proved if we can write a system

M= pubs + prée + + Prakas

Ne = Parbs + pacbe + - + Pankns (12)

Nn =pn1£1 +pn2£2 + 4 Pnnin

with a nonsingular matrix P = ||p,| such that expressing the variables
N1, Nes -+ - » Ny appearing in (11) in terms of &, &, ..., &, has the effect
of transforming (11) into the form (10). We will carry out the proof by
induction on the number of variables £, actually appearing in (11), i.e., those
which have nonzero coefficients, assuming that every form containing m — 1
variables &, &, ..., &,_,, say, can be reduced to the canonical form (10)
with n = m — 1, by making a transformation (12) also with n = m — 1.

If (11) actually contains only one variable £,, say, i.e., if (11) has the
form

A(x’ x) = bllii

then the induction hypothesis is satisfied for any choice of p;; 7 0. Consider
a form (I11) which actually contains m variables &), &,, ..., £,. First we
assume that one of the numbers by,, by, . . . , by, say b,,,,, is nonzero, and
we group together all the terms in (11) which contain the variable £,,. This
group of terms can be written in the form

blmi]im + b2m£2£m + e + bm—l,mim—lim + bmmz:fn

blm bgm bm—l.m Y
=bmm( By, g tmey e VLA ), (13)

2bm 2bm 2bm

where A,(x, x) denotes a quadratic form which depends only on the variables
£, 825 - .. 5 by Now consider the coordinate transformation

T =&,
T = EZ;
Tm—l = Em—ly
— blm bzm .. bm—l.m
Tm = 2bmm El + 2bmm 22 + + 2bmm Em—l + Em‘

The matrix of this transformation is nonsingular (its determinant is actually
1). In the new coordinate system, A(x, x) clearly has the form
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where the quadratic form B(x, x) depends only on the variables t,, 1,, . . .
Tn_1. By the induction hypothesis, there exists a new transformation

N = puT1+ PreTe + °° + PrmaTm-1s
Ne = PaaT1 + PasTe + °°° + Prom—1Tm—1s (12

Nm—1 = Pm-11T1 + Pm-1.2T2 + *** + Pu—t,m1Tm—1s

with a nonsingular matrix P = | p; |, which carries B(x, x) into the canonical
form
B(x, x) = Aty + Agnz + 0 4 Al
If we supplement the system of equations (12') with the additional equation
fim = T, We obtain a nonsingular transformation of the variables T,, 75, . . .,
T,, into the variables 7, ,, . . . , 1,,, which carries A(x, x) into the canonical
form
A(x’ x) = B(x’ x) + bmm‘rzm = )‘lnf + )“an + e + )‘m—lnfn—l + bmmnfn'

According to Sec. 5.33, the direct transformation from the variables {£} to
the variables {7} is accomplished by using the matrix equal to the product
of the matrix of the transformation from {r} to {n} and the matrix of the
transformation from {£} to {t}.t Since both of these matrices are nonsingular,
the product of the matrices is also nonsingular.

We must still consider the case of a quadratic form A(x, x) in m variables
£, &sy ..., &, which has all the numbers by, by, .. ., b,,,, €qual to zero.
Consider one of the terms 5,,£,€, with a nonzero coefficient, say b,, 7 0.
Then carry out the following coordinate transformation, where for conve-
nience we write the transformation from the new variables to the old variables:

& =&+ &,

G=8& —&,
23 == E:’i’ (14)
Em =&

The determinant of the matrix of the transformation (14) equals —2, and hence
this transformation is again nonsingular. The term b;,£,&, is transformed into

b12£1£2 = blziiz - b12 éz,

so that two squared terms with nonzero coefficients are produced simultane-
ously in the new form. (Clearly these terms cannot cancel any of the other

+ {€} is shorthand for the set {&;, s, . . ., En}, {0} for the set {n1, M, . . ., Nm}, ELC.
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terms, since all the other terms contain a variable £} with i > 2.) We can
now apply our inductive method to the quadratic form (11) written in the
new variables £.

Thus, finally, we have proved our theorem for any integer m = 1,2, . ...
In particular, the case m = n suffices to prove the theorem for an arbitrary
quadratic form in an n-dimensional space.

The idea of our proof, i.e., consecutive splitting off of complete squares,
can be used as a practical method for reducing a given quadratic form to
canonical form. However, in Sec. 7.5 we will describe another method, which
permits us to obtain directly both the canonical form and the vectors of the
canonical basis.

7.32. Example. To reduce the quadratic form

A(x, x) = & + 688, + 587 — 46,8, — 126,8, + 485 — 45,8, — 8E,E, — &}
to canonical form, we first complete the square in the group of terms con-
taining £,, writing

m= & + 38 — 28,
Then the form is transformed into

A(x, x) =} — 48] — 45,8, — BEE, — &L
Next we complete the square in the group of terms containing &,, writing
N = 28, + &4
This reduces the form to
A(x, x) = 1] — 13 — 8L,
There are no squares of the variables £ and £,. Hence we write

&3 = "3 — N,
Ea =15+ N,

so that £3¢, = %2 — v2. Thus the form A(x, x) is reduced to the canonical
form

A(x, x) =13 — 1 — 8 + 8n}

by the transformation

o= & + 38, — 2&,,

N = 28, + &4,

N3 = €3 + 3E4,

N = —§E + 3,
It is apparent from the construction that this transformation is nonsingular,
a fact which is easily verified directly.
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7.33. a. Neither the canonical basis nor the canonical form of a quadratic
form is uniquely determined. For example, any permutation of the vectors
of a canonical basis gives another canonical basis. In Sec. 7.5 it will be shown,
among other things, that with a few rare exceptions a canonical basis for a
given quadratic form can be constructed by choosing an arbitrary vector of
the space as the first vector of the basis. Moreover, if A(x, x) is written in
the canonical form

A(x’ x) - )‘lnf + )‘an + -+ )‘nnia

where 7, s, ..., n, are the components of the vector x, then the trans-
formation

N = 7Ty,

Mg = %gTg,

nn = an‘rn

(where o, a,, ..., o, are fixed numbers all different from zero and t,, ~,,
., T, are new components) carries A(x, x) into the new form

A(x, x) = (M)t} + (eod)T + ¢ + (RaaiyTs,

which is also canonical but has different coefficients. Hence there still remains
the problem of describing all the canonical forms to which a given quadratic
form can be reduced. This problem can be made more precise if we restrict
the definition of a canonical form (as for example will be done in Sec. 7.93
for the case of a real space) or if we restrict the class of admissible coordinate
transformations (as for example will be done in Sec. 10.1 for the case of a
Euclidean space).

b. It should be noted that in the preceding example the number of non-
zero coefficients remains unchanged when we transform from the variables
{n} to the variables {t}. In general, the number of nonzero canonical
coefficients is obviously the rank of the matrix of the quadratic form in the
corresponding canonical basis. Since the rank of the matrix of a quadratic
form does not depend on the choice of a basis (Sec. 7.23), the number of
nonzero canonical coefficients of a quadratic form does not depend on the choice
of a canonical basis. Moreover, this number obviously coincides with the
rank of the quadratic form (Sec. 7.23). Thus from a knowledge of a quadratic
form A(x, x) in any basis {e}, we can predict the number of nonzero canonical
coefficients of A(x, x) in any canonical basis, namely the rank of A(x, x).
In particular, the canonical coefficients of a nonsingular quadratic form are
all nonzero in any canonical basis.
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7.4. The Canonical Basis of a Bilinear Form

7.41. a. The vector x, is said to be conjugate to the vector y, with respect
to the bilinear form A(x, y) if

A(xy, y,) = 0.
In this case, y, is also said to be conjugate to x,.
b. Let ||a, |l be the matrix of the form A(x, y) in any basis ey, e,, . .. , €,,.
Then, if

n n
x; =3 Eey Y1 =2 e
=1 k=1

the condition for x, and y, to be conjugate can be written in the form

n

AQxy, ) = 3 aglin, = 0.
k=1
c. If the vectors x,,X,, . .., x; are all conjugate to the vector y,, then
every vector of the linear manifold L(xy, x,, . . . , X;) spanned by x,, Xz, . . . ,
x, is also conjugate to y,. In fact, it follows from the properties of a bilinear
form that

A(oyxy 4 Xy + * 0+ Xy, Y1)
= 0 A(x, )1) + LAXe, y1) + 0+ AR 1) = 0.

A vector y, conjugate to every vector of a subspace K’ = K is said to be
conjugate to the subspace K'.

d. Theset K" of all vectors y; € K conjugate to the subspace K’ is obviously
a subspace of the space K. This subspace K" is said to be conjugate to K'.

7.42. A basis e, e, ..., e, of the n-dimensional space K, is called a
canonical basis of the bilinear form A(x, y) if the basis vectors are conjugate
to each other, i.e., if

Ae;,e) =0 for ik

For example, in the space V; let the bilinear form A(x, y) be the scalar
product of the vectors x and y. Then to say that x and y are conjugate with
respect to A(x, y) means that x and y are orthogonal. In this case, any
orthogonal basis of the space V3 is a canonical basis.

7.43. The matrix of a bilinear form relative to a canonical basis is
diagonal, since
a; = Ale;, e) =0 for ik
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Since a diagonal matrix coincides with its own transpose, a bilinear form
which has a canonical basis must be symmetric. (We recall from Sec. 7.14
that whether or not the matrix of a bilinear form is symmetric does not
depend on the choice of a basis.) Conversely, we now prove that every
symmetric bilinear form A(x, y) has a canonical basis. To sec this, consider
the quadratic form A(x, x) corresponding to the given bilinear form A(x, y).
We know that there exists a basis e, e,, ..., e, in the space K, in which
A(x, x) can be written in the canonical form

AGr, ) = 3 AE

It follows from formulas (9) and (9"), p. 184 that the corresponding symmetric
bilinear form A(x, y) takes the canonical form

A(x, y) = > AEM, (15)
=1
in this basis, where
y=2ne,

i=

and hence its matrix is diagonal. But this just means that the basis e, e, . . . ,
e, is canonical for the form A(x, y), and our assertion is proved.

7.44. In analytic geometry it is shown that the locus of the midpoints of
the chords of a second-degree curve which are parallel to a given vector is a
straight line. We now prove this theorem. A second-degree curve in the
X;Xy-plane has an equation of the form

2 2
@y Xy + 2a15%,X; + gaX3 + byxy + bpXy + ¢ =0
or

A, x) + L(x)+c=0,
where
A(x, X) = ay X} + 2a55%,%; + ago%3
is a quadratic form and
L(x) = byxy + byx,

is a linear form in the vector x = (x,, x;). Let x be the vector giving the
position of the midpoint of a chord parallel to a fixed vector e. This means
that the equations

A(x +te,x + te) + L(x + te) + ¢ =0,

(16)
A(x —te,x —te) + L(x —te) + ¢c=0
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are satisfied for some t + 0. Let A(x, y) be the symmetric bilinear form
corresponding to the quadratic form A(x, x). Then we can write (16) as

A(x, x) 4 2tA(x, ) + t?A(e, e) + L(x) + tL(e) 4+ ¢ = 0,
A(x, x) — 2tA(x, €) + t?A(e, ) + L(x) — tL(e) + ¢ = 0.
Subtracting the second equation from the first and dividing by 2z, we get
2A(x, e) + L(e) = 0. amn

This equation is linear in x and hence determines a straight line in the x;x,-
plane, thereby proving the theorem.
Let x” be another point of the same line, so that

2A(x", e) + L(e) = 0. (18)
Then subtracting (18) from (17), we get
A(x —x', ) =0,

i.e., the vector e and the vector x — x’ determining the direction of the
straight line in question are conjugate with respect to the bilinear form
A(x, y), in the sense of Sec. 7.41.

7.45. Let e, ..., e, be a canonical basis of the form A(x, y) in a k-
dimensional subspace K’ < K, and let ¢,,...,s, be the corresponding
canonical coefficients. Expressing the numbers A(x,e,) in terms of the
components of a vector x € K’, we get

13 k
Ak, e) = A(Sier &) =SEAC, &) = EAler e) =<
p: 2

so that the numbers A(x, e,) are uniquely determined by the components of
the vector x. If the form A(x, y) is nonsingular in the subspace K’, then the
numbers ¢, are all nonzero. In this case, the converse is also true, i.e., the
values A(x, e;) of the form A(x, y) uniquely determine the components of
the vector x.

7.5. Construction of a Canonical Basis by Jacobi’s Method

7.51. The construction of a canonical basis given in Sec. 7.31 has the
drawback that the components of the vectors of a canonical basis and the
corresponding canonical coefficients A, cannot be determined directly from a
knowledge of the elements of the matrix A(,, of the symmetric bilinear form
A(x, y) in a given basis {f} = {f1, f2, - . . , fo}. Jacobi’s method, which will
now be presented, does allow us to do just this. However, we must now
impose the following supplementary condition on the matrix A(,: The
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descending principal minors of A, of order up to and including n — 1, i.e.,
the principal minors of the form

an  ap
81=au, 3, = PN
a1 Qg
an aye Tt Qg
as 23] R s §
Oy = - , (19)
Qp1a Qpore " Qpoyp

must all be nonvanishing.

7.52. The vectors ey, e,, . . . , e, are constructed by the formulas
e =fy,
e = of"fy + 1o,

() (2)
es=oy fy + o5 fo + fs

............... (20)
W+ oy + B “;;k)fk + fer

Cry1 = 0

en =" "fy + "+ o+ a2 e S
where the coefficients ozf.’" (i=1,2,...,k;k=1,2,...,n—1) are still
to be determined. First of all, we note that the transformation from the

vectors fi, fz, - - -, fi to the vectors e, ey, . . . , €, is accomplished by using
the matrix

1 0 0 -0 0
0(;1) 1 0 R 0 0
g';k—l) m;k—‘l) M %(S” 1
whose determinant is unity. Hencefork = 1,2, ..., nthevectorsf;, fo, . . .,

fi can be expressed as linear combinations of e;, ey, . . . , ;, so that the linear
manifold L(f;, fz, - - . , f;) coincides with the linear manifold L(e,, e,, . . . , €)-

We now subject the coefficients «® (i = 1,2,...,k) to the condition
that the vector e,,; be conjugate to the subspace L(e;, e, .--,6€) A
necessary and sufficient condition for this is that the relations

A1, /1) = 0, A(eryr, f2) =0, ..., A(epy1, f) = O (21)
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be satisfied. In fact, it follows from (21) that the vector e,,, is conjugate to
the linear manifold spanned by the vectors f;, fz, . . . , f;, which, as we have
just proved, coincides with the linear manifold spanned by the vectors
ey, ey, . - ., & Conversely, if the vector e, is conjugate to the subspace
L(ey, e, . . . , &), it is conjugate to every vector in the subspace, in particular,
to the vectors f}, f, . . . , f4, so that the conditions (21) are satisfied.

Substituting the expression (20) for e, into (21) and using the definition
of a bilinear form, we obtain the following system of equations in the
quantities «/® (i=1,2,..., k):

Al i) = oPASL 1) + VAU ) + 0+ 0P AU £1) + Al i) =0,
A1, f2) = AL, fo) + dPAfe, f2) + 7 + PAS £2) + A fpar f2) = 0,

Alern f) = A fo) + A fo) + 1 + 0 Ao o) + Al ) =0-
22)
By hypothesis, this nonhomogeneous system of equations with coefficients

A(f. [;) =a;; Gj=12,...,k)

has a nonvanishing determinant, and hence can be solved uniquely. There-
fore we can determine the quantities «{*' and thereby construct the desired
vector e,,;. To determine all the coefficients «* and all the vectors e, we
must solve the appropriate system (22) for every k. Thus, in all, we must
solve n — | systems of linear equations.

Let £,, &,, ..., &, denote the components of the vector x and 7, 7,

., 7, the components of the vector y with respect to the basis ¢, e,, . .
e, just constructed. Then the bilinear form A(x, y) becomes.

Ax, y) = leiim,- (23)

in this basis.
7.53. To calculate the coefficients 2,, we argue as follows: Consider the
bilinear form A(x, y) only in the subspace L,, = L(e,, e;, . . . , e,) where

m < n. The form A(x, y) clearly has the matrix

ay Gzt Qi

dyy Az "0 Qg

Q1 Qpe " Apm
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in the basis f;, fo, . . . , f, of the subspace L,, and the matrix

N O - 0
0 2 -+ 0
0 0 - A,
in the basis ey, ey, . . . , e,,. As we have seen, the matrix of the transformation
(20) from the basis f;, fa, . . . , f, to the basis ey, e,, . . ., e,, has determinant
1. Hence by equation (6), p. 182 we must have
4 G2 . iy N O - 0
a1 Gz " oy 0 2 --- 0
det . . PN . = det . . DY . ’
Ap1 Amz """ Ayp 0 0 o )‘m

or, in the notation (19),
Sm=1Mhe A, (m=1,2...,n)
(8, = det 4(,). It follows immediately that

A =38, =ay, )\2=§, )\3=§3, Ceey )\n=8". (24)
81 82 n—1
Using (24), we can find the coefficients of the bilinear form A(x, y) in a
canonical basis without calculating the basis itself.

7.54. Consider once again the kth equation in the system (20), which we
write in the form

(k) e (k) —
S =—o fi — — o fy + €ry1 = 8k + €1y

where g, lies in the subspace L(f;,...,f;) and e, is conjugate to this
subspace. The coefficients «!®, ..., a® are uniquely determined by the
system (22) subject to the condition that det |A(f;, f)ll = 0 or, equivalently,
that the form A(x, y) be nonsingular in the subspace L(f;, . . . , f3). Since the
vector f, is arbitrary in this construction, then, writing

S=fi &=8k h = exy, L(fi,- -, o =K <K,
we arrive at the following

THEOREM. Suppose the bilinear form A(x, y) is nonsingular in a subspace
K’ < K, and suppose the vector f does not belong to K'. Then there exists a
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unique expansion
f=g+h (25)

where g € K' and h is conjugate to the space K'.

7.55. Let K" denote the subspace conjugate to the subspace K’ with
respect to the form A(x, y). Then the existence and uniqueness of the expan-
sion (25) shows that the whole space K is the direct sum of the subspaces K’
and K” (see Sec. 2.45). Thus, given a subspace K’ < K in which a bilinear
form A(x, y) defined on the whole space K is nonsingular, K can be written
as the direct sum

K=K 4K,

where K” is conjugate to K’ with respect to the form A(x, y).

7.6. Adjoint Linear Operators

7.61. Let (x, y) denote a fixed nonsingular symmetric bilinear form in
the space K,. Let A and B be linear operators acting in K,, and use the
formulas

Ax,y) = (Ax,»),  B(x,y) = (x,By)

to define functions A(x, y) and B(x, y) of two vector arguments x and y.
Then A(x, y) and B(x, y) are bilinear forms. In fact, it follows from the
definition of a linear operator (Sec. 4.21) and the definition of a bilinear
form (Sec. 7.11) that

A(x; 4 X2, ) = (A(x; + Xp), ¥) = (AXx; + Axy, y)
= (Axy, y) + (Axy, y) = A(xy, y) + A(xz ¥),
A(ax, y) = (A(ax), y) = (xAx, y) = a(Ax, y) = oA(x, ),

which shows that A(x, y) is linear in its first argument. Similarly, the

linearity of A(x, y) in its second argument is a consequence of the linearity of

(x, y)in y. Then A(x, y) is a bilinear form, and similarly so is B(x, y).
Next let e, ..., e, be acanonical basis of the form (x,y), so that

(o) =0 if j#k,
(e, e,) =e €K, e, 0.

We now compare the matrix of the operator A with that of the form A(x, y)
in this basis. The matrix [[a| of the operator A is defined by the formula

Ae, =Ya%, (i=1,...,n),
x=1
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where here (in contradistinction to the notation adopted in Sec. 4.23) the
superscript indicates the row number and the subscript the column number.
The matrix |la;,/| of the form A(x, y), where the first subscript indicates the
row number and the second the column number, is defined by the formula

am = Aless en) = (Aej, €) = (Za‘;’ek, em) = @) em em) =cnall. (26)
k=1

Hence the mth column of the matrix | a,, | is obtained (for everym =1, ...,

n) by multiplying the mth column of the matrix [[a%’| by the canonical

coefficient ¢,,, of the form (x, y). Similarly, for the matrix |5{ || of the operator

B (in the same basis ¢, .. ., e,) and the matrix [|b;] of the form B(x, y),

we get

b;m = B(e;, €,,) = (e;, Be,,)) = (e,, Elb;""e,,) = b (e;, ;) = ;6™, (27)
fo

ie., the jth row of the matrix ||b,,| is obtained (for every j =1, ..., n) by
multiplying the jth column of the matrix of the operator B by the correspond-
ing canonical coefficient ;.

7.62. Conversely, given two bilinear forms A(x, y) and B(x, y) in the
space K,,, we assert that there exist unique linear operators A and B such that

A(x,y) = (Ax, ), B(x,y)= (x, By). (28)

To show this, we specify A and B in the same basis ¢, . . . , e,, by the matrices
with elements

a(JM) = l A(e:i’ em)a b(JM) = L B(‘e:i’ em)’
€ g;
respectively. We then use these operators to construct the forms A,(x, y) =
(Ax, y) and By(x, y) = (x, By). It follows from Sec. 7.61 that the matrix
of the form A,(x, y) coincides with the matrix of the form A(x, y) in the
basis e, . . ., e,, while the matrix of the form B,(x, y) coincides with the
matrix of the form B(x, y). But then

(Ax, y) = Ay(x, y) = A(x,»),  (x,By) = By(x, y) = B(x, )

for arbitrary x, y € K,, (recall Séc. 7.13), so that the operators A and B satisfy
(28). To prove the uniqueness, we need only verify that if an operator A
satisfies the condition

(Ax, y) =0 for arbitrary x, ycK,, (29)

then Ax = 0 for every x €K,, so that A is the zero operator. Suppose
Axy #~ 0 for some x,€ K. Then, since the form (x, y) is nonsingular, it
follows from Sec. 7.15c¢ that there is a vector y, € K, such that (Ax,, y,) # 0.
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This contradicts (29) and establishes the required uniqueness of A. The
uniqueness of B is proved similarly.

7.63. We now prove the following important

THEOREM. Let (x, y) be a nonsingular symmetric bilinear form in the space
K,. Then, given any linear operator A acting in K,, there exists a unique
linear operator A’ acting in K,, such that

(Ax,y) = (x,A'y)

for arbitrary x, y € K. The matrix of the operator A’ in any canonical basis
of the form (x, y) is obtained from the matrix of A by transposition, followed
by multiplication of the mth row by the canonical coefficient ¢, and division
of the jth column by the canonical coefficient e; (j,m =1, ..., n).

Proof. We use the given operator A to construct the form A(x, y) =
(Ax, y), and then we define the operator A’ by the formula

(Ax,y) = A(x, y) = (x, A'y).

The existence and uniqueness of A’ follow from Sec. 7.62. In any canonical
basis of the form (x, y), the matrix |a%’| of the operator A, the matrix
lla;mll of the form A(x, y) and the matrix |a;™]| of the operator A’ are
related by formulas (26) and (27):

ai:") — aim , a;(m) — Qim .
. g5
It follows that
a; 3 ;
afm == =gl (30)
1o €;

¥ 7
The operator A’ is called the adjoint (or conjugate) of the operator A
with respect to the form (x, y).
7.64. The operation leading from an operator A to its adjoint A’ has

the following properties:

) (A’ = A for every operator A;

2) (A + B)' = A’ + B’ for every pair of operators A and B;
3) (AA) = AA’ for every operator A and every number A € K;
4) (AB)' = B'A’ for every pair of operators A and B.

To prove property 1), we use the formula
(x: (A)y) = (A'x, y) = (x, AY)

implied by the definition of (A")’, together with the uniqueness of the operator
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defined by a bilinear form (Sec. 7.62). The remaining properties are proved
similarly. Thus

(x, (A + B)y) = (A + B)x, y) = (Ax, ) + (Bx, »)
= (x,AY) + (x, BY) = (x, (A" + B)y)
implies property 2).
(%, 0A))) = (X, y) = NAX, y) = A(x, A¥) = (x, \A)
implies property 3), and
(x, (AB)'y) = (ABx, y) = (Bx, A’y) = (x, B'Ay)
implies property 4).

7.65. We point out another connection between the operators A and A’.
Suppose the subspace K’ < K, is invariant under the operator A. According
to Sec. 4.81, this means that the operator A carries every vector x € K’ into
another vector of the same subspace K’. Let K” be the subspace conjugate
to K’ (Sec. 7.55). Then K" is invariant under the adjoint operator A’. In
fact, suppose y € K’, so that (y, x) = 0 for every x e K'. Then (A’y, x) =
(v, Ax) = 0, since x € K’ implies Ax € K’. But this means that the vector
A’y is conjugate to every vector x € K’ and hence belongs to K", as required.

7.7. Isomorphism of Spaces Equipped with a Bilinear Form

7.71. Definition. Let K’ and K" be two linear spaces over the same
number field K. Suppose K’ is equipped with a nonsingular symmetric
bilinear form A(x’, y), while K” is equipped with a nonsingular symmetric
bilinear form A(x", y"). Then K’ and K" are said to be A-isomorphic if

1) They are isomorphic regarded as linear spaces over the field K (see
Sec. 2.71), ie., there exists a one-to-one mapping (morphism) wx’ = x”
preserving linear operations;

2) The values of the forms A(x ¥ and A(x y) coincide for all
corresponding pairs of elements x', ¥ and x” = wx’, y" = wy/, i.e.,

A, y) = A", p").

7.72. THEOREM. Given two finite-dimensional linear spaces K' and K',
suppose K' is equipped with a nonsingular symmetric bilinear form A(x’, y'),
while K" is equipped with a nonsingular symmetric bilinear form A(x", y").
Then K' and K" are A-isomorphic if and only if

a) They have the same dimension n;

b) There exists a canonical basis for A(x', y') in K’ and a canonical basis
Sfor A(x", y") in K" relative to which the two forms have the same set of canonical
coefficients e, . . . , e,
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Proof. Suppose K’ and K" are A-isomorphic. Then they are isomorphic
as linear spaces and hence have the same dimension, say »n (see Sec. 2.73d).
Ife],..., e, is a canonical basis for the form A(x’, y') in the space K', then

L, 0 if i+£j,
A(ey, €) = e .
g if i=j.
Let e}, ..., e} be the vectors in K" corresponding to the vectors e, . .. , e,
in K’ under the given A-isomorphism. By hypothesis,
) 0 if iz},
A(we), wej) = Alef, € =)
g; if i=j.
Thus e}, . .., e} is a canonical basis for A(x”, ") in the space K". Moreover,
A(x", ") has the same canonical coefficients ¢,, . .. , €, in the basis ], . . .,
e, as A(x, y') has in the basis e], . . . , e;.

Conversely, suppose K’ and K" have the same dimension n, and let
e,...,e,cK and e],...,e, K" be canonical bases with the same
canonical coefficients «,, . . . , ¢, so that

’ "o 0 lf i # j’
A(e;, €]) = A(ef, €)) = e ..
g if i=j.
Given any vector
n
x' =3 e
i=1

in K’, let
n
x" = w(x) =Y Lel
i=1

(with the same components &,, .. ., £,) be the corresponding vector in K”.
This correspondence defines an isomorphism « of the spaces K’ and K" (see
Sec. 2.73d). Moreover, if

yo=2me Y= e() =3 el
then -

n

A(X', y) = 2 adme = AKX, y"),

=1

so that the isomorphism  is an A-isomorphism. ||

7.73. Given an n-dimensional space K, equipped with a nonsingular
symmetric bilinear form A(x, y), consider an A-isomorphism of K,, i.e., an
invertible linear mapping y = Qx which does not change the form A(x, y)
in the sense that

AQx, Qy) = A(x, y). @3
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We will henceforth denote A(x, y) simply by (x, y). If Q' is the adjoint of
the operator Q with respect to the form (x, y), then

(Qx, Qy) = (Q'Qx, ). (32)
It follows from (31) and (32) that
QQ=E, (33

and hence that Q' is the inverse of the operator Q (since Q is nonsingular,
so is Q).

Conversely, (33) implies (32) and then (31), so that the condition (33)
completely specifies the class of operators which do not change the form
(x, y). These operators are said to be invariant with respect to the form (x, y).

7.74. If Q is invariant, then so is the inverse operator Q! = Q’, since

(Q’xa Qly) = (QQ’xa Y) = (xa y)

for every x and y. The product of two invariant operators Q and T is also
an invariant operator, since

(QTx, QTy) = (Tx, Ty) = (x, )
for every x and y.

7.75. Lete,, .. . , e, be a canonical basis of the form (x, y), with canonical
coefficients ¢,, . . . , €,. Then, applying an invariant operator Q to the vectors
e, ..., e, we get the vectors

fi=0Qe, ..., [, =Qe, (34
where
g; if j=k,
(i i) = (Qe;, Qar) = (e, ) = 0 if j£k
Thus f;, ..., f, is also a canonical basis of the form (x, y), with the same
canonical coefficients g5, . . . , g,
Conversely, if fi, . .., f, is a canonical basis of the form (x, y) with the
same canonical coefficients ¢;,..., ¢, as the basis e,;,...,e,, then the
operator Q defined by (34) is invariant. In fact,

g; If j=k,

. = R = (e, =
(Qe,, Qek) (fJ’fk) ( J’ek) {0 if j# k,
and hence (31) holds for any pair of basis vectors. But then, by the linearity,
(31) holds for arbitrary vectors x, y € K, as required.

Thus an invariant operator Q is characterized by the fact that it carries
every canonical basis of the space K, (with respect to the form (x, y)) into
another canonical basis with the same canonical coefficients.
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7.76. We now find conditions characterizing the matrix of an invariant

operator Q in a canonical basis of the form (x, y). Lete,, ..., e, be such
a basis, and let <;,...,¢, be the corresponding canonical coefficients.
Moreover, let Q = |lg{’|| be the matrix of Q in the basis ey, . .., e,. Then,

according to Sec. 7.63, the matrix of the adjoint operator has the form

13 & G
Q' =g/, g =g

In terms of matrix elements, we can write equation (33) as

zq;(:) (2) __ Z q(z) @y __ s(k) 1 if j=k,
i-1g; 0 if j#k
In other words,
|
z q(n Gy _ E_, if j=k (35)
0 if j=k

Equation (35) is equivalent to (33), and can also serve as the definition of an
invariant operator Q.

Thus an invariant matrix, i.e., the matrix of an invariant operator in any
canonical basis of the form (x, y), is characterized by the fact that the sum
of the squares of the elements of its jth column taken with coefficients
el ..., g, equals the number g5 (j=1,...,n), while the sum of the
products of the corresponding elements of two different columns also taken
with the coefficients ¢%,..., ¢! equals zero. Since (33) also implies
QQ’ = E, we also have the relations

n
ey __ N S ) (m) __ s03)
Zq’ m =2 Fa " =387,

r=1€,,
or
25 q(a) (m) __ & if J=m (35/)
0 if j£m. ‘

This gives another characterization of an invariant matrix, namely the sum
of the squares of the elements of its jth row taken with coefficients ¢, ... , ¢,
equals the number ¢; (j = 1, ..., n), while the sum of the products of the
corresponding elements of two different rows also taken with the coefficients
€15 . .., €, equals zero.

*7.8. Multilinear Forms

7.81. By analogy with bilinear forms we can consider linear functions of
a larger number of vectors (three, four or more). All such functions are
called multilinear forms.
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Definition. A function A(xy, . .., x;) of k vector arguments x,, ..., X;
varying in a linear space K is called a multilinear (more exactly, a k-linear)
form if it is linear in each argument x; (j = 1, ... , k) for fixed values of the
remaining arguments Xy, . . . , X;_1, Xj.1, + - - , X3 A multilinear form
A(xy, ..., x) is called symmetric if it does not change when any two of its
arguments are interchanged, and antisymmetric if it changes sign when any
two of its arguments are interchanged.

An example of an antisymmetric multilinear form in three vectors x, y
and z (a trilinear form) of the space ¥ is the mixed triple product of x, y and
2.t An example of an antisymmetric multilinear form in n vectors

Xy = (G11, G125 + + + s A1)y
Xy == (Ga15 Qs - - - 5 Azn)s
Xy = (anlv Apas - H] ann)

of an n-dimensional linear space K, 1 is the determinant

an Gy vt Qip
Az Gy QA

A(Xy, Xgy o0y X,) = ™. 36)
Ap Qe " Ay

A somewhat more general example is the product of the determinant (36)
with a fixed number A € K.

7.82. We now show that every antisymmetric multilinear form
A(xy, Xg, . .05 Xy)

in n vectors X, Xy, . . . , X, of an n-dimensional linear space K, with a fixed
basis ey, ey, . . . , e, equals the determinant (36) multiplied by some constant
re kK.

Let A denote the quantity A(e;, e,, . . . , e,). Then we can easily calculate
the quantity A(e;,e,,, - .., e;) where iy, iy, ..., i, are arbitrary integers
from 1 to n. If two of these numbers are equal, then A(e;, e;,, ..., ¢;)
vanishes, since on the one hand it does not change when the arguments
corresponding to these numbers are interchanged, while on the other hand it
must change sign because of the antisymmetry property. If all the numbers
iy, igs . . ., Iy are different, then by making the same number of interchanges

t Le., (x, y X z) where (,) denotes the scalar product and X the vector product.
1 By x, = (@11, a1z, - - - , d1x) WE MeEAN X = ay,€; + A12€3 + * * * 4 A1y, Where ¢y, e,
. , e, is a fixed basis in K,, and so on.
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of adjacent arguments as there are inversions in the sequence of indices
iys g, - -, Ip, We can cause the arguments to be arranged in normal ordert;
let the required number of interchanges be N. Then we have

Ale;, €. .5 €)= (— 1)
Now let

X; = a.e; i=12...,n)
j=1

be an arbitrary system of n vectors of the space K,, and consider the
multilinear form

n n n
Ay, Xp, . 2Ly X)) = A( Z 16,855 z A24,€ip> + + + » z am,,ei,.)
i1=1 is=1 :

ip=1
n
= Z ay;,Qg;, " " Qi Al €4, - .-, ;)
f1adgl e aein=1

n
=x 2 (—D)%ay,a0, " " " @i
i1.8g, ... p=1
Since in each term of the last sum, N denotes the number of inversions in the
arrangement of the second subscripts of the elements a;; when the first
subscripts are in normal order, it follows that each term is one of the terms
in the determinant (36) with the appropriate sign. Hence the sum of all the
terms is just the determinant (36), and our assertion is proved.
In particular, this shows that the mixed triple product of three vectors
x, y and z of the space V; in any basis can be written as the third-order
determinant made up of the components of x, y and z, taken with a coefficient
equal to the triple product of the basis vectors.

7.9. Bilinear and Quadratic Forms in a Real Space

7.91. Every real number has a definite sign (4 or —), and hence the
theory of bilinear and quadratic forms in a real space can be carried some-
what further than in a space over an arbitrary field K. According to the
general theory of Sec. 7.31, a quadratic form A(x, x) can be reduced in some
basis to the canonical form

A(x, X) = A 4 Mg + 7+ A

where the number of nonzero coefficients Ay, Ae, - - - , A,, equal to the rank
of the form A(x, x) (Sec. 7.33b), does not change when the canonical basis
is changed. These coefficients are either positive or negative. It turns out

t Cf. the proof of Theorem 4.54.



SEC. 7.9 BILINEAR AND QUADRATIC FORMS IN A REAL SPACE 205

that changing the canonical basis also has no effect on the total number of
positive coefficients and the total number of negative coefficients:

THEOREM (Law of inertia for quadratic forms). If a quadratic form
A(x, X) in a real space is written in canonical form, the total number of positive
coefficients and the total number of negative coefficients are invariants of the
Jorm, i.e., do not depend on the choice of the canonical basis.

Proof. Suppose A(x, x) has the form

A(x, x) = ' glaikiiik

in the basis {e} = {e,, e;, ..., e,}, where &}, &, . .., &, are the components
of the vector x with respect to {e}. Suppose A(x, x) has two canonical bases
{(f1={fsfos -5 [r)and {g} = {g1, g2» - - - > gn}- Letny, M, ..., n,denote
the components of x with respect to the basis {f}, and let T, 75, ..., 7,
denote the components of x with respect to the basis {g}. Let the corre-
sponding transformation formulas be

M= by + bbe + -+ bikas
N = boyly + bgols + - - - + b2k,

(37
nn = bnlil + bnziz + e + bnniﬂ
and
Ty=cpb + el + 0+ nds,
Ty = Cpby + o + 0+ 28
(37

Tn = cnlil + aniz + e + “nnans

where the matrices ||b,|| and |ic;! are nonsingular. In the basis {f}, A(x, x)
has the form

A(x, %) = ognf + <+ + agny, — °‘»+mi+1 — = (38)
while in the basis {g} it has the form

AQx, x) = Byt + 0+ BTy — BTy — 0 — BeTe (39
where the numbers «y,...,a,,8,,...,B8, are assumed to be positive.
We wish to show that k = p, m = q. Equating the right-hand sides of (38)

and (39), and transposing negative terms to opposite sides of the equation,
we obtain

amf + -+ %mi + Bm)"-'fzﬂ + 4 Ba""za
=M+t St BT+ 4 BT (40)
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Now suppose k <C p, and consider the vectors x which satisfy the conditions

n1:09n2:07"-9nk=0*

Tpr1=0,...,1,=0,7,,,=0,...,7,=0.

G

There are clearly less than n of these conditions, since k << p. Using (37)
and (37') to express ..., Mg, Ty, ... > T, in terms of the variables
&1 &2, - - -, &,. we obtain a homogeneous system of linear equations in the
unknowns &;, &, ..., £,. The number of equations is less than the number
of unknowns, and therefore this homogeneous system has a nontrivial
solution x = (§;, &, ..., £,). On the other hand, because of (40), every
vector x satisfying the conditions (41) also satisfies the conditions

T, =Tp="'""=1,=0.
However, since det |lc, || == 0, any vector x for which

TIZTZ="'=Tﬂ:‘rr+1="':‘rn=0

must be the zero vector, with all its components &;, &, ..., £, equal to
zero. Thus the assumption that k£ < p leads to a contradiction. Because of
the complete symmetry of the role played by the numbers k and p in this
problem, the assertion p < k also leads to a contradiction. It follows that
k = p. Moreover, examining the conditions

737=0,7,=0,...,7,=0,

N1 =0,...,%,=0,1,,=0,...,7,=0,

we can use the same argument to show that m < ¢ is impossible and hence,
by symmetry, that ¢ << m. Thus we finally find thatk = p, m =gq. |

7.92. The total number of terms appearing in the canonical form of a
quadratic form A(x, x), i.e., its rank (see Sec. 7.33b), is also called its index
of inertia. The total number of positive terms is called the positive index of
inertia, and the total number of negative terms is called the negative index
of inertia. 1f the positive index of inertia equals the dimension of the space,
the form is said to be positive definite. In other words, a quadratic form
A(x, x) is positive definite if and only if all 7 of its canonical coefficients are
positive. It follows that a positive definite quadratic form takes a positive
value at every point of the space except the origin of coordinates.

Conversely, if a quadratic form defined on an n-dimensional real space
takes positive values everywhere except at the origin, then its rank is » and
its positive index of inertia is also a, i.e., the form is positive definite. In
fact, for a form of rank less than »n or with less than n positive canonical
coefficients, it is easy to find points in the space other than the origin where
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the form takes either the value 0 or negative values. For example, the
quadratic form

Apx,x) =& + &
of rank 2 in a three-dimensional space takes the value O for any nonzero
vector with components &, = 0, &, # 0, & = 0. For these vectors the form

Alx,x) =& — & + &
of rank 3 in a three-dimensional space takes negative values. Clearly, these
examples illustrate the full generality of the situation.

7.93. The law of inertia just proved for quadratic forms generalizes
immediately to the case of symmetric bilinear forms, i.e., the total number
of positive coefficients and the total number of negative coefficients in the
canonical form (22) of a symmetric bilinear form A(x, y) is independent of
the choice of a canonical basis. Thus the positive and negative indices of
inertia are well-defined concepts for a symmetric bilinear form. The values
of the positive and negative indices of inertia of the bilinear form A(x, y)
and hence of the quadratic form A(x, x) can be determined from the signs
of the descending principal minors of the matrix of the form in any basis
(provided only that the minors are nonzero) by using the formulas (24), p. 195.

1t should be noted that given any quadratic form A(x, x) in a real space
R,, a canonical basis can always be found such that the corresponding canonical
coefficients can only take the values +1. Infact, having reduced A(x, x) to the
form

AG, x) =Mt + 0 F A — Wl — 0 — Beleee

where the numbers A, ..., 2., i, ..., 4 are all positive, we make another
coordinate transformation

Tl = \/)‘1 '41, EEEREN T'p = \/)‘11 ‘%, Ta)+1 = \/y'l ‘%+1a L) TaH—q = \/y'a 7]11+q9
thereby reducing A(x, x) to the form

A ) =T 4 T T = T
This shows that in a real space the numbers p and q are the only invariantst

of the quadratic form A(x, x) and the corresponding symmetric bilinear form
A(x, ).

THEOREM. Two finite-dimensional real spaces R’ and R”, equipped with
nonsingular symmetric bilinear forms A(X', y') and A(x", y"), respectively, are
A-isomorphic if and only if they have the same dimension and the indices of

t Apart from any function of p and ¢ (like the rank r = p + ¢), which is obviously
an invariant of A(x, x) and A(x, ).
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inertia p’, q' of the form A(x', y') coincide with the corresponding indices of
inertia p”, q" of the form A(x", y").

Proof. An immediate consequence of the above considerations and
Theorem 7.72. |

7.94. Let A(x, y) be a symmetric bilinear form in a real space R,. Then,
as in Sec. 7.15b, A(x, y) is said to be nonsingular if its rank equals the dimension
of the space, i.e., if all the coefficients A, 25, . . . , A, in the canonical form

Alx, ) = MEm + 2l + -+ MEm,

(see Sec. 7.43) are nonzero. Suppose that in addition all the coefficients
Aus Agy . .. 4 A, are positive, so that the corresponding quadratic form A(x, x)
is positive definite (see Sec. 7.92). Then the bilinear form A(x, y) is said to
be positive definite. Thus, according to Sec. 7.92, A(x, y) is positive definite
if and only if the corresponding quadratic form A(x, x) takes a positive
value for every nonzero vector x.

By its very definition, a positive definite form A(x, y) in a space R, is
nonsingular. But, because of the fact that A(x, x) > 0, a positive definite
form A(x, y) remains positive definite in any subspace R’ = R,. Hence a
positive definite bilinear form, unlike the general bilinear form (see Sec.
7.15d), remains nonsingular in any subspace R’ < R,. Thus, given any k
linearly independent vectors f;, . . . , f;, the determinant

AL ) - ALY
D = . .

A(ff) - AUt

must be nonzero. We will see in a moment that D must in fact be positive.

7.95. An important example of a symmetric positive definite bilinear
form in the space V; is given by the scalar product (x, y) of the vectors x and
». In fact, it follows at once from the definition of the scalar product that

(x, )=, %),
(x,x)=1x2>0 for x3s0.

The first of these relations shows that the bilinear form (x, y) is symmetric,
while the second shows that the corresponding quadratic form takes a positive
value for every vector x = 0. Thus the bilinear form (x, y) is positive
definite.

Positive definite bilinear forms will play a particularly important role
below. In fact, by using such forms we will be able to introduce the concepts
of the length of a vector and the angle between two vectors in a general
linear space (Chap. 8).
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7.96. The problem now arises of how to use the matrix of a symmetric
bilinear form A(x, y) to determine whether or not A(x, y) is positive definite.
The answer to this problem is given by the following

THEOREM. A necessary and sufficient condition for the symmetric matrix
A = |lagll to define a positive definite bilinear form A(x,y) is that the
descending principal minors

a4y 412 43
an  ap

a, slan @y am|, ..., detlla,l (42)

QA Qg
Qg dagz Qagg

of the matrix |la,| all be positive.

Proof. If the principal minors (42) of the matrix A are all positive, then
by the formulas (24), p. 195, all the canonical coefficients 2, of the form
A(x, y) are also positive in some basis, i.e., A(x, y) is positive definite.

Conversely, suppose the form A(x, y) is positive definite. Then the
descending principal minors (42) of the matrix |a,| are positive. In fact,
the principal minor

au G2 . Qi

a a eea
M=% 22 2m

Am1 Amz """ Qmm

corresponds to the matrix |a,ll (i, k =1,2,..., m) of the bilinear form
A(x, y) in the subspace L,, spanned by the first m basis vectors. Since A(x, y)
is positive definite in the subspace L,, (A(x, x) > 0 for x # 0), there exists a
canonical basis in L,, in which A(x, y) can be written in canonical form with
positive coefficients. In particular, the determinant of A(x, y) in this basis is
positive, being equal to the product of the canonical coefficients. Bearing in
mind the relation between determinants of a bilinear form in different bases
(equation (6), p. 182), we see that the determinant of A(x, y) in the original
basis of the subspace L,, is also positive. But the determinant of A(x, y) in the
original basis of L,, is just the minor M. It follows that M > 0. J

Remark. In the second part of the proof, we could have taken M to be
any principal minor instead of a descending principal minor, without
changing the argument in any essential way. Thus every principal minor of
the matrix of a positive definite bilinear form is positive.

7.97. For a positive definite form A(x, y) there always exists a canonical
basis e,, . .., e, in which all the canonical coefficients equal 41 (see Sec.
7.93). Hence two n-dimensional real spaces R, and R equipped with
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positive definite forms A(x", ) and A(x", y"), respectively, are A-isomorphic,
by Theorem 7.72.

7.98. The solution of the following problem is often needed in applications
of linear algebra to analysis (i.e., in the theory of conditional extrema):
Given the matrix 4 = |a;| of a symmetric bilinear form A(x, y), determine
whether the form is positive definite in the subspace specified by the system
of k independent linear equations

b8 =0 (i=1,2.. ., kk<n).
i=1

It turns out that a necessary and sufficient condition for this to be the case
is that the descending principal minors of orders 2k 4+ 1,2k +2,...,
k 4+ n of the matrix

0 0 -+ 0 by by - by,
0 0 e 0 b21 by - bag
Ao ( 1)1 0 0 e 0 bkl bk2 e bkn
by by 0 by an an o ay,
by by v b an an 0 G,
bln b2n T bkn Apy Qnz "' Gy,

be positive, under the assumption that the rank of the matrix ||5,;|| equals k
and that the determinant made up of the first k columns of |5, is non-
vanishing.t

PROBLEMS

1. Do the elements of the matrix of a bilinear form constitute a tensor (Sec. 5.61),
and if so, of what type?

2. Reduce the quadratic form
E18p + By + 5%
to canonical form,

3. Let p be the positive index of inertia of a quadratic form A(x, x) (defined on
the space R,,), and let ¢ be its negative index of inertia. Moreover, let A, 2, . . .,
2, be any p positive numbers and y,, s, . . . , i, any 4 negative numbers. Show
that there exists a basis in which the form A(x, x) takes the form

ACL,x) =72+ - 0T 4+l o T

t See the note by R. Y. Shostak, Uspekhi Mat. Nauk, vol. 9, no. 2 (1954), pp. 199-206.
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4. Show that the matrix of a quadratic form of rank r always has at least one
nonvanishing principal minor of order r.

5. Reduce the bilinear form
A(x,y) = &0y + Eymp + S9my + 259m + 28ymg + 2837y + 5Zgmg
to canonical form.

6. Apply Jacobi’s method to reduce the bilinear form
A, y) =&y — &y — Bamy + Eymg + Egmy + 28amg + 283mp + Eymy + 4 Eame
to canonical form.

7. State the conditions under which a symmetric matrix {|a.; | defines a negative
definite bilinear form.,

8. Given a symmetric matrix 4 = {la;|l with the properties

a4, 42

ay, >0, >0,...,det llagl >0,

a1 Gz
show that a,, > 0.

9. Prove that an antisymmetric multilinear form in n 4 1 vectors of an n-
dimensional space K, vanishes identically.

10. Let A(x,, ..., x,_,) be an antisymmetric multilinear form in n — 1 vectors
of an n-dimensional space. Prove that A(xy, ..., x,_;) can be written in any
basis as a determinant whose first # — 1 rows consist of the components of the
vector arguments and whose last (nth) row is fixed.

11. Prove that every antisymmetric bilinear form A(x, y) 3£ 0 can be reduced
to the canonical form

A(x, y) = 0,7y — 07y + 037y — G375 T 0 F Gy Tap — SopTar_y
12. Prove that a real quadratic form

n
A(x, x) = z anti&s
ik=1

is nonnegative for all x R, if and only if al/ principal minors of the matrix
A = llazll are nonnegative.
Comment. The descending principal minors 8; and 3, vanish for the matrix

0 0
0 —1

s

but the corresponding form fails to be nonnegative. Thus the conditions
3; > 0, 3, > 0 are not sufficient for nonnegativity of the form.
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13. Let A(x, y) be a nonsingular symmetric bilinear form in an n-dimensional
space K, and let K’ < K, be a subspace of dimension r. Prove that the space
K" < K conjugate to K’ with respect to A(x, y) is of dimension n — r.

14. Consider the symmetric bilinear form
G, p) = &my — &ame

in the space R,. Find the operator which is the adjoint with respect to this form
of the rotation operator with matrix

cos «  sin a«
A=

—sina« cos «

15. Let (x, y) be a nonsingular quadratic form in the space K,. For the system
7
zajka-l' :bj (_]: 1,2,...,”) (43)
k=

of n linear equations in » unknowns, prove Fredholm’s theorem which asserts
that the system (43) has a solution for precisely those vectors b = (by, . . . , by)
which are conjugate to all the solutions of the homogeneous system

n
S afym =0, @)
k=1

where lla, || is the matrix conjugate to |la;,/| with respect to the form (x, y).
From this deduce that the number of independent linear conditions on the vector
b which are necessary and sufficient for the system (43) to have a solution
equals the dimension of the space of solutions of the homogeneous system

Yapk =0 (J=12,...,n)
k=1

Comment. For a general system
Sapfe=b, (j=12...,m#n), @3
the two quantities in question no longer coincide, and their difference, equal

to m — n, is called the index of the system (43).

16. Prove that every nonnegative bilinear form of rank r in the space R,, can be
represented as a sum of r nonnegative bilinear forms of rank 1.

17. Prove that every bilinear form of rank 1 in the space K, is of the form

Ax, y) = fxX)g0),

where f (x) and g(y) are linear forms.
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18. Prove that if
n
AQx,y) = 2 apkm

Frke=1
and

B(x, y) = z by Eymy
J k=1

are nonnegative bilinear forms in the space R, then the form

Cix,») = Y apbptm

F k=1
is also nonnegative,

213



chapter 8

EUCLIDEAN SPACES

8.1. Introduction

The explanation of a large variety of geometric facts rests to a great
extent on the possibility of making measurements, basically measurements of
the lengths of straight line segments and the angles between them. So far,
we are not in a position to make such measurements in a general linear space;
of course, this has the effect of narrowing the scope of our investigations.
A natural way to extend these “‘metric”” methods to the case of general
linear spaces is to begin with the definition of the scalar product of two
vectors which is adopted in analytic geometry (and which is suitable as of
now only for ordinary vectors, ie., elements of the space V; introduced in
Sec. 2.15a). This definition reads as follows: The scalar product of two vectors
is the product of the lengths of the vectors and the cosine of the angle between
them. Thus the definition already rests on the possibility of measuring the
lengths of vectors and the angles between them. On the other hand, if we
know the scalar product for an arbitrary pair of vectors, we can deduce the
lengths of vectors and the angles between them. In fact, the square of
the length of a vectorequals the scalar product of the vector with itself, while the
cosine of the angle between two vectors is just the ratio of their scalar product
to the product of their lengths. Therefore the possibility of measuring
lengths and angles (and with it, the whole field of geometry associated with
measurements, so-called “metric geometry”), is already implicit in the
concept of the scalar product. In the case of a general linear space, the
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simplest approach is to introduce the concept of the scalar product of two
vectors, and then use the scalar product (once it is available) to define
lengths of vectors and angles between them.

We now look for properties of the ordinary scalar product which can be
used to construct a similar quantity in a general linear space. For the time
being, we restrict ourselves to the case of real spaces.

As already noted in Sec. 7.95, in the space ¥, the scalar product (x, y) is
a symmetric positive definite bilinear form in the vectors x and y. Quite
generally, we can define such a form in any real linear space. Thus we are
led to consider a fixed but arbitrary symmetric positive definite bilinear
form A(x, y) defined on a given real linear space, which we call the ““scalar
product” of the vectors x and y. We then use the scalar product to define
the length of every vector and the angle between every pair of vectors
by the same formulas as those used in the space V3. Of course, only
further study will show how successful this definition is; however, in
the course of this and subsequent chapters, it will become apparent that with
this definition we can in fact extend the methods of metric geometry to general
linear spaces, thereby greatly enhancing our technique for investigating
various mathematical objects encountered in algebra and analysis.

At this point, it is important to note that the initial positive definite
bilinear form can be chosen in a variety of different ways in the given linear
space. The length of a vector x calculated by using one such form will be
different from the length of the same vector calculated by using another form;
a similar remark applies to the angle between two vectors. Thus the lengths of
vectors and the angles between them are not uniquely defined. However, this
lack of uniqueness should not disturb us, for there is certainly nothing very
surprising about the fact that different numbers will be assigned as the
length of the same line segment if we measure the segment in different units.
In fact, we can say that the choice of the original symmetric positive definite
bilinear form is analogous to the choice of a *“unit’’ for measuring lengths of
vectors and angles between them.

A real linear space equipped with a “unit” symmetric positive definite
bilinear form will henceforth be called a Euclidean space, while a linear
space without a “unit’’ form will be called an affine space. The case of complex
linear spaces will be considered in Chapter 9.

8.2. Definition of a Euclidean Space

8.21. A real linear space R is said to be Euclidean if there is a rule assigning
to every pair of vectors x, y € R a real number called the scalar product of
the vectors x and y, denoted by (x, y), such that

a) (x,y) = (y, x) for every x, y € R (the commutative law);
b) (x,y + 2) = (x, y) + (x, z) for every x, y, z € R (the distributive law);
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©) (Ax,y) = Mzx, y) for every x, y € R and every real number ;
d) (x,x) > 0 for every x s~ 0 and (x, x) = 0 for x = 0.

Taken together, these axioms imply that the scalar product of the vectors x
and y is a bilinear form (axioms b) and c¢)), which is symmetric (axiom a))
and positive definite (axiom d)). Conversely, any bilinear form which is
symmetric and positive definite can be chosen as the scalar product.

Since the scalar product of the vectors x and y is a bilinear form, equation
(2) of Sec. 7.1 holds, and in the present case becomes

k m k. m
(z oeXe, 3, def) =2 DaiBxs, ¥y, 1
F=1 j=1 t=1 =1
where Xy, ..., X, Y1, ..., Y are arbitrary vectors of the Euclidean space
R,and «;, ..., o, By, ..., B, are arbitrary real numbers.

8.22. Examples

a. In the space V; of free vectors (Sec. 2.15a), the scalar product is
defined as in the beginning of Sec. 8.1, and axioms a)-d) express the familiar
properties of the scalar product, proved in vector algebra.

b. In the n-dimensional space R, (Sec. 2.15b) we define the scalar product
of the vectors x = (&, &, ..., &,)and y = (7, %2, . . . , M,) by the formula

@ =8m+ 8+ + & @

This definition generalizes the familiar expression for the scalar product of
three-dimensional vectors in terms of the components of the vectors with
respect to an orthogonal coordinate system. The reader can easily verify
that axioms a)-d) are satisfied in this case.

We note that formula (2) is not the only way of introducing a scalar
product in R,. A description of all possible ways of introducing a scalar
product (ie., a symmetric positive definite bilinear form) in the space R,
has essentially already been given in Sec. 7.96.

c. In the space R(a,b) of continuous real functions on the interval
a <t < b (Sec. 2.15¢c), we define the scalar product of the functions x =
x(t) and y = y(t) by the formula

b
x, ) = f x()(0) dt. 3)

Axioms a)-d) are then immediate consequences of the basic properties of
the integral. Henceforth the space R(a, b), with the scalar product defined
by (3), will be denoted by Ry(a, b).

8.3. Basic Metric Concepts

Equipped with the scalar product, we now proceed to define the basic met-
ric concepts, i.e., the length of a vector and the angle between two vectors.
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8.31. The length of a vector. By the length (or norm) of a vector x in a
Euclidean space R we mean the quantity

x| = +/(x, x). )
Examples

a. In the space V; our definition reduces to the usual definition of the
length of a vector.

b. In the space R, the length of the vector x = (&,, &,, ..., &,) is given
by

Il =+VE + 8+ +E.
c. In the space Ry(a, b), the length of the vector x(z) turns out to be

x| = +V(x, x) = +\/fbx2(f) dt.

This quantity is sometimes written ||x(¢)|| and is best called the norm of the
function x(¢) (in order to avoid misleading connotations connected with
the phrase “length of a function”).

8.32. 1t follows from axiom d) that every vector x of a Euclidean space
R has a length; this length is positive if x % 0 and zero if x = 0 (i.e., if x is
the zero vector). The formula

Il =/ (x, hx) = V3(x, ) = IV (x, x) = 2 Ix] )
shows that the length of a vector multiplied by a numerical factor \ equals the
absolute value of \ times the length of x.

A vector x of length 1 is said to be a unit vector. Every nonzero vector x
can be normalized, i.e., multiplied by a number A such that the result is a
unit vector. In fact, solving the equation [Ax| = 1 for A, we see that A need
only be such that

Al = L .
x|

A set F < R is said to be bounded if the lengths of all the vectors x € F
are bounded by a fixed constant. The set of all vectors x € R such that |x| < 1
is a bounded set called the unit ball, while the set of all x € R such that |x| =1
is a bounded set called the unit sphere.

8.33. The angle between two vectors. By the angle between two vectors x
and y we mean the angle (lying between 0 and 180 degrees) whose cosine is
the ratio

*, )
[x] |y]
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For ordinary vectors (in the space V) our definition agrees with the usual
way of writing the angle between two vectors in terms of the scalar product.
To apply this definition in a general Euclidean space, we must first prove
that the ratio has an absolute value no greater than unity for any vectors x
and y. To prove this, consider the vector Ax — y, where X is a real number.
By axiom d), we have

(x—y,Ax—»>0 6)
for any A. Using (1), we can write this inequality in the form
W(x, x) = 2M(x, ») + (7, 9) > 0. ™

The left-hand side of the inequality is a quadratic trinomial in A with positive
coefficients, which cannot have distinct real roots, since then it would not
have the same sign for all A. Therefore the discriminant (x, y)? — (x, x)(», »)
of the trinomial cannot be positive, 1.e.,

6 PP < (%, )05 2)-
Taking the square root, we obtain

151 < 1x1 1y, ®
as required. The inequality (8) is called the Schwarz inequality.}

8.34. We now examine when the inequality (8) reduces to an inequality.
Suppose the vectors x and y are collinear, so that y = Ax, A € R, say. Then
obviously

1Ge, = 10, M)l = [A (x, %) = [N [xIP = [x] 1y,

and (8) reduces to an equality.

Conversely, if the inequality (8) reduces to an equality for some pair of
vectors x and y, then x and y are collinear. In fact, if

I(x, p)I = Ix] Iy,
then the discriminant of (7) vanishes and hence (7) has a unique real root 3,
(of multiplicity two). Therefore
)‘g(x7 X) - 2)‘0(x, Y) + (y, Y) = ()‘Ox =) )‘Ox - y) =0,

whence it follows by axiom d) that 2gx — y = 0 or y = Ax, i.e., the vectors

x and y are collinear. Thus the absolute value of the scalar product of two
vectors equals the product of their lengths if and only if the vectors are collinear.

Examples

a. In the space V; the Schwarz inequality is an obvious consequence of
the definition of the scalar product as the product of the lengths of two vectors
and the cosine of the angle between them.

t Sometimes also associated with the names of Cauchy and Bunijakovsky.
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b. In the space R, the Schwarz inequality takes the form

_Zimj <4/ iﬁ\/Zﬁ )
=1 Jj=1 =1

and is valid for any pair of vectors x = (&, &, ..., &,) and y = (0, 7,
. » M), or equivalently, for any two sets of real numbers &,, &,, ..., £

and My, N2, - -+ 5 Ny
c. In the space Ry(a, b), the Schwarz inequality takes the form

b b b
L x(B)p(1) dtl < \/ f x(r) dr \/ f Y@ di. (10)

8.35. Orthogonality. Two vectors x and y are said to be orthogonal if
(x,y) = 0. Thus the notion of orthogonality of the vectors x and y is the
same as the notion of x and y being conjugate (Sec. 7.41a) with respect to
the bilinear form (x, y). If x £ 0 and y # 0, then, by the general definition
of the angle between two vectors, (x, y) = 0 means that x and y make an
angle of 90° with each other. The zero vector is orthogonal to every vector
xeR.

Examples

a. In the space R, the orthogonality condition for the vectors x =
(1,85 .., € and y = (my, M2, . - ., W,) takes the form

Em+ e+ -+ Zn'qn =0

For example, the vectors
e, =(1,0,...,0),

e.=(0,1,...,0),

are orthogonal (in pairs).

b. In the space Ry(a, b) the orthogonality condition for the vectors
x = x(¢) and y = y(¢) takes the form

14
f x(t)y() dt = 0.
a
The reader can easily verify, by calculating the appropriate integrals, that
in the space R,(—m, =) any two vectors of the “trigonometric system”
1,cost,sint, cos2t,sin2t, ..., cosnt,sinnt,. ..

are orthogonal.
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8.36. We now derive some simple propositions associated with the concept
of orthogonality.

a. LEMMA, If the nonzero vectors X, Xs,..., X, are orthogonal, then
they are linearly independent.

Proof. Suppose the vectors are linearly dependent. Then a relation of
the form

oy Xy T Xy + v 4 opX, =0

holds, where «; # 0, say. Taking the scalar product of this equation with
x,, we obtain «,(x,, x,) = 0, since by hypothesis the vectors x;, xz, .. ., X;
are orthogonal. It follows that (x;, x;) = 0 and hence that x, is the zero
vector, contrary to hypothesis. ||

The result of this lemma is often used in the following form: If a sum of
orthogonal vectors is zero, then each term in the sum is zero.

b. LEMMA. If the vectors y,, ys, . . . , ¥, are orthogonal to the vector x,
then any linear combination o, y, + o3ys + * * * + @, Is also orthogonal to x.

Proof. We need merely note that
(1 + ogyz + =+ + Py, X)
= ay(y1, X) + 0(¥e, X) + + + (7, x) = 0. |

The set of all linear combinations o;y; + o2y, + * ** + oy, forms a
subspace L = L(y;, y, . . . , y;), namely the linear manifold spanned by the
vectors yy, Vs, - - . , ¥, (Sec. 2.51). Therefore if x is orthogonal to the vectors
Y1» Yoo - - - » Vi 1t is orthogonal to every vector of the subspace L. In this
case, we say that the vector x is orthogonal to the subspace L. In general, if
F <= R is any set of vectors in a Euclidean space R, we say that the vector x
is orthogonal to the set F if x is orthogonal to every vector in F. According
to Lemma 8.36b, the set G of all vectors x orthogonal to a set F is itself a
subspace of the space R. The most common situation is the case where F is
a subspace. Then the subspace G is called the orthogonal complement of the
subspace F.

8.37. The Pythagorean theorem and its generalization. Let the vectors x
and y be orthogonal. Then, by analogy with elementary geometry, we can
call the vector x + y the hypotenuse of the right triangle determined by the
vectors x and y. Taking the scalar product of x + y with itself, and using the
orthogonality of the vectors x and y, we obtain

x+yEP=&+y,x+y)=(,x)+2x,9)+ @
=(,x)+ ) =P+ Iy
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This proves the Pythagorean theorem in a general Euclidean space, i.e., the
square of the hypotenuse equals the sum of the squares of the sides. It is easy
to generalize this theorem to the case of any number of summands. 1n
fact, let the vectors xq, xs, . .. , x;, be orthogonal and let

Z=Xx+ X3+ + x
Then we have

12 = (xy + Xg + " -+ X Xy 7+ Xy 4 xp)
=[x+ %7 + -+ Ix (11)

8.38. The triangle inequalities. If x and y are arbitrary vectors, then by
analogy with elementary geometry, it is natural to call x + y the third side
of the triangle determined by the vectors x and y. Using the Schwarz inequality,
we get

X +yP=G+y, x4+ =)+ 20+ 0.9
< X124+ 2 0x] ]+ Iy = (x| + D3,

> Ix2 - 20x] [yl + I = (x| — [¥])%
or
lx + 1 < Ix| + [y, 12)

lx =yl > llx| — ¥l a3

The inequalities (12) and (13) are called the triangle inequalities. Geometric-
ally, they mean that the length of any side of a triangle is no greater than the
sum of the lengths of the two other sides and no less than the absolute value of
the difference of the lengths of the two other sides.

8.39. We could now successively carry over all the theorems of elementary
geometry to any Euclidean space. But there is no need to do so. Instead we
introduce the concept of a Euclidean isomorphism between two Euclidean
spaces, ie., two Eudidean spaces R’ and R" are said to be Euclidean-
isomorphic if they are isomorphic regarded as real linear spaces (see Sec. 2.71)
and if in addition

=) = ")
whenever the vectors x“, y” € R” correspond to the vectors x’, y' € R". Then
it is obvious that every geometric theorem (by which we mean any theorem
based on the concepts of a linear space and a scalar product) proved for a
space R’ is also valid for any space R” which is Euclidean-isomorphic to R'.
According to Sec. 7.97, any two Euclidean spaces with the same dimension 7
are Euclidean-isomorphic. Hence any geometric theorem valid in an »-
dimensional Euclidean space R; is also valid in any other #-dimensional
Euclidean space R. In particular, the theorems of elementary geometry,
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i.e., the geometric theorems in the space R,, remain valid in any three-
dimensional subspace of any Euclidean space. In this sense, the theorems
of elementary geometry are all valid in any Euclidean space.

8.4. Orthogonal Bases

8.41. THEOREM. [n any n-diniensional Euclidean space R, there exists a
basis consisting of n nonzero orthogonal vectors.

Proof. There exists a canonical basis e,, e,, . . . , e, for the bilinear form
(x,y), just as for any other symmetric bilinear form in an n-dimensional
space (see Sec. 7.43). The condition

(ez'7 elr) = 0 (’ i k)

satisfied by the vectors of the canonical basis is in this case just the condition
for orthogonality of the vectors e; and e,. Thus the canonical basis ¢, e, ...,
e, consists of n (pairwise) orthogonal vectors. [

In Sec. 8.6 we will consider a practical method for constructing such an
orthogonal basis.

8.42. 1t is often convenient to normalize the vectors of an orthogonal
basis by dividing each of them by its length. The resulting orthogonal basis
in R, is said to be orthonormal.

Lete,, e,, ..., e, be an arbitrary orthonormal basis in an #-dimensional
Euclidean space R,. Then every vector x € R, can be represented in the form
x=1Ee + Loy + -0+ Erey, (14)
where &,, &, . . . , £, are the components of the vector x with respect to the
basis e,, €5, . . ., e,. We will also call these components Fourier coefficients
of the vector x with respect to the orthonormal system e, e,, ... ,e€,.
Taking the scalar product of (14) with e;, we find that
£, =(x,e) (i=1,2,...,n). (15)

Let y = w,e; + nsep + -+ - + 1,6, be any other vector of the space R,.
Then it follows from (1) that

(X, 9) =&+ B 4 -0+ & (16)

Thus in an orthonormal basis the scalar product of two vectors equals the sum
of the products of the components (Fourier coefficients) of the vectors. In
particular, setting y = x, we obtain

¥ ==, x) = Ef + E§ + -+ + £ amn
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8.5. Perpendiculars

8.51. Let R’ be a finite-dimensional subspace of a Euclidean space R,
and let f be a vector which is in general not an element of R’. We now pose
the problem of representing f in the form

f=g+h (18)

where the vector g belongs to the subspace R’ and the vector k is orthogonal
to R’. The vector g appearing in the expansion (18) is called the projection
of f onto the subspace R, and the vector h is called the perpendicular dropped
from the end of f onto the subspace R'. This terminology calls to mind certain
familiar geometric associations, but it is not intended to do more than just
suggest these associations.}

The solution of this problem has in effect already been given in Sec. 7.54
for any symmetric bilinear form which is nonsingular in the subspace R'.
Since the positive definite form (x, y) is nonsingular in every subspace
R’ = R (Sec. 7.94), the existence and uniqueness of a solution of our problem
follows from Sec. 7.54. Moreover, as shown in Sec. 7.55, the existence of the
expansion (18) shows that the whole space R is the direct sum of the subspace
R’ and its orthogonal complement R”. A direct sum whose terms are orthog-
onal is called an orthogonal direct sum. Thus we have expanded the space
R as an orthogonal direct sum of the subspaces R” and R”. If R and R have
dimensions n and k, respectively, then the dimension of R” equals n — k,
since the dimension of the direct sum is the sum of the dimensions of its
terms (Sec. 2.47).

We note that the problem is also solved in the case where flies in the
subspace R’, since then

f=f+0.
This solution is obviously unique. In fact, if
f=g+4h (geR,heR"),
then A = f — g € R’ which implies # =0, g = f.
8.52. Applying the Pythagorean theorem (Sec. 8.37) to the expansion
(18), we obtain
Lf1? = 1gI* + 1A%, (19)

which implies the formula
0< |4l < If], (20)

t Since the concept of the “‘end of a vector” plays no role in our axiomatics, it is
inappropriate to look for any logical content in this terminology.
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expressing the geometric fact that the length of a perpendicular does not
exceed the length of the line segment from which it is dropped. Consider the
cases where one of the inequalities in (20) becomes an equality. The first
equality sign holds if |h| = 0; this means that f = g 4 0, i.e., fis an element
of the subspace R’. The second equality sign holds if || = |f]; according
to (19), this means that g =0 or f=0 4 h, i.c., f is orthogonal to the
subspace R’. Thus |h| = O means that f belongs to R’, while |h| = | f| means
that f is orthogonal to R’. In any other configuration of f, the (inherently .
positive) length of & is less than that of f.

Now let e, e,,. .., e, be an orthonormal basis in the subspace R’, and
let

k
g :_Zlajei-
Then, by Sec. 8.42, ’
k
gl = zla?-

Substituting this value of |g|* into (19), we get
k.
If1® = Il + Z a}.
=1

In particular, for any (finite) orthonormal system e, e,, ..., e and any
vector f, we have the inequality

&
Sai< 11

known as Bessel’s inequality. The geometric meaning of this inequality is
clear: The square of the length of the vector f is no less than the sum of the
squares of its projections onto any k mutually orthogonal directions.

8.53. 1In the applications, we sometimes need an explicit solution of the
problem of dropping a perpendicular onto a subspace R’, given some basis
{b} = {by. by, ... ,b,} m R’ (in general, not an orthonormal basis). To
solve this problem, we first expand the required vector g (the “foot of the
perpendicular’”) with respect to the basis {b}, i.e., we write

g = biby + Bobe + -+ + Biby
We then impose on the vector 4 == f — g the condition that it be orthogonal

to all the vectors by, bs, . . . , b,, thereby obtaining the system of equations
(h, b)) = (f — g, b)) = (f, b)) — Bu(by, b)) — Ba(by, by) — - - - — by, b1) =0,
(h,by) = f—g by) = 64 by) = Ba(by, by) — Ba(bes by) — - = By(by, b2) =0,

(A, bl-) = (f“ g bx-) == (ﬁ bk) - Bl(bl, bx—) - B2(b27 b;:) . Bk(bk’bk) =0,
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with determinant

(bl’ bl) (bz, bl) e (bk, bl)

(bl’ bz) (bz, bz) e (bk, bz)
D =

(bla bk) (bz, bk) T (bk’ bk)

But D is nonzero, being the determinant of the matrix of the positive definite
form (x, y) in the basis by, by, . . . , b, (see Sec. 7.96). Hence we can solve
the system by Cramer’s rule, obtaining the following expression for the
coefficients B, (j=1,2,...,k):

(bl’ bl) (bz, by) - (bj—-b bl) (f, bl) (bi+1, bl) e (bk’ bl)
(bl, by) (bg,by) - - (b;‘—p bs) (fa b,) (b:‘+1, b)) - (b, b)
1
B ="
(b, by) (b, by) -+ (bj—la bk) (6 bk) (b;l+17 by - (beby)

8.54. The problem of dropping a perpendicular can be posed not only for
a subspace, but also for a hyperplane, in which case the problem is formulated
as follows: Suppose that in a Euclidean space R, we are given a vector fand
a hyperplane R”, generated by parallel displacement of a subspace R’. We
wish to show that there exists a unique expansion

f=g+h, @n

where the vector g belongs to the hyperplane R” and the vector 4 is orthogonal
to the subspace R’.+ The geometric meaning of the expansion (21)is illustrated
in Figure 1(a). Note that the terms in the expansion (21) are in general no
longer orthogonal.

The problem is now easily reduced to the problem of Sec. 8.51. 1n fact,
if we fix any vector in the hyperplane R” and subtract it from both sides of
(21), we obtain the problem of representing the vector f — f; as a sum of two
vectors g — f, and A, of which the first belongs to the subspace R’ and the
second is orthogonal to R’ (see Figure 1(b)). By the result of Sec. 8.51, such
a representation exists. Therefore the representation (21) also exists. It

T Saying that g belongs to the hyperplane R” means geometrically that the end point of
£ lie in the hyperplane R”, while its initial point is, as usual, at the origin of coordinates.
One must not imagine that the whole vector g lies in the hyperplane R”!
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remains only to prove the uniqueness of the representation (21). If there
were two such representations

f=g+h
then we would have

= gy + hy,
0= (g, — g + (h — h),
where g, -— g, belongs to the subspace R’ and k, -— h, is orthogonal to R’
It follows that g, — g, = hy ~— h, = 0, as required.

6. The Orthogonalization Theorem
8.61. The following theorem is of fundamental importance in constructing
orthogonal systems in a Euclidean space
THEOREM (Orthogonalization theorem). Let x,, Xy, ..., %, ... be a
finite or infinite sequence of vectors in a Euclidean space R, and let L, =
L(xy, X, . . . , X;) be the linear manifold spanned by the first k of these vectors.
Then there exists a system of vectors y,, y,,

-y Yy - - . Such that
1) The linear manifold L, = L(y,, y.,
y17 y27 7

., Y1) spanned by the vectors
, Yy, coincides with the linear manifold L, for every positive integer k
2) The vector yy,, is orthogonal to L, for every positive integer k

Proof. We will prove the theorem by induction, i.e
vectors yy, Vs,

., assuming that k
, i have been constructed which satisfy the conditions
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of the theorem, we will construct a vector y,,, such that the vectors y,, ys,
- Yu» Y1 also satisfy the conditions of the theorem. First let y, = x,.

Then the condition L; = L, is obviously satisfied. The subspace L, is

finite-dimensional, and hence by Sec. 8.5] there exists an expansion

X1 = & + M, (22)

where g, is an element of L, and #, is orthogonal to L,. Setting y,,, = A,
we now verify that the conditions of the theorem are satisfied for this choice
of y,4;- By the induction hypothesis, the subspace L, contains the vectors
Y1» Y2 - - - » Vi, and hence the larger subspace L,,, also contains these
vectors. Moreover, it follows from (22) that L,., contains the vector A, =
Yie1- Therefore the subspace L, contains all the vectors yy, y,, . . ., Vi» Vitas
and hence also contains the linear manifold L, ,, spanned by these vectors.
Conversely, the subspace L, contains the vectors x,, x,,..., X, and
moreover by (22), L;,, contains the vector x,,, as well. It follows that
L, contains the whole subspace L;,,. Therefore L, ,, = L,,,, and the first
assertion of the theorem is proved. The second assertion is an obvious
consequence of the construction of the vector y;,, = h,. This completes the
induction, thereby proving the theorem. ||

8.62. In the present case, the inequality (20) takes the form
0 < [yeual < [xpal- (23)

As shown in Sec. 8.52, the equality |y,,4| = 0 means that the vector x;,
belongs to the subspace L,, and is therefore a linear combination of the
vectors X,, Xs, . .., Xz The opposite equality |y, = |xz,,| means that
the vector x,., is orthogonal to, the subspace L,, and hence is orthogonal to
each of the vectors xy, X3, . . . , X

8.63. Remark. Every system of vectors zy, z,, . .. ,z,, ... satisfying the
conditions of the orthogonalization theorem coincides to within numerical
Sfactors with the system y,, ya, ..., Y, ... constructed in the proof of the
theorem. 1n fact, the vector z;,, must belong to the subspace L,,,, and at
the same time z, ., must be orthogonal to the subspace L,. The first of these
conditions implies the existence of an expansion

Zrpp=on+ cye+ 0 Gt G Ve = Pr T CrtVaqas

where J, == e + €29, + - -+ + ¢y €L, and ¢;.y )4 IS orthogonal to L,.
The second condition implies that y, = 0 and hence that

D17 Certhrens
as required.
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*8.64. Legendre polynomials. Suppose we apply the orthogonalization
theorem to the system of functions

xg@®) =1, %) =t, ..., %) =1%, ...

in the Euclidean space Ry(—1, 1). Then the subspace L, = L(l,¢, ...,
is obviously the set of all polynomials in ¢ of degree n < k. The func-
tions x,(2), X4(¢), ..., x,(¢) are linearly independent (see Sec. 2.22d),
and hence the functions yy(¢), »,(t), . .. obtained by the orthogonalization
method are all nonzero, by Sec. 8.62. By its very construction, y;(f) must be a
polynomial in ¢ of degree k. In particular, direct calculation by the orthog-
onalization method gives

O =1 nO=t »O=0—3% pO=—%,....

These polynomials were introduced in 1785 by the French mathematician
Legendre, in connection with certain problems of potential theory. The
general formula for the Legendre polynomials was found by Rodrigues in
1814, who showed that the polynomial y,(¢) is given by

Pal0) =§ (-1 (n=01,2..) 4

to within a numerical factor. We now prove this formula, using the remark
of Sec. 8.63, i.e., we will show that the polynomial p,(¢) satisfies the conditions
of the orthogonalization theorem, whence it will follows from the remark
in question that p,(r) must equal c, y,(¢) for every n, as required.

a. The linear manifold spanned by the vectors p(t), pi(t), ..., p(t)
coincides with the set of all polynomials of degree no greater than n. In fact,
it is obvious from (24) that the polynomial p,(¢) is clearly a polynomial in ¢
of degree k. In particular,

Polt) = ag,

p() = ayy + ayt,
pa(l) = sy + ant + ast?,

(25)
p'n(t) = a’no + a'nlt + e + a’nktk + vt + a'rmtn7

where the leading coefficients ay, a5, - . . , a,, are nonzero. Thus all the
polynomials py(1), py(?), ..., p,(t) are elements of the linear manifold
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spanned by the functions 1, ¢, ..., t*, which is obviously just the set L, of
all polynomials in ¢ of degree no greater than n. Conversely, the functions
1,¢,...,1" can be expressed as linear combinations of p,(¢), p,(t), ...,
Pn(t), since the matrix of the linear relations (25) has the nonvanishing
determinant aga,, * * * a,,. Hence the linear manifold L(py(?), p1(2), . . ., p.(#))
coincides with the linear manifold L(l, ¢,...,t") and therefore coincides
with the set L,, as required.

b. The vector p,(t) is orthogonal to the subspace L,_,. 1t is sufficient to
verify that the polynomial p,(¢) is orthogonal in the sense of the space
Ry(—1, 1) to the functions 1, ¢, ..., #* % To show this, we use the formula
for integration by parts, familiar from elementary calculus, which in the
case of polynomials involves derivatives of the type considered in Sec. 6.73¢
from a purely algebraic point of view. In particular, the derivatives of the
polynomial

@—=Dr=0—-hr@+ 1"

of orders 0,1, ..., n — | vanish for # = 4-1.% Thus, calculating the scalar
product of t* and p,(¢) for k < n and integrating by parts, we obtain

(7, pa(0)) = fﬂ H(# — "™ de

— tk[(tZ . 1)7»](7»—1)

+1 +1
. kf tk——l[(tz _ l)n](n—l) dt,
—1 -1
where the first term on the right vanishes. Integrating the second term by
parts again, and continuing this process until the exponent of ¢ becomes
zero, we get

+1 H
(%, pa(t)) =~k — M|+ k(k — 1) f 2@ — 1M dr
-1 -1

+1
= = k! J‘ [(t2 . l)n](n—k) dt
1

+1

— :l:k![(tz . l)n](n—k—l) _ 0’

i.e., pn(?) is orthogonal to L,_,, as asserted.

Thus, finally, we have proved that for every n the polynomial y,(f) is
the same as the polynomial p,(f) = [(t* — 1)*]"®, except for a numerical
factor.

+ Cf. formula (21), p. 163.
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We now calculate p,(1), by applying the formula for n-fold differentiation
of a product to the function

(12— D= (¢ + D(z — D~
The result is
p(t) =[(t + )"t — ™)
=@+ D@ — D™ + ¢ + D¢ — D 4 -
=@+ D"+ Con(t + D" n(n — 1) -+ 200 — 1) + -+ -,

where C3 = n!/k!(n — k)!. The substitutionz = 1 makes all the terms of this
sum vanish from the second term on, and we get

pa(1) = 2mnl.

For numerical purposes, it is convenient to make the values of our
orthogonal functions equal 1 for ¢ = 1. To achieve this, we need only
multiply p,(f) by the factor 1/27n!. In fact, it is actually these normalized
polynomials which are called the Legendre polynomials, i.e., the Legendre
polynomial of degree n, denoted by P,(z), is given by the formula

Py(t) = =—[(1* — "I,

1
2"n!

8.7. The Gram Determinant

8.71. By a Gram determinant is meant a determinant of the form

(1, x1)  (xg, x2) -0 (%, Xp)
G(XI, Xayeun, xk) — (x27 xl) (xzy xz) e (x2’ xk) R
(o X1) (X X2) v o0 (3, X2)

where x,, X5, . .., x, are arbitrary vectors of a Euclidean space R. In Sec.
7.96 we saw that this determinant is positive in the case of linearly independent
vectors x;, X,, . . . , X;. To calculate the value of G(x,, X5, . . . , Xz), we apply
the orthogonalization process to the vectors x;, xs, . « . , X;. Thus let y; = x,
and suppose the vector

Yo = @yt X

is orthogonal to y,. Replacing the vector x, by y, everywhere in the deter-
minant G(x,, X, . . .« , Xz), we multiply the first column of G(xy, Xz, . . . , X;)
by «, (associating «, with the second factors of the scalar products) and add
it to the second column. Then we multiply the first row of the determinant
by «, (associating «, with the first factors of the scalar products) and add it
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to the second row. As a result, the vector y, appears at every place in the
determinant where x, appeared formerly.
Next let

Vs =By + Baye + x5

be orthogonal to y, and y,. Multiply the first column by @, and the second
column by B,, and add them to the third column. Then carry out the same
operations on the rows. As a result, x; is replaced by y, everywhere in
G(xy, X3, « « « , X;). We can continue this process until we arrive at the last
column (and row). Since these operations do not change the value of the
determinant, we finally obtain

) 0 T 0
0 W2 y2) -+ . 0
G(Xyy Xgy o v v 5 Xp) = : : e : (26)
0 0 o e )

= 0L 202 ) - O W)-
Moreover, by the result of Sec. 8.62, we have the inequality

0 < G(xps X2, « + ., X)) < (Xg, X)) (X2, Xa) * * * (X X)- @7

Next we examine the conditions under which the quantity G(x,, x5, ... , X;)
can take the values 0 or (x, x;)(xg, X2) * * * (X, X)- It follows from the
form (26) of the Gram determinant that it vanishes if and only if one of the
vectors y, ¥s, ..., ), vanishes. But according to Sec. 8.62, this implies
that the vectors x,, x,, . .., x, are linearly dependent. Moreover, according
to (26) and Sec. 8.62, the second equality sign holds in the inequality (27)
only in the case where the vectors x,, x,, . .., x, are already orthogonal.
Thus we have proved the following

THEOREM. The Gram determinant of the vectors x,, X, . . . , X; vanishes if
the vectors are linearly dependent and is positive if they are linearly independ-
ent. It equals the product of the squares of the lengths of the vectors x,,
Xay « - ., X if they are orthogonal and is less than this quantity otherwise.

8.72. The volume of a k-dimensional hyperparallelepiped. As is well known
from elementary geometry, the area of a parallelogram equals the product of
a base and the corresponding altitude. If the parallelogram is determined
by two vectors x; and x,, then for the base we can take the length of the
vector x, and for the altitude we can take the length of the perpendicular



232 EUCLIDEAN SPACES CHAP. 8

dropped from the end of the vector x, onto the line containing the vector x,.
Similarly, the volume of the parallelepiped determined by the vectors x,, x,
and x; equals the product of the area of a base and the corresponding
altitude; for the area of the base we choose the area of the parallelogram
determined by the vectors x, and x,, and for the altitude we take the length
of the perpendicular dropped from the end of the vecter x; onto the plane
of the vectors x; and x,.

These considerations make the following a very natural inductive defi-
nition of the volume of a k-dimensional hyperparallelepiped in a Euclidean
space: Given a system of vectors x,, X, ..., X, in a Euclidean space R, let
h; denote the perpendicular dropped from the end of the vector x;,, onto the
subspace

L(xy, X, o 0., X3) (G=1,2,..., k=1,

and introduce the following notation:

V, = |x| (a one-dimensional volume, i.e., the length of the
vector x,),

Vy, =V, |h| (a two-dimensional volume, i.e., the area of the
parallelogram determined by the vectors x,, x,),

Vy = Vy |h} (a three-dimensional volume, i.e., the volume of the
parallelepiped determined by the vectors x,, X, X,),

Vi = Vi Iyl (a k-dimensional volume, i.e., the volume of the
hyperparalleliped determined by the vectors x,, x,,
cee, Xp)e

Obviously the volume ¥} can be written in the form
Vi=Vixy, xq, o .o, Xi] = | X3} Hy| = = = | By

Using equation (26), we can express the quantity ¥, in terms of the vectors
Xy, Xs, .« . , Xz as follows:

(X, %) (X, %) 00 (X, X)
V: _ (xg, x1) (X, X2) “* (xXg, Xp)
X %) (X X2) 20t (% X2)

Thus the Gram determinant of the k vectors x,, X,, . . . , X, equals the square
of the volume of the k-dimensional hyperparallelepiped determined by these
vectors.

8.73. Let
BN (j=1,2,...,ki=12...,n
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be the components of the vector x; with respect to an orthonormal basis

€1, €5, « - . , €. Expressing the scalar products in terms of the components
of the vectors involved, we obtain the following formula for ¥2:
5(11)551) S e g;l)g;l) . Eil)g(lk) 4+ e 4+ 5(7,1’5(7?)
o 5(12)5(11) 4o E;z)g(nl) el 552)5(11:) 4+ e 4 5(7.2)5(,.’”
kT .
E(1k)5(11) B E‘,Z"Ei,“ e E(lk)5(1k) 4+ e 4 E(nk)g(:)

We now use an argument similar to that used in Sec. 4.54. Every column
of the determinant just written is the sum of » “‘elementary columns” with
elements of the form £V where the indices « and i are fixed in each
elementary column, while j ranges from 1 to k. Therefore the whole deter-
minant’equals the sum of #* “elementary determinants’ consisting only of
elementary columns. In each elementary column the factor Eff” is constant
and hence can be factored out of the elementary determinant. As a result,
each elementary determinant takes the form

(1) m .. g
iy iy i
z(2)  p(2) 2)
W@ .. gt |Gy e &
g, BT ! w1, (28)
w g ., 2k

) 3 ﬁ’l;‘-
where iy, is, ... , i, are numbers from 1 to n#. If some of these numbers are
the same, then the corresponding elementary determinant obviously vanishes.
Thus we need only consider the case where iy, iy, . .. , i, are all different, In
the entire sum we group together those terms of the form (28) which have
the same indices iy, i3, . . . , /; but arranged in different orders. Let

Mz[jl?ij e 7jk]
denote the sum of all such terms, where j;, /2, . . . , j, are the indices iy, i,,

..., i rearranged in increasing order. An argument similar to that used in
Sec. 4.54 then leads to the following result: In the n X k matrix

IEPN G=1,2,...,mj=1,2,...,k),

the quantity M2[/,, ja, ..., ji] is the square of the minor of order k& formed
from the columns of this matrix with indices jj, js, ...,/ The sum of all
the terms (28) equals the sum of the squares of all the minors of order k of
the matrix [£{|. Thus the square of the volume of the k-dimensional
hyperparallelepiped determined by the vectors x,, x, . . . , X, equals the sum
of the squares of all the minors of order k in the matrix consisting of the
components of the vectors x;, x,, ..., x, with respect to any orthonormal
basis ), €5, ..., €,.
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8.74. In the case k = n, the matrix |£{”]| has only one minor of order &,
equal to the determinant of the matrix. Hence the volume of the n-dimensional
hyperparallelepiped determized by the vectors xy, Xs,...,Xx, equals the
absolute value of the determinant formed from the components of the vectors
Xy, X, « - - , X, Wilh respect to any orthonormal basis.

8.75. Hadamard’s inequality. Using the results of the preceding section,
we can obtain an important estimate for the absolute value of an arbitrary
determinant

En Ei Eie

En Gn Eox
D =

B Exe Sk

of order k. If we regard the numbers £,;, £, ..., 8, (i=1,2,...,k) as
the components of a vector x; with respect to an orthonormal basis in a
k-dimensional Euclidean space, then the result of Sec. 8.74 allows us to
interpret the absolute value of the determinant D as the volume of the
k-dimensional hyperparallelepiped determined by the vectors x;, X3, . . . , X;.
Then, using the expression for this volume in terms of the Gram determinant,
we have
D? = G(xy, X3, . . ., X}).

Applying Theorem 8.71, we obtain

[
D? < (xy, x)(xg, xg) * * - (e x) =11 EE:?;;,

=1 j=1

an inequality known as Hadamard’s inequality. Moreover, we note that
according to Theorem 8.71, the equality holds if and only if the vectors
Xy, Xg, . . . , X; are pairwise orthogonal.

The geometric meaning of Hadamard’s inequality is clear, i.c., the
volume of a hyperparallelelepiped does not exceed the product of the lengths
of its sides, and it equals this product if and only’if its sides are orthogonal.

8.8. Incompatible Systems and the Method of Least Squares
8.81. Suppose we are given an incompatible system of linear equations
Xy + Gexp + 0+ WX, = by,

Ay Xy + AgXp o+ ** 0+ Gg,X,, = by, (29)
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Since the system is incompatib]e, it cannot be solved, i.e., we cannot find
numbers ¢;, ¢, . . . , ¢, which satisfy all the equations of the system when
substituted for the unknowns x,, x,, ..., x,,. Thus if we substitute the
numbers &, &,, ..., &, for the unknowns x,, x,, . .., x,, in the left-hand
side of the system (29), we obtain numbers v,, v,, . . . , ¥, which differ from
the numbers b;, b,, ..., b,. This suggests the following problem: Given
real numbers ay and b, (j=1,...,m;k=1,...,n) find the numbers
&1, &sy . ., &, which when substituted into (29) give the numbers ¥, s, . . .
Y, with the smallest possible mean square deviation

’

5 =§1(Yj — b)) (30)
2

Jrom the numbers by, b,, ..., b,, and find the corresponding minimum value
of 82.

An example of a situation where this problem arises in practice is the
following: Suppose we want to determine the coefficients &; in the linear
relation

b=Ea + Ear + -+ &0,

connecting the quantity b and the quantities a,, a,, . . . , a,,, given the results
of measurements of the a; (j = 1,2,..., m) and the corresponding values
of b. If the ith measurement gives the value a;; for the quantity a; and the
value b; for the quantity b, then clearly

Eiay + Ezaiz + -+ Emaim = b;. @a3n

Thus #n measurements lead to a system of n equations of the form (31), i.e.,
a system of the form (29). As a result of unavoidable measurement errors,
this system will generally be incompatible, and then the problem of finding
the coefficients &, &, ..., &, does not reduce to the problem of solving
the system (29). This suggests determining the coefficients &; in such a way
that every equation is at least approximately valid and the total error is as
small as possible. If we take as a measure of the error the mean square

deviation of the quantities
m

Yi = Z a;;k,
from the known quantities b, i.c., if we take formula (30) as a measure of
the error, then we arrive at the problem formulated at the beginning of this
section. Moreover, in this case, it is also useful to know the quantity &2,
since this helps to estimate the accuracy of the measurements.

8.82. We can immediately solve the problem just stated, if we interpret
it geometrically in the real space R,. Consider the m vectors a;, a,, .. . , a,,
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whose components form the columns of the system (29), i.e.,

a, = (ay, @z, -« - ,ap),
Ay = (ay3, azy, « « « , Apa),
am = (alym Aoy« + v anm)'
Forming the linear combinations §,a;, + &.a, + - -+ + £,4,,, we obtain the

vector ¥ = (Y3, Yz, « - - » Y,)- Our problem is to determine the numbers
1, s+, &, in such a way that the vector y has the smallest possible
deviation in norm from the given vector b = (b, b, . . . , b,). Now the set
of all linear combinations of the vectors a,, a,, . .., a,, forms a subspace
L = L(ay, a,, . . . , a,;), and the projection of the vector b onto the subspace
L is the vector in L which is the closest to . Therefore the numbers £, &,,
..., &, must be chosen in such a way that the linear combination

Liay + oty + -0 4+ &4,

reduces to the projection of b onto L. But, as we know, the solution of this
problem is given by the last equation in Sec. 8.53, i.e.,

(a, @) -+ (a,4,a) (bya) (aj,a) - (ap, @)
& =

(ap a,) - (a4, (ba,) (@, a.) - (@, a,)
where D is the Gram determinant G(ay, as, . . . , a,,).
8.83. The results of Sec. 8.72 also allow us to evaluate the deviation 3
itself. In fact, & is just the altitude of the (m + 1)-dimensional hyper-

parallelepiped determined by the vectors ay, a,,. .., a,, b, and hence is
equal to the ratio of volumes

V[ah s, - .., 4py b]

V[ah gy « -« am]

Using the Gram determinant to write each of these volumes, we finally
obtain
$2 — G(ay, as ..., an, b) .
G(ay, as, ..., a,

Thus the problem posed in Sec. 8.81 is now completely solved.
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8.84. In numerical analysis the following problem is often encountered
(interpolation with the least mean square error): Given a function fy(t) defined
in the interval a < t < b, find the polynomial P(t) of degree k (k < n) for
which the mean square deviation from the function fi(1), defined by

5(f,, P) = é)[fo(t,-) — PP

is the smallest. Here t,,t,,... ,t, are certain fixed points of the interval
a < t < b. Using geometric considerations, M. A. Krasnosyelski has given
the following simple solution of the problem: Introduce a Euclidean space
R consisting of functions f(¢) considered only at the points 1o, ¢,,...,1t,,
and define the scalar product by

(£.9) =3 fe)at).

Then the problem reduces to finding the projection of the vector fo(¢) onto the
subspace of all polynomials of degree not exceeding k. The coefficients of
the desired polynomial

P(y=E,+ &+ -+ Et*

are given by the same formulas as in the problem analyzed previously, i.e.,

LY @& o LD () ETY - @D
Ty @&y - Ly (e En o0 (5D
EF% i . . ) i S
(L&Y @& - (@NE (S, H @S - (R

where D is the Gram determinant G(l, 1, . . . , ). The least square deviation

itself is given by the formula
GQ,t,..., 5 P)
82 R P) = tEE] 2 .
(Jor P) G1,t, ..., 15

8.9. Adjoint Operators and Isometry

8.91. Adjoint operators with respect to the form (x, y). We now apply
the results of Sec. 7.6 on the connection between linear operators and
bilinear forms to the case where the fixed form (x, y) is the scalar product of
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the vectors x and y. Let A and B be linear operators in a Euclidean space R,,,
and use the formulas

A(x, y) = (Ax, ),  B(x,)) = (x, By) (32)

to construct bilinear forms A(x, y) and B(x, y). Since any orthogonal basis
is a canonical basis of the form (x, y), and since the canonical coefficients
of (x, y) all equal | in any such basis, it follows from Sec. 7.61 that the
matrix [a,;| of the form A(x, y) in any orthonormal basis coincides with
the matrix [|a?’] of the operator A, while the matrix |b,] of the form
B(x, y) is the transpose of the matrix [[5(*)| of the operator B. Conversely,
given bilinear forms A(x, y) and B(x, y) in the space R,, there exist unique
linear operators A and B such that the formulas (32) hold (see Sec. 7.62).
Moreover, applying Theorem 7.63 to the form (x, y), we get the following

THEOREM. Given any linear operator A acting in an n-dimensional Euclidean
space R,, there exists a unique linear operator A’ (the adjoint of A) acting in
R, such that

(Ax, y) = (x, A'y)

for arbitrary x, y €R,. The matrix of the operator A’ in any orthonormal
basis of the space R,, is the transpose of the matrix of the operator A.

8.92. Using the operation of taking the adjoint in a Euclidean space, we
now introduce the following classes of operators:

a. Symmetric operators, defined by the relation
A= A.

A symmetric operator is characterized by the fact that transposition does
not change its matrix in any orthonormal basis.

b. Antisymmetric operators, defined by the relation
A= —A.

An antisymmetric operator is characterized by the fact that transposition
changes the sign of its matrix in any orthonormal basis.

¢. Normal operators, defined by the relation
A'A = AA',

The class of normal operators obviously contains the class of symmetric
operators and the class of antisymmetric operators. The study of these
classes of operators will be pursued in Secs. 9.3-9.4.

8.93. We now formulate the results of Secs. 7.73-7.76 on invariant
operators for the case of a Euclidean space R,,. Consider a linear invertible
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mapping y = Qx of the space R, into itself which does not change the scalar
product: (Qx, Q) = (..

A mapping of this kind, which in Sec. 7.73 was said to be invariant with
respect to the form (x, y), will now be called isometric. Thus an isometric
operator Q is characterized by the relation

QQ=E

(cf. formula (33), p. 201), where E is the unit operator and Q' is the operator
adjoint to Q with respect to the form (x, y), i.e., the operator adjoint to Q
in the sense of Sec. 8.91. The inverse Q! = Q’ of an isometric operator
is itself isometric, and so is the product of two isometric operators (see Sec.
7.74).

According to Sec. 7.75, an isometric operator Q is characterized by the
fact that it carries every orthonormal basis ¢, . .., e, into another ortho-
normal basis f; = Qey, ..., f, = Qe,. The matrix Q = |l¢'’| of an iso-
metric operator Q in any orthonormal basis is called an orthogonal matrix.
An orthonormal matrix is characterized by the conditions (35), p. 202, which
in the present case take the form

3

L if j=k,
0 if j#k,
or by the conditions (35"), p. 202, which take the form

Z qqy) = {

zq(i) () {1 if j =m
0 if j#m,

i.e., the sum of the squares of the elements of any row (or column) equals 1,
while the sum of the products of the corresponding elements of two different
rows (or columns) equals 0.

8.94. 1t follows from the relation @~ = Q' that the formulas
fi=aPe 4+ gle,
..................... (33)
fo=a"e + o 4 ayle,
for the transformation from one orthonormal basis e, . .., e, to another
orthonormal basis f], . . . , f, (such a transformation is called an orthogonal
transformation) are “‘inverted’’ by the formulas
€ = g1 )fl <+ 41"
..................... (34)
€, = qnl)fl + q(ﬂ)
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By Sec. 5.31, the components v, of a vector x with respect to the basisf;, . . .,
[, are expressed in terms of the components &; of the same vector with respect
to the basis ey, .. . , e, by the formulas

n =g 4+ + gk,

...................... (35)
Ny =P8 + 0+ aPE,,
with inverse formulas
& =am + -+ @,
...................... (36)
£ =am+ 4 a7
8.95. Given m < n rows of numbers ¢’ G=1,...,n;j=1,...,m)

satisfying the conditions

1 if j=k,

0 if jsk,

consider the problem of finding n — m more rows of numbers ¢g{¥ (j =
m 4 1,...,n)suchthat the n X n matrix |¢¥'| (,j =1, ..., n)is orthog-
onal. This problem is easily solved by using a geometrical argument.

Suppose the given rows ¢! are interpreted as components of m vectors in a
Euclidean space R,, with scalar product

< ) k)

() k)
D aiq =
i

((517 LI} En); ("]1, R} n'n)) = égﬂh

(recall Example 8.22b). Then our problem consists of augmenting m given
orthonormal vectors g, . . . , ¢,, with further vectors to make an orthonormal
basis for the space R,. With this geometrical interpretation, the problem is
obviously solvable. For example, we can augment ¢,,...,q,, with any
other vectors ¢,.,,...,4q, such that the resulting system of n vectors is
linearly independent, and then use Theorem 8.61 to make the whole system of
n vectors orthonormal.

8.96. We now consider some further properties of symmetric operators.

a. If the subspace R’ < R is invariant under the operator A, then, by Sec.
7.65, the orthogonal complement of R’ is invariant under the adjoint operator
A’. Therefore, in the case of a symmetric operator A, if the subspace R’
is invariant under A, then so is the orthogonal complement of R’.

b. THEOREM. Every symmetric operator in the plane (n=2) has an
eigenvector.



PROBLEMS 24|

Proof. In this case, the equation determining the eigenvectors is just
q g 2 J

ay — X a2

=0,

an Ay — A
The discriminant of this quadratic equation is
(ay + a3 — Hayay, — ayay,) = (ay — a50)* + 44, > 0,
and hence has real roots. | '
¢. From these considerations and the fact that every operator in a real
space has an invariant plane (see Sec. 6.66), it follows that every symmetric
operator in the space R, has an orthogonal basis consisting of eigenvectors.

In Sec. 9.45 we will deduce this result in a more general way, without recourse
to the real Jordan canonical form.

PROBLEMS
1. Suppose we define the scalar product of two vectors of the space ¥ as the
product of the lengths of the vectors. Is the resulting space Euclidean?

2. Answer the same question if the scalar product is defined as the product of
the lengths of the vectors and the cube of the cosine of the angle between them.

3. Answer the same question if the scalar product js defined as twice the usual
scalar product.

4. Find the angle between opposite edges of a regular tetrahedron.

5. Find the angles of the “triangle” formed in the space R,(—1,1) by the
vectors x,(f) =1, x,(f) =1, x3(£) =1 — 1.
6. Write the triangle inequalities in the space Ry(a, b).

7. Find the cosines of the angles between the line £, = &, —--- = £, and the
coordinate axes in the space R,.

8. In the space R, expand the vector f as the sum of two vectors, a vector g
lying in the linear manifold spanned by the vectors b; and a vector & orthogonal
to this subspace:

a f=0,2,-2,2, b=@2,1,1,-D, b=(,1,3,0);
b) f=(-3,5,9,3), b=(1111, b=, -1,11,
by =(2, -7, -1, —1).
9. Prove that of all the vectors in the subspace R’, the vector g of Sec. 8.51
(the projection of f onto R") makes the smallest angle with f.

10. Show that if the vector g, in the space R’ is orthogonal to g (the projection
of fonto R"), then g, is orthogonal to f itself.
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11. Show that the perpendicular dropped from the origin of coordinates onto a
hyperplane H has the smallest length of all the vectors joining the origin with H.

12. Given the system of vectors x; =i, x, = 2i, x3 =3i, x, = 4i — 2j, x; —
—i +10j,x¢ =1 + j + Skinthespace V, with basis i, j, k, construct the vectors
Y1, Y2, - - - » Ye figuring in the orthogonalization theorem.

13. Using the method of the orthogonalization theorem, construct an orthogonal
basis in the three-dimensional subspace of the space R, spanned by the vectors
14,2,1,3),4,1,1,H,(3,1,1,0).

14. Given two subspaces R’ and R” of a Euclidean space R, let m(R’, R”) denote
the maximum length of the perpendiculars dropped onto R” from the ends of
the unit vectors ¢ €R’, and define the quantity m(R”, R) similarly. Then the
quantity

6 = max {m(R’,R"), m(R",R")}

is called the spread of the subspaces R’ and R”. Show that the subspaces R’ and
R” have the same dimension if 8 < 1. (M. A. Krasnosyelski and M. G. Krein )

15. Find the leading coefficient 4, of the Legendre polynomial P, (7).

16. Show that P,(¢) is an even function for even » and an odd function for odd
n. In particular, find P,(—1).

17. Show that if the polynomial #P,_,(¢) is expanded in terms of the Legendre
polynomials, so that

1P, 1 (1) = ayPy(1) + ayPy(8) + -+ + @ Pa(D),
then the coefficients a,, 4,, . . . , a,_3 and a,_, are zero.

18. Find the coefficients a,_, and a, of the expansion of the polynomial +P,_,(#)
given in the preceding problem, thereby obtaining the recurrence formula

nP,(f) = @n — DtPy_y(£) — (n — DP,_o(0).
19. Find the polynomial
QW) =" + byt 4 -+ byt + b,
for which the integral
' Q2(r) dr
has the smallest value. -
20. Find the norm of the Legendre polynomial Py().

21. Let A be any linear operator acting in an #-dimensional Euclidean space R,
Show that the ratio
V[Axy, Ax,,. .., Ax,]

k(a) = VIxy, Xos oo o5 Xp]

is a constant (i.e., is independent of the choice of the vectors x;, xa, . . ., Xp),
and find the value of k(A) (the “distortion coefficient’’).
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22. Show that k(AB) = k(A)k(B) for any two linear operators A and B.
23. Let xy,x5,...,X,,z be vectors in a Euclidean space R. Prove the
inequality

VIx1, Xy oo oy Xy p, 2] VIxy, Xas o ooy Xies 2]

Vix1s Xoy e vvy Xg, p] VIxy, Xgs o ooy Xg]

37
24. Let x, X, . . . , X, be vectors in a Euclidean space R. Prove the inequality )
Vixy, Xoy o oo s Xl < TT{VIx0, -« o s Xpmgy Xpgay e o o XD (38)
=1

What is the geometric meaning of this inequality ?

25 (Continuation). Prove the following inequalities, which sharpen Hadamard’s
inequality:

V[xb Xoyeees xm]

m
< H {V[xh ceea Xp—1 Xp41s - 0 v s xm]}ll(m_l)

k=1
m
< IT (VI o oo Xty X o+ oy Xpgs Xpgs o v o, X2 DIm=2)
1€$Ee<I<m
<o < 1T (VXey Xps e - .y X5 2 BN Om=y e r

1551 <s9< <5, S

m
<o < H {V[x‘gl,xsz]}ll(m—l) < H |xs

1581<s59Sm s=1
(M. K. Faguet)
26. If |a;;| < M, then

det llagl < M2,

by Hadamard’s inequality. Show that this estimate cannot be improved for
n =2"

27. Show that if N(A) and T(A) are the null space and range, respectively, of
the operator A, then the orthogonal complements of these subspaces are the
range and null space, respectively, of the adjoint operator A’.

28. Let A be an orthogonal matrix. Show that A, = a;; det A is the cofactor
of the element a;; of A.

29. Show that the sum of the squares of all the minors of order k appearing in
k fixed rows of an orthogonal matrix equals 1. Show that the sum of the prod-
ucts of all the minors of order k appearing in one group of k rows with the
corresponding minors in another group of k rows equals 0.

30. A linear operator Q preserves the length or every vector. Show that Q is
isometric.
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31. An operator A which preserves the orthogonality of any pair of vectors x
and y, i.e., such that (x, y) = 0 implies (Ax, Ay) = 0, is called an isogonal
operator. Isometric operators and similarity operators (Ax = Ax for every x)
are isogonal, and so is the product of any similarity operator and any isometric
operator. Show that every isogonal operator is the product of i similarity
operator and an isometric operator.

32. Let Q be a linear operator acting in an n-dimensional Euclidean space
R, (n > 3). Suppose Q does not change the area of any parallelogram, so that

Vix,yl = V[Qx, Qyl.

Show that Q is an isometric operator.

33. Let Q be a linear operator acting in an n-dimensional Euclidean space R,
and suppose Q does not change the volume of any k-dimensional hyperparallele-
piped (k < n). Show that Q is isometric. (M. A. Krasnosyelski )

Comment. For k = n the assertion of Problem 33 fails to be valid, since
then every operator Q with det Q = +1 will satisfy the condition of the problem.

34. Let F = {x), x3,. .., x3} and G — {yy, ¥s, . . . , i} be two finite systems of
vectors in a Euclidean space R,,. Show that a necessary and sufficient condition
for the existence of an isometric operator Q taking every vector x; into the
corresponding vector y; (i = 1,2,..., k) is that the relations

x5 %) = (is y3) G,j=12,...,k
hold.

35 (The angles between two subspaces). Let R’ and R” be two subspaces of a
Euclidean space R. Let the unit vector ¢ vary over the unit sphere of the
subspace R, and let the unit vector ¢” vary (independently of ¢') over the unit
sphere of the subspace R”. For some pair of vectors ¢’ = e;, ¢’ = ¢}, the angle
between e’ and ¢” achieves a minimum, which we denote by ;. Now let ¢’ vary
over its unit sphere while remaining orthogonal to ¢/, and let ¢” vary over its
unit sphere while remaining orthogonal to ;. With these constraints, the angle
between ¢’ and e” achieves a minimum ¢, > ¢, for some pair ¢’ = e}, e” = ¢j.
Then let ¢’ vary over its unit sphere while remaining orthogonal to e, and e,
and let ¢” vary over its unit sphere while remaining orthogonal to e} and ;. In
this way, we get a new minimum angle @; > @, and a new pair e; and e,.
Continuing this process, we obtain a set of angles ¢,, 9, . . ., ¢, the number of
which equals the smaller of the dimensions of R'andR". The angles ¢,, ¢, ...,
®, are called the angles between the subspaces R’ and R”. Prove the following
facts;

a) The angles 9, ¢,, ..., 9, are uniquely defined and do not depend on
the choice of the vectors ej, e}, e;, €5, . . . if these vectors are not uniquely
defined by the construction;

b) The angles ¢,, @, ..., 9 determine the subspaces R’ and R” to within
their spatial orientation, i.e., if there are two pairs of subspaces R, R”
and S, $” such that the angles between R ‘and R” are the same as those
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between S’ and S”, then there exists an isometric operator which simul-
taneously carries S’ into R’ and S” into R”;

¢) Given any preassigned angles ¢; < ¢, < - * < ¢, < 7/2, we can con-
struct a pair of spaces R’ and R” such that @;, @,,..., ¢; are the angles
between R’ and R”.

36. Lety,, y,, . .. , ¥, be the projections of the vectors x;, x,; . . . , X,, Onto some
subspace. Show that the volume of the hyperparallelepiped determined by the
vectors yy, vz, . - . , ¥m does not exceed the volume of the hyperparallelepiped
determined by the vectors x,, Xa, « v« , Xpe

37 (Continuation). In Problem 36 suppose that both the vectors x;, x5, . . . , Xm
and the vectors y;, v, . . . » Vm are linearly independent. Show that the formula

Vv yes oo o s yml = VIxg, X35 o, X €OS ) €OS ot + + + COS oty

holds, where «,«,,...,®, are the angles between the subspaces L, =
L(x;, x5, ..., x,,) and Ly, = L(y,, y5, . . . , ym) (see Prob. 35).

38. A set of k vectors in a Euclidean space R will be called a k-vector, and we
will say that two k-vectors {x;, X, ..., Xz} and {y;, ya, . . . , yi} are equal if
1) The volume V[x,, x,, . . . , x;] equals the volume V[y,, y,, ..., yil;
2) The linear manifold L(xy, x,, . . . , x;) coincides with the linear manifold
L(piyos - - -5 yi)s
3) The systems x;, X, . - . , X and y;, ¥y, - - . » y have the same orientation,
i.e., the operator in the space L(x,, x,,. .., x;) carrying the system x,,
Xg, - .., X3 into the system y,, y,, . . ., y; has a positive determinant.

Show that a k-vector {x;,x,,...,x;} in an n-dimensional space R, is
uniquely determined if we know the values of all the minors of order & of the
n X k matrix

EON (G=1,2,...,m55=1,2,...,k)

formed from the components of the vectors x,, x,, - . . , X with respect to any
orthonormal basis e, e, . . . , e, of the space R,,.

39. If the k-vector {x,, x,, .. ., xx} equals the k-vector {y,, ys, ..., yx} (Prob.
38), show that the minors of order k of the matrix formed from the componerits
of the vectors x;, x, . .., x; equal the corresponding minors of the matrix
formed from the components of the vectors y,, ya, . . ., Vi

40, By the angles between two k-vectors {x,, x,, ..., xz} and {yy, Ya, . - . » yi}
we mean the angles between the subspaces L, = L(xy, X,,...,X) and L, =
L(y1, y2 - - - » yi) (see Prob. 35) subject, however, to the supplementary con-
dition that the vectors ey, e,,. .., €, chosen in the subspace L, (when con-
structing the angles) have the same orientation as the vectors xj, x,, ..., x;
(this condition plays a role only in constructing the last vector ¢;), and similarly
for the subspace L,. Show that the angles By, 8,,. . . , B; between the k-vectors
and the angles oy, a,, ..., «; between the corresponding subspaces are con-
nected by the following relations:

o; = B (j < k),

ap =Py or op =7 — B
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41. By the scalar product of two k-vectors X = {xy,x5,...,x3} and Y =
{y1> ¥ - - - » ¥a}» specified by the matrices X and ¥ made up of the components
of the vectors x; and y, with respect to some orthonormal basis of the space R,
we mean the sum of all the products of the minors of order & of the matrix X with
the corresponding minors of the matrix Y. Show that this scalar product equals

Vixy, Xgs .« - s XelVIy1, ya, - - -, yrl cOS By c08 By - - - cOs By,
where 8,, 8, ..., B; are the angles between the k-vectors X' and Y.

42. Show that the scalar product of the two k-vectors X = {x;, x3,...,x;}
and Y = {y,,ys, ..., yx} can be written in the form

(xvyl) (xly)/'z) e (X, _Yk)
{X, Y} _ (xzy)ﬁ) (xz;yz) s (xg _Yk) .
(xk!yl) (xk,)/2) fee (xk,yk)

43. Show that if the polynomial [P(:)]* is an annihilating polynomial of the
isometric operator A, then so is the polynomial P(7).



chapter 9

UNITARY SPACES

9.1. Hermitian Forms

9.11. A numerical function A(x, y) of two arguments x and y in a complex
space C is called a Hermitian bilinear form or simply a Hermitian form if it is
a linear form of the first kind in x for every fixed value of y and a linear
form of the second kind (Sec. 4.14) in y for every fixed value of x. In other
words, A(x, y) is said to be a Hermitian form in x and y if the following
conditions are satisfied for arbitrary x, y, z in C and arbitrary complex «:t

A(x + 2, ) = A(x, ) + A(z, ),
A(ox, y) = aA(x, ),

1
A,y +2) = A(x,y) + A(x, 2), O
A(x, ay) = aA(x, ).
Using induction and (1), we easily obtain the general formula
L3 m koom  _
A(Zzn S o) =3 Subibce . &
i=1 j=1 i=1j=1
where x,,...,x,,y,...,y, are arbitrary vectors of the space C and

Oy, oo vy O By, ..., B, are arbitrary complex numbers.
t As usual, the overbar denotes the complex conjugate.

247
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9.12. Examples

a. If L,(x) is a linear form of the first kind and L,(x) is a linear form of
the second kind (Sec. 4.14), then A(x, y) = L,(x)L,(y) is a Hermitian form.

b. An example of a Hermitian form in an #-dimensional space C,, with a
fixed basis ey, ey, . . . , e, is the function

A(x, y) =iz kz a‘kieﬁk, 3
=1k=1
where

n n
x =72 Ee, Y =2 Mme
i=1 k=1
are arbitrary vectors and a;;, (i, k = 1,2, ..., n) are fixed complex numbers.
In fact, (3) is the general representation of a Hermitian form in an n-
dimensional complex space. This is proved in the same way as the analogous
proposition for bilinear forms in a space K, (see Sec. 7.13).

9.13. A Hermitian form A(x, y) is said to be Hermitian-symmetric (or
simply symmetric) if
A, %) = A(x, y) Q)

for arbitrary vectors x and y. Given a symmetric Hermitian form A(x, y)
in an n-dimensional complex space C,, suppose we use (3) to write A(x, y)
in terms of the components of the vectors x and y with respect to the basis
e,...,e, Then

Ay = Ale,; &) = Aley, &) = dy,, )]

i.e., the matrix |a,;| of the form A(x, y) in the basis e,, ..., e, is carried
into itself by transposing the matrix and replacing all its elements by their
complex conjugates. Conversely, if the coefficients of a Hermitian form
A(x, y) satisfy the condition (5), then A(x, y) is symmetric, since

Ay, x) = E aﬂmizk == i a-klemi = "z aiExni = A(x, y).

t.hke=1 k=1 k=1
A matrix |[lag| such that a; = da,; (,k=1,...,n) will henceforth be
called Hermitian-symmetric (or simply Hermitian).

9.14. a. Suppose the Hermitian form A(x, y) has the matrix A, = [l

in the basis ey, ..., e, of the space C and the matrix A = ||byl in the
basis f;, . . ., f,, where the relation between the two bases is given by

fi =le(,"’e, (i=1,...,n).
o
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Then, reasoning as in Sec. 7.15, we find that the relation between the matrices
A,y and A, is given by the formula

Ay = P*4, P, O]

where P = | p{?| is the matrix of the transformation from the basise,, .. . , e,
to the basis f;, . . . , f,,, and P* is the matrix obtained from P by transposing
and then replacmg elements by their complex comjugates. Writing P* =
lpF®I, we have

*(0) __

D; p (i,j=1,...,n).

b. Just as in Sec. 7.23, it follows from (6) that the rank of the matrix
A, of the Hermitian form A(x, y) is independent of the choice of the basis
{e}. The form A(x, y) is said to be nonsingular if its rank (i.e., the rank of
the matrix 4, in any basis {e}) equals the dimension 7 of the space C,. If
the form A(x, y) is nonsingular, then, given any vector x, % 0, there is a
vector y, € C, such that A(x,, y,) % 0 (cf. Sec. 7.15¢).

9.15. a. By a Hermitian quadratic form in a complex space C we mean
the function of one variable x € C obtained by changing y to x in amy
Hermitian bilinear form A(x, y). It follows from Sec. 9.12b that in an n-
dimensional complex space C,, with basis ¢, . . . , e,, a Hermitian quadratic
form can be expanded in terms of the components &, . . ., &, of the vector
x by the formula

A(x, x) =‘i 1an,5.-zk Q]
o=

with complex coefficients a;;. Conversely, a function A(x, x) of the form (7)
is the Hermitian quadratic form obtained by changing y to x in the Hermitian
bilinear form
Ax, y) = 3 ap&iny.
ik=1
b. If a Hermitian bilinear form A(x, y) is symmetric, so that a; = @,
then the corresponding Hermitian quadratic form A(x, x) is also said to be
symmetric. A symmetric Hermitian quadratic form A(x, x) can only take
real values, since it follows from (4) that

A(x, x) = A(x, x).

Unlike the situation in Sec. 7.22, there is a unique Hermitian bilinear
form A(x, y) corresponding to a given Hermitian quadratic form A(x, x).
In fact,

A(x + y, x + y) = A(x, x) + A(x, y) + A(y, x) + Ay, ),
A(x + iy, x +iy) = A(x,x) —iA(x, y) + iA(y, X) + A(y, ).
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Multiplying the first equation by 7 and then subtracting the second equation
from the first, we easily find that

AGx, y) = % [AGx + y, x + ) + IAGx + iy, x + ip)]

~ 1 A, 0 + AL L

so that A(x, y) is uniquely determined in terms of the values A(x, x), A(y, ),
A(x 4 y,x 4- y) and A(x + iy, x + iy) of the given Hermitian quadratic
form.

If the Hermitian quadratic form A(x, x) has the representation

AGn) = 3 ank

in some basis e,, . . ., e,, then the Hermitian bilinear form

n

A(x, y) = 2 apbiiy
tde=1
obviously reduces to A(x, x) if we make the substitution y = x. Moreover,
as just shown, this is the unique Hermitian bilinear form reducing to A(x, x)
under this substitution.

9.16. a. Given a symmetric Hermitian quadratic form A(x,x) in an
n-dimensional complex space C,, there exists a basis in C,, in which A(x, X)
can be written in the canonical form

A(x, x) = zl)‘knkvlk = EIM |"17c|2 ®
= =

with real coefficients hy, kg, . . ., A,
The proof of this proposition is analogous to that of Theorem 7.31.
Instead of equation (13), p. 186, we have

blmElEm + b‘ZmEZEm + e + bm—l,mim—lzm + bmmgmgm
+ Elmzlgm + e + Bm—l.mzmﬁlzm

2

bim bom boyme
= boum b;gl—i_b_ §2+"'+—b—1'_§m_1+5m + Ay(x, x)

mm

(bmm 7~ 0), where A;(x, x) is a symmetric Hermitian quadratic form in the
variables &, &,,..., &, . Instead of the transformation (14), p. 187, we



SEC. 9.1 HERMITIAN FORMs 251

now have the transformation
&y = E{ + Eé,
Ey = & + &,

which carries the sum a;,8,8, + @,,5,8, (g, 5= 0) into the expression

(ay0 + G)EiE] — i(ayy — @)E5EL +

where at least one of the two (real) coefficients a,, + d;, and i(a,, — Gy,) is
nonzero.

b. The law of inertia (Theorem 7.91) continues to hold for a symmetric
Hermitian quadratic form A(x, x) in a complex space, i.¢., the total number p
of positive coefficients and the total number q of negative coefficients among
the numbers Ay, ks, . . . , A, do not depend on the choice of the canonical basis.
The proof of this proposition is the exact analogue of that of Theorem 7.91.
As in the real case, the number p is called the positive index of inertia and the
number g the negative index of inertia of the form A(x, x).

It should be noted that the law of inertia does not hold for quadratic
(as opposed to Hermitian quadratic) forms in a complex space C,. For
example, the quadratic form

A(x,x) =E1 + &
is transformed into
A(x,x) =1 — 73
by the coordinate transformation
n=4&, N = i&y.

c. Given a symmetric Hermitian quadratic form A(x, x) in a space C,,
a canonical basis can always be found such that the corresponding canonical
coefficients can only take the values 4 1. In fact, having reduced the form
A(x, x) to the form

AQe, x) = M g2+ - 4 2 1002 g Mppal® = — g Mgl

where the numbers A, ..., 2, @, . . . , 4, are all positive, we make another
coordinate transformation

T, = \/)‘_1 Ns o0y Tp = \/)‘_11 Nos Topr = \/Lrl N1 - -+ s Tppe = \/;a Notas
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thereby reducing A(x, x) to the form
A(x’ x) = |"'1|2 + -+ |T,,|2 - |T,,+1|2 B |Tp+a|2

(cf. Sec. 7.93).

9.17. a. The vector x, is said to be conjugate to the vector y, with respect
to the Hermitian bilinear form A(x, y) if

A(x, y) = 0.

If the vectors x;, X, . . . , X; are all conjugate to the vector y,, then every
vector of the linear manifold L(x;, x,, ..., X;) spanned by x;, X,, ..., X,
is also conjugate to y, (cf. Sec. 7.42c). In general, a vector y, conjugate to
every vector of a subspace C’ < C is said to be conjugate to the subspace C'.
The set C” of all vectors y, € C conjugate to the subspace C’ is obviously a
subspace of the space C. This subspace C” is said to be conjugate to C'.

A basis e, e,, . .., e, of the space C,, is said to be a canonical basis of
the form A(x, y) if

A(e;,e,) =0 for ik

Every symmetric Hermitian bilinear form A(x, y) has a canonical basis. In
fact, let e, e,, . . . , e, be a basis in which the corresponding quadratic form
A(x, x) can be written in the canonical form

n

A(x, x) = Z 7\1'51'21,
i=1
where

Then, by Sec. 9.15b, the bilinear form A(x, y) takes the canonical form

A(x, y) = 217\1'5.‘7]1‘
in this basis, where

y = _zlnieiy
and hence
Ate ) A if i=k,
e, €) = .
Yol it ik
b. Suppose the principal descending minors 3,, 3, . . . , 8,_, of the matrix
lla;:ll of a symmetric Hermitian quadratic form A(x, x) are all nonvanishing.
Then, just as in Sec. 7.52, we can use Jacobi’s method to construct a canonical
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basis for A(x, x), and the canonical coefficients of A(x, x) are given by the
same formulas

A =3, )\2=8~2a---a)\n=8n
81 Sn—l
(8, = det |la,|) as on p. 195.

c. A symmetric Hermitian bilinear form A(x, y) is said to be posz';ive
definite if A(x, x) > 0 for every x s 0. Just as in the real case (Sec. 7.94),
an equivalent condition is that all the canonical coefficients of A(x, x) be
positive, or alternatively, that p = n, where p is the positive index of inertia
of the form A(x, x).

Just as in Theorem 7.96, a necessary and sufficient condition for the
form A(x, y) to be positive definite is that

3,>0,8,>0,...,8,>0

(Sylvester’s conditions). The proof given on p. 209 carries over without
change to the complex case.

9.18. a. Given a nonsingular symmetric Hermitian bilinear form (x, y),
we can introduce the concept of the adjoint of a linear operator (with respect
to the form (x, »)), just as in Sec. 7.6. First we note that if A and B are
linear operators in the space C,, then the forms

A(x, y) = (Ax, ),  B(x,y) =(x, By
are Hermitian bilinear forms, whose matrices are related to the matrices of

the operators A and B (in any canonical basis of the form (x, y) with canonical
coefficients ¢;) by the formulas

(the notation is the same as in Sec. 7.61). Conversely, given two Hermitian

bilinear forms A(x, y) and B(x, y), then, just as in Sec. 7.62, there exist
unique linear operators A and B such that

A(x,p) = (Ax,5),  B(x,y) = (x,By).

b. 1t follows, just as in Sec. 7.63, that given any linear operator A acting
in the space C,, there exists a unique linear operator A* acting in C,, such
that

(Ax, y) = (x, A%y)

for arbitrary x, y € C,. The matrices |a!?| and ||a*""| of the operators A
and A* in any canonical basis of the form (x, y) with canonical coefficients
g, are related by the formula

aXm =Em )

J
g5
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The operator A* is called the adjoint (or Hermitian conjugate) of the operator
A with respect to the form (x, y).

c. The operation leading from an operator A to its adjoint A* has the
following properties (cf. Sec. 7.64):

1) (A*)* = A for every operator A;

2) (A + B)* = A* + B* for every pair of operators A and B;
3) (AA)* = XA* for every operator A and every number A € C;
4) (AB)* = B*A* for every pair of operators A and B.

9.19. a. As in Sec. 7.71, two complex spaces C' and C” equipped with
nonsingular symmetric Hermitian bilinear forms A(x’,y’) and A(x", y"),
respectively, are said to be A-isomorphic if the spaces C' and C” are isomorphic
regarded as linear spaces over the field C (see Sec. 2.71) and if

A(xl,y() —— A(x”, yll)
for all corresponding pairs of elements x’, y' € C and x", y" € C".

b. THEOREM. Two finite-dimensional complex spaces C' and C", equipped
with nonsingular symmetric Hermitian bilinear forms A(x’, y") and A(x", y"),
respectively, are A-isomorphic if and only if they have the same dimension and
the indices of inertia p’, q’ of the form A(X’, y') coincide with the corresponding
indices of inertia p”, q" of the form A(x", y").

Proof. Precisely the same as that of the analogous proposition for real
spaces (Theorem 7.93). |}

c. In particular, two n-dimensional complex spaces C; and C,, equipped
with positive definite forms A(x’, ') and A(x", y"), respectively, are always
A-isomorphic (cf. Sec. 7.97).

9.2. The Scalar Product in a Complex Space

9.21. It will be recalled from Sec. 8.21 that the scalar product of two
vectors x and y in a real space is taken to be any fixed symmetric positive
definite bilinear form (x, y). The corresponding quadratic form (x, x) is
then positive for every nonzero vector x, and can be used to define the
length of x (see Sec. 8.31). In a complex space, any symmetric positive
definite Hermitian bilinear form has the analogous property (see Sec. 9.17c).
This leads to the following definition: A complex linear space C is said to be
a unitary space if it is equipped with a symmetric positive definite Hermitian
bilinear form (x, y), called the (complex) scalar product of the vectors x and
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. i.e., if there is a rule assigning to every pair of vectors x, y € C a complex
number (x, y) such that

a) (v, %) = (x, ) for every x, y € C;

b) (x,y +z) = (x, y) 4 (x, 2) forevery x, y, z€ C;

¢) (Ax,y) = A(x, y) for every x, y € C and every complex number 2;
d) (x, x) > 0 for every x + 0 and (x, x) = 0 for x = 0.

Axioms a)-c) imply the general formula

k mn k. m __
(2 %Xy, D, Ba’ya‘) = Z 2.ifi(xs, ¥i)s
=1 =1 i=1i=1

where x;,..., %, »,..., ¥, are arbitrary vectors of the space C and
%y, .. .5 o By, ..., B,, are arbitrary complex numbers.
9.22. Examples
a. In the n-dimensional space C,, (Sec. 2.15b) we define the scalar product
of the vectors x = (&,, &,,..., £ )and y = (%, %z, . . . , M,,) by the formula
(x, y) = 21?11 + 22?12 + 4+ Enﬁn'

The reader can easily verify that axioms a)-d) are satisfied in this case.

b. In the space C(a, b) of all continuous complex-valued functions on the
interval @ < t < b (Sec. 2.15d) we define the scalar product of the functions
x = x(¢t) and y = y() by the formula

b _
(x,y) = f x(Dy(1) dt.

Axioms a)-d) are then immediate consequences of the basic properties of the
integral.

9.23. Basic metric concepts. Next we introduce various metric concepts
in a unitary space C, just as was done in the case of a real Euclidean space
(Sec. 8.3).

a. The length of a vector. As in the real case, by the length (or norm) of a
vector x in a unitary space C we mean the quantity

x| = +v(x, x).

Every nonzero vector has a positive length, and the length of the zero vector
equals 0. For any complex A, we have the equality

Ix] = /o, Ax) = KA(x, %) = Al V(x, x) = Al |x],
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which shows that the length of a vector x multiplied by a numerical factor A
equals the absolute value of A times the length of x.

A vector x of length 1 is said to be a unit vector. Every nonzero vector
can be normalized, i.e., multiplied by a number A such that the result is a
unit vector. In fact, we need only choose A such that

1
A =—,
, I~
just as on p. 217.
The set of all vectors x € C such that |x| < 1 is called the unit ball in C,
while the set of all x € C such that |x| = 1 is called the unit sphere.

b. The Schwarz inequality. The inequality
16, M < 1%L Iyl ®

holds for every pair of vectors x and y in C. The idea of the proof is the same
as in the real case (Sec. 8.33), except that we must now be careful about
complex numbers. The inequality (9) is obvious if (x,y) = 0. Thus let
(x, y) # 0. Clearly,

Ox—p,Ax—)) >0

for arbitrary complex A. Expanding the left-hand side, we get
N2 G, %) =A%, ) =2, 0) + (0, 9) > 0. (10) .

Let v be the line in the complex plane determined by the origin and the complex
number (x, ), and let ¥y’ be the line symmetric to y with respect to the real
axis. Suppose A varies over the line y’, so that A = #z,, where ¢ is real and

= )
0=
1Ce, I
is the unit vector determining the direction of ¥’. Then
A, ) = t](x, )|
is real, and hence
A (x5 =N, ),
so that the inequality (10) becomes
tz(x7 x) -Ztl(x! y)l + (}’,Y) > 0. (11)

The same argument as in Sec. 8.33 now leads to the desired inequality (9).

If equality holds in (9), then the trinomial in the left-hand side of (11)
has a unique real root ¢, (of multiplicity two). Replacing #z, by 1, we find
that the trinomial in the left-hand side of (10) has the root Ay = #,z,. Therefore

AoX =y, hx —y)=0

and hence y = Ayx, so that the vectors x and y differ only by a (complex)
numerical factor.
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c. Orthogonality. Although the concept of the angle between two vectors
is not introduced in a unitary space, we still consider the case where two
vectors x and y are orthogonal, which means, just as in the real case, that

(x,9) =0.

If x and y are orthogonal, then obviously

W, x)=1(x,5) =0.

It is easily verified that the analogues of Lemmas 8.36a-b and the Pythagorean
theorem (Sec. 8.37) remain valid for orthogonal vectors in a unitary space.
Moreover, the analogue of the expansion theorem of Sec. 8.51 also holds,
i.e., given a finite-dimensional subspace C’ < C and a vector f which is in
general not an element of C’, there exists a unique representation

f=g+h

where g € C’ and & is orthogonal to C’. The set of all vectors 4 orthogonal
to the subspace C’ is itself a subspace, which we call the orthogonal comple-
ment of the subspace C’ and denote by C". Just as in Sec. 8.51, we see that
the original space C is the direct sum of the subspace C’ and its orthogonal
complement C".

d. The triangle inequalities. If x and y are two vectors in a unitary space
C, then, by Schwarz’s inequality (9),

x+yP=E+y,x+p)=&x)+ &)+ &9+ 0
< (%, %) + 2|, )| + O, ) < (x| + 1Y),
> (%) =20, )+ ) = (x]— D,

or
Ix + ¥ < |x| + ¥, (12)

1+ yl > x| — ). (13)

As in the real case, these inequalities are called the triangle inequalities.

9.24, Orthogonal bases in an n-dimensional unitary space C,. According
to Sec. 9.16a, the symmetric Hermitian bilinear form (x, y) has a canonical
basis e, e,, ..., e, in the n-dimensional space C,, and in this case the
condition

(e:,€,) =0 (i #K)
for the basis to be canonical reduces to the orthogonality condition. More-

over, the orthogonal basis vectors e;, e,, ..., e, can be regarded as nor-
malized, so that

ley) = legl = - -+ = le,] = L.
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Let

n n
x =Z~5kek, y =Enkek
k=1 r=1

be any two vectors in C,, with components &, v, (k= 1,...,n) with
respect to the basis e, e,, ..., e,. We then get the following formula for
the scalar product (x, y) in terms of the components of x and y:

(x, ») = Zli;ﬁzk-
o

9.25. a. As shown in Sec. 9.18a, the formula
A(x, y) = (Ax, )

establishes a one-to-one correspondence between Hermitian bilinear forms
A(x, y) and linear operators A acting in the space C,. In any orthonormal
basis e, e, . .. , e, of the space C,, the matrix [|a;,,| of the form A(x, y) and
the matrix Ha}””" of the operator A, where

a.im = A(ej9 €m)s
S (
_ N,
Aea’ *Zak €1
A=1

are related by the formula

— g
a;, = a,.

b. Let A be any linear operator acting in the space C,,. Then, as shown
in Sec. 9.18b, there is a unique operator A*, the adjoint of A with respect
to the scalar product (x, y), such that

(Ax, ) = (x, A%)
for arbitrary x, y € C,.. Since any orthonormal basis is a canonical basis for
the form (x, y), with canonical coefficients ¢, = 1, the matrices |la!?’|| and
laX |l of the operators A and A* are related by the formula

(5)

*(m) __
im*am

a

In other words, the matrix of the operator A* is obtained from that of the
operator A by ‘“Hermitian transposition,”” i.e., by transposition followed by
replacing all elements of the matrix by their complex conjugates. Corre-
spondingly, we call the matrix of A* the Hermitian conjugate (or adjoint) of
that of A.

c. As in Sec. 8.96a, if the subspace C' < C is invariant under the operator
A, then the orthogonal complement of C' is invariant under the adjoint opera-
tor A*.
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9.26. A coordinate transformation in an n-dimensional unitary space C,
leading from one orthonormal basis to another is called a unitary trans-
Sformation. Unitary transformations are analogous to orthogonal trans-
formations in a Euclidean space (see Sec. 8.94). If e, ... ,e,and f;, ..., f,
are orthonormal bases in C, and if U = ||u{?|| is the matrix of the corre-
sponding unitary transformation, so that

n
Ji= z“;ci)ek,
then obviously o
n  — (1 if i=],
(fof) = Zudn” = (14)
w=1 0 if isj.
Conversely, if the numbers u(") satisfy the conditions (14), then the matrix
%l is a unitary matrix, i.e., the matrix of a unitary transformation.
The linear operator U corresponding to a unitary matrix is called a
unitary operator. Just like an isometric operator in a real space, a unitary

operator in a complex space does not “‘change the metric.”’ In other words,
if
n n
x=3%e, y= Zlmej,
=

i=1

then

(Ux, Uy) = ilam,we,-, Uey) = ila,-a,-(fi,f,-) = z Ed, = (x, ).

i4= =

The matrix V of the inverse transformation from the basis f;, ..., f, to
the basis e, . .. , e, is also unitary. Moreover, if V' = |[v{?||, we have

i (i —
) =(f,e), o = (e fi) =ul.

Thus the inverse of a unitary matrix is obtained by first transposing and then
going over to complex conjugate elements. Therefore

U= U*
for a unitary operator U, or equivalently,

U*U = UU* =L

9.3. Normal Operators

9.31. Definition. An operator A acting in an n-dimensional unitary
space C,, is said to be normal if it commutes with its own adjoint, i.e., if

A*A — AA* (15)
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(cf. Sec. 8.92¢). An example of a normal operator is given by any operator
A whose eigenvectors ey, . . . , e, satisfying the relation

Ae;=Ne;,  (j=1,...,n),

form an orthogonal basis in C,. In fact, the matrix of the operator A in the
basis e, . .. , e, is then of the form

N O ... 0
0 %% ... 0

(16)
0 0 ... a

n

But, by Sec. 9.25, the matrix of the operator A* in the same basise,, ... , e,
is just

M0 ... 0
0 % ... 0

, (mn
0 0 ... %

from which is is obvious that the operators A and A* commute.

9.32. THEOREM. Erery eigenvector x of anormal operator A with eigenvalue
A is an eigenvector of the operator A* with eigenvalue .

Proof. Let P < C, be the subspace consisting of all eigenvectors of the
operator A with eigenvalue A. If x € P, then

AA*x = A*Ax = A*(Ax) — A *x,

which implies A*x € P. Hence P is invariant under the operator A*.
Moreover,

(A*x,y) = (x,Ay) = (x, }y) = (hx, »)
for arbitrary x, y € P, and hence
A*x=x. |

9.33. a. THEOREM. Given any normal operator A acting in a unitary
space C,, there exists an orthonormal basis e, . .., e, in C, consisting of
eigenvectors of A.

Proof. The normal operator A, like every linear operator in the space C,,
has an eigenvector (see Sec. 4.95b). Let e, be an eigenvector of A with
eigenvalue 2, and let P < C, be the subspace consisting of all eigenvectors
of A with this eigenvalue A. If P is the whole space C,, then we need only
arbitrarily augment e, with vectors e, . . . , e, to make an orthonormal basis
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for C,,, thereby proving the theorem. Thus suppose P £ C,, and let Q be
the orthogonal complement of P in C,. The subspace P is invariant under the
operator A*, as in the proof of Theorem 9.32 (in fact, A* carries every
vector x € P into the vector Ax). It follows that Q is invariant under the
operator A itself, because of Sec. 9.25¢c and the fact that (A*)* = A (see
Sec. 9.18¢c). We can now prove the theorem by induction. In fact, suppose
the theorem is true for every space C,, of dimension n < k. Then it is also
true for C,,,, since to get an orthonormal basis for C,,; consisting of
eigenvectors of A, we need only choose such a basis in the subspace Q (such
exists by the induction hypothesis, since the dimensjon of Q is < k) and then
augment this basis by any orthonormal basisin P. The proof is now complete,
since the theorem is obviously true for the one-dimensional space C,. |}

b. It follows from Theorem 9.33a that every normal operator A is
diagonalizable (see Sec. 4.72f). In fact, A has the diagonal matrix

N O ... 0

0 2% ... 0
A=

0 0 ...

in the orthonormal basis constructed in Theorem 9.33a, consisting of
eigenvectors of A. The eigenvalues of A lie on the principal diagonal of this
matrix, each appearing a number of times equal to the dimension of the
corresponding characteristic subspace (cf. p. 110). Hence the characteristic
polynomial det |4 — AE| of the operator A, which as we know is independent
of the choice of basis (see Sec. 5.53), has the form

det |4 — AE| =TT — W) Sr, =n, (18)
k=1 k=1
where Ay, ..., A, are the distinct eigenvalues of the operator A and ry, . . .,

r,, are the dimensions of the corresponding characteristic subspaces.

c. On the other hand, suppose it is known that a normal operator A has
a characteristic polynomial of the form

8 &
det |4 —2AE| = H (P"k — W)™, zlpk =n, 19)
E=1 k=

where y,, .. ., u, are distinct complex numbers and p,, ..., p, are certain
positive integers (multjplicities). Then it can be asserted that the operator A
has an orthonormal basis consisting of eigenvectors with eigenvalues p.,, . . . , @,
where the dimension of the characteristic subspace corresponding to the
eigenvalue y; is just p;. In fact, the polynomials (18) and (19) must coincide,
by the uniqueness of the characteristic polynomial. But then our assertion
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follows from the familiar theorem on the uniqueness of the factorization of a
polynomial.

9.34. Self-adjoint operators. An operator A acting in a unitary space C
is said to be self-adjoint if A* = A, ie., if

(Ax,y) = (x, Ay) (20)

for arbitrary vectors x, y € C. Note that A is self-adjoint if and only if the
bilinear form (Ax, y) corresponding to A is Hermitian-symmetric.t Accord-
ing to Sec. 9.25, the matrix of a self-adjoint operator A in any orthonormal
basis coincides with its own Hermitian conjugate, ie., with the matrix
obtained from that of A by transposition followed by taking complex
conjugates of all elements. Conversely, every operator A with a Hermitian—
symmetric matrix (i.e., a matrix equal to its own Hermitian conjugate) in
some orthonormal basis is self-adjoint.

Since a self-adjoint operator A is obviously normal, it follows from
Theorem 9.33a that there exists an orthonormal basis e,, . . . , e, in the space
C,, in which the matrix of the operator A takes the form (16) and that of A*
takes the form (17). Hence ;= X; (j = 1,...,n), since A* = A, i.e., the
numbers A; are all real. This proves the following

THEOREM. Given any self-adjoint operator A in a unitary space C,, there
exists an orthonormal basis e,, . .., e, consisting of eigenvectors of A with
eigenvalues that are all real.

Conversely, every linear operator A in the space C, with the indicated
property is self-adjoint. In fact, A is normal by Sec. 9.31, and comparing
(16) and (17) we find that A* = A, since the numbers 2, are all real.

9.35. Antiself-adjoint operators. An operator A acting in a unitary space
C, is said to be antiself-adjoint if A* = —A. The matrix of an antiself-
adjoint operator A in any orthonormal basis ¢,,. . ., e, has the following
characteristic property:

ag = (Ae,, &) = (e, A¥e,) = (e;, —Aey) = —(Aey, ) = —dy,
G, k=1,...,n).
An antiself-adjoint operator A is obviously normal. Applying Theorem
9.33a, we find that there exists an orthonormal basis e, . . . , e, in the space

C,, in which the matrix of the operator A takes the form (16) and that of A*
takes the form (17). Hence 2, = —; (j=1,...,n), since A* = —A,

1 In fact, the condition (Ay, x) = (Ax,y) is equivalent to (20). For this reason, a
self-adjoint operator might also be called Hermitian-symmetric.
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i.€., the numbers }, are all purely imaginary. This proves the following

THEOREM. Given any antiself-adjoint operator A in a unitary space C,,
there exists an orthonormal basis e,, . . . , e, consisting of eigenvectors of A
with eigenvalues that are all purely imaginary.

Conversely, every linear operator A in the space C, with the indicated
property is antiself-adjoint.

9.36. As in Sec. 9.26, an operator U acting in a unitary space C,, is said
to be unitary if U*U = UU* = E. In particular, every unitary operator is
normal. Applying Theorem 9.33a, we find that there exists an orthonormal
basis e, . . . , e, in the space C, in which the matrix of the operator U takes
the form (16) and that of U* takes the form (17). Henced; =1 (j=1,...,
n), since U*U = E, or equivalently,

I3 =1 (=1,...,n).
This proves the following

THEOREM. Given any unitary operator U in a unitary space C,, there
exists an orthonormal basis e, ..., e, consisting of eigenvectors of the
operator U with eigenvalues that are all of absolute value 1.

Conversely, every linear operator U in the space C, with the indicated
property is unitary.

9.4. Applications to Operator Theory in Euclidean Space

9.41. Embedding of a Euclidean space in a unitary space. As in Sec. 8.21,
let R be a (real) Euclidean space with scalar product (x, y). Consider the
complex space C consisting of the formal sums x + iy where x, y € R, with
the following natural operations of addition and multiplication by arbitrary
complex numbers:

(xy + i) + (6 + iy = (% + X9) + i(yy + yo),
(& + B)(x + iy) = (ax — By) + i(ay + Bx).

Then it is easily verified that C has all the properties of a complex linear
space.

We now identify the vectors x + /0 with the vectors x € R, calling them
real vectors of the space C. The vectors 0 4 iy will be denoted simply by iy
and called purely imaginary vectors. By the complex conjugate of the vector
X -+ [y, written x + iy, we mean the vector x — iy.

Next we introduce a scalar product in the space C, defined by the formula

(%1 + iy, X + iya) = [(x1, X9) + (1, y)] + i[O, %) — (x5, ).
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It is easily verified that this scalar product satisfies axioms a)-d) of Sec. 9.21.
In particular,
(x + iy, x +iy) = (x,%) + (1, ).

Thus the space C contains the space R as a subset, equipped with the same
scalar product, and subject to the same operations of addition and multi-
plication by real numbers. Note that every orthonormal system (or basis)
e, ...,e, in the space R is also an orthonormal system (or basis) in the
space C.

9.42. Every linear operator A specified in the space R can be extended
into the space C by the formula

AGx + iy) = Ax + iAy, @n

where the operator A IS obviously a linear operator in the space C. The
matrix of the operator A in the space C relative to a basis e}, ..., e, €R
coincides with the matrix of the operator A in the space R relative to the same
basis, since, according to (21),

Ae,=Ae, (j=1,...,n).

This extension from A to A preserves algebraic relatlons between linear
operators, i.e., if A + B = D in the space R, then A +B=Dinthe space
C, while if AB = D in the space R, then AB = Din the space C. This follows
for example from the fact that matrices are preserved under the extension
from A to A.

9.43. Let A’ be the ad_]omt of the operator A in the real space R (see Sec.
8.91). Then the extension A’ of the operator A’ into the space C is just the
operator A* adjoint to the extension A of A. In fact, given arbitrary vectors
z=x4iy,w=u+ iv e C, we have

(Al(x + 1)/), u—+ ll)) = (Alxy u) + I(A,yy u) - i(Alxa U) + (A’y9 U)
= (x, Au) + i(y, Au) — i(x, Av) + (¥, Av)

= (x + iy, Au + ),
as required.

In particular, the extension of a symmetric operator (A" = A) is a self-
adjoint operator (A* == A), the extension of an antisymmetric operator
(A’ = —A) is an antiself-adjoint operator (A* = —A), and the extension of
an isometric operator (U’ = U~?) is a unitary operator (U* = U~?). Finally,
the extension of a normal operator (A’A = AA’) is again a normal operator
(A*A = AAY).
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9.44. Structure of a real normal operator. Let ¢ and © be real numbers.
Then the easily verified matrix equality

6 T 6 —T 6 —T 6 T 6% 4 1% 0
= = (22)
—1 oilllT c T c —T o 0 62 4 72
shows that the matrix
6. T
—T ©

commutes with its own transpose (and hence a fortiori with its own adjoint);
more generally, the same is true of the quasi-diagonal (real) matrix

6, T
—T 0O

Gy Ty

23)

m+1

)‘m+2

o

THEOREM. Given any normal operator A in a real Euclidean space R,,
there exists an orthonormal basis f,, . . ., f, € R, in which the matrix of A
is of the form (23), with m + r = n, where the numbers ¥; = o; + i,
(j=1,...,m) and A, ..., %, are uniquely determined by A. In fact,
these numbers are the roots of the characteristic equation

det |A — AE| =0, 4

and each root of (24) appears in the matrix (23) a number of times equal to
its multiplicity.

oforder2m +r —m=m +r.

Proof. As in Sec. 9.41, we construct the unitary space C, whose scalar
product is the extension of the scalar product (x, y) defined in the space R,,.
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We then use (21) to extend the operators A and A’ into the space C,,. As
shown in Sec. 9. 43, the extensions of A and A’ are the normal operator A
and its adjoint A* Let la..ll denote the matrix of the operator A relative to
any orthonormal basns ey, ...,e,inthe space R, (the numbers a,; are real).t
Then the operator A has the same matrix relative to the basise;, ..., e, in
the whole space C,.. Since the characteristic equation (24) has real coefficients,
if A;is an imaginary root of (24), then so is the complex conjugate ;. Bearing
this in mind, we write the sequence of distinct roots of (24) in the form

Al Aps e« o0 Apy Ay Apygy - v+ s Agy

where the roots 2,,..., A, are imaginary and the roots A,,,,...,2, are
real. Then, by Sec. 9.33b, the space C, can be represented as a direct sum of
orthogonal subspaces

AL Ay, ALALA
where A; consists of all eigenvectors of the operator A corresponding to the

elgenvalue %, and A, consists of all eigenvectors of A corresponding to the
eigenvalue A;, while

ors -0 Ny

A=A, ... A=A,
If z = x + iy € A,, then the equation Az = X,z becomes

n
2.ax% = M\G;
E=1
in component form (with respect to the original basis e,, . . . , e,), where

2=(C1,---,Cn)’—:(il‘i‘fﬂn---,En'f‘im)-

Taking the complex conjugate and recalling that the numbers a;, are real,
we get

p+1

n - - -
zajkck =x%
k=1

This means that the vector Z = (21, ..., %, is also an eigenvector of the
operator A with eigenvalue . It follows that the operation of taking the
complex conjugate carries the space A; into the space A,

Now let &, = 6, + i1y, where T, % O since &; 7 A,, and let g, be any unit
vector in A, so that § € A,. Moreover, let

L—(g1 + &), Sfo= _1—__(g1 -~ &,

h= V2 V2i
so that
1 .
g =7+ i) & =—7=U—if),
NS \/2
t In the course of the proof, we will construct a new orthonormal basis fi, . . . , f, for

R, in which A has a matrix of the form (23).
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where the vectors f; and f; are obviously real, and moreover orthonormal,
since it follows from

gngy=0Evr8) =1 (g1, &) =0
that

o f) = furfd) = % [gw 20 + @ 801 =1,

) 1 1
(fufo) =— _Z—I.(gl +8ug—8)=— Z (g1, g1) — (&1, £)]1 =0.

Since

A 1 A A -
A =R =2+ Re ﬁ Mg + 1)
:% (o, + it)(fi + if2) + (6, — iTl)(fl - 'fz)] =ofy — 1ufe

1 A A 1 - _
Al =AL=—(Ag; — AZ) = —=— (g — M&) =Thi T arfe,
J2i J2i
we see that the operator A transforms the plane of the vectors f;, f; into
itself and has the matrix
61 T

(25)

-1, O

in the basis f;, f;. If the dimension of A is greater than 1, we choose another
unit vector g, € A, orthogonal to g,, with complex conjugate g, € A, (the
latter is automatically orthogonal to g,). Repeating the above construction
for g, and g,, we get a new pair of real vectors f,, f; which are linear com-
binations of g,, g, and hence orthogonal to the vectors f;, f; (themselves
linear combinations of g,, §,). Clearly A transforms the plane of the vectors
[3, fa into itself and has the same matrix (25). Continuing this construction,
we eventually get 2m orthonormal real vectors f3, fo, . . ., fom—1, fom, Where
m is the sum of the dimensions of the subspaces A,,..., A, and A trans-
forms the plane of the vectors f,;_,, fy; into itself, with either the same matrix
(25) or the analogous matrix obtained by replacing o,, 7, by o;, T,
k=2,....p.

Next consider the subspace A, corresponding to the real root 2,,, =
%,+1- The operation of taking the complex conjugate obviously carries the
subspace A, into itself. Letg be any vectorin A, and let ¢ be its complex
conjugate. There are just two possibilities, namely, the vectors g and £ are
either linearly independent (in C,) or linearly dependent. If g and g are
linearly independent, then so are the real vectors

1 5 1
\/i(ngg), f X

Like g and g, these vectors belong to A ,,,, and hence are eigenvectors of the

(g — 2.
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operator A with the same eigenvalue 2,,,. On the other hand, if g and g are
linearly dependent, then

§=¢%g (0<op<m),
since g and g have the same length. Therefore

Q. i __ L iP
e'g=¢e "g=e¢e7g,

so that the vector
f=¢€%

is real. Moreover, since f belongs to A, like g itself, fis an eigenvector of
A with the same eigenvalue 2, ,. Thus, in any event (continuing this con-
struction if necessary), we can always find a basis in A, consisting of real
vectors. Applying the orthogonalization theorem (Theorem 8.61) to this
basis, we finally get first an orthogonal and then an orthonormal basis in
A, . Clearly the operator A transforms A, into itself and has the diagonal
matrix

L

0 2 e 0
i (26)

0 0 - A

in the orthonormal basis. Repeating this construction for the remaining
subspaces A ., ..., A,, we eventually obtain a set of orthonormal vectors
Semis fomyzs + 5 fn» Which together with the previously constructed vectors
Ji:fes - -+ s fom form a full orthonormal basis for R,. To complete the proof,

we need only take account of the special form of the typical blocks (25) and
(26), compensating for the somewhat different indices in (23) which refer
to roots which are not necessarily distinct. §

The geometric meaning of a normal operator can be deduced from this
theorem. First we observe that the operator with matrix

G T

—T G

in the basis f;, f; can be interpreted as a rotation accompanied by an expansion
in the plane of the vectors f;, f;. In fact, we need only note that

6 T
2 2 2 2 .
G T NE Vo' + 7 cosa sina
=Ve +1° =M . ’
— . T ° —-Sina  COosa
—_— —_—
\/cs + 7° \/62+T2
- c . T
M=\/04+T2, COS o = ————— sin g = ———
\/2 2 \/2 22
'+ 6+ T
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where the effect of the matrix

cos o sin «

—sina COS &

is to rotate every vector in the f;, f; plane through the angle «, while M is
clearly the expansion coefficient. Recalling (23), we now see that the total
effect of the normal operator A is to produce rotations accompanied by
expansions in m mutually orthogonal planes and expansions only (by factors
of Apy1s - .. » A, Tespectively) in the r — m directions orthogonal to these
planes and to each other.t

9.45. The structure of a real symmetric operator. Let A be a symmetric
operator acting in a real space R, so that A’ = A. Then the extension A
of the operator A into the unitary space C, is self-adjoint, i.e., A* = A. The
eigenvalues 4y, . .. , A, of a self-adjoint operator are all real (see Sec. 9.34).
Hence there are no blocks of the form (25) in the representation (23), and
all that remain are diagonal elements. This proves the following

THEOREM. Given any symmetric operator A in a real Euclidean space R,,
there exists an orthonormal basis in R,, consisting of eigenvectors of A.

Geometrically, a symmetric operator produces expansions (by factors of
M\s ..., Ay, Tespectively) along each of n orthogonal directions. The num-
bers 2,,..., A, are the roots of the characteristic equation (24). Hence
the characteristic equation corresponding to a symmetric matrix 4 =
lla |l must have n (not necessarily distinct) real roots and no imaginary roots
at all.

9.46. The structure of a real antisymmetric operator. If A is an anti-
symmetric operator acting in R,, so that A" = —A, then the extension A
of the operator A into the space C,, is antiself-adjoint, i.e., A* = —A. The
eigenvalues Ay, . . . , A, of an antiself-adjoint operator are all purely imaginary
(see Sec. 9.35). Hence the blocks (25) in the representation (23) take the
special form

0 T ]
(=L2,....,m),

—-1; 0

while the numbers A A

m41? Py -+ o b, must all be 0. This proves the following

1 The expansion is actuaily a contraction if 0 < Vo212 <1 or if 0 <X < L.
Moreover, expansion by a factor % < 0 is actually an expansion accompanied by a
reflection.
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THEOREM. Given any antisymmetric operator A in a real Euclidean space
R,, there exists an orthonormal basis in R,, in which the matrix of A rakes the
quasi-diagonal form

@7

Conversely, if the matrix of an operator A is of the form (27) in some
orthonormal basis, then A is antisymmetric (Sec. 8.92b).

Geometrically, an antisymmetric operator produces rotations through
90° followed by expansions (by factors of =, ..., 7,, respectively) in m
mutually orthogonal planes, while mapping into 0 all vectors orthogonal to
these planes.

9.47. The structure of a real isometric operator. If A is an isometric
operator acting in R,, so that A’ = A~%, then the extension A of the operator
A into the space C,, is unitary, i.e., A*— A1 The eigenvalues A, ..., 2,
of a unitary operator are all of absolute value 1 (see Sec. 9.36). Hence the
blocks (25) in the representation (23) take the special form

€Os «; Sin o

>

—sin «; COS «;
and the numbers A,,,,, ..., A, must all be --1. This proves the following

THEOREM. Given any isometric operator A in a real Euclidean space R,
there exists an orthonormal basis in R, in which the matrix of A takes the
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quasidiagonal form

cos oy sin ay

—sin a; €oOs o,

Cos oy  Sin oy

—s$in o, COS Oy

COS %, Sin o,

—sin &, €OS o,

+1

E .

L1

Geometrically, an isometric operator A produces a rotation through a
certain angle (with no accompanying expansion) in each of m mutually
orthogonal planes, and acts like the operator E or —E in each of the r-m
directions orthogonal to these planes and to each other. However, we can
combine every pair of such directions with identical expansion coefficients
(both -+1 or both —1) into a plane in which the operator A also produces a
rotation (through 0° or 180°). Making all such combinations, we find that
if n is odd, then some last direction has the coefficient -1 or —1, while if n
is even, there may be two ungrouped directions with coefficients +1 and —1.
The presence of —1 among these remaining coefficients shows that besides
the indicated rotations there is an additional reflection with respect to some
coordinate plane, for example, the plane orthogonal to the basis vector e,.
We then havedet 4 = —1, whereasdet 4 = + 1 if there is no such reflection.

PROBLEMS

1. A self-adjoint operator acting in a unitary space C, is said to be nonnegative
(or positive) if all its eigenvalues 2,, . . . %, are nonnegative (or positive). Show
that the square of every symmetric operator is nonnegative.

2. Show that given any self-adjoint nonnegative (or positive) operator A, we
can find a unique nonnegative (or positive) operator B, the “square root of the
operator A,” such that B? = A.
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3. Take the square root of the operator A specified by the matrix

13 14 4
A=|14 24 18
4 18 29

in an orthonormal basis e,, ¢,, ;.

4. Let A be an arbitrary linear operator acting in a unitary space C,, and let
A* be its adjoint. Prove that A*A is a nonnegative operator. Prove that A’A
is a positive operator if A is nonsingular.

5. Given that a linear operator A is the product SQ of a self-adjoint operator
S and a unitary operator Q, prove that S* = AA*,

6. Show that every nonsingular linear operator A can be represented as the
product SQ of a self-adjoint operator and a unitary operator.

7. Prove that the representation of the operator A as a product SQ in Problem
6 is unique.

8. A linear operator V acting in C, is said to be nonexpanding if |Vx| < |x| for
every x. Prove that every linear operator A can be represented as the product
of a self-adjoint operator and a nonexpanding operator.

9. Show that two self-adjoint operators A and B commute if and only if they
have a common system of n mutually orthogonal eigenvectors.

10. Given a linear operator A acting in the space C,, find an orthonormal
basis in which the matrix of A has the triangular form

1) g0 (1)
a? a» ... af

aolo e e



chapter 10

QUADRATIC FORMS
IN EUCLIDEAN AND
UNITARY SPACES

10.1. Basic Theorem on Quadratic Forms in a Euclidean Space

10.11. We begin with the following theorem concerning symmetric
bilinear forms in a Euclidean space:

THEOREM. Every symmetric bilinear form A(x,y) in an n-dimensional
Euclidean space R, has a canonical basis consisting of orthogonal vectors.

Proof. Consider the linear operator A corresponding to the given sym-
metric bilinear form (see Sec. 8.91). The operator A is also symmetric.
According to the theorem on symmetric operators (Theorem 9.45), the space
R, has an orthonormal basis consisting of the eigenvectors of the operator
A, and the matrix of A is diagonal in this basis. Since this matrix is also the
matrix of the bilinear form A(x, y), the orthonormal basis just found is a
canonical basis of A(x, y). §

10.12. We now apply this result to the study of quadratic forms. Given
a quadratic form

A(x, x) = Y aukéy (@i = aw), 0y
k=1
we will regard the numbers &,, &,, ..., &, as the components of a vector x

in an n-dimensional Euclidean space R,, with a scalar product defined by
the formula

x,» = gimf,

273
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where y = (%, %25 . . . » M,).- The basis
e = (1,0,...,0),
e =(0,1,...,0),

e, =(0,0,...,1)

is an orthonormal basis in R, and clearly

n n
X = z Eiei, y = Zmef-

i=1 i=1

Now consider the bilinear form

Alx, y) = kz_laikiink

corresponding to the quadratic form (1). By Theorem 10.11, this form has
an orthonormal basis f;, f3, . . . , f,. If the components of the vectors x and
y are Ty, Ty, ..., T, and 0,,0,, ..., 0, respectively, in this basis, then we
can write the bilinear form A(x, y) as

A(x, y) = > A0,
i=1

and the quadratic form A(x, x) as

A(x, x) = i N )
i=1

The transformation from the basis e;, e, . .. , e, to the basis f}, f5, ... , f,
is given by

fj=Eq.‘”ef (G=12,...,n)
i=1

where Q = |¢{|| is an orthogonal matrix (Sec. 8.93). According to the
formulas (36), p. 240, the relation between the components T, T, . .
and &, &,, ..., &, is given by the system of equations

s Ty

G=Sdn G=12.m, )

involving the transposed matrix Q'. Thus we have proved the following
important

THEOREM. Every quadratic form (1) in an n-dimensional Euclidean space
K, cun be reduced to the canonical form (2) by making an isometric coor-
dinate transformation (3).
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10.13. The sequence of operations which must be performed in order to
construct the coordinate transformation (3) and the canonical form (2) of
the quadratic form (1) can be deduced from the results of Secs. 4.94 and
9.45. We now give this sequence of operations in final form:

a) Use the quadratic form (1) to construct the symmetric matrix A = ||ag|.

b) Form the characteristic polynomial A(A) = det (4 — AE) and find its
roots. By Sec. 9.45, this polynomial has n (not necessarily distinct) real
roots.

c) From a knowledge of the roots of the polynomial A(X), we can already
write the quadratic form (1) in canonical form (2); in particular, we can
determine its positive and negative indices of inertia.

d) Substitute the root X, into the system (28), p. 110. For the given root
Ay, the system must have a number of linearly independent solutions equal
to the multiplicity of the root A,. Find these linearly independent solutions
by using the rules for solving homogeneous systems of linear equations.

€) If the multiplicity of the root A, is greater than unity, orthogonalize
the resulting linearly independent solutions by using the method of Sec. 8.61.

£) Carrying out the indicated operations for every root, we finally obtain
a system of n orthogonal vectors. We then normalize them by dividing each
vector by its length. The resulting vectors

fl = (q;”’ q;”’ tees q;”)9

2 2 2
f2 =(¢1{ )9q; )9""‘1;;))9

— (7} 0} (n)
fn “(ql ,42 9'-'9qn

form an orthonormal system.
g) Using the numbers q\’, we can write the coordinate transformation (3).
h) To express the new components ©,, =5, ..., %, in terms of the old
components &, &, ..., &,, we write

n
=g (j=12...,n),
i=1
recalling that the inverse of the orthogohal matrix Q is the transposed matrix Q'.

10.14. In Sec. 7.33a we saw that neither the canonical form nor the
canonical basis of a quadratic form is uniquely defined in an affine space;
in general, any preassigned vector can be included in the canonical basis
of the quadratic form. The situation is quite different in a Euclidean space,
provided that only orthonormal bases are considered. The point is that the
matrix of the quadratic form and the matrix of the corresponding symmetric
linear operator transform in the same way, as already noted in Sec. 8.91.
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Thus a canonical basis for the quadratic form is at the same time a basis
consisting of the eigenvectors of the symmetric operator, and the co-
efficients of the quadratic form relative to the canonical basis (the “canonical
coefficients’’) coincide with the eigenvalues of the operator. But the eigen-
values of the operator A are the roots of the equation det (4 — AE) = 0, an
equation which does not depend on the choice of a basis and is an invariant
of the operator A. Hence the set of canonical coefficients of the form (Ax, x)
is uniquely defined. As for the canonical basis of the quadratic form (Ax, x),
it is defined with the same arbitrariness as in the definition of a complete
orthonormal system of eigenvectors of the operator A, i.e., apart from
permutations of the eigenvectors, we can multiply any of them by —1, or
more generally, we can subject them to any isometric transformation in the
characteristic subspace corresponding to a fixed eigenvalue A.

10.2. Extremal Properties of a Quadratic-Form

10.21. Next, given a quadratic form A(x, x) in a Euclidean space R,,
we examine the values of A(x, x) on the unit sphere (x, x) =1 of the space
R,, and inquire at what points of the unit sphere the values of A(x, x) are
stationary. It will be recalled that by definition a differentiable numerical
function f(x), defined at the points of a surface U, takes a stationary value
at the point x, € U if the derivative of the function f(x) along any direction
on the surface U vanishes at the point x,. In particular, the function f(x) is
stationary at the points where it has a maximum or a minimum.

The problem of determining the stationary values of a quadratic form
on the unit sphere is a problem involving conditional extrema. One method
of solving the problem is to use Lagrange’s method,t as follows: We con-
struct an orthonormal basis in the space R, and denote the components of
the vector x in this basis by &,, &,,..., £,. In this coordinate system, our
quadratic form becomes

A(x, x) = E az’kiiiln
ik=1

and the condition (x, x) = | becomes

*n
SE =1
i=1
Using Lagrange’s method, we construct the function
F(E, 8o .., &) = D apby — 2 2153,
k=1 i=

+ See e.g., R. Courant, Differential and Integral Calculus, Vol. II (translated by E. J.
McShane), Interscience Publishers, Inc., New York (1956), p. 190.
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and equate to zero its partial derivatives with respectto £, (i = 1,2,...,n),
recalling that a,, = a,:

23 a,— WE; =0 (i=12...,n).
k=1
After dividing by 2, we obtain the familiar system

@y —MNE& +apl + 0 + a8, =0,
anéy + (@ — N+ - + a3,6, =0,

Ay + Anbs + 00 + (@, —NE, =0

(cf. p. 110), which serves to define the eigenvectors of the symmetric operator
corresponding to the quadratic form A(x, x). It follows that the quadratic
Jorm A(x, x) takes stationary values at those vectors of the unit sphere which

are eigenvectors of the symmetric operator A corresponding to the form
A(x, x).

.10.22. We now calculate the values which the form takes at its stationary
points. To do this, we introduce the corresponding symmetric operator A
and write the quadratic form as

A(x, x) = (Ax, x).

_Suppose that A(x, x) takes a stationary value at the vector e,. Since we have
just shown that e, is an eigenvector of the operator A, i.e., Ae; = he,, we
have

Ale;. e) = (Ae;, e)) = M(e, ) = Xy

Hence the stationary value of the form A(x, x) at x = e, equals the corre-
sponding eigenvalue of the operator A. Since the eigenvalues of the operator
A are the same as the canonical coefficients of the form A(x, x), we can
conclude that the stationary values of the form A(x, x) coincide with its
canonical coefficients. In particular, the maximum of the form A(x, x) on
the unit sphere is equal to its largest canonical coefficient, and the minimum
of A(x, x) on the unit sphere is equal to its smallest canonical coefficient.

10.23. Quadratic forms and bilinear forms can both be considered not
only on the whole n-dimensional space R,,, but also on a k-dimensional
subspace R, < R,, and we can then look for an orthonormal canonical basis
in R;. Let the quadratic form A(x, x) have the canonical form

A, x) = NE 4+ 0EE 4 - HAE 4)
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in the whole space R,,, and the canonical form
AQx, X) = wym) 4 pats 4 0+ T
in the subspace R,. We now find the relation between the coefficients
@1> Was - -« > 1 and the coefficients Ay, 25, ..., A,. For convenience, we
assume that the canonical coefficients are arranged in decreasing order, i.e.,
that
N>kt 34, W2 2> > Uy

As we know, the quantity A, is the maximum value of the quadratic form
A(x, x) on the unit sphere of the space R,; similarly, g, is the maximum
value of A(x, x) on the unit sphere of the subspace R,. This implies that
%, < A,. Moreover, we also have w, > A,_;.,. Toseethis, lete, e, ..., e,
be the canonical basis in which A(x, x) takes the form (4). Consider the
(n — k + 1)-dimensional subspace R’ spanned by the vectors e, e,,. ..,
€, 1. Since k + (n — k 4 1) > n, then, by Corollary 2.47c, the subspaces
R’ and R, have at least one nonzero vector in common. Let this vector be

Xo =Y, ... E®1.0,...,0),
and assume that x, is normalized, i.e., that |xo| = 1. According to (4), we
have
A(xy, xp) = 7\1(5(10))2 +oee )‘n—k+1(£(no—)k+l)2
> )‘n—k+l(£.im)2 ++ 7\n-k+1(£$k+1)2 = Mg gt
This implies that y,, the maximum value of the quadratic form A(x, x) on the

unit sphere of the subspace R,, cannot be less than &,_;,, as asserted. Thus
the quantity w, satisfies the inequalities

N> A ©)]

10.24. Naturally, the quantity p, takes different values for different
k-dimensional subspaces. We now show that there exist k-dimensional
subspaces for which the equality signs hold in (5). Let R’ be the subspace
spanned by the first k vectors e;, e,, . . . , ¢, of the canonical basis of the form
A(x, x). Then A(x, x) is just

Alx, x) = ME + M+ NE
in the basis ey, e, . . . , ¢, of R". In particular,
A(ey, €)) = A = max A(x, x).
f2]=1
reR*
Thus the quantity
21 = y(R;) = max A(x, x)
e

takes its maximum value A, for R, = R’.
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Next let R” be the subspace spanned by the last k vectors e, .4,
€, _pi2s- - - » €, Of the canonical basis of the form A(x, x). Then A(x, x) is just

A(x, x) = )\n—k-HEi—kH + o 0E

in the basis e,_j, ..., e, of R". In particular,
A(eﬂ—k+1’ en—k+1) = )‘n—k+1 = Imax A(x9 x)9
z]=1
ol

and, just as before, we conclude that y, takes its minimum value 2,_,, for
R, = R". Thus we obtain the following new definition of the coefficient
Mu—iir: The coefficient A,_,.., in the canonical representation of the quadratic
form A(x, x) equals the smallest value of the maximum of A(x, X) on the unit
spheres of all possible k-dimensional subspaces of the space R,,.

10.25. Using this result, we can estimate the other canonical coefficients
of the quadratic form A(x, x) on the subspace R,. For example, if the sub-
space R, is fixed, then g, is the smallest value of the maximum of A(x, x) on
the unit spheres of all the (k — 1)-dimensional subspaces of R;, while
Ap_zr2 1S the smallest value of the maximum of A(x, x) on the unit spheres
of all the (k — 1)-dimensional subspaces of the whole space R,. Hence we
have g, > A2, and similarly

Wa = Apopras e > Mopran - oo g 2 A
On the other hand, 2, is the smallest value of the maximum of the quadratic
form A(x, x) on the unit spheres of all the (n — 1)-dimensional subspaces of
the whole space R,. But, according to Corollary 2.47c, the intersection of
every (n — 1)-dimensional subspace with the subspace R, is a subspace of no
less than (n — 1) + &k — n = k — 1 dimensions, so that A, is no less than the
smallest value of the maximum of A(x, x) on the unit spheres of all such
subspaces; in particular, A, is no less than y,, the smallest value of the
maximum of A(x, x) on the unit spheres of all the (k — 1)-dimensional
subspaces of R;. Therefore we have A, > w,, and similarly 23 > s, ...,
A > g Thus the canonical coefficients g, w,, . . . , W, satisfy the inequalities

N> A
Ay > 2> Ay oo, (®
A > e = A

For k = n — 1, the inequalities (6) become

Ay = g > A Q)
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*10.26. Consider the behavior of the quadratic form

A(x, x) = Z nER

i=1

in the (n — 1)-dimensional subspace R,_, specified by the equation

by Foake + el =0 (f+os++ai=1). (8)

Assuming that all the coefficients 2,,2,,...,2, are different, we can
calculate the coefficients w,, 5, . .., ¢,_, by using a method due to M. G.
Krein. At least one of the coefficients «,, «,, ..., , is nonzero. For
example, suppose «, 5 0. Then (8) implies

Substituting this expression for £, into A(x, x), we find that A(x, x) has the
form

A(x, x) = 7\1&? + 7\252 +ot haden + 3 (E%E )
j=1
in the subspace R,_,, in terms of the variables &, &,,..., &, ;. The
canonical coefficients of this quadratic form are the same as its stationary
values on the unit sphere of the subspace R,_, (Sec. 10.22). In the variables
€15 2, ... E,_, this sphere has the equation

Bx,x) =2+ B 4o+ 8, + ("ilaz)

Just as before, we determine these stationary values by using Lagrange’s
method. Thus we form the function

(Elafz )

and equate to zero its partial derivatives with respect to &, (k=1,2,....
n — 1), obtaining

n—1
A(x, x) — AB(x, x) = . (A; — A& 42
[29)

£ — )+ 2 x( Sk _,)ka —0. ©)

0(

n

The required coefficients y,, @, . . . , @, are the roots of the equation
obtained by equating to zero the determinant D(2) of the system of linear
equations (9). The coefficient matrix of this system is clearly the sum of two
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matrices ; the first matrix is diagonal with the numbers 3, — A (k = 1,2,...

n — 1) along the diagonal, while the second matrix has the form

* %y Ha®y Tt Oy
)\" — A %o [ 2%, 29 e [t 7%
o,
K L e N = |

By the linear property of determinants (Sec. 1.44), the determinant D(}) is
the sum of the determinant of the first matrix and all the determinants
obtained by replacing one or more columns of the determinant of the first
matrix by the corresponding columns of the second matrix and taking account
of the factor (A, — A)/«2. Since any two columns of the second matrix are
proportional, we need only consider the case where one of the columns of the
determinant of the first matrix is replaced by the corresponding column of

the second matrix.

In particular, if the kth column of the first matrix is replaced by the kth

column of the second matrix, the resulting determinant has the form

A —2A 0 0 Ottty 0 0
0 Y SR 0 %0y 0 0
A — A 0 0 A1 — A %y 0 s 0
«f, 0 o - 0 ot 0 0
0 0 0 Wppgr Peep — A 0 0
0 0 0 Xplin_1 0 R
10—
__ %=1 .
Sl A

Denote the determinant of the first matrix by

n—1
FOY =TI — ),
A=1
and let

n

GO =TT & — 3.

k=1
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Then the required determinant D(A) becomes

n—1
D) = FO) + G(K) > ; (10)
n k=1 Ay N
Solving the equation D(3) = 0, we find the quantities w@,, o, . - . , p—y in

which we are interested. Note that these quantities depend on the squares of
the numbers «, rather than on the numbers «, themselves. Thus changing
the sign of one or more coefficients in (8) does not change the canonical
coefficients of the form A(x, x) in the subspace R,,_,.

*10.27. Equation (10) is of particular interest in that it allows us to
construct from given numbers (,, Yo, . . . , W,y Satisfying the inequalities (7)
a subspace R,_, in which the form A(x,x) has the canonical coefficients
@1y Bos o -« 5 Hpoy- (Again it is assumed that the numbers A, 25, ..., A, are
distinct.) We now show how this is done.

First we note that (10) can be written in the form

220 . FR) <
=2 an
60y "Go) | S - = xl -
Thus the numbers «2, «2, . . ., «a? are proportional to the coefficients obtained
when we expand the rational function D(2)/G(3) in partial fractions. Now
suppose we are given numbers yw,, ., . . . , %, satisfying the inequalities
A > g > A,
Ao S g > Ag, (12)
)‘n—l > Bna > )‘n'
Let
n—-1
D, = H(m -,
and expand the rational function D;(A)/G(}) in partial fractions
D )\ 2 n
) _a LR e (13)
GO M —X Ag—2A A, — A
The coefficients ¢y, ¢5, . . . , ¢, are given by the familiar formulat
L D,0y) DOy
kT ’ 3
O =2 mr ~ A — ) (g — )‘k) G'(n)

t See e.g., R. A. Silverman, Modern Calculus and Analytic Geometry, The Macmillan
Co., New York (1969), p. 861.
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and all have the same sign. To see this, we note that the numbers D,(2,),
D; (%), ..., Dy(2,) alternate in sign, since, by hypothesis, the roots of the
polynomial D,(2) alternate with the roots of the polynomial G(2). Thus the
numbers D,(A,)/G’(A,), and hence the coefficients ¢, (k =1, ..., n), all have
the same sign. By supplying an extra factor, we can assume that the ¢, are
all positive and add up to 1. We can then define the numbers «,;, @5, ..., «
by the formulas

n

2 2 2
oy =y, 0g == Cgy v v vy O == Cpy (14)

where each «; can have either sign.
Finally we show that the subspace R,,_, defined by the equation

“1E1+°‘2£2+"'+°‘n£n:0

is the required subspace, in which the quadratic form A(x, x) has the canonical
coefficients p,, 2, ..., 2. In fact, as proved above, the polynomial
D(») whose roots are the canonical coefficients of A(x, x) in the subspace
R, is given by formula (10) or the equivalent formula (11). Comparing (11)
with (13) and using (14), we find that the polynomial D(3) differs only by a
numerical factor from the polynomial D,(2) just constructed. But then the

roots of D(2) coincide with the numbers u,, 4o, . . ., @,;, as required.

Remark. 1t can be shown that the numbers «,, ... , «,, depend continuously
on the numbers A,, ..., A, &y, - - ., Ly Using this fact, we can verify
that the problem can still be solved if the numbers y,, . . ., w,_, satisfy the
inequalities (7) instead of (12) or if the numbers A, ..., A, are no longer
distinct.

10.3. Simultaneous Reduction of Two Quadratic Forms

10.31. The following question plays an important role in certain problems
of mathematics and physics: Given two quadratic forms A(x, x) and B(x, x)
defined in an n-dimensional affine space R,,, how does one find a basis in which
both A(x, x) and B(x, x) are reduced to canonical form (i.e., to sums of squares
of the components of x with certain coefficients)? The following example in
the plane (n = 2) shows that this problem does not always have a solution:
Consider the two forms

Alx,x) =& — &,

B(x, x) = § &,
Finding a common canonical basis for these two forms is the same as finding
a common pair of conjugate vectors for the hyperbolas A(x, x) = 1 and
B(x, x) = 1 (see Sec. 7.42). Since these are equilateral hyperbolas, we know
from analytic geometry that the conjugate directions of the hyperbolas are
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symmetric with respect to their asymptotes. Therefore the polar angles ¢,
and o, corresponding to the pair of conjugate directions satisfy the relation

™
‘Pl+<92=;

for the first hyperbola and the relation
¢+ =0

for the second hyperbola (both relations hold only to within an integral
multiple of 7). Since the two relations are mutually exclusive, there does not
exist a common pair of conjugate vectors in this case.

It turns out that the problem of simultaneous reduction of two quadratic
forms does have a solution if we make the supplementary assumption that
one of the forms, say B(x, x), is positive definite, i.e., that B(x, x) > 0 for
x # 0. In this case, the existence of a solution is easily proved as follows:
Let B(x, y) be the symmetric bilinear form corresponding to the quadratic
form B(x, x), and introduce a Euclidean metric in the affine space R, by
writing

(x, ») = B(x, y).

The fact that B(x, y) is symmetric and positive definite guarantees that (x, y)
satisfies the axioms for a scalar product. By Sec. 10.11 there exists an ortho-
normal basis (with respect to this metric) in which A(x, x) takes the canonical
form

AGx, x) = MEL+ M+ + A (1s)
where £, &, . .., &, denote the components of the vector x in the basis just
found. In the same basis, the second quadratic form B(x, x) becomes

B(x,x) = (x,x) =7 + 93 + -+,
by formula (17), p. 222. Hence, as asserted, there exists a basis in which
both A(x, x) and B(x, x) have canonical form.

10.32. To construct the components of the vectors ey, . .. , e, of the basis
which is simultaneously canonical for both quadratic forms, we use the
extremal properties of quadratic forms. As shown in Sec. 10.21, the vectors
e, ...,e, of the required basis are the vectors obeying the condition

(x,x) = B(x, x) =1
for which the form A(x, x) takes stationary values. Suppose A(x, x) and

B(x, x) are given by
A(x9 x) :z aikiiik?

?,k=1

BG, x)= 3 bk,

i k=1
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in the original basis. Using Lagrange’s method, we form the function

FGp e E) =3 aulie—u S batls,

i, k=1 i,k=1

and then equate to zero its partial derivatives with respect to all the &;:

zaikik - L‘Lzbikik =0 (l =1, 27 DRI n)' (16)
k=1 k=1

The resulting system of homogeneous equations
(@ — pbi)& + (@12 — wbi)Es + -+ + (@1, — wb1n)E, =0,
(@ — b))l + (@ — ubp)Es + - - - + (@2, — wbe,)é, =0,

amn
(anl - L‘Lbnl)il + (anZ - L‘Lan)EZ o+ (aﬂﬂ - y‘bnn)in =0
has a nontrivial solution if and only if its determinant vanishes:
ay — by @ — by - @, pby,
Gy — by Gy — pby ... @y, — by, = 0. (18)

A — L‘Lbnl Ang — y'an trt Qpp y'bnn

Solving (18), we find n solutions & = w, (k =1, 2, ..., n). Then substituting
i, into the system (17), we find the components £, %), .., £ of the
corresponding basis vector e,. The results of Sec. 10.31 guarantee that (18)
has n real roots and that every root of multiplicity » corresponds to r linearly
independent solutions of the system (17).

10.33. Turning to the calculation of the canonical coefficients, we now
show that the coefficients A, A5, . . ., A, in the canonical representation (15)
of the form A(x, x) coincide with the corresponding roots w,, g, . .., &,
of the determinant (18). We could use an argument like that given in Sec.
10.22, but we prefer to carry out a direct calculation. Given the root w,,, we
multiply the ith equation of the system (16) by £ (the ith component of
the solution corresponding to w,,) for i = 1,2,..., n and then add all the
resulting equations, obtaining

Alen €n) = 3 ani™E" = i 3 bali™E = wnBlem €n) = ttm (19)
i.k=1 2,k=1

since B(e,,, e,,) = 1. On the other hand, if %™, n{™,..., ni™ are the

canonical components of the vector e,,, then obviously %™ =0 if i = m
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while n!™ — 1, and hence
Ale,,, €,) = z )\i(‘qﬁ"”)z = A, (20)
i=1

Comparing (19) and (20), we get w,, = A, as asserted. This result allows
us to write A(x, x) in canonical form, without calculating the canonical
basis.

10.34. The problem posed in Sec. 10.31 of simultaneously reducing two
quadratic forms A(x, x) and B(x, x) to canonical form, where one of the
forms, say B(x, x), is positive definite, was solved in a rather strong form, i.e.,
we reduced B(x, x) to a sum of squares with coefficients equal to 1. In general,
this is not required, and hence the coefficients of the canonical forms are not
uniquely determined. Nevertheless, as we now show, the ratios of the
corresponding canonical coefficients are still independent of the means used
to simultaneously reduce A(x, x) and B(x, x) to canonical form.

Suppose that A(x, x) and B(x, x) have been simultaneously reduced to
canonical form in two different ways, i.e., suppose that in the variables
£1s 8oy .o, £, we have

A(x,x) = T aE,  Blx, x) = X gl
i=1 i=1

while in the variables v, 7, .. . , v, we have

A(x,x) = Y pmi,  B(x, %) = 3 Tai.
i=1 i=1

Since the form B(x, x) is positive definite, the numbers v; and 7, ( =1, 2,
..., n) are all positive. Consider the new coordinate transformation

é.i = \/"—1 &is 1= \/:1 N

Then the forms A(x, x) and B(x, x) become

n )\ ~ no~
Alx,x) = > ~EE  B(x,x) = X723
=1 A i=1
in the variables &; and

n o~ n ~

AG,x) =395 Bx) =3

i=17T; i=1
in the variables ¥, Let e, e,,...,e, be the basis corresponding to the
variables &,, and let f;, f;, . . . , f,, be the basis corresponding to the variables
7;- Both these bases are orthonormal in the metric determined by the form
B(x, x). Moreover, according to Sec. 10.14, the set of canonical coefficients
of the quadratic form A(x, x) is uniquely determined. Hence the two sets of



SEC. 10.4 REDUCTION OF THE GENERAL EQUATION OF A QUADRIC SURFACE 287

numbers Ayfvy, Agfve, . .., Afv, and gy/Ty, pofTs, . . ., pa/T, must coincide,
except possibly for order, and our assertion is proved.

10.4. Reduction of the General Equation of a Quadric Surface

10.41. In this and subsequent sections, we will call the elements of the
n-dimensional linear space R, points rather than vectors (cf. Sec. 2.17),
which is more in keeping with the geometry of the situation. By a quadric
(or second-degree) surface in R, is meant the locus of the points x =
(1 &5 . . .5 &) €R,, which satisfy an equation of the form

SagkE 22 bk +c=0 (21)
k=1 i=1
or
A(x, %) + 2L(x) + ¢ =0,
where

AGox) = 3 agti,

=1

is a quadratic form in the components of the radius vector of the point x,

L(X) == g biii

is a linear form, and c is a constant.}

We will assume that the space R, is Euclidean dnd that the numbers
&1, &, .., &, are the coordinates of the point x with respect to an orthonormal
basis. The problem of this section is then to choose a new orthonormal basis
in R, such that our quadric surface is specified by a particularly simple
equation, called the canonical equation of the surface. Subsequently, we
will use the canonical equation to study the properties of the surface.

10.42. First of all, as in Sec. 10.12, we make an orthogonal coordinate
transformation

£ = _zlqi"’n,. (i=1,2...,n) (22)
=
in R,,, reducing the quadratic form A(x, x) to the canonical form
A(x, x) = > A\
f=]

t In the case n = 2, the geometriC object defined by (21) is called a second-degree curve.
However, we will henceforth always use the word “‘surface,” despite the fact that, strictly
speaking, it should be changed to “‘curve” whenever n = 2,
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Substituting (22) into (21), we get

Drani+ 231+ =0, (23)
i=1 i=1
where the I, (i =1,2,...,n) are the new coefficients of the linear form

L(x).

If A, 54 0 for some i in (23), we can eliminate the corresponding linear
term by appropriately shifting the origin of coordinates. For example, if
2, # 0, we have e

Mf +2m=n ('ﬂl + ;\1") - )\l .
We then set ' '

. L
mn = + = s
="M N

which is equivalent to shifting the origin to the point

(AIL’O’O"'-,O)~
)\1

As a result of this substitution, the pair of terms A;n? + 2/;, is changed to

2
.2 Il

i.e., the quadratic term has the same coefficient as before, the linear term
disappears, and /2/? is subtracted from the constant term. After making
all such transformations, the equation of the surface becomes

)‘lnf + )‘an + e + )‘rnf + 21r+1nr+1 + e + 211[% + ¢ = 0

Here, for simplicity, we have dropped the primes on the variables ;, and
we have renumbered the variables in such a way that the variables appearing
in the quadratic form come first, i.e., A;, A, . . ., A, are nonzero and A, = 0
for k > r. If r = nor if the numbers /, ,, /. ., . . . , [, all turn out to be zero,
we obtain the equation

R R (24)
called the canonical equation of a central surface. A quadric surface is
said to be nondegenerate if all n variables appear in its canonical equation,
and degenerate if less than n variables appear in its canonical equation. A
nondegenerate central surface, with canonical equation

MG+ Mms o A e =0 (25)
(i.e., such that r = n), is said to be a proper central surface if ¢ #0 and a

conical surface if ¢ = 0. The meaning of this terminology will be apparent
later.
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Now suppose at least one of the numbers I,.,,1,.,,...,I, is nonzero,
and carry out a new orthogonal coordinate transformation by using the
formulas

T =N
Te = "o,
T T Ny (26)

1
Trer = ';I(Irﬂ'ﬂrﬂ + 4 L),

where M is a positive factor guaranteeing the orthogonality of the trans-
formation matrix. Since the sum of the squares of the elements of every row
of an orthogonal matrix must equal I, we have

M2:If+1+lf+2+"'+lfr
The remaining rows (i.e., rows r+2,r+ 3,...,n) can be arbitrary,

provided only that the resulting matrix is orthogonal (see Sec. 8.95). As a
result of the transformation (26), the equation of the surface takes the form

MT A AT =2MT, —c.
If ¢ # 0, another shift of the origin given by the formula

. c
Trrl = Tpga s

2M
or

2Mr,, = 2M7,, — ¢,

allows us to eliminate the constant term. Then, dropping the prime on 7/,
we obtain the equation

AT 4 AT =2Mr,, 27

called the canonical equation of a noncentral surface.

10.5. Geometric Properties of a Quadric Surface

10.51. The center of a surface. By a center of a surface is meant a point

Xo = (&% -+, ED)

with the following property: If the point
G+ 8+E .. 8t E)
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lies on the surface, then the point

(Ef——alyig—— 22’- . ’E?z—— in)a
which is symmetric with respect to x,, also lies on the surface. A surface

with the canonical equation (24) has at least one center, since every point
for which

mEmg=cco =, =0 (28)
is obviously a center. This explains why such surfaces are called central
surfaces.

We now show that a surface with the canonical equation (24) has no
centers other than the point (28), a fact that will be used later. To see this,
let (29, &9, ..., &?) be a center of the surface. Then the relation

ME FED H ME L EY 4 NENHEY + =0
implies
M(Ef - E1)2 + 7\2(520 - 52)2 +-+ xr(iro - Er)z +c¢=0.
Subtracting the first equation from the first, we obtain the equation
ME‘I& + )‘222052 + -+ ME?E, =0, (29)
satisfied for arbitrary &,, &, .. ., &, corresponding to points on the surface

(24). If the point (&) 4 &;, &) + &, ..., &% + &,) lies on the surface (24),
then so does the point (—&2 — &;, £ + &, ..., &%+ £,). But

—8 — & =& + (28 — &,
and hence we have

ME—28) — €D + ME3E + - - +AEE, =0, (29"
as well as (29). Subtracting (29') from (29), we get

DEE + &) =0,

which implies &, = —&0 if E‘l’ # 0. But since &, can be replaced by —%,,
we also have —&, = —&9. This, together with & = —&?, contradicts the

assumption that £9 =£ 0, thereby proving that &7 = 0. Similarly, we find
that

| R
as required.

10.52. Proper central surfaces. Consider a proper central surface, i.e.,
a surface with canonical equation (25), where ¢ = 0. Dividing by ¢. we
transform (25) into the form

2 2 2
ai  ak a
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where the numbers a, are defined by

m=+k»(mq@“qm
V2,

and are called the semiaxes of the surface. Renumbering the coordinates in
such a way that the positive terms appear first, we get

2 2 2 ~.2 2
! (30)
a4 a4y Qg an

It is natural to exclude the case k = 0 from consideration, since there are no
real values 7, n, .. ., n, satisfying (30) if k = 0. (In this case, one some-
times says that (30) defines an “imaginary” surface.) This leaves » different
types of proper central surfaces, corresponding to the valuesk = 1,2, ..., n.

a. In the two-dimensional case (n = 2), we have k=1, k =2, and
equation (30) leads to the two curves

no

(k=1) —i — —i =1 (a hyperbola),
a, a
LI

{(k=12) 442 (an ellipse),
a;  as

familiar from analytic geometry.

b. Forn = 3wehavek = 1,k = 2, k = 3, and the corresponding proper
central surfaces in three-dimensional space are given by the equations

2 2 2
%0 %
1 2 3
2 2 2
] n Nz M3
(k=2) e
a  ai a
2 2 2
(k = 3) byl g

2 2 2
a, a; a;

We now remind the reader of the construction of each of these three surfaces.
Consider the sections of each of the surfaces made by the horizontal
planes 1, = Ca,; (— o0 < C <¢ ). These sections are respectively hyperbolas
n_m
(k=1) A Eo14C

a; a:
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with the v,-axis as transverse axis, ellipses

(k=2 +—=1+c

aj  a

defined for all values of C, and ellipses

2
'ﬁ_; 4+ e 'ﬂz -1-C
a; a;
defined only for |C| < 1. To locate the vertices of these sections, we
construct the sections of each surface made by the coordinate planes », = 0,
M2 = 0. In the case k = 1, only the coordinate plane 7, = 0 gives a real
section, i.e., the hyperbola

(k=3)

M
a} at

The vertices of the hyperbola formed by the horizontal sections lie on this

curve, and as a result of the construction we obtain the surface shown in

Figure 2, called a hyperboloid of two sheets.

FIGURE 2

In the case k = 2, the sections made by both planes 7, = 0 and 7, = 0
are hyperbolas

2 2 2
"o, WM

2 2 2 2
a, a, a;  a;

with the #,-axis as transverse axis. The set of ellipses formed by the horizontal
sections have vertices lying on these hyperbolas, and form the surface shown
in Figure 3, called a hyperboloid of one sheet. Finally, in the case k == 3, the
sections made by the coordinate planes v, = 0, v, = 0 are ellipses. Drawing
the ellipses made by the horizontal sections, we obtain an ellipsoid (see
Figure 4).
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M3

FiGure 3

c. Quadric surfaces in spaces of more than three dimensions are not
easily visualized. Nevertheless, even in the multidimensional case, we can
show essential differences between the types of proper central surfaces
corresponding to the different values k = 1,2, ..., n. We begin by pointing
out differences which are geometrically obvious in three dimensions. On
the hyperboloid of two sheets (k = 1), there exists a pair of points which
cannot be made to coincide by a continuous displacement of the points
along the surface; to obtain such a pair of points, we need only take the
first point on one sheet and the second point on the other sheet. On the
hyperboloid of one sheet (k = 2), any two points can be made to coincide
by means of a continuous displacement along the surface; however, there
exists a closed curve, e.g., a curve going around the “throat’” of the hyper-
boloid, which cannot be continuously deformed into a point. On the ellipsoid,
(k = 3), any closed curve can be deformed into a point. These facts can

FIGURE 4
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serve as the starting point for classifying the geometric differences between
proper central surfaces in an n-dimensional space, as we now show.

We introduce the following definitions: A geometric figure A is said to
be homeomorphic to a figure B if there exists a one-to-one, bicontinuoust
mapping of the points of the figure 4 into the points of the figure B. A
figure A lying on a surface S is said to be homotopic to a figure B lying on
the same surface if the figure 4 can be mapped into the figure B by means
of a continuous deformation, during which the figure 4 always remains on
the surface S.

Using these definitions, we can formulate the geometric differences
between the proper central surfaces corresponding to different values of k
as follows: For k = 1 we can find a pair of points on the surface which are
not homotopic to each other. For k = 2 every point on the surface is
homotopic to every other point, but there exists a curve which is homeo-
morphic to a circle and not homotopic to a point. For k = 3 every curve
which is homeomorphic to a circle is homotopic to a point, but there exists a
part of the surface which is homeomorphic to a sphere (in three-dimensional
space) and not homotopicto a point. Continuing in this way, we can formulate
the following distinguishing property of the proper central surface cor-
responding to a given value of k: Every part of the surface which is homeo-
morphic to a sphere in (k — 1)-dimensional space is homotopic to a point,
but there exists a part of the surface which is homeomorphic to a sphere in
k-dimensional space and not homotopic to a point. In particular, this
implies that the proper central surfaces in n-dimensional space (which are
obviously homeomorphic to each other for equal values of k) are not
homeomorphic to each other for distinct values of k. The proof of these
facts will not be given here, and can be found in a course on elementary

topology.

10.53. Conical surfaces. Next we consider a conical surface, i.e., a
surface with canonical equation (25), where ¢ = 0. In this case, equation
(25) becomes homogeneous, i.e., if the point (4, 1. - . . » 1, satisfies (25),
then so does the point (¢,, t1,, ..., tn,) for any ¢. This means that the
surface is made up of straight lines going through the origin of coordinates.}
Just as before, we can write the canonical equation of a conical surface in
the form

2 2 2 2
%‘f“i‘n_:—nzﬁl—_i::o (31)
a, Qe a,

t Equivalently, continuous in both directions, i.., continuous with a continuous
inverse.

1 Except when ali the terms in (25) have the same sign, in which case (25) defines a
single point, namely the origin.
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We now find the number of different types of conical surfaces corre-
sponding to a given value of n. If the number of negative terms m = n — k
in the canonical equation (31) is greater than /2, then, multiplying the
equation by —1, we obtain an equation describing the same surface but which
now has a number of negative terms less than n/2. Therefore it is sufficient
to consider the cases corresponding to the values m < nf2. If m is even,
then, excluding the case of a point (m = 0), we obtain n/2 different types of
conical surfaces, corresponding to the values m =1,2,...,n/2. If n is
odd, there are (n — 1)/2 different types of conical surfaces, ie., those
corresponding to the values m = 1,2, ..., (n — 1)/2.

a. In the plane (n = 2), besides a point, there is only one other type of
conical surface (m = 1), with the canonical equation

2 2
n_Mm

2

a a4

0.

The corresponding geometric figure is a pair of intersecting straight lines
with the equations

T
a; as

In three-dimensional space (n = 3), besides a point, there is also only one
other type of conical surface, corresponding to

with canonical equation
noom 1
ai ai@ al
The corresponding geometric object is a cone. In the particular case where
a, = a,, this is a right circular cone (see Figure 5).

b. To visualize the form of a conical surface in the general case, we
consider its intersection with the hyperplane

0, = Ca, (—oo < C < o). 32)
Substituting (32) into (31), we get

A T N 7

1 13 k+1 n—1 2
2 2 2 2

a, ak ak‘<,1 an_l

This is the equation of a proper central surface in an (n — 1)-dimensional
space. The surfaces corresponding to different values of C are all similar to
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s

FIGURE §

each other, with semiaxes proportional to the value of C. Thus every
conical surface in the n-dimensional space R, can be obtained from a central
surface in the (n — 1)-dimensional space R,,_, by displacing the central surface
along a perpendicular to R,_, and at the same time proportionately stretching
the surface in all directions. Moreover, to obtain all possible types of conical
surfaces in this way, we need only use the central surfaces in R, for which
the number of negative terms in the canonical equation does not exceed

(n — D)2

10.54. Nondegenerate noncentral surfaces (parabeloids). Just as in Sec.
10.52, we can reduce the canonical equation of a nondegenerate noncentral
surface to the form

2 2 2 2
Q_Z_i_..._;’_m‘_nk_“_..._n:—l:zm_ (33)

2 2
ax ar  Or+1 ap1

We now find the number of different types of nondegenerate noncentral
surfaces. If the number of negative terms in the left-hand side of (33) is
greater than (n — 1)/2, then, multiplying (33) by —1, we obtain the equation
of the same surface, but with a number of negative terms in the left-hand
side which is less than (n — 1)/2 and with a change of sign of the right hand
side. The sign of the right-hand side is restored by the mirror reflection

N, = —1n,. Thus, if we do not count surfaces obtained from each other by
mirror reflections as being of different types, the number of different types
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of nondegenerate noncentral surfaces is equal to the number of integers
satisfying the inequality O < m < (n — 1)/2. This number equals »/2 if n
is even and (n + 1)/2 if n is odd.

a. In the plane (7 = 2) there is only one nondegenerate noncentral curve,
i.e., the parabola with canonical equation
no=2al, . (m=0).t

b. In three dimensions there are two nondegenerate noncentral surfaces

2 2
7 7
A4 B=02y,  (m=0),
a; a,

2 2
7
'_; '_: = 20 (m=1)
ai as

In the first case (m == 0), the sections of the surface made by the plane
M3 = C > 0 is an ellipse. To find the position of the vertices of this ellipse,
we construct the sections of the surface made by the coordinate planes
n; =0 and 7, = 0. Each of these sections is a parabola, and the inter-
sections of these parabolas with the plane 7, = C locate the vertices of the
ellipse. The resulting surface, shown in Figure 6, is called an elliptic parabo-
loid (a circular paraboloid in the special case where a; = a,).

In the second case (m = 1), the section of the surface made by the plane
n3 = C > 0 is a hyperbola with the w;-axis as its transverse axis. To find

KA

FIGURE 6

t Notethatnowm =n—1—k.
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the position of the vertices, we note that the section of the surface made by
the coordinate plane v, = 0 is the parabola

ni = 20%’]3,
whose intersection with the plane 7, = C gives the position of the vertices
of the hyperbola. The section made by the plane 7, = C < 0 is a hyperbola
with the 7,-axis as its transverse axis. The vertices of this hyperbola lie on
the parabola

ng = —2apm,
in the plane 7, = 0. The section made by the plane w3 = 0 is a pair of
straight lines, which serve as asymptotes for the projections on the plane
13 = 0 of all the hyperbolas lying in horizontal sections of the surface. The
surface itself is called a hyperbolic paraboloid (see Figure 7).

c. To visualize the form of the surface (33) in the general case, we
investigate the way the sections made by the hyperplanes 7, = C change when
C varies from 0 to + c0. Every such section is a central surface in n —1
dimensions. All these surfaces are similar to each other, and their semiaxes
(unlike the case of conical surfaces) vary according to a parabolic law, i.e.,
are proportional to the square root of C. For C = 0 the central surface
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becomes conical. For C << 0 the central surface goes into the conjugate
surface, i.e., the positive and negative terms in the canonical equation
exchange their roles. In the special case where the terms of (33) have the
same sign, which, to be explicit, we take to be positive, the surface exists
only in the half-space 7, > 0.

d. The reason for calling this class of nondegenerate surfaces noncentral
is that such surfaces actually have no centers. For n = 3 this is obvious
from Figures 6 and 7. To prove the assertion in the general case, assume the
contrary, i.e., suppose that the surface (33) has a center (%2, 13,..., 9.
Since, in particular, this center must be a center of symmetry for the section
N, = 7%, which represents a nondegenerate central surface in n —1
dimensions, we must have

M=mg=rrr = 1=0

(cf. Sec 10.51). Thus the center must lie on the 7,-axis. Now if we go from
an arbitrary point (7, ..., ,_1, %% + 3) lying on the surface to the sym-
metric point (—%;, . .., —%,_1, M2 — 3), equation (33) must still be satisfied.
But the left-hand side of (33) remains the same when we make this transition,
and hence its right-hand side cannot change. It follows that § = 0, and hence
that there are no points on the surface for which 7,, 7 7%. But (33) obviously
has solutions %y, %3, ..., M, with v, % %%. This contradiction shows that
our surface cannot have a center.

10.55. Degenerate surfaces. As in Sec. 10.42, by a degenerate surface
we mean a surface whose canonical equation contains less than # coordinates.
For example, suppose that the coordinate 7, is absent in the canonical
equation. Then all the sections of the surface made by the (n — 1)-dimensional
hyperplanes v, = C (—o0 < C < o) give the same surface in n —1
dimensions. Therefore every degenerate surface in the n-dimensional space
R, is generated by translating a quadric surface in the (n — 1)-dimensional
space R,,_; along a perpendicular toR,,_,.

a. We now find the appropriate curves in the plane (n = 2). In this case,
the canonical equation contains only one coordinate and hence is just
2
L_c.
a
For C > 0 we obtain a pair of parallel lines, for C = 0 a pair of coincident
lines, and for C < 0 an “imaginary curve.”

b. To construct degenerate surfaces in three-dimensional space (n = 3),
we must translate all the second-degree curves in the 7;7,-plane along the
ng-axis. When this is done, ellipses, hyperbolas and parabolas give elliptic.
hyperbolic and parabolic cylinders, respectively (see Figure 8), while pairs
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of intersecting, parallel and coincident lines lead to intersecting, parallel and
coincident planes (see Figure 9).

*10.6. Analysis of a Quadric Surface from Its General Equation

10.61. We have just described all possible types of quadric surfaces in an
n-dimensional Euclidean space, where the type of the surface was determined
from its canonical equation. However, the surface is often specified by its
general equation (21) rather than by its canonical equation, and it is some-
times important to determine the type of the surface, i.e., construct its

g

FIGURE 9
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canonical equation, without carrying out all the transformations described
in Sec. 10.42. It turns out that to write down the canonical equation of the
surface specified by equation (21), we need only know the following two
quantities:

a) The roots of the polynomial

ay — A a2 Ain
AQ) = asn Gy — X - Q2
an Ane App — A
of degree n;
b) The coefficients of the polynomial
ay — A a2 T Ain b,
as Ay — A A2y b,
AR =

an A2 T A bn
b, b, cee b, c

of degree n.

To obtain explicit expressions for the coefficients of A;(2), we use the
linear property of determinants (Sec. 1.44). Every column of the determinant
A,(»), except the last one, can be written as a sum of two columns, the first
consisting of the numbers a;; (i = 1,2, ..., n;j fixed) and the number b,,
the second consisting of » zeros and the number —A. As a result, the deter-
minant A;(A) can be written as a sum of determinants, each of which is
obtained by replacing certain columns (except the last one) in-the matrix

ay @y a4, b
Ay Ay ' Gy, by
A =1 - L . (34)
A, Aye 7 Qpy bn
by by - b, ¢

by columns consisting of n zeros and the single element —X, with the number
— appearing on the principal diagonal of the matrix. After expansion
with respect to the columns containing the number —2, each of these
determinants becomes

( '—)‘),;Mr|+1~kv
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where k is the number of columns containing the element —3, and M,

n+l-k
is a minor of order n + | — k of the matrix 4,. This minor is characterized
by the fact that if it uses the ith row (i=1,2,...,n) of A4, it also uses

the ith column, and moreover, it must use the last row and column of 4,.
Minors with this property will be called bordered minors. It is obvious that
every bordered minor of the matrix A4, appears in the expansion of the
determinant A,(3). From this we immediately conclude that the coefficient
of (—M)* in the expansion of the determinant A,(3) in powers of —X equals the
sum of all the bordered minors of order n + 1 — k. It is convenient to write
the expansion of A,(3) in the form

A1()‘) = gy oA + an~1)‘2 R al('—)‘)"’

where the coefficient o, is the sum of all the kth-order bordered minors of
the matrix 4,.

10.62. As we already know, the roots of the characteristic polynomial
A(2) give us the coefficients of the squared variables in the canonical equation.
To find the remaining term, which is of degree O if the canonical equation
has the form (24) and of degree | if it has the form (27), we must examine
the behavior of the polynomial A,(2) under coordinate transformations.

Thus consider the quadratic form

Ay(x, x) = '% aubidy + 22 bl + CE:.H (35

k=1 i=1
in the (n 4 1)-dimensional Euclidean space R,,,, where &,, &,, ..., &,, &,
are the components of the vector x € R,,,, with respect to some orthonormal
basis e, €5, ..., ,, €,,,. The operator corresponding to (35) is the sym-
metric operator A, which has the matrix (34) in the basis e, ez, ..., e,,

e,+1; we will also denote this matrix by A,,. Besides this operator, consider
the operator E, defined by the relations

Eie;, = e (k < n),

Ee,., =0.
This operator has the matrix
1 00 00
010 00
601 ---00
E, = (36)
0 00 10
000 00
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in the same basis e;, e,, . . . , e,,e,,,. Let R, denote the subspace with the
vectors e;, €;,..., e, as a basis. Then the operator E, is obviously the
identity operator in this subspace.

Now suppose we are given an isometric operator Q in the space R,
Then Q carries the orthonormal basis e, e, ..., e, into another ortho-
normal basis f;, f5, . . . , f,- We construct a new isometric operator Q, in
the space R,,,, by setting

Qlek :ﬁc (k < n)’

Qlen+1 = 1 = far1e

If the matrix of the operator Q has the form

qu 912 " Ga
g1 922 " G2
Q =
qnl an e qnn
in the space R, then the matrix of the operator Q, just constructed has form

qu G2 " Gia O

g 922 " qon 0

O, =
qnl an e qnn 0
0 o --- 0 1

in the space R,,;. This matrix corresponds to the following coordinate
transformation (see Sec. 8.94):

L=qum + g+ "+ dul
L2 =Gt + guf2 + * + Gu2tlns
....................... 37
&n = Gin + G2nti2 + "+ Guntns
Ent = Mg
In the new basis f1, f3, . . . , f5, fary the operator A has the matrix
Ay = Q4,0

(see Sec. 5.51), while the operator E, has the same matrix (36) as before.
Moreover, according to Sec. 5.52,

det (4, — ME;) = det (4, — AEy).
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We now assume that (37) is the transformation (see Sec. 10.42) which
reduces the quadratic form

A(x, x) = Z aikiiik
P
to the canonical form !
A(X, x) = z )\in%-
i=1

1t follows from (37) that Q, transforms the quadratic form (35) in n 4 1
variables into

g}mi + Zgllmmnﬂ + efi. (38)

After this transformation, the matrix of the operator A,, which, as we know,
transforms in the same way as the matrix of the corresponding quadratic
form, becomes

MO -0 0 -+ 0 1
0 % -+ 0 0 - 0 I
) 0 0 A 0 0o I
" Mlo 0 ---0 0 --- 0 Ll
00 -0 0 -+ 0 I
L O M A

and the polynomial A,(3) = det (4;, — AE,) equals the determinant

N—2A 0 0 0 e 0
0 Aa — A 0 0 0 5L
0 0 A—2 0 (VN
0 0 0 —A 0 I,
0 0 0 0 R
L L Tt L Ly oo I, ¢

The coefficients of this polynomial can be calculated by using the bordered
minors of the matrix A,,,, just as they were calculated before by using the
bordered minors of the matrix 4, = A4,.
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We note that for » < n all the bordered minors of the matrix 4, which
are of order higher than r 4 2 must vanish, since they contain two pro-
portional columns. Thus for r < n the coefficients o, 4, tpp gy .., %pps
vanish. Moreover, for r < n the nonvanishing minors of order r + 2 must
use the first  rows and first r columns of the matrix A,. In general, the
bordered minors of order r 4+ | need not use these r rows and columns.
However, we note the following two cases where a bordered minor of order
r + 1 must in fact use the first » rows and columns:

1) r = n, in which case it is obvious that the matrix 4;, has only one
minor of order r + 1 (i.e., of order n + 1), namely its determinant, made up
of all the rows and columns of 4,,;

) r<nlyy=Il,,=---=1,=0, in which case there is only one
nonvanishing bordered minor of order r + 1, made up of elements from the
rows and columns with numbers 1,2,...,r,n + 1.

10.63. Next we show how the next step in the transformation of equation
(38), made with the aim of eliminating the quantities /;, I, . . . , ,, affects
the matrix of the operator A,. First consider the transformation

’ ll ’
N =M+ 7 Nngrs
M

N = My k=2,3...,n4+ 1),

carrying the matrix 4, into the matrix

W 0 <+ 0 0 -+ 0 0
0 2 -+ 0 0 -+ 0 I
0 0 A 0 o I,
An=0o0o o - 0 0 - 0 I,
O 0 -+ 0 0 -+ 0 I,
[
0 12 lr lr+1 l” ¢ — =
)\1

This operation on A4, can be described as follows: The first column is
multiplied by /;/A; and subtracted from the last column, and then the first
row is also multiplied by /,/3, and subtracted from the last row. The sub-
sequent transformations required to eliminate the quantities [, ly,. .., 1,
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can be described similarly. As a result of all these transformations, the
matrix A4, goes into the matrix

)\1 0 e 0 0 PR 0 0
0 » -+ 0 0 ... 0 0
” 0 0 A O 0 0
A(/) =
0 0 0 0 0o I,
00 -+ 0 0 - 0 I,
0 0 «++ 0 Iy - I, ¢

Moreover, these transformations do not change the values of the bordered
minors of the matrix A, which use the first r rows and columns of A,
Next consider the polynomial

det (A7) — AE) = AP ()

M—2A 0 - 0 0 -~ 0 0
0 %=X - 0 0 -+ 0 0
0 0 A —X 0 0 o0
1 o 0 Y 0 I
0 0 0o 0 1,
0 0 0 lr+1 l" c
= ap .y — oA o A — e 4 (=R,

where we have dropped the prime on ¢’. The coefficients of this polynomial
are calculated by using the bordered minors of the matrix 4{%} in just the
same way as the coefficients of the polynomial A,(2) are calculated by using
the bordered minors of the matrix 4,. Since the bordered minors of order
r 4+ 2 (where r < n) are invariant under the transformation leading from
Agyy to AL, as shown above, we find that o, = a,.,. In the same way, we

(r
have «,,, = .., in the two special cases noted above.

10.64. First we consider the special case r = n. Here the coefficient

a, ., of the polynomial A{"'(2) is obviously equal to the product A%, « + + Aue,
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so that the quantity ¢ in the canonical equation (25), p. 288 is just

L) _ Enyl
)\1)\2 “ e )\" )\1)\2 e )\“

10.65. Next suppose that » < n. Then we must determine the coefficient
.42 Of the polynomial A{(2), which will be needed in a moment.} The

nonvanishing bordered minors of A{f) of order » + 2 have the form

M 0 - 0 0 0
0 % - 0 0 0

= Ayt A, m=r+1,...,n),
0 0 A 0 0 et (
00 -0 0 I,
0o 0 --- 0 I, ¢

and their sum, which equals the coefficient o/, , = a,,,, is given by

—hhg o AE L+ Bt )

We recall that the condition for reducing equation (21) to the canonical form
(27) is that at least one of the coefficients /.4, /s, . . - , /, be nonvanishing.
We can now formulate this condition equivalently in the form of the
inequality .

ar+2 # 0,

and at the same time give the following formula for calculating the coefficient
M of the canonical form (27):

o
M2=lf+1+lf+2++lf.=’"—-_rt2_-—
At A

However, if a,,, = 0, then I,y = [, = - =1, =0, and (21) reduces to
the canonical form (24). Thus we have arrived at another special case. In

this case, the coefficient o/ , = «,,; is obviously equal to the product

Az * A, so that the coefficient ¢ of the canonical form (24) is just

’
Zri1 Lrt1

M A Ml A

+ It is easily verified that in this case all the coefficients ., of the polynomial A{"(})
with m > r + 2 vanish.
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10.66. We now summarize these results in the form of a table. As before,

we agree to arrange the roots 3y, As, .
A(2) in such a way that the nonzero roots A, 2s, . .

the product A3, < - - A, by A,.

- -, A, of the characteristic polynomial
., A, come first, denoting

Data Canonical Equation
o
Ay # 0 )\lnf+)\2n§+..+)\nn:+_§ﬂ=0
n
o
Ay =0 Opyy #0 )\lnf+7\21)2+.-.+)\"_11)72l~1+2\/_A"+1n":0
n—-1
. 2 2 2 %n
Moy #F0) wnyy =0 | My Remp e A XMy 0
n-1
2 2 2 %n
S :.0 a, # 0 Mup ey A A pny o+ 2 [~ AL 1=
n—2
2 2 2 %n-1
A2 #0 a, =0 )‘11)1 + )‘27)2 + o M a2 A =0
n—2
2 %
Ay =0) o3 #0 My, +2 —)\—1)2*0
1
2 | %2
M A0 =0 7\11)1+)\—:0
1

10.7. Hermitian Quadratic Forms

10.71. Many of the theorems of the preceding sections carry over to the
case of quadratic forms in a complex space. We begin with the following
basic

THEOREM. Every symmetric Hermitian bilinear form A(x,y) in an n-
dimensional unitary space C, has a canonical basis consisting of n orthogonal

vectors.

Proof. According to Sec. 9.34, the linear operator A associated with the
form A(x, y) by the formula A(x, y) = (Ax, y) is self-adjoint. Hence by
Theorem 9.34, there is an orthonormal basis e, ..., e, in the space C,
consisting of eigenvectors of the operator A. The matrix of the operator A
is diagonal in this basis, and hence so is the matrix of the form A(x, ),
since the operator and the form have the same matrix in any orthonormal
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basis of the space C,. Therefore e, ..., e, is a canonical basis of the form
A, ») 1

10.72. It follows from this theorem that every symmetric Hermitian
quadratic form A(x, x) can be reduced to the canonical form

A(x, x) =30 [Ef°
i=1

by a unitary transformation. The sequence of operations leading to deter-
mination of the coefficients A; and the components of the vectors of the canon-
ical basis is the same as in the real case (see Sec. 10.13).

10.73. Next we look for the stationary values of a symmetric Hermitian
quadratic form A(x, x) on the unit sphere

zlijlz =1
j=1

in C,, recalling from Sec. 9.15b that A(x, x) takes only real values. Let
ey, ... ,e, be an orthonormal basis of the form A(x, x). Then in this basis
we have

n "
A(x, x) = 217‘,' &7 = 3 (a5 + 79,
= =

() = 3fel = 3 (e +

(&; = o, + it;). Using Lagrange’s method, we equate to zero the partial
derivatives of the function A(x, x) — A(x, x) with respect to each of the 2n
real variables o, 7; (j = 1, ..., n). This gives

226, — 2h6; = 0, 2p7; — 221, =0 (j=1,...,n).

These equations are satisfied for a vector x with x| = 1 if and only if A
coincides with one of the numbers 2, ..., 2, Suppose A = A;. Then a
solution of the equations is given by the vector x with components &; =
6; + it; =0 for j 7 k and [&,] = 1. Hence, just as in the real case (Sec.
10.21), the Hermitian quadratic form A(x, x) takes stationary values at those
vectors of the unit sphere which belong to its canonical basis e;, . . . , €,, in
other words at the eigenvectors of the corresponding self-adjoint operator A.
The values of the form at these points coincide with the corresponding
canonical coefficients. In particular, the maximum of the form A(x, x) is the
largest of the coefficients 2;, and the minimum of A(x, x) is the smallest of
these coefficients.

10.74. Next consider the problem of the simultaneous reduction to
canonical form of two symmetric Hermitian quadratic forms A(x, x) and
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B(x, x), one of which, say B(x, x), is positive definite. To solve this problem,
we choose the Hermitian bilinear form B(x, y) as the scalar product. Then,
by Sec. 10.72, there exists an orthonormal canonical basis for the form
A(x, x), in the sense of the given scalar product. In this basis we have

A(x, x) =§)\, 18,15, B(x, x) = Elc,, R

as required.

The calculation of the coefficients 2; and the components of the vectors
of the canonical basis (with respect to an arbitrary original basis) is carried
out in the same way as in the real case (Sec. 10.32), after first writing the
forms A(x,x) and B(x, x) as real functions of the real variables s, T,
(j=1,...,n), where &; = o; 4 it;, We leave the details as an exercise
for the reader.

PROBLEMS

1. Use an orthogonal coordinate transformation to transform each of the
following quadratic forms to canonical form:

a) 251 + &2 - 4:1&2 - 4:2:3,
b) 2&2 5&2 + 5&3 + 4% 15:2 - 4&1§3 - 8&2\?3,
9] ZEZ + ZEZ + 282 — 4518, + 28,5, + 28,8y — 4555,
d 251,2 + 2818y — 251, — 28,8 + 28,8 + 2558,
2. What are the stationary values of the quadratic form
A(x, x) =23 + b + §x3
on the sphere |x| = 1, where x = (x1, X5, x3), and of what type are they (mini-

mum, maximum, etc.)?

3. Show that each of the quantities yy, i, . . . , 4% can actually attain the upper
and lower bounds indicated in formula (6), p. 279.

4. Two quadratic forms A(x, x) and B(x, x) in R, are said to be comparable if
the inequality A(x, x) < B(x, x) holds forevery x € R,. Let}; > 2 > - >,
be the canonical coefficients of the form A(x, x), and let 4y > wy > - - > u, be
those of the form B(x, x). Show that the inequality

Me < g
holds for every k = 1,2,...,n (This is obvious in the case where A(x, x)
and B(x, x) have a common canonical basis.)
5. Find a common pair of conjugate directions for the curves

xZ yZ
oY o=l
L T
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6. Construct the linear transformation which reduces both quadratic forms
AQr, x) = 8 + 255 + 25 — 25,5 + 3%,
B(x, x) = B2 + 28,5, + 38,8 — 28,8, + 62
to canonical form, What are the corresponding canonical forms ?
7. Show that the basis in which the quadratic forms A(x, x) and B(x, x) both
take canonical form, with canonical coefficients 2, 25, ..., A, and vy, vy, ...,

v, respectively, is uniquely determined to within numerical factors, provided
that the ratios

vioVe o Va
are distinct.
8. Prove that the midpoints of the chords of a quadric surface parallel to the
vector y = (W, %a, . .. , Ma) li€ on an (n — 1)-dimensional hyperplane (the
diametral plane conjugate to the vector y).

9. What quadric surfaces in three-dimensional space (with coordinates x, y, z)
are represented by the following equations:

xZ yZ ZZ xZ yZ ZZ
A AT L _f . - 2.
a)4 ot 1 ,b)4 0 1 1; ¢) x =)+ 2%

dy=x*+22+1; € y=uxz?

10. Simplify the following equations of quadric surfaces in three-dimensional
space, and give the corresponding coordinate transformations:

a) 5x% + 6y® + 722 — 4xy + 4yz — 10x + 8y + 14z — 6 = 0;
b) x% + 2y* — 2% + 12xy — 4xz — 8yz + 14x + 16y — 12z — 3 = 0;
C) 4x2 + y? + 422 —4xy + 8xz —4yz — 12x — 12y + 62 = 0.

11. Show that the intersection of an ellipsoid with semiaxesa, > a, > - - - > a,
with a k-dimensional hyperplane going through the center of the ellipsoid is
another ellipsoid with semiaxes b, > b, > -+ - > by, where

@ > by > an s

as > b2 > [
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FINITE-DIMENSIONAL
ALGEBRAS AND THEIR
REPRESENTATIONS

I1.l. More on Algebras

11.11. The concept of an algebra was introduced in Sec. 6.21, this being
the name given to a linear space (over a field K) equipped with a (commutative
or noncommutative) operation of multiplication of elements, obeying axioms
1)-3), p. 136. The algebras considered in Chapter 6 were for the most part
commutative, but, in passing, we mentioned an important example of a
noncommutative finite-dimensional algebra, namely, the algebra B(K,) of
all linear operators acting in an n-dimensional space K,. This chapter is
devoted to the study of B(K,) and its subalgebras. But first we will find it
convenient to consider abstract finite-dimensional algebras.

11.12. Not every algebra has a unit, as shown by the example of the
trivial algebra, i.c., any algebra such that xy = 0 for all elements x and y
(Example 6.22a). Nevertheless, every algebra can be extended to an algebra
with a unit in the following standard way:

Given any algebra A, let A+ be the set of all formal sums a 4 2, where
a € A and X is a number from the field K. Then A+ is obviously a linear space
with operations

@+N+0+wW=G@+b)+0+w
and
wla + 2) = pa + Ap

312
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(a, be A; A, pe K). Moreover, A+ is an algebra with respect to the multi-
plication operation

(@a+ V(b + w) = (ab + 2b + pa) + .

The algebra A+ certainly has a unit, i.e., the formal sum of the zero element
of A and the number 1. We now need only note that the original algebra A
can be regarded as a subset of A+ by simply identifying each element a € A
with the formal sum g + 0 € A+,

11.2. Representations of Abstract Algebras

11.21. Let A be an abstract algebra over a field X, and let B(K) be the
algebra of all linear operators acting in a linear space K over the same field
K. We now consider morphisms of the algebra A into the algebra B(K),
henceforth indicated by notation of the form T:A — B(K).

a. Definition. A morphism T:A — B(K) is called a representation of the
algebra A in the space K. A representation is called trivial if Ta =0 for
every a€ A and exact (or faithful) if T is a monomorphism, i.e., if the
operators T, and T, corresponding to distinct elements a and b of the algebra
A are themselves distinct elements of the algebra B(K).

The set of all elements a € A which are carried into the zero operator
by the representation T is called the kernel of the representation T. The
kernel of the trivial representation is the whole algebra A, while the kernel
of an exact representation consists of a single element, namely the zero
element of the algebra. In the general case, the kernel of any representation
is a two-sided ideal of the algebra A (see Example 6.25d).

b. Definition. Two representations T':A —B(K') and T”:A — B(K")
of an algebra A are said to be equivalent if there is an isomorphism U:K’ — K”
between the linear spaces K’ and K" such that

UT, = T"U

for every a € A. Obviously, in the case of finite-dimensional spaces K’ and
K”, equivalence of the representations T’ and T” means that the operators
T, and T, (a € A) have identical matrices in suitable bases of the spaces
K’ and K”.

c. Let T:A — B(K) be a representation of the algebra A. A subspace
K’ < K is called an invariant subspace of the representation T if it is invariant
with respect to all operators T,, a € A. By considering the operators T,
only on the space K', we obviously get a new representation TX:A — B(K"),
called the restriction of the representation T onto K.
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d. Finally let T: A — B(K) be a representation of the algebra A such that
K is the direct sum of subspaces K, (1 < k& < n) invariant with respect to the
representation T, and let T* denote the restriction of the representation T
onto K, (I < k < n). Then we say that the representation T is the direct sum
of the representations T* (1 < k < n).

11.22. To every algebra A we can assign in a natural way a representation
T:A— B(A) in the linear space A itself which associates with each element
a € A the operator of left multiplication by g, i.e., the operator T, defined by
the formula T,b = ab for every b e A. This representation is called the left
regular representation of the algebra A. The invariant subspaces of the left
regular representation are obviously left ideals in A (Sec. 6.23a). Using
this concept, we can establish the following important

THEOREM. Every algebra is isomorphic to a subalgebra of the algebra
B(K), for a suitable choice of K.

Proof. It is easy to see that the theorem is equivalent to the assertion
that every algebra has an exact representation. Let A be the given algebra.
As shown in Sec. 11.12, there exists an algebra A* with a unit e which has A
asa subalgebra Let T:A+ — B(A+) be the left regular representation of this
algebra, Then Tis exact, since T e = ae = a # 0 for every a € A*, a £ 0.

Hence the restriction of the morphism T onto the subalgebra A < A+ is an
exact representation of the algebra A in the space K = A*+. ||

11.3. Irreducible Representations and Schur’s Lemma

11.31. Among all representations of a given algebra we now distinguish
those with the simplest structure in a certain sense. Every representation
T:A — B(K) of an algebra A has at least two invariant subspaces, K itself
and the subspace {0} consisting of the zero element alone. Any other invariant
subspace is said to be proper. Proper invariant subspaces which contain no
other such subspaces are called minimal invariant subspaces of the rep-
resentation T.

Definition. A nontrivial representation T:A — B(K) is said to be
irreducible if it has no proper invariant subspaces.

11.32. Given any vector z€K, it is easy to see that the set K, =
{T,z€K:a € A} is an invariant subspace of the representation T. A vector
z €K is said to be cyclic (with respect to the representation T) if K, = K.
This definition, together with the definition of irreducibility, immediately
implies the following

THEOREM. A representation acting in the space K is irreducible if and only
if every nonzero vector z € K is cyclic.
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Despite its simplicity, this result will subsequently be found very useful.

11.33. The irreducible representations of algebras over the field C of
complex numbers have the following important property:

THEOREM (Schur’s lemma). Let T:A — B(C) be an irreducible represen-
tation of the algebra A over the field C. Then every operator in C which
commutes with all the operators T,, a € A, is a multiple of the identity
operator E.

Proof. Let S be an operator which commutes with all T,, a € A, and let
x be an eigenvector of S (Sec. 4.9). Then Sx = Ax for some complex A, and
hence ST,x = T,Sx = AT,x for every a € A. But the representation T is
irreducible, and hence, by Theorem 11.32, every vector y € C can be repre-
sented in the form y = T x, a € A. It follows that S = AE. ||

It should be noted that the proof makes essential use of the fact that every
linear operator in a (finite-dimensional) complex linear space has an eigen-
vector (see. Sec. 4.95b). In view of the decisive role of Schur’s lemma, we
will henceforth confine ourselves to a consideration of linear spaces and
algebras over the field of complex numbers.

11.4. Basic Types of Finite-Dimensional Algebras

Beginning with this section, unless the contrary is explicitly stated, we
will consider only finite-dimensional algebras (i.e., algebras which are
finite-dimensional regarded as linear spaces) over the field C of complex
numbers.

What is the structure of finite-dimensional algebras and their represen-
tations? Most of this chapter will be devoted to results along just these
lines. In particular, we will distinguish some classes of algebras whose
structure can be studied completely, 1.e., we will succeed in describing all
such algebras (to within an isomorphism) and all their representations. We
refer to the classes of simple and semisimple algebras.

The various classes of algebras arise when we consider specific properties
of their ideals and representations.

11.41. Definition. A nontrivial algebra is called simple if it contains no
proper two-sided ideals (Sec. 6.23a). An example of a simple algebra is-the
algebra B(C,) of all linear operators in a finite-dimensional space. In fact,
let J be a two-sided ideal in the algebra B(C,), and let 4 = [la; [ €I be a
nonzero matrix such that a,; = 0, say. Then, as shown in Sec. 4.44, by
multiplying the matrix 4 from the right and from the left by certain matrices,
i.e., by performing operations that do not leave the ideal J, we can get a
matrix E,; whose only nonzero element | appears in the rth row and sth



3[6  FINITE-DIMENSIONAL ALGEBRAS AND THEIR REPRESENTATIONS CHAP. 11

column. Moreover, by further multiplying E,; from the right and from the
left by certain matrices, we can get any matrix Ej, (j, k =1, ..., n) without
leaving the ideal J. But linear combinations of the matrices E;, give the
matrix of any operator in B(C,), and hence J = B(C,). As we will see later
(Sec. 11.64), this example is unique in the class of all finite-dimensional
algebras over the complex number field.

THEOREM. Every simple algebra has an exact irreducible representation.

Proof. Let A be a simple algebra, and consider its left regular repre-
sentation T:A — B(A). It follows at once from the fact that A is finite-
dimensional that among the invariant subspaces of the representation T

there is a minimal subspace A’. The restriction T of the representation T
onto A’ is nontrivial. To show this, we need only prove that for every
be A’, the set Ab = {ab:a € A} + {0}, resorting to the following simple
proof (due to A. S. Nemirovski): Suppose, to the contrary, that Ab = {0}.
Then, as is easily seen, the set bA = {b:a € A} is a two-sided ideal in A, and
hence, since A is simple, either bA = A or bA = {0}. But if bA = A, then
Ab = {0} implies that every product in A equals zero, while if bA = {0}, the
set {Ab:x e C} is a two-sided ideal in A since Ab = {0}, and hence must
coincide with the whole algebra since A is simple. Thus, in both cases, the
algebra A turns out to be trivial, and hence cannot be simple.

Thus the representation T:A — B(A’) is nontrivial. But then, on the one
hand, it is irreducible, by the minimality of A’, while on the other hand, its
kernel, being a two-sided ideal distinct from the whole simple algebra A,
consists of the zero element alone. Therefore T (like any irreducible rep-
resentation of A) is at the same time exact. ||

It turns out that the converse theorem is also true, i.e., every finite-
dimensional algebra with an exact irreducible representation is simple.
This will be shown at the end of Sec. 11.64.

11.42. An arbitrary algebra may not have exact irreducible representa-
tions. But it is natural to single out those algebras whose properties can be
described in terms of their irreducible representations. This leads to the
following wider class of algebras:

Definition. An algebra A is called semisimple if, given any nonzero
element a € A, there exists an irreducible representation mapping a into a
nonzero operator. In other words, the intersection of the kernels of all
the irreducible representations of a semisimple algebra consists of the zero
element alone.

It follows from Theorem 11.4] that every simple algebra is also semi-
simple. On the other hand, consider the n-dimensional (n > 1) algebra C,,
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consisting of the elements a = («,, . . . , ®,) where o; € C, with multiplication
component by component.t This algebra is obviously commutative. More-
over, the set of all @ == (&, ..., «,) such that &, = 0, say, is a two-sided
ideal in C,, so that the algebra C, is not simple. Suppose that with every
element a = (o, . . . , a,) we associate the complex number o, (1 < k < n),
or equivalently the operator of multiplication by o, in the one-dimensional
space C,. Then we get an irreducible representation of the algebra C, which
maps every element of C, with «, == 0 into an operator distinct from zero.
Since every nonzero element a € C, has at least one nonzero component,
there exists an irreducible representation mapping a into a nonzero operator.
Therefore the algebra C,, is semisimple.

In this example, C,, is a direct sum of simple (one-dimensional) algebras.
The example can easily be generalized by considering a direct sum of simple
noncommutative algebras. Then, as will be shown in Sec. 11.77, we get the
general form of a finite-dimensional semisimple algebra over the field of
complex numbers.

11.43. Next we introduce algebras whose properties are, in a certain
sense, the opposite of those of a semisimple algebra:

Definition. An algebra A is called a radical algebra if every nontrivial
representation of A has a proper invariant subspace. In other words, a
radical algebra has no irreducible representations at all.

As an example, consider the algebra A of polynomials P(z) = ¢,z +
**+ 4 ¢,2" with the usual operations but subject to the condition z*+! = 0.
Then every element of the algebra A vanishes when raised to the (n + I)th
power, so that no element of A has an inverse. The algebra A has no non-
trivial one-dimensional representations, since every nonzero linear operator
in a one-dimensional space is invertible. Let T be a nontrivial (and hence
multidimensional) representation of the algebra A, and let Z be the operator
corresponding to the element z. Since Z (like z itself) is noninvertible, there
exists a vector e % 0 such that Ze = 0. But then P(Z)e = 0 for every
P(z) € A. Thus we have found a nontrivial invariant subspace (the straight
line determined by the vector €) of the representation T. It follows that A
is a radical algebra.

11.44. Definition. By the radical of an algebra A is meant the intersection
of the kernels of all irreducible representations of A if such representations
exist, or the whole algebra A if no such representations exist.

TLe,ifa= (a,...,0%)b=_...,B), then ab = (a,By, ..., xB,).
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Since the kernel of every representation is a two-sided ideal of the
algebra A (see Sec. 11.21a), the radical of A, being an intersection of two-
sided ideals of A, is itself a two-sided ideal of A.

The study of algebras with nontrivial radicals (in particular, radical
algebras) involves substantial difficulties, with results that, as a rule, are not
in definitive form (some of these results will be found at the end of this
chapter). On the other hand, semisimple algebras and their representations
can be studied in complete detail. In fact, as we will see below, the study
of semisimple algebras reduces to that of simple algebras.

We now turn to the detailed study of simple algebras and their represen-
tations.

I1.5. The Left Regular Representation of a Simple Algebra

11.51. Thus let A be & simple algebra, and let T:A — B(X) be a fixed
exact irreducible representation of A (the existence of T follows from
Theorem 11.41). This representation will henceforth be called standard.

THEOREM, Let T:A — B(A) be the left regular representation of a simple
algebra A, and let 1 be a minimal invariant subspace of T. Then

a) The restriction T' of the representation T onto Lis equivalent to T;
b) The subspace 1, regarded as a subalgebra of A, has a right unit.

Proof. First we fix an element a €I, a # 0. Since the representation T
is exact, T,x # 0 for some x € X. Consider the linear operator U:I — X
defined by the formula Ub = T,x for every b €1. It is easy to see that the
kernel of the operator U is a left ideal in A (or equivalently an invariant
subspace of the representation T) contained in I but not coinciding with L.
Hence the kernel of U consists of the zero element alone. On the other hand,
the image of U is obviously a nonzero invariant subspace of the irreducible
representation T, and hence coincides with the whole space X. Thus U is an
isomorphism of I onto X. Moreover, for arbitrary eI and c €A,

UT,b = U(ch) = Tx = T,(T,x) = T,Ub,
and hence

UT. =T,

which shows that the representations T'and Tare equivalent (see Sec. 11.21b).
Furthermore, since U maps I onto all of X, there exists an element e €1
such that Ue = T,x = x. It follows that

U(be) = T, x = T,(T,x) = T,x = Ub
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for every b € I. But U is a one-to-one mapping, and hence be = b. Thus e is
a right unit in the algebra. ||

It should be noted that any exact irreducible representation of a simple
algebra can be chosen as the standard representation. Therefore an auto-
matic consequence of this theorem is the fact that all exact irreducible
representations of a simple algebra are equivalent.

11.52. LemMa. Given an arbitrdry algebra A, let 1) and 1, be left ideals
of A with right units e, and e,, respectively, where ae; = 0 for every acl,
Then there exists a right unit e, in I such that be, = 0 for every b e1,.

Proof. Let e, = e; — e,e;. Then for every a € I, we have

ae, = ae, — ae.ej = a,

since ae, == a and ae, = 0. Moreover,

be, = be; — beje; = bey — be; = 0

forevery bel,. |

11.53. THeoREM. The left regular representation of a simple algebra A
is the direct sum of its irreducible representations.

Proof. We will construct the desired set of minimal invariant subspaces
of the representation T:A — B(A) by induction, proving at each step that,
as an algebra, the direct sum of the subspaces already found has a right unit.
For the first subspace we take any minimal invariant subspace I, of the
representation T. According to Theorem 11.51, I, has a right unit e.
Suppose we have already found minimal invariant subspaces I, . . . , I, such
that the left ideal J; = I, + - - - 4+ I, has a right unit ¢,. If J; = A, we have
succeeded in constructing the desired invariant subspaces. Otherwise, let

J! ={acA:ae, =0}
Then it is easy to see that J; is an invariant subspace of the representation
T, whose intersection with J;. is empty. Moreover, since every element a € A
can be represented in the form a = ae, + (a — ae;), where ae, € J; and
a — ae, € Jy, the algebra A is the direct sum of J; and J;.

The finite-dimensional invariant subspace J; contains a minimal invariant
subspace, which we denote by I,,;. According to Theorem I[1.51, I,
contains a right unit e,,,, where ae;, = 0 for every a €I, since L, < J}.
It follows from Lemma 11.52 that I,,, contains a right unit e such that
be; = 0 for every b € J;. Let ¢, = ¢, + e;. Then, as is easily verified, e,
is a right unit in the ideal

Ja=L+ +L+ L.
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This proves the legitimacy of making the induction from k to k + 1. The
algebra A is finite-dimensional, and hence at some stage we get the set of
minimal invariant subspaces I, . . . , I, of the representation T whose direct
sum is the whole algebra A. Hence the left regular representation of A is
the direct sum of its irreducible representations. ||

11.54. We note that it was shown in the course of the proof that every
simple algebra has a right unit. Actually, we have the following stronger

THEOREM. Every simple algebra has a unit.

Proof. Let A be a simple algebra, and let e be a right unit of A. Consider
the operator T, in the standard representation T:A — B(X). Then

T (Tyx —x) = Tox — Tex =0

for every x € X and a € A. Since T is irreducible, every nonzero vector must
be cyclic (Theorem 11.32). It follows that T,x — x = 0. In other words,
T, is the identity operator in the space X. But then

T,T, = T,T, =T,

foreverya € A, and hence ae = ea = a by the exactness of the representation
T. Therefore e is a unit in A. ||

11.6. Structure of Simple Algebras

At the end of this section we will solve the problem of the structure of
simple algebras. In so doing, we will find the following concept very useful:

11.61. Let X be a linear space, and let A, be a subalgebra of B(X). The
subset of B(X) consisting of the operators which commute with all operators
in A, will be called the commutator of the algebra A,, denoted by A,.

It is easy to see that A, is itself a subalgebra of B(X). The commutator
of this new subalgebra, denoted by A,, will be called the second commutator
of the algebra A,. Obviously we have A, < A,.

11.62. Given any algebra A, every element @ € A defines two operators
in B(A), the operator of left multiplication T,, specified by the formula
T,b = ab, and the operator of right multiplication R, specified by the formula
R,b = ba. It is easy to see that the set of all operators of left multiplication
and the set of all operators of right multiplication form subalgebras in B(A),
which we denote by Af) and A7, respectively.
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Lemma. If the algebra A has a unit, then Xf) = Al and K") = A}
Proof. If Se Xﬁ), then
S(ab) = ST,b = T,Sb = aSh.

Setting b = e, where e is the unit in A, we get Sa = aSe. Therefore S is the
operator of right multiplication by the element Se € A, i.e., S € A7, It follows
that A} < A7, and hence that Al = Aj, since obviously A7 < Al. The
formula X") = Al is proved in just the same way. |

11.63. THEOREM. Given a simple algebra A with standard representation
T:A — B(X), let A, be the algebra of operators of T. Then Ko = A,.

Proof. The algebra A, defined above can obviously be regarded as the
algebra of operators of the left regular representation T:A — B(A) of the
algebra A. According to Theorem 11.53, this representation is the direct
sum of certain irreducible representations TUASBI) (1 <i<m),
where, by Theorem 11.51, each representation is equivalent to the standard
representation. This means the following: We can find a basis x,, ..., x,
in thespace X and a basis £;¥, . .., f ineachofthe subspacesl, (I < i < m)
such that for every a € A, the matrix of the operator T, in the basis f{¥),
S, ., fim of the whole space A has the quasi-diagonal form

7]

T.= ‘ , ¢))

i

where each block along the principal diagonal is the matrix of the operator
T, in the basis xy, . . ., x,, and the “off-diagonal’” blocks consist entirely of
zeros. It follows from the rule for multiplication of block matrices (Sec. 4.51)
that every matrix commuting with all matrices of the form (1) is a matrix
of the form

T

a

Su  Sim

, @)
Sml v 8§

mm

where each block S;; is an # X n matrix commuting with all the matrices T,
acA,
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Now let P be an operator in Ao, and let P be its matrix in the basis
Xy, . .. » X,. Then the quasi-diagonal matrix

P

7]

7]
obviously commutes with all matrices of the form (2), and hence determines
in the basis f{V, fiv, ..., fim of the space A an operator belonging to the

second commutator of the algebra A, By Theorem 11.54, every simple
algebra has a unit, and hence, by Lemma 11.62,

which means that the matrix P determines in the basis £V, f{V, ..., £ an

operator P, equal to T, for some b € A. But then P = T, for the same b,
and hence P belongs to the algebra A,. The proof is now complete, since P

is an arbitrary element of Ao 1

11.64. We are now in a position to prove the basic theorem on simple
algebras:

THEOREM (First structure theorem). Every simple algebra is isomorphic
to the algebra of all linear operators acting in some finite-dimensional space X.

Proof. Let A be a simple algebra, and let T: A — B(X) be the standard
representation of A. It is sufficient to prove that the algebra A, of operators
of the representation T coincides with B(X). Since the representation T is
irreducible, it follows at once from Schur’s lemma (Theorem 11.33) that the

commutator A, of the algebra A, consists of just those operators which are
multiples of the identity operator. But then the second commutator A,

coincides with the whole algebra B(X). At the same time Ko = A,, by
Theorem 11.63, and hence A, = B(X). |

It should be noted that behind all the considerations leading to the first
structure theorem lies the fact that every simple algebra has an exact ir-
reducible representation. Hence we have incidentally proved that every
algebra with an exact irreducible representation is isomorphic to the algebra
B(X). It follows at once that the converse of Theorem 11.41 holds: Every
algebra with an exact irreducible representation is simple.
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1.7, Structure of Semisimple Algebras

11.71. In this section we will show that the problem of the structure of a
semisimple algebra reduces completely to the problem of the structure of a
simple algebra (already studied above). To this end, we will find it useful
to introduce some new concepts.

Definition. By a normal series of an algebra A is meant a chain of algebras?
A=L2L=22L2L,={0

in which each algebra is a two-sided ideal of the preceding algebra. By a
composition series of an algebra A is meant a normal series of A in which
each ideal is maximal (i.e., is not contained in any larger two-sided ideal) and
I,, contains no proper two-sided ideals.

It is easy to see that every finite-dimensional algebra has a composition
series. In fact, among the (proper) two-sided ideals of a finite-dimensional
algebra A there is a maximal ideal I, say. Similarly, the algebra I, contains
a maximal two-sided ideal I,, I, contains a maximal two-sided ideal I,
and so on. Since the original algebra A is finite-dimensional, after a finite
number of steps we finally arrive at an algebra I, which contains no further
proper ideals. The chain of algebras

A=L>5L>:---2L,>1,,={0}

so obtained is obviously a composition series of the algebra A.

11.72. Before turning to the special properties of normal and composition
series of semisimple algebras, we prove the following

LeMMA. Given any element a of a semisimple algebra A, there exists an
element b € A such that every power of the element ba is nonzero.

Proof. By the definition of a semisimple algebra, there exists an irreducible
representation T: A — B(X) such that T, = 0. Then for some x € X, x £ 0,
the vector y = T, x is nonzero and therefore, by Theorem 11.32, is a cyclic
vector of the irreducible representation T. Hence there is an element b € A
such that T,y = x, i.e., such that

Tyox = T(Tx) = T,y = x.

It follows that every power of the operator T,,, and hence every power of the
element ba € A, is nonzero. |

t Here and in the rest of this section (only) we write A S B (equivalently, B 2 A) to
mean that 4 is a subset of B, reserving the notation A < B (equivalently, B > A4) to mean
that A4 is a proper subset of B (i.e., 4 S Bbut A # B).



324  FINITE-DIMENSIONAL ALGEBRAS AND THEIR REPRESENTATIONS CHAP. 11

11.73. THEOREM. A normal series of a semisimple algebra cannot contain
nonzero trivial algebras.

Proof. Let A be a semisimple algebra, and let
A=L2L2 -2L,21L,={0

be a normal series of A. It can be assumed without loss of generality that
the algebra I, contains an element a distinct from zero. Obviously, to prove
the theorem, we need only find an element ¢ € I, such that ca £ 0.
By Lemma 11.72, there exists an element b € A such that every power of
ba is nonzero.
= (ba@* "%  (k=0,1,...,n—1).

Then induction on k shows that ¢, €I ;. In fact, for K = 0 we have ¢, =

bab €1, since a € I, and the possibility of carrying out the induction follows

at once from the obvious relation ¢, ,; = cac; and the fact that a €L .

Thus we see that the element ¢ = ¢,,_, belongs to the algebra I,,, and moreover
ca == (ba)*"~lba = (ba)*" +# 0,

as required. ||

11.74. Next we prove three simple propositions:

LemMa. Let A 2 I, 2 I, = {0} be a normal series of an algebra A, where
the algebra 1, is simple. Then 1, is a two-sided ideal in A.

Proof. By Theorem 11.54, the algebra I, has a unit e. Since e €1,, the
elements ae and ea belong to I, for every a € A. But then

ab = a(eb) = (ae)b € 1,,
ba = (be)a = b(ea) €1,
forevery bel,. |

11.75. LeMMA. Let A be an arbitrary algebra, and let 1 be a two-sided
ideal of A with a unit. Then A has a two-sided ideal J such that A is the direct
sum of 1 and J.

Proof. Let J = {ac A:ae = 0}, where e is the unit of the algebra L
Then obviously J is a left ideal in A. Moreover, A is the direct sum of I and
J, since b = be + (b — be) and b — beec J.

We must still prove that J is a right ideal in A. Clearly

ab = abe + a(b — be)
for arbitrary a € J and b € A. But be = ebe since be € I, and hence
abe = (ae)be = 0
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since ae = 0. Therefore ab = a(b — be), so that ab is the product of two
elements of J. Tt follows that abe J. |

11,76, LemMa. Let I and J be two-sided ideals of an algebra A, and
suppose A is the direct sum of 1 and J, with 1 the maximal two-sided ideal
in A. Then the algebra J contains no proper two-sided ideals.

Proof. Let J' be a two-sided ideal of J which does not coincide with J.
Then the algebra J” =1 + J' is a two-sided ideal in A. But I is maximal,
and hence J” == L. It follows that J' = {0}. |

11.77. We are now at last in a position to prove the basic theorem on
the structure of semisimple algebras:

THEOREM (Second structure theorem). Every semisimple algebra A is a
direct sum of two-sided ideals of A, each of which is a simple algebra.

Proof. As shown in Sec. 11.71, we can construct a composition series
A=L>L>->2L>1,={0
for A. Our theorem is then obviously a special case of the following

Assertion. For every k(0 < k < n) the algebra 1,_, is a direct sum of
two-sided ideals of 1,,_,, each a simple algebra, and moreover 1,_; has a unit.

We now prove this assertion by induction on k. The algebra I, has no
proper two-sided ideals, and moreover is nontrivial, by Theorem 11.73.
Hence the algebra I, is simple and, in particular, has a unit (by Theorem
11.54). This proves the assertion for & = 0.

Suppose now that the assertion is true for some &k (0 < k < n — ).
This means, in particular, that the algebra I, , has a unit, and hence, by
Lemma 11.75,1,_,_, is a direct sum I, _; -+ J where J is a two-sided ideal in
I, ., Since I, , is a maximal two-sided ideal in I, ,_,, it follows from
Lemma 11.76 that the algebra J contains no proper two-sided ideals. At the
same time, applying Theorem 11.73 to the normal series

A=L>L>-->L,,>J3>{0,

we find that J is nontrivial and hence simple. By the induction hypothesis,
the algebra I,_, is a direct sum of two-sided ideals of I,_,, each a simple
algebra. Being simple, each of these subalgebras is also a two-sided ideal
inI,_,_;, by Lemma 11.74. It follows at once from this fact and the relation
I, 1= _,+Jthat I, , , is also a direct sum of two-sided ideals of
I, 1, €ach a simple algebra.

We must still show that the algebra I,,_,_; has a unit. Let e, be the unit
of the algebra I,_, (which exists by the induction hypothesis), and let e, be
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the unit of the simple algebra J. Then, since ab = ba = 0 for arbitrary
ael,_,, beld, itis easy to see that the element e = ¢, -+ e, is a unit in the
whole algebra I, _,_,.

Thus we have justified the induction on k, thereby proving the italicized
assertion. But, as already noted, our theorem is a special case of this
assertion (corresponding to k = n). |

It should be noted that we have incidentally proved that every semisimple
algebra has a unit.

The two-sided ideals found in the theorem, whose direct sum is the given
semisimple algebra A, will henceforth be called the simple components of the
algebra A.

11.78. It was shown in Sec. 11.64 that every simple algebra is isomorphic
to the algebra B(X) for some finite-dimensional space X or, equivalently, to
the algebra of all square matrices of a certain order. Now let X;, ..., X, be
a set of finite-dimensional spaces, and let B(X;, .. ., X,) be the set of all
rows of the form

a=(ay,...,a,),

where g, is an operator from the algebra B(X,) (or, if convenient, a matrix
of the appropriate order). Obviously B(X;,...,X,) is an algebra with
respect to the ““‘component-by-component’’ operations defined by the formulas

a+b=(@+b,...,a,+b,),

= (Aay, ..., Aa,),
ab = (a)by, . . ., a,b,),
wherea, beB(X,,..., X)), a=(ay,...,a,),b=(b,...,b,),and Ais a

complex number. It follows from these considerations that Theorem 11.77
has the following equivalent form:

Every semisimple algebra is isomorphic to the algebra B(X,, ..., X,) for
some set of spaces X,,...,X

We note further that the simple components of the algebra B(X,, ..., X,)
obviously consist of rows of the form (0,...,0,4,,0,...,0), where the
kth entry ranges over the whole algebra B(X;) and the remaining entries are
all zero. We will identify each such component with the corresponding
algebra B(X,).

11.79. We conclude this section by finding all two-sided ideals of a
semisimple algebra:

THEOREM. Every two-sided ideal of a semisimple algebra A is the direct
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sum of a certain number of simple components of A.

Proof. According to Sec. 11.78, the semisimple algebra A is isomorphic
to some algebra of the form B(X,, . .., X,) with simple components B(X,),
1 < k < n. Let I be a two-sided ideal in B(X;, ..., X,), and let I, be the
intersection of I with B(X,). If I contains the element

a == (als sy g Ay ak+1; cets an)’
then I also contains the element
ae, = (0,...,0,4,0,...,0),

where e, is the unit in B(X,). Tt follows that I can be written as the direct
sum
I=0L+ - +1,

But it is easily seen that I, is a two-sided ideal in the simple algebra B(X,)
for every k (1 < k < n). Hence either I, = {0} or L, coincides with the whole
algebra B(X;). |

11.8. Representations of Simple and Semisimple Algebras

From a knowledge of the structure of simple and semisimple algebras,
we can without particular difficulty find all their representations to within
an equivalence.

11.81. Let A be a semisimple algebra. Then, by Sec. 11.78, we can
identify A with the algebra B(X,,...,X,) for some set of spaces X,
(1 < k < n). Therefore, besides the given algebra A, we are led in a natural
way to consider n representations T*:A — B(X,), | < k < n of A, defined
by the formula

T: = a, € B(X,)

foreverya = (a,,...,a, ...,a,) €A. Sincetheimage of the representation
T* is the whole algebra B(X,), these representations are all irreducible.

THEOREM. Every irreducible representation of a semisimple algebra A is
equivalent to one of the representations T* (1 < k < n).

Proof. Let A =B(X,,...,X,) be a semisimple algebra, with an irre-
ducible representation T:A — B(X), and let Z(T) be the kernel of the
representation T. Since Z(T) is a two-sided ideal in A (Sec. 11.21a), it follows
from Theorem 11.79 that Z(T) is the direct sum of certain simple components
of A. Let A, denote the direct sum of the remaining simple components of
A which do not figure in Z(T), and let T :A; — B(X) be the restriction onto
A, of the original representation T. The new representation T™ is now exact,
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and moreover irreducible since the images of the representations T and T
obviously coincide. The algebra A,, having an exact irreducible represen-
tation, must be simple (see Sec. 11.64). Hence A, reduces to a single simple
component, i.€., A, coincides with B(X,) for some &k (I < k < n). But then,
as is easily seen,

T,=TY, a,eBX,)
foreverya=(a,...,a,...,a,)€A.

Now, according to Sec. 11.51, all exact irreducible representations of a
simple algebra are equivalent. In particular, the representation TV :B(X;) —
B(X) and the identity representation T®:B(X,) — B(X,) are equivalent.
This means that there exists an isomorphism U:X — X, such that UT{) =
T®U for every a, € B(X,). But T, = T for every ac A, as just shown,
while on the other hand it follows from the definition of the representation
T* that Tx = T(. Therefore UT, = TU for every a € A, which proves the
equivalence of the representations T and T". ||

11.82. Next we consider arbitrary representations of simple and semi-
simple algebras. In this regard, the following general proposition will be
found useful:

LeMMa. Given an arbitrary algebra A, let T:A — B(X) be any represen-
tation of A, and let X,, . . . , X, be minimal invariant subspaces of T spanning
a linear manifold which coincides with X.t Then X is the direct sum of certain
of the subspaces X,, ... , X

> ‘R

Proof. An intersection of invariant subspaces of a representation is
itself an invariant subspace. Therefore it follows from the minimality of
the given subspaces that for any &, the intersection of the subspace X, ; with
the linear manifold spanned by the subspaces X,, . . . , X, is either empty or
X1 itself. Hence by consecutively choosing those of the subspaces Xy, . . .,
X,, which are not contained in the linear manifold spanned by the preceding
subspaces, we get the subspaces whose direct sum is the whole linear manifold
spanned by X, . .., X,,, namely the whole space X. [

11.83. According to the second structure theorem, every semisimple
algebra A is isomorphic to an algebra of the form B(X,, ..., X,). In what
follows, we will find it convenient to consider the realization of B(X,, ..., X,)
in the form of an algebra of rows, each made up of » matrices of the appropri-
ate orders. The number appearing in the ‘‘7jth’’ place in the kth matrix of
the row corresponding to the element a € A will be denoted by Al¥'(a).
Moreover, we will use el to denote the element of the algebra A such that

t By the linear manifold spanned by the spaces X, . .. , X, we mean the set of all linear
combinations of the form o, x; + -« + a,x, where x, & X, (cf. Sec. 2.51).
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Ab(el*) = | while all other elements in the matrices of the corresponding
row equal zero. It should be noted that

;kei?’ =e, 3)

where e is the unit of the algebra A.

LeMMA. Let T:A — B(X) be a representation of a semisimple algebra A
and suppose the vector y = T,ux is nonzero for some x € X and certain

indices i and k. Then y belongs to some minimal invariant subspace of the
representation T.

Proof. Let Y = {T,y:a € A}. Then, since y = T,mx, it follows from the
rule for matrix multiplication that every element z, € Y is of the form
z; = T,x, where b is some linear combination of the elements e{*) (with / and
k fixed). It is sufficient to show that if z, s 0, then z, is a cyclic vector with
respect to the restriction of the representation T onto Y.

Now let z, € Y, so that z, = T,x, where ¢ is another linear combination
of the same elements e, Using the realization of the algebra A as an
algebra of matrix rows, we find an element a € A such that ¢ = ab. But then
zy = Tox = T,(T,x) = T,z,. Hence the vector z, is cyclic, as asserted. ||

11.84. THEOREM. Every representation of a semisimple algebra A is a
direct sum of irreducible representations and the trivial representation.

Proof. Given any representation T°: A — B(X°), consider the operator
T® where e is the unit in A. Then the formula

x =T% + (x — T%)

obviously defines an expansion of X° as a direct sum of subspaces X and X,
invariant with respect to T°, where the restriction of T° onto X, is the
trivial representation. We must still show that the representation T:A —
B(X), the restriction of T onto X, is a direct sum of irreducible representations.

Let x;,...,x,, be a basis in X. Then T, is the identity operator in X,
and hence, because of (3), the linear manifold spanned by the vectors of the
type T,ux for all possible indices 7, j and k coincides with the whole space X.

By Lemma 11.83, every nonzero vector of this type lies in come minimal
irreducible subspace of the representation T. Thus the conditions of Lemma
11.82 are in force. But then the space X is the direct sum of certain minimal
invariant subspaces of the representation T, so that T is a direct sum of
irreducible representations. ||

11.85. Theorems 11.81 and 11.84 together describe to within an equiva-
lence all representations of semisimple (including simple) algebras. In
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particular, we see that the operators of a given representation of a simple

algebra (singling out this case for greater clarity) are described in some
basis by quasi-diagonal matrices of the form

(M
]
' , @

™

where M ranges over the whole set of matrices of the appropriate order and
0 denotes the zero matrix. In the more general case of a semisimple algebra,
the corresponding matrices are quasi-diagonal matrices of the form

0

, ©)

where each of the matrices M,, ..., M, appearing in the indicated larger
blocks ranges inde pendently over the whole set of matrices of the appropriate
order (in general different for different matrices).

11.86. Incidentally we have described all simple and semisimple matrix
algebras (i.e., algebras which themselves consist of matrices). In fact, by
merely assigning each matrix of such an algebra its operator (in any basis),
we get an exact representation of the algebra. This and the preceding
considerations immediately imply the following assertion:
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Every simple (or semisimple) matrix algebra consists of all matrices of the
form P*LP, where P is a fixed nonsingular matrix and L ranges over the set
of all matrices of the form (4) (or of the form (5)).

For algebras containing the unit matrix, we get a somewhat different
result:

Every simple matrix algebra containing the wnit matrix consists of all
matrices of the form P7*LP, where P is a fixed nonsingular matrix, L ranges
over the set of all quasi-diagonal matrices of the form

M

)

M
and M ranges over the set of all matrices of the appropriate order. Every
semisimple algebra containing the unit matrix consists of all matrices of the

form P7LLP, where P is a fixed nonsingular matrix, L, ranges over the set of all
quasi-diagonal matrices of the form

and each of the matrices M,, . . . , My, ranges independently over the whole set
of matrices of the appropriate order.

11.9. Some Further Results

Thus we have completed the description of simple and semisimple finite-
dimensional algebras, as well as their representations. Further investiga
tion of finite-dimensional algebras lies beyond the scope of this chapter.
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Nevertheless, to give perspective, we now cite some well-known results along
these lines.

11.91. Wedderburn’s theorem. Every finite-dimensional algebra is the
direct sum (regarded as a linear space) of its radical and some semisimple
algebra.t

11.92. The radical of a finite-dimensional algebra consists only of nil-
potent elements. Moreover, for every such algebra there exists a positive
integer n such that the product of any 7 elements of its radical equals zero.?}

11.93. Every representation of a radical algebra is described in some
basis by matrices with zeros on and below the principal diagonal.§

PROBLEMS

1. Prove thatevery left ideal of the algebra B(K.,) is the set of all operators whose
null spaces contain some subspace K’ = K.

2. Prove that every right ideal of the algebra B(K,,) is the set of all operators
whose ranges are contained in some subspace K’ < K.

3. Find all maximal left and right ideals of the algebra B(K,,).

4. Given any semisimple algebra B of linear operators over a space C,, introduce
a scalar product (x, y) in C, such that A € B implies A* €B.

5 (Converse of Problem 4). Given any algebra B of linear operators over a space
C,., prove that if there exists a scalar product (x, y) in C,, such that A € B implies
A* e B, then the algebra B is semisimple.

6. Suppose the conditions of Problem 5 are satisfied. Prove that B is a simple
algebra if the intersection of the commutator B (Sec. 11.61) and the algebra B
itself consists only of operators which are multiples of the identity operator.

7. Let B be the simple algebra consisting of ali matrices of the form (6) made
up of m? blocks:

M 0 [P 0
o M .- 0
0 0 PR M

t See e.g., N. Jacobson, The Theory of Rings, American Mathematical Society, New
York (1943), p. 116.

I See e.g., N. G. Chebotarey, Iniroduction 1o the Theory of Algebras (in Russian),
Gostekhizdat, Moscow (1949), Sec. 8.

§ Here, of course, it is not asserted that the matrices of the operators of the representation
range over the whole set of matrices of this type. See e.g., A. Y. Khelemeski, On algebras
of nilpotent operators and related categories (in Russian), Vestnik MGU, Ser. Mat. Mekh.,
no. 4 (1963), pp. 49-55.
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Show that the commutator of B can be represented (in the same basis) by all
matrices of the form

ME  ApE o MpE
ME AppE s MgnE
7‘mlE }‘sz e )‘mmE
where the Xz (f, k =1, ..., m) are arbitrary complex numbers. In particular,

show that the intersection of B and B consists only of matrices which are
multiples of the unit matrix.

8. For what semisimple matrix algebra B does the commutator B coincide with
B itself?

9. Describe every semisimple commutative algebra B (B < B).

10, Describe every semisimple matrix algebra B for which B = B.
11. Prove that B — B for every semisimple algebra B.

12. Let B be the algebra consisting of all polynomials in a single operator A
(hence B is commutative, so that B = B). Under what conditions does B = B?

13." Show that if the algebra B = {0} consists only of nilpotent elements (i.e., if
Ak = 0 for some k = k(A) for every A €B), then the equality CB = B cannot
hold for any C& B.

14. An algebra B is said to be nilpotent if there exists a number p such that the
product of any p elements of B equals zero. Show that an algebra B equal to the
direct sum B, 4 --- + B,, of its right ideals is nilpotent if each ideal B;
(j =1,...,m)is nilpotent.

15. Prove that if a finite-dimensional algebra B consists only of nilpotent
elements, then B itself is nilpotent.

16. Given a nilpotent algebra B of operators in the space K,, let M; = K, be
the intersection of all null spaces of all the operators A € B, let M, < K,, be the
intersection of all subspaces carried into M, by the operators A€ B, let M3 = K,
be the intersection of all subspaces carried into M, by the operators A€ B, and
so on. Show that

0eM, =M, =~ =M, =K,
where each set is a proper subset of the next and p is the index of nilpotency of

B, ie., the smallest number p such that the product of any p operators in B
equals zero.



334 FINITE-DIMENSIONAL ALGEBRAS AND THEIR REPRESENTATIONS CHAP. 11

17. Prove that for every nilpotent algebra B of operators in a space K,,, there
exists a basis in which every operator A € B is specified by a matrix of the form

0 Ay Ay - Al.g-l

0 0 Ay - A2.11~—1
A=|0 0 0 -+ Azl

(V) o --- 0

where p is the index of nilpotency of B. (A. Y. Khelemski)



*appendix

CATEGORIES OF
FINITE-DIMENSIONAL
SPACES

A.l. Introduction

A.11. Recently the concept of a category and certain related ideas have
begun to play an important role in various branches of mathematics.t An
example of a category is a collection of sets together with mappings of the
sets into one another. A collection of linear spaces or algebras together with
their morphisms is another example of a category.

The exact definition of a category is as follows: Let 7 be a set of indices
o, and let A~ be a set of elements X, (« € &) called objects of the category
A", Suppose that for every pair of objects X; and X, there is a set %, of
other elements Ay, called mappings of the object X, into the object X such
that the product of the mappings A,; and Ag, is defined for arbitrary «, 8, ¥
and belongs to 4., where multiplication is associative, i.e.,

Ar(ApAn) = (A Arp)Ag,
for arbitrary «, §, v, 3. In particular, the set %, of mappings of the objects
X, into themselves is defined, and (associative) multiplication of mappings
is defined in 4,,. Finally, it is required that the set #,, contain the unit

t See e.g., H. Cartan and S. Eilenberg, Homological Algebra, Princeton University
Press, Princeton, N.J. (1956); Séminaire A. Grothendieck, Algébre Homologique,
Secrétariat Mathématique, Paris (1958); A. G. Kurosh et al., Elements of the theory of
categories (in Russian), Uspekhi Mat, Nauk, vol. 15, no. 6 (1960), pp. 3-52.
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element 1,, which has the property that
leus = AaB! Ayalz = Ayu

for arbitrary «, 3 and v. Instead of %,, we will usually write simply Z%,,.

A set A~ of objects X, and mappings Ay, with the properties just enumer-
ated is called a category. A category X is called linear if in the set %, of
mappings Ag, (with arbitrary fixed « and §) there are defined operations of
addition of mappings and multiplication of mappings by numbers (from the
field K). This makes the set %, into a linear space over the field K. Thus in
a linear category the set %, becomes an algebra with a unit (over the field K).

A.12. In this appendix we will consider linear categories whose elements
are finite-dimensional linear spaces (of dimension >1) over the field C of
complex numbers, while the mappings are linear mappings (morphisms) of
one such space into another.

Thus we start with the following definition: Let X, (« € =) be a set of
finite-dimensional complex linear spaces, and for every « let %, be an algebra
of linear operators carrying X, into itself. Moreover, suppose that for every
pair of indices « and  there is a set &, of linear operators Ag, carrying X,
into Xy such that 1) if &, contains the operators Ag, and By, then %,
contains the operator sum A, + Bg,, and 2) if %, contains the operator
Ag,, then %, contains the product AAg, where A is an arbitrary complex
number. A family of linear operators with these two properties will be
called a linear family. In particular, the linear family #,, coincides with the
algebra . It is also assumed that

B FByx < Ao €))
for arbitrary ¢, 8 and v, i.e., that every product
A (Ag €815 Ay € Hy,)

belongs to #4..,. Such a set of spaces X, together with algebras &, and
linear families A, will be called a category of finite-dimensional spaces or
simply a category, and will be denoted by %"

If we choose a basis in every space X,, then the algebras &, and linear
families 4, can be identified with the algebras and linear families of the
corresponding matrices, a fact which will henceforth be exploited system-
atically.

In what follows, we will find the categories of linear spaces corresponding
to given algebras #,, confining ourselves to the case where the &, are
semisimple algebras containing the unit matrix. According to Sec. 11.86,
for such an algebra the space X, can be decomposed into a direct sum of
subspaces X,; invariant under all the operators A,,, where in each subspace
X,; the algebra A, is a simple algebra containing the unit matrix, ie., is



APPENDIX 337

described in some basis by the set of all quasi-diagonal matrices of the form

C

—Cj .

[
where C ranges over the set of all matrices of the appropriate order.

We begin with an analysis of some special cases for which general results
can afterwards be stated. Thus in Sec. A.2 we consider the case where every
algebra #, is complete, i.e., is the algebra of all linear operators acting in
the space X,. The opposite case where each %, is an algebra of operators
of the form AE (multiples of the identity operator E) is considered in Sec.
A.3. The results of Sec. A.4 pertain to the case of simple algebras #,, this
being a natural generalization of the case of the algebras {AE}. In Sec. A.5
we consider the case where each algebra &, is an algebra of all diagonal
matrices of a given order, while in Sec. A.6 the general category with semi-
simple algebras %, is reduced to the categories considered in the preceding
sections.

A.13. We now recall the notation and rules of operation governing
matrices of linear operators mapping a linear space X into a linear space Y
(see Secs. 4.41-4.43). Let X be an n-dimensional space with basis ey, . .. , e,
and let Y be an m-dimensional space with basis fi, . . . , f,,. Then with every
linear operator A mapping X into Y we associate an m X n matrix

an G . Gy,
4. a .. a
A= 21 22 2n
Amy Ama Amn
(with m rows and n columns), where the numbers a;, ay;, . . . , a,,; in the

Jth column are the coefficients of the expansion of the vector Ae; € Y with
respect to the basis f;, ..., f,. Moreover, let Z be a k-dimensional space
with basis g, ..., g, Then with every operator B mapping the space Y
into the space Z we associate a k X m matrix
by b12 e blm
B = by by - by

b by - bkm
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The operator C = BA maps X into Y and has the & X » matrix

Cu € * Cip
C. C. e C

C = 21 22 2n s
Cn Crz "t Gy

obtained by multiplying the matrices B and A in accordance with the formula
cuazzlbuiaiq (p=1,....kiqg=1,...,n).

A.14. The following fact, slightly generalizing Examples 4.44a-b (and
proved in the same way), will often be found useful:

LEMMA. Given an m X n matrix A = |a,\, suppose A is multiplied
Jrom the left by a k X m matrix B = |b,\| with all its elements equal to zero
except the single element b’o% = 1. Then the result is a k X n matrix BA
whose roth row consists of the elements of the syth row of the matrix A while
all other elements of BA vanish. On the other hand, if the matrix A is multiplied
Jrom the right by an n X I matrix C = | c,| with all its elements equal to zero
except the single element c, . the result is an m X I matrix AC whose s\th
column consists of the elements of the rith column of the matrix A while all
other elements of AC vanish.

A.15. It follows from the lemma that if an m X 7 matrix A is multiplied
from the left by a k& X m matrix B and from the right by an n x / matrix C,
where B and C have the indicated properties, then the result is a k X /
matrix BAC all of whose elements vanish with the (possible).exception of the
single element, equal to a_, , appearing in the ryth row and s,th column
(cf. Example 4.44c).

S0

A.2. The Case of Complete Algebras

A.21. Suppose the category ¥  consists of finite-dimensional linear
spaces X,, where for every « the algebra &, of operators acting in X, is
complete, i.e., is the algebra of all linear operators in X,. Fixing arbitrary
basese,, ..., e,inthespaceX;and f,, ..., f,. inthe space X;, we can identify
the operators in the sets #,,, #y, #y, #ay with the corresponding matrices.

Let 7 be the dimension of the space X, and m the dimension of the space
X,. Suppose the family %, contains a nonzero operator A, so that the
corresponding m X n matrix 4 = ||a,,|| has at least one nonzero element,
say a,,. We can assume without loss of generality thata, , = I. 1t follows
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from the condition (1) and the assumption that %, and %, are complete
matrix algebras that the product of 4 from the left by an m X m matrix and
from the right by an n X n matrix is itself a matrix in the family %,,. But,
according to Sec. A.15, there is always an operation of this kind leading to an
m X n matrix with a unique nonzero element equal to | in any preassigned
position. Hence, since any m X n matrix is a linear combination of such
matrices, we see that %y, contains all m X n matrices, i.e., @, is a complete
family of operators mapping X, into X,.

A.22. As we will see below, the category £~ just described can be related
to a certain partially ordered set.

Definition. A set S is said to be partially ordered if for every pair of
elements 4, B € S there is a relation, denoted by the symbol < (and read
“less than or equal™) satisfying the following axioms:

a) If A < Band B < A, then A = B;
b) If A< Band B< C,then 4 < C;
c) A < Aforevery A.

A somewhat more general concept is that of a prepartially ordered set,
by which we mean a set S with a relation < satisfying only axioms b) and
c). In this case, if 4 < Band B < 4, we call 4 and B equivalent and write
A~ B. Then A ~ B and B ~ C together imply 4 ~ C. In fact, by axiom
b), it follows from 4 < B, B < Cthat 4 < C and from C < B, B < A that
C< A But A< C and C < A4 together imply A4 ~ C. Therefore the
relation < allows us to partition the whole set S into (equivalence) classes
A, AB ..., where each class & contains all elements equivalent to A4 as
well as a given element A, while elements 4 and B belonging to distinct
classes are nonequivalent.

Next we introduce the relation < for the classes ./ and % themselves,
writing & < # if there exist elements 4 € &/, Be # such that 4 < B.
This definition is independent of the choice of the elements 4 € &/, Be &.
In fact, suppose 4, € &, By €%, so that A ~ A,;, B~ B;. Then 4, < 4 <
B < B, and hence 4, < B, as required. The fact that axioms b) and c)
for a partially ordered set hold for the classes .2/, #,. .. now follows from
the fact that they hold for the elements 4, B,.... To show that axiom a)
also holds for the classes &/, #,..., let & < #, # < & and choose
arbitrary elements A € &/, B #. Then A < B and B < A4, so that 4 and
B are equivalent. But then &7 and % coincide, ie., & = Z, as required.

Thus by introducing an equivalence relation in a prepartially ordered set
S, in the way indicated, we arrive at a partially ordered set of classes of
equivalent elements.
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A.23. We now resume our study of the category . It follows from
Sec. A.21 that given any pair of spaces X, and X,, there are just four
possibilities :

a) %y, and 4, are both complete sets of operators;

b) %, is a complete set and %,, consists of the zero element alone;

€) %y is a complete set and %, consists of the zero element alone;

d) #,, and %,, both consist of the zero element alone.

If %,,is a complete set and no assumptions at all are made about %,,, we
write X, < X, (the relation X, < X, has the analogous meaning).

As we now show, the relation < makes the category £ into a pre-
partially ordered set. Infact, 4, is a complete set of operators for the given
space X;, by hypothesis, and hence X; < X,;. Moreover, if X, < X, and
X, < X3, then &, and #,; are complete sets of linear operators mapping
X, into X, and X, into X;, respectively. Since all our spaces have dimension
> 1, there is obviously a nonzero operator in the set ;. In fact, let e, € X,
e, € X,, e;€X; be fixed nonzero vectors. Then such an operator can be
obtained as the product AB, where the operator A € #,, carries e, into e,
and the operator B € &, carries e; into e,. By Sec. A.21, %, is a complete
set of operators carrying X; into X, so that X; < X; Thus axioms b) and c)
are satisfied, and the category ¢ has been made into a prepartially ordered set.

A.24. In accordance with Sec. A.22, we now introduce an equivalence
relation in X, writing X, ~ X, if X, < X, and X; < X,, i.e., if both %, and
%5, are complete sets of the corresponding linear operators. Then the set
of spaces X, decomposes into classes of equivalent spaces, and the set of all
such classes becomes a partially ordered set when equipped with a relation
as in Sec. A.22.

Conversely, every partially ordered set of classes Z, of finite-dimensional
spaces defines a category of the type under consideration. In fact, for spaces
X, and X, belonging to the same class we specify #,, and #,, as complete
sets of operators, while for spaces X; and X; belonging to classes %, and Z;
such that 2} < % (i.e., such that 27 < % but 2 # Z3), we specify %3
as a complete set and %5, as the set consisting of the zero element alone.
Moreover, if X, and X, belong to noncomparable classes 2, and Z,, we
specify that %, and Z,, both consist of the zero element alone.

The description of categories of the indicated type is now complete.

A.3. The Case of One-Dimensional Algebras

A.31. Turning to the case where the given algebras %, are all one-
dimensional, we consider two simple examples:

a. Let the category £, consist of two spaces X; and X, of the same
dimension, and let the set %,, consist of an operator A mapping X, onto X,
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in a one-to-one fashion together with all its multiples AA, A € C, while the
set %, consists of the operator B which is the inverse of A together with all
its multiples uB, w € C. Then obviously

gmgzl = {)\E}, gzlglz = {)\E}

b. Let the category ¢, consist of two arbitrary spaces X, and X, with
fixed subspaces X| < X, and X < X,, and let the set %,, consist of all
operators carrying X into X; with X[ going into {0}, while the set &%, consists
of all operators carrying X, into X; with X; going into {0}. Then obviously

glzgm = {0}’ gzlglz = {0}.

It will now be shown that the categories ¢ and £, essentially exhaust
all categories consisting of two spaces with #; = (AE} (j = 1, 2), i.e., that
the following alternative holds for any such category X": Either % ;% =
{0}, in which case By %5 = {0} also and the category XA  is contained in a
category of the type X, or the spaces X, and X, have the same dimension and
A is a category of the type A .

A.32. Thus let )" be a category consisting of two spaces X; and X,
subject to the condition %, = {AE}, %, = {AE}. Let N, < X, be the inter-
section of the null spaces (Sec. 4.62) of all operators A, € %, and let
N; < X, be the intersection of the null spaces of all operators A;; € %,
If #,X; < N, and %,,X, < N, we are dealing with a subcategory of a
category of the type X, in which X; = N;, X; = N,. Therefore we assume
that #,,X, is not contained in N,, say, and hence that there is a vector x, € X,
and an operator A, € &y such that Ay x; = x, does not belong to N,.

Every operator By, € #,, carries x, into a vector collinear with x,, and
every operator C,; € ), carries x, into a vector collinear with x,. In fact,
let Agx, = Xy, Byx; = yo, and consider an operator CJ, € #,, such that
C?,x, # 0. Then, by the basic condition, C%,x, = C,A, x, = Ax,, where
A £ 0. Replacing C¢, by a multiple of C?,, we can assume that A = 1.
Moreover B,C%,x, = By x; = y,, while at the same time B, Cl,x, = wx,,
and hence y, = px,. Since, conversely, x; = C},x, and x, ¢ N, by the
definition of x,, we have analogously C,,x; = wx, for every Ci; € %,,.

Moreover, in the given case, N; and N, reduce to the set {0} consisting
of the zero vector alone. In fact, if z; € N;, then Ay (x; + z;) = Agx; = X,
i.e., the vector x; in the above construction can be replaced by x; + z;. But
then C3,x, is a multiple of both x, and x; + 2z, so that x, and z, are collinear.
Therefore z, = 0, since x, € N;. It follows that N, = {0}. Similarly, starting
with x,, we find that N, = {0}.

We now see that x, can be chosen to be any nonzero vector of the space
X,, since there is always an operator A, € %, carrying x, into a nonzero
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vector. Hence the operators of the set %, establish a one-to-one corre-
spondence between all the straight lines of the space X, and some set of
straight lines of the space X,, in fact the set of all straight lines of the space
X, by the symmetry of our construction.

Next we prove that the whole set %y, reduces to the set of multiples of a
single operator. Let x, 7 O be an arbitrary vector of the space X,, and let x,
be a nonzero vector determining the straight line in the space X, corresponding
to x;. As we know, there is an operator A9, € #,, carrying x, into precisely
X,. Every other operator A, € #,, carries x, into Ax, for some A. First
suppose A, X; = AX,, where A 3£ 0. Then the operator

1
By = ;} Ay

carries x; into precisely x,. Moreover, By coincides with AY, everywhere.
In fact, suppose to the contrary that AY y, = y,, Byy, = 2, # y,. This can
happen only if y, 5£ 0, z; ='wye, 1 £ lorif y, = 0,2, £ 0. Letz, = ax, +
By: be a nonzero vector with « £ 0, B 5= 0. Then the vectors Az, and
B,,z, are collinear, as proved above. But this is impossible in our case, since

Adi(oxy + By1) = axy + By, Boy(oxy + Byy) = axs + Puye
if y» 5= 0, while

Ad(axy + Byy) = axs, Bo(axy + Byn) = oxg + Bz,

if yo = 0. This contradiction shows that if Agx; = Ax,, A 7 0, then Ay =
AAJ,. Now suppose Ay x; = 0. Then, as just proved, A3, + Ay = AY, and
hence Ay = 0. Thus %,, reduces to the set of multiples of a fixed operator
A, and similarly 2, reduces to the set of multiples of a fixed operator BY,.
The products A%, B¢, and B},AJ, are nonzero and, by the basic assumption,
give operators which are multiples of the identity operator. Hence the
operators A%, and BY, are inverses of each other (apart from a numerical
factor). But this is possible only if the spaces X; and X, have the same
dimension. Thus, finally, we have proved that every category A" of the
indicated type which is not a subcategory of a category of the type X, is a
category of the type X\.

A.33. The categories of the types | and ¢, are not the only possible
categories with two spaces X,, X, and algebras %, = (AE}, #, = {AE}. In
fact, suppose that in the set %, of a category X~ of the type £, we choose a
linear subset without increasing N; or decreasing N, (for example, by
imposing a suitable extra linear homogeneous condition on the elements of
the matrices of the operators A,;). Then we get a category ' which satisfies
the given conditions but does not coincide with J£". In the set of all categories
with #; = {AE} (j = 1, 2), partially ordered with respect to set inclusion,
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the categories of the type ¢, are characterized by the fact that they are
maximal, in the sense that no category of the type £, except for singular
cases where X| = {0} or X} = {0}, can be enlarged while preserving the
properties of a category and the conditions %, = {AE}. In fact, suppose that
a category ¢~ of the type %, can be enlarged by including an operator A,
taking a value y, ¢ X; for some x; € X; — X|, where X{ = {0}. Let B}, ¢ 4,,
be an operator carrying y, into a nonzero vector x; € X{. Then B$,A} x, = x/,
contrary to hypothesis.

Moreover, suppose that in the category #  we include an operator A,
carrying a vector x; € X{ into a nonzero vector y; € X;. Then clearly X; # X,,
since otherwise X, = #, X, = #,,X; = {0}, and there cannot exist a
vector x, mapped into a nonzero vector. Hence there is an operator B, € %,
carrying a vector y, € X, — X into x;. But then A;,B,y, = y,, contrary to
hypothesis.

Similarly, assuming that X, s {0}, we find that it is impossible to include
a single extra operator in the set #,,. Thus our category " of the type X,
is indeed maximal, under the assumption that X| # {0}, X; 5= {0}.

A.34. The singular cases must be considered separately. For example,
suppose X = {0}, so that %\, consists of the zero operator alone. Then, if
X, # X,, the category is nonmaximal, and we can enlarge the set %,, to
include all operators mapping X, into X, without dropping the conditions
#;={AE} (j=1,2). This gives a “trivial” maximal category, where
#,5 = {0} and H,, is a complete set of operators mapping X, into X,. There
is an analogous maximal category with %, = {0} and #,; a complete set.
Thus, finally, we find that the general category of the type J¢, is maximal
under the following conditions: 1) X] 5= {0}, X; 7 {0};2) X[ = {0}, X; = X,;
3) X = X,, X = {0}

A.35. We now turn to the general case of a category with an arbitrary
number N < o of spaces X,, « € /. Here we have the following analogue
of the alternative proved in Sec. A.31:

THEOREM. If B, = - -+ = %, = {A\E}, then either the product B, % 1 " **
3R, vanishes, or the spaces Xy, . . ., X, all have the same dimension and
Ay = {MAY} where the A, are fixed invertible operators such that

A?kA:.k—l o ApAy = E.
Proof. Suppose the product %,, %, ;. - H#3F contains a nonzero
operator, which is therefore equal to AE with A £ 0, and let r; be the
dimension of the space X; (j= 1, ..., k). Consider the category 4", made

up of the two spaces X;, X, and the following sets of operators #9,, %Y,:

g‘l’z = '@lkgk.k-l e gsZa '@gl = '@21
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(£, is the linear manifold spanned by the corresponding operator products
ApA, 1 Ay, each mapping X, into X,). Since clearly %7.%%, = {0},
it follows from Secs. A.31-A.32 that X, and X, have the same dimension
ry = ry, while &3, = %, = {3AY} where AJ, is an invertible operator with
inverse (A%,)"' and %9, = {.(A9)™'}. Similarly, applying the same argument
to the category ¢ made up of the two spaces X;, X; and the linear manifolds

#),, %3, spanned by the operators of the form

(A T'AGAL 1 Ay

and Ag,, respectively, we find that r, = ry and %;, = {AA3,} where A3, is an
invertible matrix. Continuing in this way, we arrive at the desired conclusion
after k steps. [

A.36. In this section and the next, when considering a category made up
of N spaces, we will assume that all the cyclic products %, %, - - - %y,
vanish. Otherwise, we would simply identify the corresponding spaces which
are all of the same dimension.

First consider the following concrete category, which we denote by 475 :
Let Xy5,..., X;x be N — 1 arbitrary subspaces of the space X;, and for
distinct j, k, I, . . . let

X = Xy N Xy Xy =X, NX; NXy,.. o\,
where we successively form intersections of the spaces X,; two at a time,
three at a time, and so on. If N is finite, the last intersection will be X;, .y,
the intersection of all N — 1 of the selected subspaces, while if ¥ is infinite
there will be no last intersection. Let the same construction be carried out
in all the remaining spaces X,, X;, . .., where the index of the whole space
is always the first of the indices appearing in the symbol used to denote any
of its subspaces. Thus to any set of distinct indices j, k, ... (in that order)
there corresponds a unique subspace of X;. As for the sets %,, we define
% as the set of all operators mapping X into X, such that every subspace
X,;...x goes into Xy, ;. if the sequence j, . .., k does not contain the index
2 and into the set {0} otherwise, with the other sets %, being defined
similarly.

We now prove that ;" is in fact a category. Given operators A,, € %y
and By, € #;,, consider the operator By,A, carrying the space X, into the
space X;. The operator A, carries the subspace X;;. . into Xy  , and then
By, carries Xy, into Xgop,. 5 © Xgyy.. ;. Hence ByyAy, € %y, as required.
Moreover, if there is a sequence of operators A,;, ..., A,; mapping the
space X, into itself, then the resulting operator carries X, into X,; ,, = {0},
in keeping with the requirement that #,; - - - #,, = {0},
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A.37. Next we show that every categoryt made up of N < oo spaces
Xy, Xo, - .. with B; = {AE} is contained in a category of the type A'Y. Let
X, be the total image in the space X, of the space X, under the action of all
operators in %, and let X;;, ,, be the total image in the space X; of the
space X,, under the action of all operators of the form A A, - - A,, (in
that order). Then X, . ,, is contained in the intersection of X, X, . .

X, Infact, if z € X, ., then
zZ€ Z Al;kA:l T A:aA:T T A:mZ:m

where z2 € X, , or equivalently,

— o o PN o oL
ze 2 AikAkl Anqu»
where
oL o o o
Y= ZAQ, Az €X,.

But A7 AY - - - A% € #,,, and hence z € X,,, as required. Note also that A,;
carries X;, ,, into X;;_ ..

It is now clear that our category is contained in a category of the type
AY with defining subspaces Xj,. In particular, all the maximal categories
must be of the type #¥. However, it is not clear what conditions on the
subspaces X;, make a category of the type #¥ maximal. (Recall that in the
case of two spaces X; and X,, a necessary and sufficient condition for
maximality of a category of the type £, is that the spaces X;, and Xy
either be both different from {0}, or else that one of the spaces be the whole
space while the other is the space {0}.)

A.A. The Case of Simple Algebras

If the given algebras &, are all simple, then, by Sec. 11.86, each %,
consists of the set of all quasi-diagonal matrices of the form

EEI.

2

C

in some basis, where C ranges over the set of all square matrices of order r,.

+ Of the special type under consideration.
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A.41. First we consider a category " with just two spaces, a space X,
of dimension n, with k, blocks of size m, (so that n; = k;m,) and a space X,
of dimension n, with k, blocks of size m, (so that n, = kom,). Then every
matrix Wy € #,, can be partitioned into blocks as follows:

my
mz{ Ay | Are Alk,
A . s .
Wpy = 2 ko
Aa| - oo | Ay

ky

Similarly, every matrix B,, € %, can be written in the form

M
ml{ B, | By, By,
R I
B @

ky

THEOREM. Either Uy By, = 0 (for arbitrary Wy € A oy, Bis €%,,), or
k, = k, and the matrices Aj, are all multiples of an (arbitrary) fixed matrix
A and the matrices By, are all multiples of an (arbitrary) fixed matrix M,
with the constants of proportionality making up a pair of mutually inverse
matrices 4 and B of order k, = ky.t

Proof. If the matrices %, and B,, belong to the category ¥, then so
does their product (from the appropriate sides) by matrices C; and C, of
the form (2). Therefore, along with the equality

UpyByp = Co,
we also have ’
Q[mcx%lz = Cz

t A category of the second type will be denoted by ;.
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for an arbitrary matrix C, of the form (2). Recalling the rule for multipli-
cation of block matrices (Sec 4.51), we have

ApCByy + A41:CBy + - -+ + Ay, CBy,,y

= AnCBy3 + A35CBp; + -+ + A45,CBy s

3)
== Ak,1CBxk, + Ak,2CBak, +- 4+ Ak,k,CBk,k,,

A CByp + A;,CByy + -+ + Alk‘CBk‘Z =0,

Let C be the matrix with a single nonzero element, equal to 1, appearing in
the rth row and sth column (r < m,, s < m,). In general, if 4 isany m, X m;
matrix and B any m; X m, matrix, then ACB is a m; X m, matrix of rank 1,

with the element a,,b,, appearing in the pth row and gth column. With this
choice of C, the formulas (3) become

GBS+ a2+ bl
= apbi + apbl + -+ b
== P b R, ()
apbyg + aybly + -+ apbyt =0,

where the superscripts denote the indices of the corresponding matrices.
We can regard (4) as a single matrix equation

11 12 ... 1ky 11 . 1ka
Apr  Apr Apy baq bsq bsa
21 22 ... 2%y 21 22 P 2ke
- Apr  Apr apr b by b3
ArrBsq -
el T I kaky eyl ka2 L. kaka
Apr  Apy Apr by, by be
r 0 0
0 2 0
= ks.
00 A
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Similarly, we have

1 12 .. 1ks 11 12, 1k1
bsa bsa baa ai"‘ al)T aPT
21 22 .. 2%ce 21 22 .. 2%
- b by b3 Apr Ay a,’
B A, =
sqgtpr T
%1l k12 . kike kel k2 L kak1
bsa bsa bsq apr apr am‘
m 0 -+~ 0
_ 0 woo 0 X
- v - . s s - 1
0o o0 --- n
N—e
ks

Thus we see that the matrices 4, and B, (with parameters p, r, s, ¢) form a
category connecting the space X; of dimension k; with the space X, of
dimension k,, subject to the conditions

%, = {AE}, %, = {uE}.
We can now apply the alternative proved in Sec. 12.32. Namely, if k; £ k,,
then in fact A = 0, w = 0, while if A 3£ 0 (or if w £ 0) for at least one set of
indices p, g, r, 5, then k; = k, and the matrices 4,, are all multiples of a
single invertible matrix 4, while the matrices B,, are all multiples of the
inverse matrix § = 4-1:

I‘T,n- = )‘pr/:f» Esa = “'xag'
The matrix 4, consists of the elements of the matrices 4,, appearing in the
pth row and rth column. Hence

&= 1,

where the @' are the elements of the matrix 4 of order k, = ky; It follows
that the matrices 4, are all multiples with coefficients @ of a fixed matrix
A = A,{l, and similarly for the matrices B,.. Moreover, the matrices 4

and B are inverses of each other, as already noted, [

A.42. Thus if UyB,, #~ 0, then k, = k, and the category X is of the
form

FNEZN RN
Bum | pam] ... [ Bem
By, = [ IM :
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where A = ||A,[| is an my; X m; matrix and M = |y, is an m, X m, matrix.
Among the matrices A figuring in the given category there must be a nonzero
matrix Ay (since Hy Hy, # {0}), and hence any m, X m, matrix must be a
matrix A since we can get any nonzero matrix by multiplying A, from the
right by C, and from the left by C,. Hence if %y %, # {0}, the set &,
consists of all matrices of the form (5), where 4 = ||@*|| is a fixed invertible
matrix and A ranges over the set of all m, X m; matrices. The situation is
similar if %,,%5  {0}. It is now clear that the inequalities %, %, #* {0}
and %y #,, #~ {0} either both hold or both fail to hold.

A.43. The above results can be formulated in terms of tensor products,
an approach which allows us to explain some further facts as well. Thus we
begin with the following definition:

Given a k-dimensional linear space X with a basis ¢;,..., ¢, and an
m-dimensional linear space Y with a basis f,, . . ., f,,, by the tensor product
X x Y = Z of the spaces X and Y we mean the set of all finite formal sums

»
DXy X Y,

v=l

where x, € X, y, € Y. Here it is assumed that

[x1 X y] + [x2 X y] = [(x, + x2) X ¥,
[x X ;] + [x X ya] = [x X (31 + y9)],

k4 2 2
z)\vx‘- X Yy =ZXV X )\vyv =z)\v[xv X yv]
v=1 v=1 v=1

It follows that Z is a linear space of dimension <km, where all the vectors
of Z can be expressed. in terms of vectors of the forme, X f; (i=1,...,k;
j=1,...,m). It is further assumed that the vectors e; X f; are linearly
independent and hence form a basis for the space Z, so that the coefficients
c;; in the expansion

i

g=3 Seyle x 1) ©)

i=1 j=

can be uniquely determined. We can write (6) somewhat differently by
summing over the index 7. This gives

m k m
4 =Zl(zlciiei) X f; =gle X f1
where the _

k
x; = Z Ci3€5

i=1

are arbitrary vectors of the space X (no longer necessarily basis vectors).
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A.44. Let A be an operator mapping a space X, of dimension k, into a
space X, of dimension k,, and let B be an operator mapping a space Y, of
dimension m, into a space Y, of dimension m,. Then by the tensor product
C = A x B of the operators A and B we mean the operator mapping the
space Z, = X, x Y, into the space Z,= X; x Y, in accordance with the
formula

Clei X f}] = Ae; X Be; @)
(the superscript is the index of the space). If

ke me
Aei=Yapel, Bff =3 b,f!,
A=1 u=1
then (7) takes the form
k2 mz2
Cle; x f;] =gl glanbm[eﬁ X f)

Next we find the structure of the matrix C of the operator C with respect
to the bases e} X f} and e? X fZ arranged in X; x Y; in the order

A X hes Xl e Xfhel X e Xfho e Xfhoons
1
€ X o €8 X frps oo €y X Sy,

and similarly in the space X; x Y,. According to Sec. A.13, the matrix C
has the form

apby  apby s a1k2b11 s a11b1m2 a12b1m2 s alkzblm,

anby  anby st a2k2b11 s 41211711,.2 a22b1m2 T azk,bxm2

ak,xbu ak12bll ce ak,k2b11 s akllblmz ak,szm2 ce aklk,blm,

allbm‘1 a12bml1 ce alkzbm,x T allbm‘mz a\zbm,m2 te alk,bm,m,

akllbmll ak‘me‘1 co aklkzbmll e akxlbm‘mz ak‘2bm‘m2 tee ak‘kzbm‘m,
or

Aby | - | 4by,,

Abyy| o 4B,

when written as a block matrix.
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A.d5. Applying Secs. A4l and A.44, we see that the operators of the
algebra &, considered above are the operators in the tensor product of an
my-dimensional space X, and a k,-dimensional space Y, which are tensor
products of an arbitrary operator C € #(X,) and the unit operator E £ F(Y,).
Moreover, the operators of the set %y, are the tensor products of an arbitrary
operator A € %(X,, X,) and a fixed invertible operator A € B(Y,, Y,), while
the operators of the set %, are the tensor products of an arbitrary operator
M e #(X,, X,) and the inverse operator A=,

A.46. The following formula obviously holds for products of tensor
products of operators:

(A x B)(C x D) = (AC) x (BD).
Hence, multiplying the operators Ay, € @y and A,, € #,,, we find that
(A x A)(M x A1) = (AM) x (AAY) = (AM)x Ec %,
as must be the case for a category %

A.47. Next we find the invariant subspaces of the algebra # = {C x E}
of operators acting in the space Z = X x Y. These subspaces are tensor
products of the form X x Y,, where Y, is an arbitrary subspace of Y, since

CxE)YXxYy)=CXxEY,eX XY,
To see that Z has no other invariant subspaces, let

z=3x; Xy
be any vector in Z (it can be assumed that the vectors x; are linearly inde-
pendent), and suppose C carries the vectors x, into given vectors %; € X.
Then
(CxE)Zx; Xp;=3 % Xy,

and hence any subspace invariant under all the operators C x E which contains
the vector > x; X y, also contains every vector > x; X y;. This proves the
italicized assertion.

If we apply every operator A x A of the category 4 to an invariant
subspace X, x Y,4 © X; x Y,, then, since the matrix A is arbitrary, the
resulting image in the space Z, = X, x Y, is the subspace AX, x KYIO =
X, x Yy Hence the operators of the category X~ establish a one-to-one
correspondence between the invariant subspaces of the spaces Z, and Z,, at
the same time establishing a one-to-one correspondence between the ordinary
subspaces of the spaces Y, and Y,.

A .48. Everything said above is valid under the condition %, %,, # {0}
(or equivalently %,,%,, # {0)). f %,:By = B H1; = {0}, the above
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scheme does not work, and the matrices of the category ¢~ do not in general
consist of blocks which are multiples of a fixed matrix A. The situation is
then the same as in Sec. A.32, and we can apply the result proved there, i.e.,
our category £ is contained in some category of the type ¥ (just which
one to be explained below).

A.49. We now turn to the case of a category made up of an arbitrary
number of spaces Z, (x € &)t and simple algebras #,. Two spaces Z, and
Z, will be called cognate if #,,%,, # {0}, so that the matrices of %, are of
the form (5). It is clear that the relation of being cognate is transitive. In
fact, if Z, is cognate to Z, and Z, is cognate to Z;, then Z, is cognate to Z,
since, by the arbitrariness of the matrices A, there are nonzero matrices in
the product #;,%,,. Hence we can partition the whole set of spaces Z, into
nonintersecting classes of cognate spaces. If Z, and Z, belong to distinct
classes, then %#,,%5 = #y B, = {0}.

We can now repeat the scheme of Sec. A.36 with certain modifications.
Suppose our set of spaces Z, is partitioned into various classes Gy, ...,
G,, . .. of cognate spaces, where the spaces belonging to the class G, are of
the form X,; x Y,, and Y, denotes essentially one space in which invertible
operators act. We first consider the spaces Y, by themselves, and construct
for them a category S just as in Sec. A.36 (satisfying the condition
BB, = {0}) by choosing arbitrary subspaces Y,, and then forming their
intersections Y,,,, Y,,..,.... This category consists of the operators A,
mapping Y, into Y, and at the same time carrying the subspaces Y,,, ... <Y,
into the subspaces Y,,,,... < Y,. Then for the spaces Z, we construct
the following category, denoted by #3: If Z, and Z, are cognate, the
operators Ay, € B are those previously constructed, while if Z; =X;x Y,
and Z,, = X, x Y, belong to distinct classes, the operators Ay, are arbitrary
operators mapping Z, into Z; and at the same time carrying every invariant
subspace X, x Y,,, into an invariant subspace X; x Yj,,, .

We now verify that every category £ with simple algebras % is contained
in a category of the type ™. Suppose Z; =X;x Y; and Z, =X, x Y,
belong to distinct classes of cognate spaces. Let Z; be the total image in
the space Z; of the space Z, under the action of all operators in #;,. Then
Z, is obviously an invariant subspace of Z;, and hence is of the form
X; x Y where Y is some subspace of Y;. Similarly, let Z, ., be the total
image in the space Z; of the space Z,, under the action of all operators of the
form AyA,, - - Asn. Then Zy, .. is also an invariant subspace, which is
easily seen to be contained in the intersection of Zy, Z,,, ..., Z,,, by an
argument like that given in Sec. A.37. It follows that our category % is
contained in a category of the type A, as asserted.

t We temporarily denote each space by Z, instead of X,, reserving X, for the first
factor in the tensor product Z, = X, x Y, (cf. Sec. A.45).
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A.5. The Case of Complete Algebras of Diagonal Matrices

Suppose the given algebras Z#, are all complete algebras of diagonal
matrices. Then in each space X, there is a fixed basis in which the matrices
of the operators A, € #, are all diagonal. Relative to these bases, the
operators Ay, € #,, are also specified by certain (rectangular) matrices, so
that our problem can be stated as a problem in matrix theory.

A.51. First consider a category £~ with two spaces X; and X,, and let
A, be the matrix of any operator in #,,. Then, by the definition of a category,
the product

B,y = A,4,,B,, (3)

where 4, and B, are suitable diagonal matrices, is also the matrix of an
operator in %,,. Suppose A, is the (diagonal) matrix whose only nonzero
element, equal to 1, appears in the jth row and jth column, while B, is the
matrix whose only nonzero element, again equal to 1, appears in the kth
row and kth column. Then, by Lemma A.14, all the elements of the matrix
By, vanish with the (possible) exception of the single element appearing in
the jth row and kth column, and this element is just the element a; of the
matrix A,,. Thus the operation (8) replaces every element of the matrix 4,,
by zero, except the element ay, which it leaves unchanged.

This leads to the following conclusion about the structure of the family
ot The family %y consists of all matrices with arbitrary elements at a fixed
set of positions and zeros everywhere else.

A.52. Let S), denote the fixed set of positions in the matrices of the
family #,, at which arbitrary elements are allowed. We now explain the
connection between the sets Sy, and Sy,. Let 4, € #,, be a matrix whose
only nonzero element, equal to 1, appears in the j,th row and k,th column,}
so that (jy, k,) €Sy, and let By, € %, be any matrix with arbitrary
nonzero elements at the positions of S,,. Then the products C, = 4,,B,, and
D, = B 4,, are diagonal matrices, by hypothesis. On the other hand, by
Lemma A.14, the j;th row of C, consists of the elements of the k,th row of
B,, while all the other elements of C; vanish. Since C, must be diagonal, we
see that all the elements of the k,th row of B, vanish with the (possible)
exception of the element in the jjth column. Similarly, the k;th column of
D, consists of the elements of the j;th column of the matrix By while all
other elements vanish, and since D, must be diagonal, all the elements of
the j,th column of By vanish with the (possible) exception of the element in

t For simplicity, if A;, is an operator in #,, and A,, is its matrix, we write 4, € 8,
as well as Ay, € #,., and similarly for %,,, etc.
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the kyth row. Thus, if (ji, ky) € Sya, all the elements of the jith column
and kyth row of an arbitrary matrix of %y, vanish with the (possible) exception
of the element at the intersection of this row and column.

We are now able to determine the structure of the set S, from a knowl-
edge of the set S,;. By suitably interchanging rows and columns of the
matrices of %, (which is equivalent to interchanging elements in the bases
of the spaces X, and X,), we can see to it that the rows and columns appearing
first in the matrices of %, contain no positions in the set S,,, while the rows
and columns with only one position each in S;, come next and the rows and
columns with at least two positions each in S;, come last. Thus a matrix
Ay € %5 has the form

| Y 3 n
11|[0 0 0
0 .
o |-
o ---11 --- -lo - --.
Ay = P N | ©)
gllo |- - 1]lo - .-
0 11
. 1
mll0 0 1

where the positions corresponding to the set S;, are occupied by ones and all
other positions are occupied by zeros.

Next we construct the general matrix By, € #y, with n rows and m
columns:

1 « B8 m
1 0 0
Y
o ---|1 --- -lo --.
By = R T e | (10)
slito ---|- . 1]0 ---
0 .. 0
n |0 0 0
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Since the matrix Alz’ has a one in row « + 1 and column ¥ + 1, the matrix
By can have a one in column @ + 1 and row v + 1 bu, in any event, the
remaining elements of this row and column must vanish. The same is,true
of all the rows from y -+ 1 to 8 and columns from o« + 1 to B. If the matrix
A,, has two ones in column 8 + 1, then all the elements of the corresponding
row of the matrix By, vanish, and the same is true of all columns from § + 1
to n (which contain at least two ones). However, if a column of the matrix
A, contains only a single one, then there are two ones in some suitable row
with index >@, and this causes the column of the matrix B,, with the same
index to vanish. As a result, the whole lower right-hand corner of the matrix
B;, is occupied by zeros. In fact, let (j, k) be any position in this corner,
and consider the corresponding position (k,j) in the matrix A4,,. Then the
kth row or jth column of A4, has at least two ones, since otherwise we would
have put this row or column in an “earlier’” position, This means that the
kth column or jth row of By, consists entirely of zeros, so that in any event
there must be a zero at the position (j, k). The lower left-hand corner of the
matrix By, also consists entirely of zeros, In fact, if a one appeared anywhere
in the lower left-hand corner of By, say at the position (j, k), then, by the
symmetry of the construction, all the elements in the jth column of 4,,
except possibly the element in the kth row (i.e., in the upper right-hand
corner of 4,,) would have to vanish, which is impossible since this column
must have a one in the lower right-hand corner, A similar argument
shows that the upper right-hand corner of B, also consists entirely of
zeros. As for the elements in the upper left-hand corner of B, they can
be arbitrary.

Thus it is clear that our category can be enlarged by including a// elements
of the lower right-hand corner of the matrix (9) in the set S,, (provided S,
does not already contain all these elements) and including a// elements of the
upper left-hand corner of the matrix (10) in the set S,,. The category then
becomes maximal, since it is no longer possible to enlarge S;, without
making S, smaller. In geometric language, the maximal category made up
of two spaces X, and X, is constructed as follows: The space X, is the direct
sum of three subspaces X$, X2, X? and the space X, is the direct sum of three
subspaces X§, X1, X2, where X! and X} have the same dimension, The effect
of an operator A, is such that X9 is mapped into {0}, X} is mapped into X} by
a diagonal matrix and Xt js mapped into X in an arbitrary way, while the
effect of an operator By, is such that X3 is mapped into X¢ in an arbitrary way,
X} /s mapped into X! by a diagonal matrix and X% is mapped into {0}. An
arbitrary (nonmaximal) category differs from the maximal category in that
the operators mapping X? into X2 are not arbitrary, but rather correspond
to matrices with zeros in certain fixed positions, while the same is true of the
operators mapping X$ into X¢ (there is no connection whatsoever between
the positions occupied by these zeros).
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A.53. Next we consider a category £ involving arbitrarily many spaces
X, (« € ). First of all, it is clear that every subcategory of the category ¢
made up of a pair of spaces X,, X, and corresponding families %y,, %,q is
constructed in the way just described, i.e., %, is the family of all matrices
with arbitrary elements at some prescribed set of positions Sg,, while %, is
the family of all matrices with arbitrary elements at some other prescribed
set of positions S,q. In this regard, we introduce the following notation: If
S is any set of positions in an m X n matrix, then &#,,,.(S) is the set of all
m X n matrices with arbitrary elements at the positions S and zeros every-
where else.
Now let S; be a set of positions in an m X n matrix and S; a set of posi-
tions in an 7 X p matrix. Suppose S is the product S,S,, defined as the set
of all positions in an m X p matrix at which one can get nonzero elements in
the product #,,,(S5,)%,,(Sz). In other words, a position (i, k) belongs to
the set S,S, if and only if there exists an index j such that (i, j) belongs to S;
and (j, k) belongs to S,. Let Sy, ..., S,, be a collection of such sets of
positions for an m X n matrix, and let S,,..., Sy, be an analogous
collection for an n X p matrix. Then the general formula
4 q 2 q
Us.U Soy = uu 81:82; (11
i=1 i=1 i=1j=1

is an easy consequence of the definition of a product of S-sets.

In terms of products of S-sets, we can write the conditions for our
category in the form

SugSan © Dy SupSay  Suys (12)

where D is the set of all positions along the principal diagonal of the
appropriate square matrix.

A.54. We now construct a family of concrete categories of a certain type.
To specify a category #" means to specify all the families %5, or equivalently
in the present case, to specify all the sets S,5. Choosing S, arbitrarily, we
then choose Sy, in such a way that §5,5,, < D, §,,S,;; < D (we have already
described how this is done in Sec. A.52). Suppose S;, has been constructed
for all j and k less than n, in such a way that the conditions (12) for a category
are satisfied. Then S;, and S,; (j < n) are constructed as follows: S, is
chosen arbitrarily, and S, is chosen to satisfy the conditions S,,S,, < D,
S,251, < D. Suppose S;, and S,; are chosen for all j < k in such a way
that (12) holds. The required sets S, and S, must satisfy the following
conditions implied by (12):

a) Snkskn < Da Sknsnk < D’
b) SiSin S Sius SkaSus © Skis SinSur S Sins SurSui S Snis
€) Sin = SkiSins Snx 2 SnsSie
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The conditions a) and b) represent “‘upper bounds” and condition c)
“lower bounds” for the sets S, and S,,. We now show that these conditions
are compatible. Suppose, for example, that

n—1 n=1

Sgn = U SiiSins Sor = U Snjs:ik' (13)
i=1 j=1

Then, by formula (11) and the induction hypothesis,

n-1 n—1 n—1 n—1

nksl.n - U SnJSJk U Sks in — U U SnJS:ikSIu in

i=1 f=1

n~1 n-1

< Usn:isiisin < Usm'sin < Da

n—1 n~1
S;kskn - SJk U Skzsm - U SJkSkzsm < U Sizsm < Sjn
i=1 i=1
This proves the first of the relations a) and the first of the relations b), and
it is clear that the remaining relations can be proved by similar arguments.
Thus the induction is justified and our construction is correct.

It is possible, of course, to construct a category by using arbitrary S,
and S, satisfying the conditions a)-c), and not just sets of the special type
(13) used to prove the compatibility of these conditions. In this way we
obtain a large family of concrete categories, in each of which only the sets
S, are arbitrary, while the remaining sets S,4 satisfy the extra conditions

a)-c).

A.55. We now see that every category A such that BBy, = #(D)
belongs to the family just constructed. In fact, the sets S, and S,,, are defined
in A" for every n, while the remaining sets S,, and §,, must satisfy the
conditions a)-c). But then /" is a category of the family described in Sec.
A.54.

It would be interesting to describe the form of the maximal categories
of this family.

A.6. Categories and Direct Sums

A.61. Given a category J with basic spaces X2, algebras %7 and
families of operators #%, where p=1,... k;andg=1,..., k,, we now
show how to construct a new category whose basic spaces are direct sums
of the spaces X? and whose basic algebras are the corresponding direct sums
of the algebras #2.
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Thus let X; be the direct sum of the spaces X1, ..., X%, and let %, be
the direct sum of the corresponding algebras %, ..., #% (i.e., in the space
X? an operator A € &, acts like any operator in the algebra %%). To specify
an operator A;; € #,,, we use the block matrix

1 12 . ks
A 3t A it A:ii'
21 22 2%
A p A s NN Aj;fz
Ay = : (14)
1 (3.1 I Jeskes
AP | Az A

where the block 497 corresponds to an arbitrary operator of J#" mapping the
space X? into the space X! (p=1,...,k;;j=1,...,k). To show that
this gives a category, we note that if

11 12 R 1k
Bil Bil Bil
BY | B - |BIF
Bil = ]
eyl i 2 e kik
Bii" | Bii Bii™

then

ABL + ABY + -+ ANBY
A;By = N

where each sum of products again belongs to the appropriate family of
operators, by the definition of the category 2#". Thus our rule leads to a new

category X, which we call an extension of the category A .

A.62. It turns out that the converse is also true, i.e., if the basic spaces
X, figuring in a category are direct sums of certain spaces X? (p =1, ..., k)
and if the corresponding algebras %, are direct sums of algebras #?
(p=1,...,k;) of operators acting in X?, then the whole category is an
extension # in the above sense of a category £, constructed from the
spaces X? and algebras 7. In fact, let /"' be a category of the indicated
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type. Then in an appropriate basis chosen in the subspaces X?, every matrix
A, of an operator of the algebra %, has the quasi-diagonal form

E

Al

ki l®
A

where A? is a square matrix of order r? (p = 1,..., k;). Every matrix A4,
of an operator of the algebra #,, is a block matrix of the form (14), where
A% is a rectangular matrix with ¢ rows and r? columns. With each block
A%? we can associate in a natural way an operator A?? mapping the space X?
into the space X% Using all such operators, we construct a new category
A% with basic spaces X?, algebras %7 and families #?% of operators A%
specified by the matrices 43?. We now show that this collection of objects
does in fact define a category.

Let A be an operator mapping X? into X, and let A}? be an operator
mapping X? into X]. Then the product Aj? = A7A%? belongs to the family
7?7, In fact, the category "' contains the matrix with its gpth block equal
to A7} and all other blocks equal to zero, as well as the matrix with its rgth
block equal to 4}7 and all other blocks equal to zero. The product of these
two matrices, which belongs to the category 7, is a matrix with its lith
block equal to 477and all other blocks equal to zero. Therefore A}? € 477,
as asserted.

Thus all the conditions for a category are satisfied. It is true that the
operators mapping the space X? into the spaces X with the same subscript
have not yet been defined. However, all such operators can be set equal to
zero without destroying the requirements for a category.

A.63. Since every semisimple algebra of operators acting in a space X;
allows us to decompose the space X; into a direct sum of spaces X! in which
the algebra now acts as a simple algebra, we see that the structure of a
general category with semisimple algebras reduces to that of a category with
simple algebras (this problem was considered in Sec. A.4). The matrix of
every operator A; € 4,; of the category is of the form (14) in an appropriate
basis, where each block A2? is the matrix of an operator in the family #7?
of some category ¢ 2" with basic spaces X?, X? and simple algebras %}, 4.
Some blocks of the matrix 4,; may be identically zero for all the 4,;. If we
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denote the set of all vanishing blocks by S;,, the question arises of how the
sets S;; are related for various indices i and j. A similar problem was con-
sidered in Sec. A.5 for the case of one-dimensional blocks. The method used
there is also applicable to the present case, and leads to the following result:
If the category determined by the intersection of the jth block row and ith block
column of the matrix A,; € B, is of the type A"y or Ay (involving invertible
matrices),} then all the blocks in the ith block row and jth block column of the
matrix Ay determine zero categories, with the (possible) exception of the
block at the intersection of this row and column. If the category in question is of
the type Ay, then matrices of a category of the type K, appear in the indicated
blocks and have zero products with the given matrix.

We can now determine the structure of the general category, as in Sec. A.5.

Remark. A. Y. Khelemski (loc. cit) has found the categories corre-
sponding to nilpotent algebras Z,,.

t See Sec. A.31 and the footnote on p. 353.
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Chapter |

1. Ans.a) +;b) +.

2. Ans. ay1590030,4, 04101002334, 31040023044

3. Ans. (—1)rt—172

4. Hint. Consider the determinant all of whose elements equal 1.

S. Ans. A = (mq — np)(ad — bc).

6. Hint. Multiply the first column by 10, the second by 103, the third by 102,

o3

t
7. Ans. A, = —29,400,000, A, = 394.

e fourth by 10, and add them to the last column. Then use Corollary 1.45.

8. Hint. P(x) is obviously a polynomial of degree 4. We first find its leading
coefficient, and then determine its roots by making rows of the determinant
coincide.

Ans. P(x) = —3(x2 — (% — 4).

9. Hint. Add all the columns to the first.

Ans. A =[x + (n — Dal(x —a)" .

10. Hint. The determinant on the left is a polynomial of degree n in x, with
roots x,, . . ., x,_,, and hence can be represented in the form

(A + Bx) TT G — %0)-

k=1

361
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Another representation of the same determinant in the form of a polynomial of
degree 7 in x,, can be obtained by expanding it with respect to its last column.
Equating the coefficients of x” and those of x?~2, find 4 and B.

11. Ans. ¢; = 0,6, =2,¢5 = —2,¢, =0, ¢5 = 3.
18200 11820 i i ; e i< il
12. Ans. IMJiize ot gl -t ik — 0, where i) < iy < <ipand ij <i; <

- < iy are fixed, and at least one of the i, differs from the corresponding i;
(Cauchy).

13. Hint. It is sufficient for the corresponding fourth-order determinant to be
nonzero.

14. Hint. Use the results of Secs. 1.96-1.97.

Chapter 2

1. Ans. No, since we cannot multiply by —1 and stay within the set.

2. Ans. No, since we cannot add two vectors which are symmetric with respect
to the given line and still stay within the set.

3. Ans. Yes. In particular, the number 1 € P serves as the *“‘zero vector” of the
space P.

4. Hint. See Sec. 1.96.
S. Hint. Assuming linear dependence of the form
ot 4 ot 4t ot =0,

divide by " and differentiate. Then use induction in k.

6. Hint. Show that the zero vector also has a unique expansion with respect to
the system e, e,,...,e, From this deduce the linear independence of the
vectors of the system.

7. Ans. Yes, consisting of a single vector, i.e., any element x € P different
from 1.

8. Ans. 1.

9. Ans. The intersection is the line of intersection (in the usual sense) of the two
planes, while the sum is the whole space.

10. Hint. See Sec. 2.34.
11. Ans. No. It can be replaced by any other vector of the hyperplane.

12. Ans. With the “point” interpretation, the property means that every
hyperplane contains the line passing through any two of its points.

13. Ans. In general p + g + 1, if this number does not exceed the dimension
of the whole space.
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14. Ans. p 4 q + r 4 2 if this number does not exceed the dimension of the
whole space.

15. Ans. With each positive number associate its logarithm.

Chapter 3

1. Hint. In a matrix of rank 1 the columns are proportjonal.

2. Hint. We have to write the conditions for a vector y to belong to the subspace
L in such a way that they involve only minors of 4 of order k. But y € L if and
only if the matrix B obtained by adding to A the column consisting of the
components of the vector y has rank k, or equivalently, if and only if every
minor of B of order k + 1 vanishes. Expanding every minor of B of order
k + 1 with respect to elements of the last column, we obtain a system of equa-
tions in the components of y, with coefficients which are minors of 4 of order k.

3. Hint. See Secs. 1.51-1.52.

4. Ans. x = (¢, Ca, €3, ¢), Wheree, = —16 + ¢3 + ¢4 + 5¢5,¢0 =23 — 2¢5 —
2¢c4 — 6c3.
5. Ans. If . — D(» + 2) # 0, then

A+l 1 1P

itz Y Taixzr Ty

If » = 1, the system has solutions depending on two parameters. If x = —2,
the system is incompatible.

6. Ans. The matrices
b

D
Y

o
S

D
Y

and (|a, by ¢,

D
05

o
Y

must have the same rank.

7. Ans. The matrices

a, b a, by |l

a, b, a, by, ¢
and

a, b, a, b, ¢,

must have the same rank.

8. Ans.-x = (1, —2,1,0,0), x® = (1, —2,0,1,0), x® = (5, ~6,0,0, 1).
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9, Ans.
—16 1 1 5
23 -2 -2 —6
X = Off + oy Tl 4 oy Ofl + o ofl,
0 0 1 0
0 0 0 1

for example. Here the first column consists of the components of a vector x,
which is a particular solution of the nonhomogeneous system, while the other
columns consist of the components of the vectors y™v, y®, ® forming a normal
fundamental system of solutions of the corresponding homogeneous system.

10. Ans. The rank of 4, is 3, and there is a basis minor in the upper left-hand
corner (for example). The rank of 4, is 5, and the basis minor is the same as the
determinant of the matrix.

11. Hint. Move the minor M into the upper left-hand corner and then, by using
the procedure of Sec. 3.62, show that all the columns of A4 starting with the
(r + Dst can be made into zero columns.

12. Hint. If P +# 0, look for A in the form
P 0 x
01 y

13. Hint. The rank of the matrix [la;;| is either equal to n or less than n.
14. Hint. Use the Kronecker-Capelli theorem.
15. Hint. Use the result of Prob. 14.

Chapter 4
1. Ans. Also n.
2. Ans. ¢) and g).

3. Ans. Yes.
4, Ans.
-1 -1 2 2 0 -2
a) Ay = 1 -3 3; b) Ay, =1 -1 1
-1 -5 5 2 1 0

5. Ans. ABAB # A’B2
6. Ans. AB — BA =E.

7. Hint. (A + B)® = A? + AB + BA + B?,
(A + B)® = A3 + A?B | ABA + AB? + BA? + BAB + B’A + B,
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8. Hint. Use induction.

9. Ans. The dimension of the space is nm. For basis operators we can take those
corresponding to the matrices Ay; (i =1,...,n;j =1,..., m), where 4,; is
any matrix whose elements are all zero except for the element in the ith row and
Jth column,

10. Ans.
flo oo
AB =10 0 O
0 00
11, Ans.
1 n cosne —sinng
An = , Br = .
01 sin no cos ne
a
12. Ans. A = , where bc = —a°.
¢ —a
13, Ans.
-9 -2 -10 0 0 O
ayll 6 14 8f; b o oo
-7 5 -5 0 0 0

15. Hint, Use Prob. 14,

16. Hint, The three equations for the unknown elements of the matrices 4 and
B lead to equations for three minors of an unknown 2 x 3 matrix, Now see
Chap, 3, Prob, 12,

17. Hint, See Sec, 4,54,

18. Hint, Express the elements of the minor M in terms of the elements
appearing in the first r rows, and then use Theorem 4,75,

19. Hint, Use the solution to Prob, 18,
20. Hint, See Sec. 4,54,

21. Ans,
1 =2 7
5 =2
a) A1 = ; b) B1 =0 1 =2 c) Cl=C.
-1 2
0 0 1

23. Ans, If A is the zero matrix, then X is arbitrary, If det 4 s 0, then X is the
zero matrix, If det 4 = 0 and A is not the zero matrix, then its rows are
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proportional, Let «/B be the ratio of the corresponding elements of the first
and second rows of the matrix 4, Then

—Bg og

X =

for any p and ¢.
24. Hint, See Secs, 1,51-1,52,
25. Ans. No,
26. Hint, Consider the operator A, such that
Aslag + ayt + 4+ a, "]l = Jag + a; + apt + -0 + @™l

27. Hint, The operator A carries linearly independent vectors into vectors that
are again linearly independent,

28. Hint, Apply the equality AB = BA to an eigenvector of the operator A.
31. Hint, Use the result of Prob, 30,

32. Hint, Suitably choosing an operator B and using Prob. 28, reduce the
solution to Prob. 31,

34. Hint, Use the factorization of the operator A? — y2E.

35, Ans, )2 =2, /,=(1,0,0); Y =1,f,=(1,0,1); 3 =—1,f,=(0, 1, - 1);
)y =—1Lf=0,0,0; X=2=Lf=(001f=(0O1 -1
N =2f =(,0,0;d)2 =1,f =(1,0,0, —1)33 =0, f = (0,1,0,0).

36. Hint, The relation T(A¥) = N(A™) is necessary and sufficient for the
equality A¥+™ = 0 to hold,

37. Hint, Letf,, ..., f, be a basis for the range of the operator A, so that

T
Ax =D a,(x)f;
i=1
for every x € K,,, Now let
Ax =a0f; (=1,...,n

Chapter 5

1. Hint, The first vector of the new basis is x,

2. Hint, Choose a new basis f1, fs, ..., f, whose last n — k vectors form a
basis for the space K’. Write the condition x €K’ in the form of a system of
equations involving the components of x in the new basis, Use the transfor-
mation formulas to construct the corresponding system of equations involving
the components of x in the original basis,
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3. Hint, Use Prob, 2 and the definition of a hyperplane.
4. Ans, The matrix of the desired transformation is C = B4,
S. Hint, Let ey, e, . . . , e, be an arbitrary basis in K,,, and let
n
L(x) = EII;EJ:;
F=1

where &), &, ..., &, are the components of the vector x, Begin the formulas
for the coordinate transformation with the equation

n
= 2 L&
k=1
6. Hint, Use Sec, 4,83 and the invariance of the characteristic polynomial
(Sec, 5.53),

7. Hint, Choose a basis whose first m vectors lie in the subspace R™), Show
that for this basis the polynomial det |4y — AE| has the factor (A — )™,
Now use the invariance of the characteristic polynomial (Sec, 5.53),

Chapter 6

1. Ans. Inthe basis e,, e, _5,..., €},
2. Hint, See Sec, 6,44,
3. Ans,

=}
|
-

© B o ©
=}

2
0 0 0 0

4. Ans, No. Ey(A) = (» — 2)(» — 1), Ey(B) = (» — )2 — 52 — 2),

5. Ans, Eu_y(4) = E,_y(Ag) — (1 — O™, E, 5(4;) = E,_y(4) = 1;

—
N O O O ©

E, 1(43) = (n — N, E,_o(43) = 1;
E, 1(A4y) = H O~ k), E, o(Ag) = L
k=1

6. Hint, E,_;(A) = (¢ — W)", E,_o(A) = 1.

7. Ans, A diagonal matrix with some of the roots of the polynomial P(2) along
its principal diagonal,
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8. Ans, Some of the roots of the polynomial P(2) lie along the principal diagonals
of the Jordan blocks, and the sizes of the blocks do not exceed the multiplicities
of the corresponding roots,

9. Hint, The vectors x, Ax and Ax? are linearly dependent.
10. Ans, Polynomials in 4,,(a).

11. Ans, Matrices of the form

by by by v by v by
0 b by v bpy v buy
By = (n > m)
0o 0 0 . b b,,_,,,+1
or
by by -+ b,
0 b by
Bym = 0 0 o b (n < m),
0 0 0
o 0 -+ 0

12. Ans. Matrices of the form

B, Bum, ... B

My
B’"k’"l B’"/.»mz T B’"k’"l:
with the blocks B, ., given in the answer to Prob, 11,

13. Ans, Matrices of the form

Bpm, O o 0
0 Bpp, v O
0 0 v B,

14. Ans, To every group of Jordan blocks with the same root of the characteristic
polynomial, there corresponds a block of the kind given in the answer to Prob,
12. The remaining elements are all zero,

15. Ans, If the multiplicity of each root of the characteristic polynomial equals
the size of the corresponding Jordan block, or if the characteristic polynomial
coincides with the minimal annihilating polynomial, or if all the elementary
divisors except the one with highest index equal 1,
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Chapter 7

1. Ans, A tensor of order two, with two covariant indices,

2. Ans, For example,
g — 0 — i,
where
=38 4+ 38 + & - mp =38 — 5, N = &
3. Hint, See Sec, 7.93,
4. Hint, See Secs, 4,54 and 7.15,
5. Ans, For example,
A(x, y) = 0171 + 0,7 + 0373,
where o; and +; ({ = 1, 2, 3) are the new components of the vectors x and y.
The transformation formulas to the new basis are
oy =& + &, oy = & + 2&;, o3 = 5

6. Hint. First renumber the variables in such a way that the matrix of the
bilinear form A(x, y) is transformed into a form to which Jacobi’s method is
applicable,

7. Hint, | —a.|l must be the matrix of a positive definite form,
Ans,
a1 a5
ay, <0, >0,..., (—1)" det |la;l > O,
g Ay

8. Hint, See the remark to Sec, 7,96.
9. Hint, Consider the form on the basis vectors,
10. Hint, The last row of the determinant consists of the elements
aM = (—=1)*A(ey, . .., €01, €pi1s+ + » > €n) *k=1,2,,..,n),

11. Hint. Use the equation A(e;, e,) = 1 to find the first pair of basis vectors,
Then construct the subspace L defined by the equations

Ae, x) =0, A(e,x) =0,

If the form A(x, y) does not vanish identically in this subspace, find vectors
ey, ¢, € L such that A(e;, ¢,) = 1, and s0 on,

12. Hint, Consider the form

M=

A(x,x) + ¢ D &2 (g > 0),
i

P

1
and apply the criterion of Sec, 7.96,
13. Hint, Let
X = (E, LBy (=1,
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be a basis of the subspace K, Then K” consists of the vectors y = (13, ... , 1,)
satisfying the system

A,y - (imé;“) m=0 (=1...,n

k=1 \g=1

The matrix of the coefficients of the system is the product of the nonsingular
matrix [la;z| of the form A(x, y) and the matrix |§{"|| of rank r, Now use
Corollary 4.67,

14. Ans, A’ = A,
15. Hint, If y = (g, ..., %) is a solution of the system (44), then
(b,)) = (Ax,y) = (x,A'y) =0,

Conversely, the system (44) is the condition for the vectors y and a; =
@jy, - » » » asy) 10 be conjugate, If (b, y) = 0 for all such y, then x lies in the
linear manifold spanned by the vectors a, ... , a,,

16. Hint, See Chap, 4, Prob, 37,
17. Hint, See Chap, 3, Prob. 1,

18. Hint, First consider the case of nonnegative forms of rank 1, using Prob.
17 and then Prob, 16,

Chapter 8

1. Ans. No, since axiom b) fails, and so does axiom c) (for » = —1).
2. Ans, No, since axiom b) fails.

3. Ans. Yes, The new definition of the scalar product merely corresponds to a
change of units along the coordinate axes.

4. Hint, Let e,, e,, e; denote the vectors directed along three edges of the
tetrahedron drawn from a common vertex, and express the other edges of the
tetrahedron as vectors,

Ans, 90°.

5. Ans. 90°, 60°, 30°.
6. Ans,

[< ,\/fixz(t)dt + A/J.Zy2(t) dt,
L > ’A/J‘sz(t)dt - J_fz)ﬁ(;)d; ’

JI7 ey + yop e

1
7. Ans, cos ¢ = —=

8. Ans,a) g = (3,1, —1, =2), h=(2,1, —-1,4); b) g =(1,7,3,3), h =
(—4, —2,6,0).
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9. Hint, Use the definition of angle (Sec. 8.33) and the orthogonality of the
vector 4 1o all vectors of the subspace R’,
10. Hint, Take the scalar product of equation (18), p, 223 with the vector g,.
11. Hint, See Sec, 8,52,
12. Ans, yy =1,y =y3 =0, y, = ~2j, y5 = 0, yg = 5k.
13. Ans, (1,2, 1,3), (10, —1,1, —3), (19, —87, —61, 72).

14. Hint, Assuming that the dimension of R” is greater than the dimension of
R’, consider the vector ¢” € R” which is orthogonal to the projection of R’ onto
R”. Then use Prob, 10,

2!
T 2n(nh)E

16. Ans, P,(—1) = (—1)".

15. Ans, A,

17. Hint. Express the coefficients as scalar products,
18. Hint, Use the results of Probs, 15 and 16.
19. Hint, Expand Q(¢) in Legendre polynomials.

Ans, Q(t) = Al P,(1).

20. AP ()E = .
ans, PO =

21. Ans. k(A) = |det 4].
22. Hint, See Sec. 4.75.
23. Hint. This is a question of comparing the altitudes of two hyperparallel-
epipeds,
24. Hint. The inequalities

Vixy, xg5 . 00y Xl Vixy, Xz, o .oy Xg]

k=1,2,...,m
VIX1s ooy Xmts Xaepts - v - 5 Xmd VX1, X0, 000y X3y] (

are easily obtained from the inequality (37), Multiply them all together for
k =1,2,..., m, make appropriate cancellations, and then take the (m — 1)th
root. The geometric meaning of the inequality is the following: The volume of an
m-dimensional hyperparallelepiped does not exceed the product of the (m — 1)th
roots of the volumes of its (m — 1)-dimensional ‘“faces.”

25. Hint. Write the inequality (38) for x,, x,,, ..., X,, and then multiply
these inequalities together for all permissible values of sy, sp, . . . , 5,

26. Hint, We must construct a hyperparallelepiped in a 2™-dimensional space
such that the projections of its edges onto each axis have absolute values no
greater than M and such that its volume is exactly M"#"/% For M = 1, the
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matrix 4,, of the components of the 2™-dimensional vectors determining this
hyperparallelepiped are given by the following recurrence formula:

Am~1 Am-—l

Am~1 “Am—l

1 1

A, = s A, =

Comment. For n # 2™ the estimate can be improved,

27. Hint. Givenanysubspace G < R, let G denote the orthogonal complement
of G, For every x € N(A) and every z€ R,

(A'z,x) = (2,Ax) =0,

and hence A’zeN1l(A), ie, T(A") = Ni(A), TL(A) = N(A). For every
x€ TL(A) and every y €R,

(A'x,y) = (x,Ay) =0,

and hence A’x =0, i.e.,, x € N(A"), so that TL(A) = N(A), TL(A") < N(A).
It follows that N(A) = TL(A"), NL(A) = T(A"). The other assertion is proved
similarly,

28. Hint, See Sec. 4.77.
29. Hint. See Sec. 4.54.

30. Hint. The angles of a triangle are uniquely determined by its sides. Alterna-
tively, the symmetric bilinear form (Qx, Qy) is uniquely determined by the
quadratic form (Qx, Qx).

31. Hint. A given isogonal operator A transforms the orthonormal basis
ey, ,...,e, into an orthogonal basis f] = a1fy, f, = o fe, .., [, = tnfn,
where f}, fo, . . . , f,, are unit vectors. Let Q be the isometric operator carrying
the vectors fy, f5, ..., f, Into ey, e,, ..., e,. Then the matrix of the isogonal
operator QA is diagonal. Show that the condition «; # «; allows one to con-
struct a pair of orthogonal vectors which are carried into nonorthogonal vectors
by the operator QA.

32. Hint. It is sufficient to show that Q is an isogonal operator (see Prob, 31).
Assuming that there is a right angle which is not transformed into a right angle,
construct a parallelogram whose area changes as a result of applying the
operator Q.

33. Hint. Generalize the construction of Prob. 32.

34. Hint. Applying the orthogonalization process to the given systems, obtain

orthonormal systems e,, e,, ., ., and f;, f, . . . . Using Sec. 8,53, show that the
formulas expressing the vectors x;, x,, . . . , Xz in termsof e,, e,, , . , are the same
as those expressing the vectors yy, ys, ...,y in terms of fi,f5,.... Then

define Q as the operator which maps the system e, e, ., . into the system

frfo -
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35, Hint.A ansider.the finite syst.en.m e, e, e, e5 ... e, e and f1.f7, 1
f% -« sf1.fr Obtained in determining the angles between the subspaces R’,
R” and the subspaces S’, $”. By construction,

(e =(fifD)=cose; (=1,2,...,k),
e =(fi,fp=0, €,e) =(fifp =0 (OB

Show further that (e}, €7) = (f},f7) = 0 (using Prob. 9). Then use the result
of Prob. 34.

36. Hint. Use Prob. 11.

37. Hint. In the subspaces L, and Lo, let e;, e;,...,e, and f,fo, ..., f be
the bases obtained in constructing the angles «;, o, ..., a, In the space R
construct a basis e;, es, ..., €y, €y11,. .., €, which begins with the vectors
obtained by orthogonalizing the vectors ey, e,, . .. , €y, f1, f3, - + -  fme Expand
the vectors x;, X,, . . . , Xm, Y1, Yas - - - » Ym With respect to this basis. Show that
the matrices of these expansions each have only one minor of order m, if we
disregard minors which are known to vanish. Then use the expression for the
volume of a hyperparallelepiped in terms of the minors of the corresponding
matrix.

38. Hint. See Chap. 3, Prob. 2 and Chap. 4, Prob. 17.

39. Hint. Verify the assertion in the special basis whose first k vectors belong
to the subspace L(x;, x;, . .. , x3). To go over to the general case, use Chap. 4,
Prob. 17, showing that det & = 1.

40. Hint. First consider the case k = 2,

41. Hint. Choose a basis in the space R like that chosen in Prob. 37, and verify
that the formula is valid in this basis. Then go over to the general case in the
same way as in Prob. 39.

42. Hint. See Sec. 4.54.

43. Hint. Consider the orthogonal complement Z of the invariant (with respect
to A) subspace H of all vectors x such that P(A)x = 0. The subspace Z is also
invariant with respect to the operator A, and hence with respect to [P(A)J*1.
But if ze Z, then [P(A)]*1ze€ H, so that [P(A)]*1z = 0. From this, deduce
that [P(£)]*! is an annihilating polynomial of the operator A.

Chapter 9

1. Hint. Use Sec. 9.45.

2. Hint. The operator B has a basis consisting of eigenvectors ey, . . . , e, with
positive eigenvalues u,, ... , u,. Hence B%; = ul,, and a necessary condition
for B® = A is that the e; be eigenvectors of the operator A and that the numbers
12 coincide with the %;. But this is also sufficient for B* = A.
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3. Hint. First transform the basis in such a way as to diagonalize the matrix
of the given operator.
Ans.

320
Ja=|2 4 2
025

4. Hint. The operator A’A is symmetric, and the expression (A'Ax,x) =
(Ax, Ax) is nonnegative for arbitrary x € R,,. If A is nonsingular, this expression
is positive for arbitrary x €R,,.

S. Hint. Q' = Q1

6. Hint. The operator A’A is symmetric and positive (Prob. 4), and hence we
can find a symmetric positive operator S such that $2 = AA’. Then construct
an operator Q such that Q = S7*A and show that Q is isometric.

7. Hint. Use Probs. 2 and 5.

8. Hint. Let R’ < R,, be the subspace spanned by the eigenvectors of the
operator A’A with nonzero eigenvalues, and let R” be the orthogonal complement
of R’. On R’ let V equal the isometric component of A (so that \/ﬂ Vx =AXx),
and on R” let Vx = 0.

9. Hint. Use Chap. 4, Probs. 28-29.

10. Hint. Apply the orthogonalization process to the vectors of the Jordan
basis of A (Sec. 6.37).

Chapter 10
. . . 2 2 1
1. Ans. a) 4")1+ Na _27)3; 7)1=§E.1_§E;2+§E,3,
2 1 2
Wz:§&1+‘3'&2_'3'5~2,
1 2 2
W3=§&1+§&2+§&3;
. . g 1 2 2
b) 1093 + %2 + 43; 1)1=~3-E1+'3'E2—'3'E3,
2 £ 1 £
ny = —= & ——= &,
2 \/5 1 \/5 2

_r L A
1)3_3\/'5‘&14"3\/'5‘&2"!"—3—&3,
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2 2 2 2 L, 1,1 1
<) ")1“"12‘*‘37)3‘*‘57)4; n1:§€1+§€2+§&3+§&4,
11 11
ﬁz=§E1+§€z“§is“§i4,
U T T
W3:§€1“§&2+§&3“§€4,
1 1 1 1
=505k o3kt
2 2
d) o} + 7 + % — 3% m=-\/741+-\/yiz,
V2 2
IR RS
1, 1. 1 .
’}33591'5&2‘*‘5&3“254,
1 1 1 1
=583 -5&+58%

2. Ans. A maximum for x = (%1, 0, 0) where A(x, x) = 1. A minimum for
x = (0,0, £1) where A(x,x) =3. A minimax for x = (0, +1,0) where
A(x, x) =}, i.e., the function A(x, x) increases if we go along the unit sphere
in one direction from the point x and decreases if we go in the other direction.

3. Hint. Namely, on the subspace spanned by the corresponding canonical
basis vectors.

4. Hint. The coefficient %, equals the smallest of the maxima of the form
A(x, x) on a system of subspaces, and the coefficient y; equals the smallest of
the maxima of the form B(x, x) on the same system of subspaces.

5. Ans. y/x = 13},
6. Ans. A(x,%) = %} + nj +33, B(x, x) = v} + 20 + 3%, & =y — np + 27,
Ey = Mg — M, &3 = s
7. Hint. The problem reduces to the uniqueness of the canonical basis of a
' symmetric operator with distinct eigenvalues.
8. Hint. Generalize Sec. 7.44.
9. Ans. a) A hyperboloid of one sheet with its axis along the y-axis; b) A
hyperboloid of one sheet with its axis along the x-axis; ¢) A circular paraboloid
with its axis along the x-axis; d) A circular paraboloid with its axis along the
y-axis, displaced one unit along this axis; €) A hyperbolic paraboloid.
10. Ans. @) x2 + 22 + 322 =6; 3(x — 1) = —x; + 2y + 2z,
3y =2x, —y + 22y,
3+ 1) =2x 4 2y, — 245



376 HINTS AND ANSWERS

b) x2+ 22 =322 =6;  3(x + 1) = —x; + 2p + 22,
3 + )= 2x; — y, + 22,
32 =2x, 4+ 2y — 243
9 yi =2x; 3 — m) = 2%, + 2y + 21,
3(y + 2m)
3z 4+ 2m) = —x; + 2y — 22,

2x, — Y1 — 2z,,

(m arbitrary).

11. Hint. The semiaxes of the ellipsoid are determined from the canonical
coefficients of the corresponding quadratic form. Use the results of Sec. 10.25.

Chapter |1

1. Hint. Let K’ be the intersection of the null spaces of all operators belonging
to a left ideal J = B(K,,), and let r be the dimension of K’. Choose a basis in K,,
whose first r basis vectors lie in. K’. Then the first r columns of the matrix of every
operator A € J consists entirely of zeros. Let m be the dimension of J, and let
A,,...,A, be linearly independent operators in J. Consider the matrix with
n — r columns and mn rows obtained by writing all the matrices 4,, ..., A, o0n
top of each other and omitting the first r (zero) columns. The rank of this matrix
is n — r, and hence it has n — r basis rows. The linear combinations of these
rows give all possible rows consisting of n — r elements. Now use Sec. 4.44.

2. Hint. Introducing a nonsingular bilinear form (x, y), consider the set J* of
all operators A* conjugate to the operators A € J. This set is a left ideal. Now
use Prob. 1.

3. Ans. A maximal left ideal of the algebra B(K,) is the set of all operators
carrying a fixed vector of the space K, into zero. A minimal left ideal is the set
of all operators carrying a fixed (n — 1)-dimensional subspace of K,, into zero.
A maximal right ideal is the set of all operators carrying the whole space K,
into a fixed (n — 1)-dimensional subspace. A minimal right ideal is the set of all
operators carrying the whole space K, into a fixed straight line.

4. Hint. Let

7 n 7
(x,y) = z En; (x = z Ee;,y = z ")iei)
=1 i=1 i=1
in the basis e;, . . . , e, in which the matrix of the operator A € B takes the form
indicated in Sec. 11.85.

S. Hint. If a subspace C' = C, is invariant (with respect to the algebra B), then
s0 is its orthogonal complement. Expand C, as an orthogonal direct sum of
irreducible invariant subspaces. Every operator A # 0 (of the algebra B) acts
as a nonzero operator in at least one of these subspaces.
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6. Hint. Deduce from the representation of Sec. 11.85 that the commutator of
a semisimple but nonsimple matrix algebra B intersects B in matrices other than
multiples of the matrix corresponding to the identity operator.

7. Hint. Write the desired matrices as block matrices consisting of m? blocks.
Then write the commutativity condition and use Schur’s lemma.

8. Ans. For the algebra B of all diagonal matrices

2 0 - 0|
0 2 -+ 0
0 0 - 2,

where %y, %, ..., h, are arbitrary complex numbers. Every matrix algebra
B = B reduces to this form in some basis.

9. Ans. Let B be the algebra of all operators under which a given system of
subspaces, whose direct sum is the whole space C,, remain characteristic
subspaces. Then B < B Every algebra with B < B reduces to this form.

10. Ans. The space C, is d direct sum of subspaces C¥,...,C"™, and the
algebra B consists of all operators invariant in each C'9 (j = 1,..., k). The
commutator B consists of all operators which are multiples of the identity
operator in each C) (j = 1,...,k).

11. Hint. If B is a direct sum B 4 - - - 4 B®, then B = BW 4 ... 4 B®,

12. Ans. If the multiplicity of each root of the characteristic equation of the
operator equals the size of the corresponding Jordan block (see Chap. 6, Prob.
15).

13. Hint. If CB = B, then CA = C for some A € B. It follows that C = CA =
CCA)=CA=CA =",

15. Hint. Let Ay, ..., A,, be a basis of the algebra B. Then, if B is not nil-
potent, one of the right ideals A|B, ..., A,,B, say A;B, is not nilpotent (Prob.
14). Moreover A|B # 0 (Prob. 13), and the problem reduces to the analogous
problem for an algebra of smaller dimension.

16. Hint. If M; = M,,,, then for every vector x € M; there is an operator
A, €B such that Ajx ¢ M; = M, ,. Moreover, there is an operator A, €B
such that A,A,x € M,, and so on. If M, + K, then for every xe M_,;, — M,
there is an operator A, € B such that A xe M, — M__,, then an operator

A, ;€BsuchthatA A eM, , — M, , andsoon,sothatAjA,---A x # 0.

17. Hint. Use the subspaces M,, ..., M, of Prob. 16.
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INDEX

Adjoint matrix, 258
Adjoint operator, 198, 238, 254, 258
Adjugate matrix, 116
Affine space, 31, 215
A-isomorphism, 199, 254
Algebra(s), 136ff, 3126
of analytic functions, 176
commutator of, 320
second, 320
commutative, 137
complete, 337, 338-340
of diagonal matrices, 353-357
composition series of, 323
of dimension n, 137
factor, 138
finite-dimensional, 315ff
ideals in, 138
of jets, 161
morphism of, 138-139, 313
nilpotent, 333
normal series of, 323
one-dimensional, 340-345
of operators, 169
of polynomials, 137ff
radical, 317
radical of, 317
of rational functions, 175
representations of, 313ff
semisimple, 316
structure of, 323-327
simple, 315, 345-352
structure of, 320-322
simple components of, 326
subalgebra of, 138

Algebra(s) (cont.):
trivial, 137, 312
unit in, 137, 312
left, 137
right, 137
two-sided, 137
Angle(s):
between k-vectors, 245
between subspaces, 244
between vectors, 217
Annihilating polynomial, 143
minimal, 143
Antiself-adjoint operator, 262
Antisymmetric operator, 238
real, structure of, 269

Antisymmetry property of determinants, 9

Associativity, 1, 2, 83, 86, 136

Basis, 38ff

components of a vector with respect to, 39

orthogonal, 222, 257
orthonormal, 222, 258

Basis columns, 25, 59

Basis minor, 25, 59

Basis minor theorem, 25, 59

Basis rows, 59

Bessel’s inequality, 224

Bicontinuous mapping, 294

Bilinear form(s), 179f%
canonical basis of, 190
canonical coefficients of, 192
canonical form of, 191
general representation of, 180
Hermitian, 247
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Bilinear form(s) (cont.):
matrix of, 181
transformation of, 181-182
nonsingular, 182, 208
positive definite, 208
rank of, 182
symmetric, 181
in a Euclidean space, 273
Bilinear function (see Bilinear form)
Bilinear functional, 180
Bordered minors, 302
Bounded set, 217
Buniakovsky, V. Y., 218

Canonicai basis:
of a bilinear form, 190
construction of, by Jacobi’s method, 192—

of a Hermitian form, 252
of a quadratic form, 185
Canonical coefficients, 185, 192
Canonical equation:
of a central surface, 288
of a noncentral surface, 289
Canonical form, 133ff
of a bilinear form, 191
of a Hermitian form, 252
Jordan, 146
of the matrix of an arbitrary operator, 146
of the matrix of a nilpotent operator, 136
of a quadratic form, 185
Canonical mapping, 54, 139
Cartan, H,, 335
Category, 335ff
extension of, 358
of finite-dimensional spaces, 336
linear, 336
maximal, 343
objects of, 335
mappings of, 335
Cauchy, A. L., 218, 362
Center (of a surface), 289, 299
Central surface, 288, 290
canonical equation of, 288
proper, 288
in n dimensions, 293-294
semiaxes of, 291
Characteristic equation, 110
Characteristic polynomial:
of a matrix, 110
of an operator, 126
Characteristic space (see Eigenspace)
Characteristic value (see Eigenvalue)
Chebotarev, N. G., 332
Circular paraboloid, 297
Class (of comparable elements), 48
Cofactor:
of an element, 12
of a minor, 22
Cognate spaces, 352
Columns of numbers:
linear combination of, 10, 24
coefficients of, 24
linearly dependent, 27
product of, with a number, 24

Columns of numbers (cont.):

sum of, 24
Commutativity, 1, 137
Commutator, 320

second, 320
Comparable elements (of a subspace), 48
Complementary minor, 21
Complex numbers, field of, 3
Components, 34

simple, of an algebra, 326

of a vector, with respect to a basis, 39
Composition series, 323
Conical surface, 288, 294-296
Conjugate operator (see Adjoint operator)
Conjugate subspace, 190, 252
Conjugate surface, 299
Conjugate vector:

to a subspace, 190, 252

to another vector, 190, 252
Coordinate transformation(s), 118ff

consecutive, 120

matrix of, 119

operator of, 119

orthogonal, 239

unitary, 259
Courant, R., 276
Cramer’s rule, 20, 35

Derivatives of a poiynomiai, 163
Descending principal minors, 193
Determinant (s), 6ff
antisymmetry property of, 9
column operations on, 11
elements of, 6
evaluation of, 16-17
expansion of:
with respect to a column, 12
with respect to a row, 12
Gram, 230
linear property of, 10
of a matrix, 6
order of, 6
product of, 103
of a product of matrices, 103
quasi-triangular, 23
terms of, 6
transpose of, 9
triangular, 14
Vandermonde, 15
Diagonal matrix, 100
Diagonal operator, 100
Diagonalizable operator, 100
Dimension:
of a hyperplane, 53
of a linear manifold, 51
of a linear space, 40
over a subspace, 45
of an algebra, 137
of the null space of an operator, 94
of the range of an operator, 93
of a sum of subspaces, 47
Direct sum, 45, 314
orthogonal, 223
Directed line segment, 31
Distortion coefficient, 242



Distributivity, 2, 83, 86, 136

Eigenray (see Invariant direction)
Eigenspace, 110
Eigenvalue, 108ff
Eigenvector, 108ff
Eilenberg, S., 335
Elementary divisor, 151
Elementary operations, 67
Ellipsoid, 292
Elliptic paraboloid, 297
Embedding, 54, 139
Epimorphism, 53
of an algebra, 139
Equivalence classes, 339
Equivalent elements, 339
Euclidean isomorphism, 221
Euclidean space(s), 215ff
embedding of, in a unitary space, 263ff
Euclidean—isomorphic, 221

Factor aigebra, 138
Factor space, 49
Faguet, M. K, 243
Field(s), 1ff
axioms, 1
of complex numbers, 3
isomorphic, 2
of rational numbers, 2
of real numbers, 2
First structure theorem, 322
Fourier coefficients, 222
Fredholm’s alternative, 73
Fredholm’s theorem, 212
Fundamental system of solutions, 65
normal, 66
Fundamental theorem of algebra, 3

General sointion, 63, 66
Gram determinant, 230

Hadamard inegnality, 234
Hamilton-Cayley theorem, 155
Hardy, G. H., 2, 3
Hermitian (bilinear) form, 247
canonical basis of, 252
canonical form of, 252
(Hermitian-)symmetric, 248
nonsingular, 249
positive definite, 253
rank of, 249
Hermitian conjugate matrix, 258
Hermitian conjugate operator (see Adjoint
operator)
Hermitian matrix, 248
Hermitian quadratic form(s), 249, 308-310
symmetric, 249
canonical form of, 309
simultaneous reduction of two, 310
stationary values of, 309
Hermitian—symmetric matrix (see Hermitian
matrix)
Hermitian—symmetric operator (see Self-ad-
joint operator)
Homeomorphic figures, 294
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Homogeneous linear system, 43
Homotopic figures, 294
Hyperbolic paraboloid, 298
Hyperboloid of one sheet, 292
Hyperboloid of two sheets, 292
Hyperparallelepiped, volume of, 232
Hyperplane, 52

dimension of, 53
Hypotenuse (in a Euclidean space), 220

Ideai:

left, 138

proper, 138

right, 138

two-sided, 138
Identity matrix (see Unit matrix)
Identity operator, 78, 99
Identity transformation, 120
Imaginary numbers, 3
Inclusion relations, 31
Incompatible system of linear equations, 4,

Index of inertia, 206
negative, 206, 251
positive, 206, 251
Index of nilpotency, 333
Integers (in a field), 2
Interpolation with least mean square error,

Invariant, 131
Invariant direction, 108
Invariant matrix, 202
Invariant operator, 201
Invariant subspace, 106, 313
Inverse element, 32
uniqueness of, 33
Inverse matrix, 105
Inverse operator, 105
Inversion, §
Invertible element (of an algebra), 137
Isogonal operator, 244
Isometric operator, 239
real, structure of, 270
Isomorphism:
of algebras, 139
of fields, 2
of linear spaces, 53

Jacobi’s method, 192-196, 252
Jacobson, N., 332
Jet(s):
addition of, 161
algebra of, 161
invertibility of, 167
multiplication of, 161
product of:
with another jet, 161
with a number, 161
sum of, 161
symmetric, 168
Jordan basts, 146
Jordan block, 147
Jordan canonical form, 146
real, 159
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Jordan normal form (see Jordan canonical
form)

Kernei, 56, 313
Khelemski, A. Y., 332, 334, 360
k-linear form, 203
Krasnosyelski, M. A, 237, 242, 244
Krein, M. G., 242, 280
Kronecker—Capelli theorem, 62
Kurosh, A. G., 335
k-vectors, 245

angles between, 245

equal, 245

scalar product of, 246

Lagrange’s method, 276, 280, 285, 309
Laplace’s theorem, 23
Law of inertia, 205, 207, 251
Left ideal, 138
Left inverse, 97, 98, 104, 137
Left unit, 137
Legendre, A. M., 228
Legendre polynomials, 228-230
Length of a vector, 217, 255
Linear combination:
of columns, 10, 24
of vectors, 36
Linear dependence:
of columns, 27
of vectors, 36
Linear family (of operators), 336
Linear form, 75
coefficients of, 76
transformation of, 123-124
of the first kind, 77
of the second kind, 77
Linear functional, 76
Linear independence of vectors, 36
over a subspace, 44
Linear manifold (spanned by spaces), 328
Linear manifold (spanned by vectors), 50
Linear operator (see Operator)
Linear space(s), 31ff
A-isomorphic, 199, 254
basis for, 38
cognate, 352
complex, 34
concrete, 34
dimension of, 40
over a subspace, 45
direct sum of, 45
infinite-dimensional, 40
(K-)isomorphic, 53
n-dimensional, 40
real, 34
subspace of, 42
tensor product of, 349
Linear subspace (see Subspace)
Linear vector function (see Linear operator)

Matrices:
block, 89
multiplication of, 89
determinant of a product of, 103

Matrices (cont.):
minors of a product of, 91
multiplication of, 85
noncommutativity of, 85-86
quasi-diagonal, 90
multiplication of, 90
rank of a product of, 95
sum of, 84
transposed, 90
multiplication of, 90
Matrix, 5ff
adjoint of, 258
adjugate of, 116
augmented, 62
of a bilinear form, 181
block, 89
characteristic polynomial of, 110
coefficient, 18, 62
determinant of, 6
diagonal, 100
elements of, 5
Hermitian conjugate of, 258
Hermitian (—symmetric), 248
identity, 81, 99
invariant, 202
inverse, 105
left inverse of, 98
minor of, 13, 21, 59
of a nilpotent operator, 136
nonsingular, 104, 119
of an operator, 79, 98
order of, 5
orthogonal, 239
principal diagonal of, 5
product of:
with a number, 84
with another matrix, 85
of a quadratic form, 185
quasi-diagonal, 90
rank of, 25, 59, 60, 67-71
right inverse of, 98
singular, 104
symmetric, 181
trace of, 115
transpose of, 60, 90
transposed, 60
unit, 81, 99
unitary, 259
Matrix algebra, 330
semisimple, 330
simple, 330
McShane, E. J., 276
Mean square deviation, 235
Method of least squares, 235-236
Metric geometry, 214
Minor, 13ff
basis, 25, 59
bordered, 302
complementary, 21
of order k, 21
of a product of matrices, 91
principal, 126
descending, 193
Monomorphism, 53
of an algebra, 139



Morphism, 53
of an algebra, 138
kernel of, 56
nuil space of, 56
range of, 55
Multilinear form, 203
antisymmetric, 203
symmetric, 203

Naturai numbers, 2

Negative element, 1

Nemirovski, A. S., 316

Nilpotent operator, 133
matrix of, 136

Noncentral surface, 289
canonical equation of, 289
nondegenerate, 296-299

Nonnegative operator, 271

Norm, 217, 255

Normal operator, 238, 259
geometric meaning of, 268-269
real, structure of, 265-269

Normal series, 323

Null space, 56, 94

Number field (see Field)

Operator(s), 53, 75, 771
acting in a space, 98
addition of, 82, 84
adjoint of, 198, 238, 254, 258
annihilating polynomial of, 143
minimal, 143
antiself-adjoint, 262
antisymmetric, 238
characteristic polynomial of, 126
characteristic space of, 110
conjugate of, 198
determinant of, 125
diagonal, 100
diagonalizable, 100
eigenspace of, 110
eigenvalue of, 108
eigenvector of, 108
elementary divisor of, 151
equality of, 82
equivalent, 133, 153
extension of, from a real to a complex
space, 264
Hermitian conjugate of, 254
Hermitian-symmetric, 262
identity, 78, 99
invariant, 201
inverse of, 105
matrix of, 105
invertibte, 105
isogonal, 244
isometric, 239
Jordan canonical form of, 146
left inverse of, 97, 104
mapping a space K, into itself, 98ff
matrix of, 79, 98
transformation of, 124
muitiplication of, 82-83
negative of, 78
nilpotent, 133
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Operator(s) (cont.):
nonexpanding, 272
nonnegative, 271
nonsingular, 105
normal, 238, 259

real, 265
null space of, 94
positive, 271
powers of, 101
product of:
with a number, 82
with another operator, 83
projection, 100
range of, 93
rank of, 93
right inverse of, 97, 104
rotation, 99
self-adjoint, 262
similarity, 99
spectrum of, 169
sum of, 82
symmetric, 238
tensor product of, 350
trace of, 126
unit, 78, 99
unitary, 259, 263
zero, 78, 98

Operator functions, 169-176
matrices of, 171-176

Order:
of a determinant, 6
of a matrix, 5

Orthogonal basis, 222, 257

Orthogonal complement, 220, 257

Orthogonal direct sum, 223

Orthogonal matrix, 239

Orthogonal transformation, 239

Orthogonal vectors, 219, 257

Orthogonality of a vector:
to a set, 220
to a subspace, 220

Orthogonalization theorem, 226

Orthonormal basis, 222, 258

Paraboioid, 296-299
circular, 297
elliptic, 297
hyperbolic, 298
Partially ordered set, 339
Particular solution, 63
Perpendicular (dropped onto a subspace),
223

foot of, 224
Planes (in a linear space), 53
Polynomial algebras, 137ff
Positive definite bilinear form, 208
Positive definite Hermitian form, 253
Positive definite quadratic form, 206
Positive operator, 271
Prepartially ordered set, 339
Principal minor, 126

descending, 193
Product:

of jets, 161

of matrices, 85



386 INDEX

Product (cont.):

of numbers, 1

of operators, 82-83

of vectors with numbers, 32
Projection (of a vector), 223
Projection operator, 100
Pythagorean theorem, 221, 257

Qnadratic form(s), 179, 183ff
canonical basis of, 185
canonical coefficients of, 185
canonical form of, 185
comparable, 310
in a Euctidean space, 273ff
extremal properties of, 276-283
Hermitian, 249
in a unitary space, 308-310
matrix of, 185
nonsingular, 185
positive definite, 206
rank of, 185, 189
reduction of, to canonical form, 185-189
simultaneous reduction of two, 283-287
Quadric surface(s), 287-308
analysis of, from general equation, 300-
308
canonical equation of, 287
central, 288, 290
degenerate, 288, 299
noncentrai, 289
nondegenerate, 288
Quotient:
of elements of an algebra, 137
of numbers, 2

Radicai (of an aigebra), 317
Radical aigebra, 317
Radius vector, 35
Range, 55, 93
Rank:
of a bilinear form, 182
of a Hermitian form, 249
of a matrix, 25, 59, 60, 67-71
of an operator, 93
of a product of matrices, 95
of a quadratic form, 185, 189
Ratio of similitude, 99
Rational numbers:
in a field, 2
field of, 2
Real numbers, field of, 2
Reciprocal element, 2
Representation(s), 313ff
direct sum of, 314
equivalent, 313
exact, 313
faithful, 313
invariant subspace of, 313
minimal, 314
proper, 314
irreducible, 314
kernel of, 313
left regular, 314, 318-320
restriction of, 313
standard, 318

Representation(s) (cont.):
trivial, 313

Right ideat, 138

Right inverse, 97, 98, 104, 137

Right unit, 137

Rodrigues, J. M., 228

Rotation operator, 99

Scalar prodnct, 214, 215ff
complex, 254ff
of k-vectors, 246
Scalar quantity, 131
Schur’s temma, 315
Schwarz inequality, 218, 256
Second-degree curve, 287
Second-degree surface (see Quadric surface)
Second structure theorem, 325
Seif-adjoint operator, 262
Semiaxes, 291
Semisimple algebra, 316
representations of, 327-330
structure of, 323-327
Shostak, R. Y., 210
Silverman, R. A., 282
Similarity operator, 99
Simple algebra, 315
representations of, 327-330
structure of, 320-322
Slope (of segment joining matrix elements):
negative, 7
positive, 7
Solution space of a linear system, 43

Spectrum, 160
multiplicity of, 160
symmetric, 168
Spread of subspaces, 242
S-sets, 353
product of, 356
Stationary value:
of a function, 276
of a quadratic form, 276
Straight lines (in a linear space), 53
Subalgebra, 138
Subspace(s), 42ff
angles between, 244
comparable glements of, 48
conjugate, 190, 252
direct sum of, 45
orthogonal, 223
intersection of, 42
invariant, 106, 313
nontrivial, 42
orthogonal complement of, 220, 257
spread of, 242
sum of, 42
trivial, 42



Sum:
of jets, 161
of matrices, 84
of numbers, 1
of operators, 82
of vectors, 31
Summation convention, 126
Sylvester’s conditions, 253
Symmetric operator, 238
real, structure of, 269
System of linear equations, 3ff
augmented matrix of, 62
coefficient matrix of, 18, 62
coefficients of, 3
compatible, 4
nontrivially, 61
compatibility of, 4, 61
condition for, 62
nontrivial, 61
constant terms of, 4
determinate, 4
homogeneous, 43
incompatible, 4, 234
indeterminate, 4
index of, 212
solution(s) of, 4
distinct, 4
fundamental system of, 65
normal, 66
general, 63, 66
product of, with a number, 43
sum of, 43
trivial, 43
solution space of, 43

Tayior’s formnla (for a poiynomial), 163

Tensor(s), 126-131
addition of, 130
contraction of, 130
contravariant, 129
covariant, 129
invariants of, 131
mixed, 130
multiplication of, 130
order of, 129

Tensor product:
of finear spaces, 349
of operators, 350

Trace, 115, 126, 131

Transpose:
of a determinant, 9
of a matrix, 60, 90

INDEX

Triangle inequalities, 221, 257
Trivial solution, 43
Two-sided ideal, 138

Unit (two-sided), 137

Unit ball, 217, 256

Unit matrix, 81, 99

Unit operator (see Identity operator)
Unit sphere, 217, 256

Unit vector, 217, 256

Unitary matrix, 259

Unitary operator, 259, 263

Unitary space, 2546

Unitary transformation, 259

Vandermonde determinant, 15
Vector(s), 31ff
angle between, 217
complex conjugate of, 263
components of, 39
transformation of, 121
conjugate:
to a subspace, 190, 252
to another vector, 190, 252
cyclic, 314
difference of, 34
height of, 134
length of, 217, 255
linear combination of, 36
coefficients of, 36
linearly dependent, 36
linearly independent, 36
norm of, 217, 255
normalization of, 217, 256
orthogonal:
to a subspace, 220, 257
to another vector, 219, 257
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perpendicular dropped from the end of,
223

product of, with a number, 32
projection of, onto a subspace, 223
purely imaginary, 263

real, 263

sum of, 31

unit, 217, 256

Wedderbnr’s theorem, 332

Zero, 1

Zero coiumn, 27

Zero operator, 78, 98

Zero vector, 32
uniqueness of, 32



