
Codes8
Code Vectors
Throughout history, people have transmitted information using codes. Sometimes 
the intent is to disguise the message being sent, such as when each letter in a word is 
replaced by a different letter according to a substitution rule. Although fascinating, 
these secret codes, or ciphers, are not of concern here; they are the focus of the field 
of cryptography. Rather, we will concentrate on codes that are used when data must 
be transmitted electronically.
 A familiar example of such a code is Morse code, with its system of dots and 
dashes. The advent of digital computers in the 20th century led to the need to trans-
mit massive amounts of data quickly and accurately. Computers are designed to 
 encode data as sequences of 0s and 1s. Many recent technological advancements 
 depend on codes, and we encounter them every day without being aware of them: 
Satellite communications, compact disc players, the universal product codes (UPC) 
associated with the bar codes found on merchandise, and the international  standard 
book numbers (ISBN) found on every book published today are but a few examples.
 In this section, we will use vectors to design codes for detecting errors that may 
occur in the transmission of data. In later sections, we will construct codes that can  
not only detect but also correct errors. The vectors that arise in the study of codes are 
not vectors in Rn but vectors in Zn

2 or, more generally, Zn
m. We first encountered such 

vectors in Section 1.1. Since computers represent data in tems of 0s and 1s (which can 
be interpreted as off/on, closed/open, false/true, or no/yes), we begin by considering 
binary codes, which consist of vectors with entries in Z2.
 In practice, we have a message (consisting of words, numbers, or symbols) that 
we wish to transmit. We begin by encoding each “word” of the message as a binary 
 vector.

Definition   A binary code is a set of binary vectors (of the same length) called 
code vectors. The process of converting a message into code vectors is called 
 encoding, and the reverse process is called decoding.

8.1

The modern theory of codes 
 originated with the work of the 
American mathematician and 
 computer scientist Claude  Shannon 
(1916–2001), whose 1937 thesis 
showed how algebra could play a 
role in the design and analysis of 
electrical circuits. Shannon would 
later be  instrumental in the for-
mation of the field of information 
 theory and give the theoretical 
basis for what are now called error-
correcting codes.
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[I]f the machine can detect an error, 
why can’t it locate the position of the 
error and correct it?

—Richard W. Hamming
Quoted in Thomas M. Thompson 

From Error-Correcting Codes Through 
Sphere Packings to Simple Groups

Carus Mathematical Monographs 
21, Mathematical Association of 

America, 1983, p. 17
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Section 8.1  Code Vectors       621

 As we will see, it is highly desirable that a code have other properties as well, such 
as the ability to spot when an error has occurred in the transmission of a code vector 
and, if possible, to suggest how to correct the error.
 Suppose that we have already encoded a message as a set of binary code vec-
tors. We now want to send the binary code vectors across a channel (such as a radio 
transmit ter, a telephone line, a fiber optic cable, or a CD laser). Unfortunately, the 
channel may be “noisy” (because of electrical interference, competing signals, or dirt 
and scratches). As a result, errors may be introduced: Some of the 0s may be changed 
to 1s, and vice versa. How can we guard against this problem?

We wish to encode and transmit a message consisting of one of the words up, down, left, 
or right. We decide to use the four vectors in Z2

2 as our binary code, as shown in Table 8.1.
 If the receiver has this table too and the encoded message is transmitted without error, 
decoding is trivial. However, let’s suppose that a single error occurred. (By an error, we 
mean that one component of the code vector changed.) For example, suppose we sent the 
message “down” encoded as [0, 1] but an error occurred in the transmission of the first 
component and the 0 changed to a 1. The receiver would then see [1, 1] instead and de-
code the message as “right.” (We will only concern ourselves with the case of single errors 
such as this one. In practice, it is usually assumed that the probability of multiple errors is 
negligibly small.) Even if the receiver knew (somehow) that a single error had occurred, 
he or she would not know whether the correct code vector was [0, 1] or [1, 0].

Example 8.1

 Table 8.1
Message up down left right

Code [0, 0] [0, 1] [1, 0] [1, 1] 

 But suppose we sent the message using a code that was a subset of Z3
2—in other 

words, a binary code of length 3, as shown in Table 8.2.

 Table 8.2
Message up down left right

Code [0, 0, 0] [0, 1, 1] [1, 0, 1] [1, 1, 0] 

 This code can detect any single error. For example, if “down” was sent as [0, 1, 1] 
and an error occurred in one component, the receiver would read either [1, 1, 1] or 
[0, 0, 1] or [0, 1, 0], none of which is a code vector. So the receiver would know that 
an error had occurred (but not where) and could ask that the encoded message be 
retransmitted. (Why wouldn’t the receiver know where the error was?)

 The code in Table 8.2 is an example of an error-detecting code. Until the 1940s, 
this was the best that could be achieved. The advent of digital computers led to the 
development of codes that could correct as well as detect errors. We will consider 
these in Sections 8.2, 8.4, and 8.5.

The term parity comes from the 
Latin word par, meaning “equal” 
or “even.” Two integers are said to 
have the same parity if they are 
both even or both odd.
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622       Chapter 8  Codes

 The message to be transmitted may itself consist of binary vectors. In this case,  
a simple but useful error-detecting code is a parity check code, which is created by  
appending an extra component—called a check digit—to each vector so that the par-
ity (the total number of 1s) is even.

If the message to be sent is the binary vector [1, 0, 0, 1, 0, 1], which has an odd num-
ber of 1s, then the check digit will be 1 (in order to make the total number of 1s in the 
code vector even) and the code vector will be [1, 0, 0, 1, 0, 1, 1].
 Note that a single error will be detected, since it will cause the parity of the code 
vector to change from even to odd. For example, if an error occurred in the third 
component, the code vector would be received as [1, 0, 1, 1, 0, 1, 1], whose parity is 
odd because it has five 1s.

 Let’s look at this concept a bit more formally. Suppose the message is the binary 
vector b 5 [b1, b2, . . . , bn] in Zn

2. Then the parity check code vector is v 5 [b1, b2, . . . , 
bn, d] in Z2

n+1   , where the check digit d is chosen so that

b1 1 b2 1 c1 bn 1 d 5 0 in Z2

or, equivalently, so that

1 ? v 5 0

where 1 5 [1, 1, . . . , 1], a vector whose every component is 1. The vector 1 is called 
a check vector. If vector v9 is received and 1 ? v r 5  1, then we can be certain that 
an error has occurred. (Although we are not considering the possibility of more than 
one error, observe that this scheme will not detect an even number of  errors.)
 Parity check codes are a special case of the more general check digit codes, which 
we will consider after first extending the foregoing ideas to more general  settings. 
Codes using m-ary vectors are called m-ary codes. The next example is a direct 
 extension of Example 8.2 to ternary codes.

Let b 5 [b1, b2,  .  .  .  , bn] be a vector in Zn
3. Then a check digit code vector may be 

defined by v 5 [b1, b2, . . . , bn, d] (in Z3
n+1   ), with the check digit d chosen so that

1 ? v 5 0

(where the check vector 1 5 [1, 1, . . . , 1] is the vector of 1s in Z3
n+1   ); that is, the check 

digit satisfies

b1 1 b2 1 c1 bn 1 d 5 0 in Z3

 For example, consider the vector u 5 [2, 2, 0, 1, 2]. The sum of its components is 
2 1 2 1 0 1 1 1 2 5 1, so the check digit must be 2 (since 1 1 2 5 0). Therefore, the 
associated code vector is v 5 [2, 2, 0, 1, 2, 2].

 While simple check digit codes will detect single errors, it is often important 
to catch other common types of errors as well, such as the accidental interchange, 
or transposition, of two adjacent components. (For example, transposing the second 

Example 8.2

Example 8.3
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Section 8.1  Code Vectors       623

and third components of v in Example 8.3 would result in the incorrect vector v9 5  
[2, 0, 2, 1, 2, 2].) For such purposes, other types of check digit codes have been 
 designed. Many of these simply replace the check vector 1 by some other carefully 
chosen vector c.

The Universal Product Code, or UPC (Figure 8.1), is a code associated with the bar 
codes found on many types of merchandise.
 The black and white bars that are scanned by a laser at a store’s checkout counter 
correspond to a 10-ary vector u 5 [u1, u2, . . . , u11, d] of length 12. The first 11 compo-
nents form a vector in Z11

10 that gives manufacturer and product information; the last 
component d is a check digit chosen so that c ? u 5  0 in Z10, where the check  vector c 
is the vector [3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1]. That is, after rearranging,

3(u1 1 u3 1 u5 1 u7 1 u9 1 u11) 1 (u2 1 u4 1 u6 1 u8 1 u10) 1 d 5 0

where d is the check digit. In other words, the check digit is chosen so that the   
left-hand side of this expression is a multiple of 10.
 For the UPC shown in Figure 8.1, we can determine that the check digit is 6, 
 performing all calculations in Z10:

 c ? u 5 3 ? 0 1 7 1 3 ? 4 1 9 1 3 ? 2 1 7 1 3 ? 0 1 2 1 3 ? 0 1 9 1 3 ? 4 1 d
  5 3(0 1 4 1 2 1 0 1 0 1 4) 1 (7 1 9 1 7 1 2 1 9) 1 d
  5 3(0) 1 4 1 d
  5 4 1 d

The check digit d must be 6 to make the result of the calculation 0 in Z10.
 (Another way to think of the check digit in this example is that it is chosen so that 
c ? u will be a multiple of 10.)

 The Universal Product Code will detect all single errors and most transposi-
tion errors in adjacent components. To see this last point, suppose that the UPC in 
 Example 8.4 were incorrectly written as u9 5 [0, 7, 4, 2, 9, 7, 0, 2, 0, 9, 4, 6], with 
the fourth and fifth components transposed. When we applied the check vector, we 
would have c ? u r 5  4 Þ 0 (verify this!), alerting us to the fact that there had been an 
error. (See Exercises 15 and 16.)

The 10-digit International Standard Book Number (ISBN-10) code is another widely 
used check digit code. It is designed to detect more types of errors than the Universal 
Product Code and, consequently, is slightly more complicated. Yet the basic principle 
is the same.
 The code vector is a vector in Z10

11. The first nine components give country, publisher, 
and book information; the tenth component is the check digit. Suppose the ISBN-10 for 
a book is 0-534-34450-X. It is re corded as the vector

b 5 [0, 5, 3, 4, 3, 4, 4, 5, 0, X]

where the check “digit” is the letter X.
 For the ISBN-10 code, the check vector is the vector c 5 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], 
and we require that c ? b 5 0 in Z11. Let’s determine the check digit for the vector b in 
this example. We must compute

c ? b 5 10 ? 0 1 9 ? 5 1 8 ? 3 1 7 ? 4 1 6 ? 3 1 5 ? 4 1 4 ? 4 1 3 ? 5 1 2 ? 0 1 d

Example 8.4

Figure 8.1
A Universal Product Code

Example 8.5
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624       Chapter 8  Codes

where d is the check digit. We begin by performing all of the multiplications in Z11. 
(For example, 9 ? 5 5 1, since 45 is 1 more than the closest smaller multiple of 11—
namely, 44. On an 11-hour clock, 45 o’clock is 1 o’clock.) The simplified sum is

0 1 1 1 2 1 6 1 7 1 9 1 5 1 4 1 0 1 d

and adding in Z11 leaves us with 1 1 d. The check digit d must now be chosen so that the 
final result is 0; therefore, in Z11, d 5 10. (Equivalently, d must be chosen so that c ? b will 
be a multiple of 11.) But since it is preferable that each component of an ISBN-10 be a single 
digit, the Roman numeral X is used for 10 whenever it occurs as a check digit, as it does here.

 The ISBN code will detect all single errors and adjacent transposition errors (see 
Exercises 19–21).

Remark:  The ISBN-10 code has been used since 1970. However, since 2007, most 
books have also been identified with a 13-digit ISBN code. This ISBN-13 code is 
compatible with the 13-digit European Article Number code (EAN-13) and uses a 
check digit scheme similar to the UPC. Specifically, an ISBN-13 code is a vector in 
Z13

10 where the last digit is the check digit and the check vector is [1, 3, 1, 3, . . . , 3, 1] 
in Z13

10. Like its UPC cousin, the ISBN-13 code will detect all single errors but not all 
adjacent transposition errors.

Exercises 8.1

Code Vectors

In Exercises 1 and 2, find the parity check code vector for the 
binary vector u.
 1. u 5 [1, 0, 1, 1] 2. u 5 [1, 1, 0, 1, 1]

In Exercises 3–6, a parity check code vector v is given. 
 Determine whether a single error could have occurred in the 
transmission of v.
 3. v 5 [1, 0, 1, 0] 4. v 5 [1, 1, 1, 0, 1, 1]
 5. v 5 [0, 1, 0, 1, 1, 1] 6. v 5 [1, 1, 0, 1, 0, 1, 1, 1]

Exercises 7–10 refer to check digit codes in which the check 
vector is the vector c 5 [1, 1, . . . , 1] of the appropriate 
length. In each case, find the check digit d that would be 
 appended to the vector u.
 7. u 5 [1, 2, 2, 2] in Z4

3 8. u 5 [3, 4, 2, 3] in Z4
5

 9. u 5 [1, 5, 6, 4, 5] in Z5
7 10. u 5 [3, 0, 7, 5, 6, 8] in Z6

9

 11. Prove that for any positive integers m and n, the 
check digit code in Zn

m with check vector c 5 1 5 
[1, 1, . . . , 1] will detect all single errors. (That is, prove 
that if vectors u and v in Zn

m differ in exactly one entry, 
then c ? u 2 c ? v.)

In Exercises 12 and 13, find the check digit d in the given 
Universal Product Code.

 12. [0, 5, 9, 4, 6, 4, 7, 0, 0, 2, 7, d]

 13. [0, 1, 4, 0, 1, 4, 1, 8, 4, 1, 2, d]

 14. Consider the UPC [0, 4, 6, 9, 5, 6, 1, 8, 2, 0, 1, 5].
(a) Show that this UPC cannot be correct.
(b) Assuming that a single error was made and that 

the incorrect digit is the 6 in the third entry, find 
the correct UPC.

 15. Prove that the Universal Product Code will detect all 
single errors.

 16. (a)  Prove that if a transposition error is made  
in the second and third entries of the UPC  
[0, 7, 4, 9, 2, 7, 0, 2, 0, 9, 4, 6], the error will be 
detected.

(b) Show that there is a transposition involving two 
adjacent entries of the UPC in part (a) that would 
not be  detected.

(c) In general, when will the Universal Product Code 
not detect a transposition error involving two 
 adjacent entries?
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Section 8.1  Code Vectors       625

In Exercises 17 and 18, find the check digit d in the given 
 International Standard Book Number (ISBN-10).

 17. [0, 3, 8, 7, 9, 7, 9, 9, 3, d]

 18. [0, 3, 9, 4, 7, 5, 6, 8, 2, d]

 19. Consider the ISBN-10 [0, 4, 4, 9, 5, 0, 8, 3, 5, 6].
(a) Show that this ISBN-10 cannot be correct.
(b) Assuming that a single error was made and that 

the incorrect digit is the 5 in the fifth entry, find 
the correct ISBN-10.

 20. (a)  Prove that if a transposition error is made in the 
fourth and fifth entries of the ISBN-10 [0, 6, 7, 9, 
7, 6, 2, 9, 0, 6], the error will be detected.

(b) Prove that if a transposition error is made in any 
two adjacent entries of the ISBN-10 in part (a), the 
error will be  detected.

(c) Prove, in general, that the ISBN-10 code will 
 always detect a transposition error involving two 
adjacent entries.

 21. Consider the ISBN-10 [0, 8, 3, 7, 0, 9, 9, 0, 2, 6].
(a) Show that this ISBN-10 cannot be correct.
(b) Assuming that the error was a transposition error 

 involving two adjacent entries, find the correct 
ISBN-10.

(c) Give an example of an ISBN-10 for which a trans-
position error involving two adjacent entries will 
be detected but will not be correctable.
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Vignette

The Codabar System
Every credit card and ATM card is uniquely identified by a 16-digit number that 
 represents a check digit code. As in the examples in this section, the first 15 dig-
its are assigned by the bank issuing the card, whereas the last digit is a check digit 
 determined by a formula that uses modular arithmetic.
 All the major banks use a system called Codabar to assign the check digit. It is 
a slight variation on the method of the Universal Product Code and is based on an 
 algorithm devised by IBM computer scientist Hans Peter Luhn in the 1950s.

 Suppose that the first 15 digits of your card are

5412 3456 7890 432

and that the check digit is d. This corresponds to the vector

x 5 [5, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 4, 3, 2, d]

in Z16
10. The Codabar system uses the check vector c 5 [2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 

2, 1], but instead of requiring that c ? x 5 0 in Z10, an extra calculation is added to in-
crease the error-detecting capability of the code. Let h count the number of  digits in odd 
positions that are greater than 4. In this example, these digits are 5, 5, 7, and 9, so h 5 4.
 It is now required that c ? x 1 h 5 0 in Z10. Thus, in the example, we have, rear-
ranging and working modulo 10,

 c ? x 1 h 5 (2 ? 5 1 4 1 2 ? 1 1 2 1 2 ? 3 1 4 1 2 ? 5 1 6 1 2 ? 7 1 8 1 2 ? 9 
   1 0 1 2 ? 4 1 3 1 2 ? 2 1 d) 1 4
 5  2 (5 1 1 1 3 1 5 1 7 1 9 1 4 1 2) 1 (4 1 2 1 4 1 6 1 8 1 0  

  1 3 1 d) 1 4
 5 2 (6) 1 7 1 d 1 4
 5 3 1 d

Thus, the check digit d for this card must be 7, so the result of the calculation is 0 in Z10.
 The Codabar system is one of the most efficient error-detecting methods. It will detect 
all single-digit errors and most other common errors such as adjacent transposition errors.
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Section 8.2  Error-Correcting Codes       627

Error-Correcting Codes
Section 8.1 discussed examples of error-detecting codes. We turn now to the prob-
lem of designing codes that can correct as well as detect certain types of errors. Our 
 message will be a vector x in Zk

2 for some k, and we will encode it by using a matrix 
transformation T : Zk

2 S  Zn
2 for some n . k. The vector T(x) will be called a code 

 vector. A simple example will serve to illustrate the approach we will take, which is a 
generalization of the parity check vectors in Example 8.1.

Suppose the message is a single binary digit: 0 or 1. If we encode the message by 
simply repeating it twice, then the code vectors are [0, 0] and [1, 1]. This code can 
detect single errors. For example, if we transmit [0, 0] and an error occurs in the 
first component, then [1, 0] is received and an error is detected, because this is 
not a legal code vector. However, the receiver cannot correct the error, since [1, 0] 
would also be the result of an error in the second component if [1, 1] had been 
transmitted.
 We can solve this problem by making the code vectors longer—repeating the 
message digit three times instead of two. Thus, 0 and 1 are encoded as [0, 0, 0] and 
[1, 1, 1], respectively. Now if a single error occurs, we cannot only detect it but also 
correct it. For example, if [0, 1, 0] is received, then we know it must have been the 
 result of a single error in the transmission of [0, 0, 0], since a single error in [1, 1, 1] 
could not have produced it.

 Note that the code in Example 8.6 can be achieved by means of a matrix 

transforma tion, albeit a particularly trivial one. Let G 5 £
1
1
1
§  and define T : Z2 S Z3

2

by T(x) 5 Gx. (Here we are thinking of the elements of Z2 as 1 3 1 matrices.) The 
matrix G is called a generator matrix for the code.
 To tell whether a received vector is a code vector, we perform not one but two par-

ity checks. We require that the received vector c 5 £
c1

c2

c3

§  satisfies c1 5 c2 5 c3. We can

write these equations as a linear system over Z2:

 
c1 5 c2

c1 5 c3
  or  

c1 1 c2 5 0
c1 1 c3 5 0

 (1)

If we let P 5 c1 1 0
1 0 1

d , then (1) is equivalent to Pc 5 0. The matrix P is called a 

parity check matrix for the code. Observe that PG 5 c0
0
d 5 O.

 To see how these matrices come into play in the correction of errors, suppose

we  send 1 as £
1
1
1
§ 5 [1 1 1]T, but a single error causes it to be received as  

8.2

Example 8.6
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628       Chapter 8  Codes

Theorem 8.1

c9 5  [1 0 1]T. We compute

Pc r 5 c1 1 0
1 0 1

d £
1
0
1
§ 5 c1

0
d 2 0

so we know that c9 cannot be a code vector. Where is the error? Notice that Pc9 is 
the second column of the parity check matrix P—this tells us that the error is in the 
second component of c9 (which we will prove in Theorem 8.1 below) and allows us 
to correct the error. (Of course, in this example we could find the error faster without 
using matrices, but the idea is a useful one.)
 To generalize the ideas in the last example, we make the following definitions.

Definitions   If k , n, then any n 3 k matrix of the form G 5 c Ik

A
d , where A is 

an (n 2 k) 3 k matrix over Z2, is called a standard generator matrix for an (n, k) 
binary code T : Zk

2 S Zn
2. Any (n 2 k) 3 n matrix of the form P 5 [B In2k ], 

where B is an (n 2 k) 3 k matrix over Z2, is called a standard parity check matrix. 
The code is said to have length n and dimension k.

 Here is what we need to know: (a) When is G the standard generator matrix for 
an error-correcting binary code? (b) Given G, how do we find an associated standard 
parity check matrix P? It turns out that the answers are quite easy, as shown by the 
follow ing theorem.

If G 5 c Ik

A
d  is a standard generator matrix and P 5 [B  In2k] is a standard 

 parity check matrix, then P is the parity check matrix associated with G if and only 
if A 5 B. The corresponding (n, k) binary code is (single) error-correcting if and 
only if the columns of P are nonzero and distinct.

 Before we prove the theorem, let’s consider another, less trivial example that 
 illustrates it.

 Suppose we want to design an error-correcting code that uses three parity check equa-
tions. Since these equations give rise to the rows of P, we have n 2 k 5 3 and k 5 n 2 3. 
The message vectors come from Zk

2, so we would like k (and therefore n) to be as large as 
possible in order that we may transmit as much information as possible. By Theorem 8.1, 
the n columns of P need to be nonzero and distinct, so the maximum  occurs when they 
consist of all the 23 2 1 5 7 nonzero vectors of Zn21

2  5 Z3
2, One such candidate is

P 5 £
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

§

Example 8.7
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Section 8.2  Error-Correcting Codes       629

This means that

A 5 £
1 1 0 1
1 0 1 1
0 1 1 1

§

and thus, by Theorem 8.1, a standard generator matrix for this code is

G 5   

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1
0 1 1 1

 As an example of how the generator matrix works, suppose we encode x 5  
[0 1 0 1]T to get the code vector

c 5 Gx 5 [0 1 0 1 0 1 0]T

If this vector is received, it is seen to be correct, since Pc 5 0. On the other hand, if 
c r 5 [0 1 1 1 0 1 0]T is received, we compute

Pc r 5 £
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

§   

0
1
1
1
0
1
0

  5 £
0
1
1
§

which we recognize as column 3 of P. Therefore, the error is in the third component 
of c9, and by changing it we recover the correct code vector c. We also know that the 
first four components of a code vector are the original message vector, so in this case
we decode c to get the original x 5 [0 1 0 1]T.

 The code in Example 8.7 is called the (7, 4) Hamming code. Any binary code 
constructed in this fashion is called an (n, k) Hamming code. Observe that, by con-
struction, an (n, k) Hamming code has n 5 2n2k 2 1.

Proof of Theorem 8.1  (Throughout this proof we denote by ai the ith column of a 
matrix A.) With P and G as in the statement of the theorem, assume first that they are 
standard parity check and generator matrices for the same binary code. Therefore, for 
every x in Zk

2, PGx 5 0. In terms of block multiplication,

[B  I ] c I
A
d x 5 0 for all x in Zk

2
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630       Chapter 8  Codes

Equivalently, for all x in Zk
2, we have

Bx 1 Ax 5 (B 1 A)x 5 (BI 1 IA)x 5 [B  I ] c I
A
d x 5 0

or Bx 5 Ax

If we now take x 5 ei, the ith standard basis vector in Zk
2, we see that

bi 5 Bei 5 Aei 5 ai  for all i

Therefore, B 5 A.
 Conversely, it is easy to check that if B 5 A, then PGx 5 0 for every x in Zk

2 (see 
Exercise 14).
 To see that such a pair determines an error-correcting code if the columns of P are 
nonzero and distinct, let x be a message vector in Zk

2 and let the corresponding code 
vector be c 5 Gx. Then Pc 5 0. Suppose there has been an error in the ith compo-
nent, resulting in the vector c9. It follows that c9 5 c 1 ei. We now compute

Pc r 5 P(c 1 ei) 5 Pc 1 Pei 5  0 1 pi 5 pi

which pinpoints the error in the ith component.
 On the other hand, if pi 5 0, then an error in the ith component will not be  detected 
(i.e., Pc9 5 0), and if pi 5 pj, then we cannot determine whether an error  occurred in 
the ith or the jth component (Exercise 15).

 The main ideas of this section are summarized below.

 1.  For n . k, an n 3 k matrix G and an (n 2 k) 3 n matrix P (with entries in Z2) 
are a standard generator matrix and a standard parity check matrix, respec-
tively, for an (n, k) binary code if and only if, in block form,

G 5 c Ik

A
d   and  P 5 [A In2k ]

 for some (n 2 k) 3 k matrix A over Z2.
 2.  G encodes a message vector x in Zk

2 as a code vector c in Zn
2 via c 5 Gx.

 3.  G is error-correcting if and only if the columns of P are nonzero and dis-
tinct. A vector c9 in Zn

2 is a code vector if and only if Pc9 5 0. In this case, the 
corresponding message vector is the vector x in Zk

2 consisting of the first k 
components of c9. If Pc9 2 0, then c9 is not a code vector and Pc9 is one of the 
columns of P. If Pc9 is the ith column of P, then the error is in the ith compo-
nent of c9 and we can  recover the correct code vector (and hence the message) 
by  changing this  component.

Richard W. Hamming (1915–
1998) received his Ph.D. in 
mathematics from the University 
of Illinois at Urbana-Champaign 
in 1942. His mathematical research 
 interests were in the fields of dif-
ferential equations and numerical 
analysis. From 1946 to 1976, he 
worked at Bell Labs, after which he 
joined the faculty at the U.S. Naval 
Postgraduate School in Monterey, 
California. In 1950, he published 
his fundamental paper on error-
correcting codes, giving an explicit 
construction for the optimal codes 
Claude Shannon had proven 
theoretically possible in 1948.
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Exercises 8.2

Error-Correcting Codes

 1. Suppose we encode the four vectors in Z2
2 by repeating 

the vector twice. Thus, we have
 [0, 0] S [0, 0, 0, 0]
 [0, 1] S [0, 1, 0, 1]
 [1, 0] S [1, 0, 1, 0]
 [1, 1] S [1, 1, 1, 1]

Show that this code is not error-correcting.
 2. Suppose we encode the binary digits 0 and 1 by 

 repeating each digit five times. Thus,

 0 S [0, 0, 0, 0, 0]
 1 S [1, 1, 1, 1, 1]

Show that this code can correct double errors.

What is the result of encoding the messages in Exercises  
3–5 using the (7, 4) Hamming code of Example 8.7?

 3. x 5 £
1
1
0
0

§  4. x 5 £
0
1
1
1

§  5. x 5 £
1
1
1
1

§

When the (7, 4) Hamming code of Example 8.7 is used, sup-
pose the messages c 9 in Exercises 6–8 are received. Apply 
the standard parity check matrix to c 9 to determine whether 
an error has occurred and correctly decode c 9 to  recover the 
original message vector x.
 6. c r 5 [0 1 0 0 1 0 1]T

 7. c r 5 [1 1 0 0 1 1 0]T

 8. c r 5 [0 0 1 1 1 1 0]T

 9. The parity check code in Example 8.1 is a code  
Z6

2 S Z7
2.

(a) Find a standard parity check matrix for this 
code.

(b) Find a standard generator matrix.
(c) Apply Theorem 8.1 to explain why this code is not 

error-correcting.

 10. Define a code Z2
2 S Z5

2 using the standard generator 
matrix

G 5 £
1 0
0 1
1 0
0 1
1 1

§

(a) List all four code words.
(b) Find the associated standard parity check matrix 

for this code. Is this code (single) error-correcting?
 11. Define a code Z3

2 S Z6
2 using the standard generator 

matrix

G 5 £
1 0 0
0 1 0
0 0 1
1 0 0
1 1 0
1 1 1

§

(a) List all eight code words.
(b) Find the associated standard parity check matrix 

for this code. Is this code (single) error-correcting?
 12. Show that the code in Example 8.6 is a (3, 1)  Hamming 

code.
 13. Construct standard parity check and generator matri-

ces for a (15, 11) Hamming code.
 14. In Theorem 8.1, prove that if B 5 A, then PGx 5 0 for 

every x in Zk
2.

 15. In Theorem 8.1, prove that if pi 5 pj, then we cannot 
determine whether an error occurs in the ith or the jth 
component of the received vector.
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632       Chapter 8  Codes

8.3
Dual Codes
There are many ways of constructing new codes from old ones. In this section, we 
consider one of the most important of these.
 First, we need to generalize the concepts of a generator and a parity check matrix 
for a code. Recall from Section 8.2 that a standard generator matrix for a code is an  
n 3 m matrix of the form

G 5 cIm

A
d

and a standard parity check matrix is an (n 2 m) 3 n matrix of the form

P 5 [B  In2m ]
Observe that the form of these matrices guarantees that the columns of G are linearly 
independent and the rows of P are linearly independent. (Why?) In proving Theo-
rem 8.1, we showed that G and P are associated with the same code if and only if 
A 5 B, which is equivalent to requiring that PG 5 O. We use these properties as the 
basis for the following definition.

Definition   For n . m, an n 3 m matrix G and an (n 2 k) 3 n matrix P (with 
 entries in Z2) are a generator matrix and a parity check matrix, respectively, for 
an (n, k) binary code C if the following conditions are all satisfied:

 1. The columns of G are linearly independent.
 2. The rows of P are linearly independent.
 3. PG 5 O

 Notice that property (3) implies that every column v of G satisfies Pv 5 0 and so is 
a code vector in C. Also, a vector y is in C if and only if it is obtained from the  generator 
matrix as y 5 Gu for some vector u in Zn

2. In other words, C is the column space of G.
 To understand the relationship between different generator matrices for the same 
code, we only need to recall that, just as elementary row operations do not affect the 
row space of a matrix (by Theorem 3.20), elementary column operations do not af-
fect the column space. For a matrix over Z2, there are only two relevant operations: 
interchange two columns (C1) and add one column to another column (C2). (Why 
are these the only two elementary column operations on matrices over Z2?)
 Similarly, elementary row operations preserve the linear independence of the rows 
of P. Moreover, if E is an elementary matrix and c is a code vector, then

(EP)c 5 E(Pc) 5 E0 5 0

It follows that EP is also a parity check matrix for C. Thus, any parity check matrix can 
be converted into another one by means of a sequence of row operations: interchange 
two rows (R1) and add one row to another row (R2). We are interested in showing 
that any generator or parity check matrix can be brought into standard form. There is 
one other definition we need. We will call two codes C1 and C2 equivalent if there is a 
permutation matrix M such that

5Mx : x in C16 5 C2
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In other words, if we permute the entries of the vectors in C1 (all in the same way), we 
can obtain C2. For example,

C1 5 • £
0
0
0
§ ,  £

1
0
0
§ ,  £

1
0
1
§ ,  £

0
0
1
§ ¶   and  C2 5 • £

0
0
0
§ ,  £

0
1
0
§ ,  £

1
1
0
§ ,  £

1
0
0
§ ¶

are equivalent via the permutation matrix M 5 £
0 0 1
1 0 0
0 1 0

§ . Permuting the entries 

of code vectors corresponds to permuting the rows of a generator matrix and permut-
ing the columns of a parity check matrix for the code. (Why?)
 We can bring any generator matrix for a code into standard form by means of 
operations C1, C2, and R1. If R1 has not been used, then we have the same code; if 
R1 has been used, then we have an equivalent code. We can bring any parity check 
matrix for a code into standard form by means of operations R1, R2, and C1. If C1 
has not been used, then we have the same code; if C1 has been used, then we have an 
equivalent code.
 The following examples illustrate these points.

(a) Bring the generator matrix

G 5 £
1 0
1 0
0 1

§

into standard form and find an associated parity check matrix.
(b) Bring the parity check matrix

P 5 c1 0 0 1
0 1 1 1

d

into standard form and find an associated generator matrix.

Solution  (a) We can bring the generator matrix G into standard form as follows:

G 5 £
1 0
1 0
0 1

§ h
R24R3 £

1 0
0 1
1 0

§ 5 c I
A
d 5 G r

(Do you see why it is not possible to obtain standard form without using R1?) Hence, 
A 5 [1  0], so

P 5 [A I] 5 [1 0 1]

is an associated parity check matrix, by Theorem 8.1.
(b) We use elementary row operations to bring P into standard form, keeping in mind 
that we want to create an identity matrix on the right—not on the left, as in Gauss- Jordan 
elimination. We compute

P 5 c1 0 0 1
0 1 1 1

d h
R14R2 c0 1 1 1

1 0 0 1
d h

R11R2 c1 1 1 0
1 0 0 1

d 5 [A I] 5 P r

Example 8.8
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634       Chapter 8  Codes

Thus, A 5 c1 1
1 0

d , so, by Theorem 8.1, an associated generator matrix is

G 5 c I
A
d 5 £

1 0
0 1
1 1
1 0

§

Remark  In part (a), it is instructive to verify that G and G9 generate equiva-
lent, but not identical, codes. Check that this is so by computing 5Gx : x in Z2

26 and 
5G rx : x in Z2

26.
 We now turn our attention to the main topic of this section, the notion of a dual 
code.

Definition   Let C be a set of code vectors in Zn
2. The orthogonal complement 

of C is called the dual code of C and is denoted C'. That is,

C' 5 5x in Z2
n : c # x 5 0  for all c in C 6

 The dot product in Zn
2 behaves like the dot product in Rn, with one important 

 exception: Property (d) of Theorem 1.2 is no longer true. In other words, in Zn
2, a 

nonzero vector can be orthogonal to itself ! As an example, take x 5 c1
1
d  in Z2

2. Then 
x ? x 5 1 1 1 5 0.

Find the dual code of the code C in Example 8.8(b).

Solution  The code C is

 C 5 5Gx : x in Z2
26

 5 eG c0
0
d , G c0

1
d , G c1

0
d , G c1

1
d f 5 µ £

0
0
0
0

§ , £
0
1
1
0

§ , £
1
0
1
1

§ , £
1
1
0
1

§ ∂

[Alternatively, C 5 5c in Z4 : Pc 5 06 5 null(P). Check that this really does give the 
same code.]
 To find C', we need those vectors in Z4

2 that are orthogonal to all four vectors 
in C. Since there are only 16 vectors altogether in Z4

2, we could proceed by trial and 
 error—but here is a better method. Let y 5 [y1 y2 y3 y4 ]T be in C'. Since y ? c 5 0 
for each c in C, we have four equations, one of which we can ignore, since it just says 
0 5 0. The other three are

y2 1 y3  5 0
y1 1 y3 1 y4 5 0
y1 1 y2 1 y4 5 0

Example 8.7Example 8.7Example 8.7Example 8.7Example 8.7Example 8.9
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Theorem 8.2

Solving this system, we obtain

£
0 1 1 0
1 0 1 1
1 1 0 1

 ∞ 
0
0
0
§ h £

1 0 1 1
0 1 1 0
0 0 0 0

 ∞ 
0
0
0
§

(Check this.) It follows that y1 5 y3 1 y4 and y2 5 y3, so

C' 5 µ £
y3 1 y4

y3

y3

y4

§ ∂ 5 µ y3 £
1
1
1
0

§ 1 y4 £
1
0
0
1

§ ∂ 5 µ £
0
0
0
0

§ , £
1
1
1
0

§ , £
1
0
0
1

§ , £
0
1
1
1

§ ∂

 We now examine the relationship between the generator and parity check matri-
ces of a code and its dual.

If C is an (n, k) binary code with generator matrix G and parity check matrix P, 
then C' is an (n, n 2 k) binary code such that

a. GT is a parity check matrix for C'.
b. PT is a generator matrix for C'.

Proof  By definition, G is an n 3 k matrix with linearly independent columns, P is 
an (n 2 k) 3 n matrix with linearly independent rows, and PG 5 O. Therefore,  
the rows of GT are linearly independent, the columns of PT are linearly independent, 
and

GTPT 5 (PG)T 5 OT 5 O

This shows that GT is a parity check matrix for C' and PT is a generator matrix for C'. 
Since PT is n 3 (n 2 k), C' is an (n, n 2 k) code.

 Find generator and parity check matrices for the dual code C' from Example 8.9.

Solution  There are two ways to proceed. We will illustrate both approaches.

 Method 1: According to Theorem 8.2(b), a generator matrix G' for C' is given by

G' 5 PT 5 c1 0 0 1
0 1 1 1

d
T

5 £
1 0
0 1
0 1
1 1

§

This matrix is in standard form with A 5 c0 1
1 1

d , so a parity check matrix for C' is

P ' 5 [A I] 5 c0 1 1 0
1 1 0 1

d

by Theorem 8.1.

Example 8.7Example 8.7Example 8.7Example 8.7Example 8.7Example 8.10
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 Method 2: Using Theorem 8.2(a) and referring to Example 8.8(b), we obtain a 
parity check matrix P' for C' as follows:

P' 5 GT 5 £
1 0
0 1
1 1
1 0

§
T

5 c1 0 1 1
0 1 1 0

d

This matrix is not in standard form, so we use elementary row operations to convert 
it to

P' 5 c1 0 1 1
0 1 1 0

d h c0 1 1 0
1 1 0 1

d 5 [A I] 5 P1
'

Now we can use Theorem 8.1 to obtain a generator matrix G' for C':

G' 5 c I
A
d 5 £

1 0
0 1
0 1
1 1

§

Let C be the code with generator matrix

G 5 £
1 0
0 1
1 0
0 1

§

List the vectors in C and C'.

Solution  The code C is

C 5 5Gx : x in Z4
26 5 µ £

0
0
0
0

§ , £
1
0
1
0

§ , £
0
1
0
1

§ , £
1
1
1
1

§ ∂

(Note that C is a double repetition code that encodes vectors from Z2
2 as vectors in 

Z4
2 by writing the entries twice. See Exercise 1 in Section 8.2.) Using Theorem 8.2, we 

find the parity check matrix P' for C' to be

P' 5 GT 5 £
1 0
0 1
1 0
0 1

§
T

5 c1 0 1 0
0 1 0 1

d

Thus, P' has the form [A  I ], where A 5 I, so a generator matrix G' for C' is

G' 5 c I
A
d 5 £

1 0
0 1
1 0
0 1

§ 5 G

Hence, C' has the same generator matrix as C, so C' 5 C !

Example 8.7Example 8.7Example 8.7Example 8.7Example 8.7Example 8.11
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Theorem 8.3

 A code C with the property that C' 5 C is called self-dual. We can check that the 
code in Example 8.11 is self-dual by showing that every vector in C is orthogonal to 
all the vectors in C, including itself. (Do this.)
 You may have noticed that in the self-dual code in Example 8.11, every vector in 
C has an even number of 1s. We will prove that this is true for every self-dual code. 
The following definition is useful.

Definition   Let x be a vector in Zn
2. The weight of x, denoted w(x), is the 

 number of 1s in x.

 For example, w([1  1  0  1  0  0  1]T) 5 4. If we temporarily think of x as a 
vector in Rn, then we can give the following alternative descriptions of w(x). Let 1 denote 
the vector (of the same length as x) all of whose entries are 1. Then w(x) 5 x ? 1 and w(x) 
5 x ? x. We can now prove the following interesting facts about self-dual codes.

If C is a self-dual code, then:

a. Every vector in C has even weight.
b. 1 is in C.

Proof  (a) A vector x in Zn
2 has even weight if and only if w(x) 5 0 in Z2. But

w(x) 5 x ? x 5 0

since C is self-dual.
(b) Using property (a), we have 1 ? x 5 w(x) 5 0 in Z2 for all x in C. This means that 
1 is orthogonal to every vector in C, so 1 is in C' 5 C, as required.

F. Jessie MacWilliams (1917–1990) was one of the pioneers of coding theory. She received 
her B.A. and M.A. from Cambridge University in 1938–39, following which she studied in 
the United States at Johns Hopkins University and Harvard University. After marrying and 
raising a family, MacWilliams took a job as a computer programmer at Bell Laboratories in 
Murray Hill, New Jersey, in 1958, where she became interested in coding theory. In 1961, she 
returned to Harvard for a year and obtained a Ph.D.

Her thesis contains one of the most powerful theorems in coding theory. Now known as the 
MacWilliams Identities, this theorem relates the weight distribution (the number of codewords of 
each possible weight) of a linear code to the weight distribution of its dual code. The MacWilliams 
Identities are widely used by coding theorists, both to obtain new theoretical information about 
error-correcting codes and to determine the weight distributions of specific codes.

MacWilliams is perhaps best known for her book The Theory of Error-Correcting Codes 
(1977), written with N. J. A. Sloane of Bell Labs. This book is often referred to as the “bible 
of coding theory.” In 1980, MacWilliams gave the inaugural Emmy Noether Lecture of the 
Association for Women in Mathematics.Co
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Exercises 8.3

Dual Codes

In Exercises 1–4, G is a generator matrix for a code C. Bring 
G into standard form and determine whether the corre-
sponding code is equal to C.

 1. G 5 £
1 0
1 1
1 0

§  2. G 5 £
1 0 1
1 0 0
0 1 1
1 1 0
0 0 1

§

 3. G 5 £
0 0 0
1 0 1
0 1 1
1 1 1

§  4. G 5 £
1 1
1 1
1 0
0 0
1 0

§

In Exercises 5–8, P is a parity check matrix for a code C. 
Bring P into standard form and determine whether the 
 corresponding code is equal to C.

 5. P 5 [1 1 0] 6. P 5 c1 1 0 1
1 1 1 1

d

 7. P 5 £
0 1 1 1 0
1 1 0 0 1
0 0 1 1 1

§

 8. P 5 c0 1 0 1
1 0 0 1

d

In Exercises 9–12, find the dual code C' of the code C.

 9. C 5 • £
0
0
0
§ , £

0
1
0
§ ¶

 10. C 5 • £
0
0
0
§ , £

1
1
0
§ , £

0
0
1
§ , £

1
1
1
§ ¶

 11. C 5 µ £
0
0
0
0

§ , £
0
1
0
0

§ , £
0
1
0
1

§ , £
0
0
0
1

§ ∂

 12. C 5 µ  £
0
0
0
0
0

§ , £
0
1
1
0
1

§ , £
1
0
0
1
0

§ , £
1
1
1
1
1

§  ∂

In Exercises 13–16, either a generator matrix G or a parity 
check matrix P is given for a code C. Find a generator ma-
trix G' and a parity check matrix P' for the dual code of C.

 13. G 5 £
1 1
1 1
1 0
0 1

§  14. G 5 £
1 0
0 1
1 0
1 1
0 1

§

 15. P 5 c1 1 1 0
0 1 0 1

d  16. P 5 £
1 0 1 1 0
0 1 0 0 1
0 0 1 0 1

§

 17. Find generator and parity check matrices for the dual 
of the (7, 4) Hamming code in Example 8.7.

The even parity code En is the subset of Zn
2 consisting of all 

vectors with even weight. The n-times repetition code Repn 
is the subset of Zn

2 consisting of just the two vectors 0 and 1 
(all zeros and all 1s, respectively).
 18. (a)  Find generator and parity check matrices for E3 

and Rep3.
(b) Show that E3 and Rep3 are dual to each other.

 19. Show that En and Repn are dual to each other.
 20. If C and D are codes and C # D, show that D' # C'.
 21. Show that if C is a code with a generator matrix, then 

(C')' 5 C.
 22. Find a self-dual code of length 6.
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Figure 8.2
The southern polar cap of Mars

Figure 8.3
Jupiter’s red spot and the rings of Saturn

 N
AS

A

N
AS

A-
JP

L

N
AS

A-
JP

L

Are C1 5 µ £
0
0
0
0

§ , £
0
0
1
1

§ , £
1
1
0
0

§ , £
1
1
1
1

§ ∂  and C2 5 • £
0
0
0
§ , £

1
0
0
§ , £

1
0
1
§ ¶  (binary)

 linear codes?

Example 8.12

8.4
Linear Codes
We now turn our attention to the most important, and most widely used, class of 
codes: linear codes. In fact, many of the examples we have already looked at fall into 
this category. NASA has made extensive use of linear codes to transmit pictures from 
outer space. In 1972, the Mariner 9 spacecraft used a type of linear code called a Reed-
Muller code to transmit black-and-white images of Mars (Figure 8.2). Then, between 
1979 and 1981, Voyager 1 and Voyager 2 were able to send back remarkable color 
pictures of Jupiter and Saturn (reproduced in black and white in Figure 8.3) using a 
Golay code, another linear code.

Definition   A p-ary linear code is a subspace C of Zn
p.

 As usual, our main interest is the case p 5 2, the binary linear codes. Checking 
to see whether a subset C of Zn

2 is a subspace involves showing that C satisfies the 
conditions of Theorem 6.2. Since in Zn

2 the only scalars are 0 and 1, checking to see 
whether C is closed under scalar multiplication only involves showing that C contains 
the zero vector. All that remains is to check that C is closed under addition.
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Theorem 8.4

Solution  C1 clearly contains the zero vector and is closed under addition, so it is a 
linear code. C2 is not closed under addition, since it does not contain

£
1
0
0
§ 1 £

1
0
1
§ 5 £

0
0
1
§

Hence, C2 is not linear.

 For the remainder of this section, we will dispense with the adjective “binary,” 
since all of the codes we will be considering will be binary codes. If a linear code C is 
a k-dimensional subspace of Zn

2, then we say that C is an (n, k) code.

(a) The code C1 in Example 8.12 is a subspace of Z4
2 and has dimension 2, since

µ £
0
0
1
1

§ , £
1
1
0
0

§ ∂

is a basis for C1. (In fact, C1 has exactly three different two-element bases. What are 
the other two? See Exercise 9.) Hence, C1 is a (4, 2) code.
(b) The (7, 4) Hamming code H introduced in Section 8.2 is a (7, 4) linear code (fortu-
nately!), in our new terminology. It is linear because it has a generator matrix G, so its 
vectors are all the vectors of the form Gx, where x is in Z4

2. But this is just the column 
space of the 7 3 4 matrix G and so is a subspace of Z7

2. Since the four columns of G 
are linearly independent (why?), they form a basis for H. Therefore, H is a (7, 4) code.
(c) The codes

C 5 • £
0
0
0
§ , £

1
1
1
§ ¶   and  C' 5 • £

0
0
0
§ , £

1
1
0
§ , £

1
0
1
§ , £

0
1
1
§ ¶

are dual codes. It is easy to see that each of these is a linear code, that dim C 5 1, and 
that dim C' 5 2. (Check these claims.) Therefore, C is a (3, 1) code and C' is a (3, 2) 
code. The fact that 3 5 1 1 2 is not an accident, as the next theorem shows.

Let C be an (n, k) linear code.

a. The dual code C' is an (n, n 2 k) linear code.
b. C contains 2k vectors, and C' contains 2n2k vectors.

Proof  (a) Since C is an (n, k) linear code, it is a k-dimensional subspace of Zn
2. Its 

dual C' is the orthogonal complement of C and so is also a subspace of Zn
2, by Theo-

rem 5.9(a). Thus, C' is a linear code.

Example 8.13
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 Now we can apply Theorem 5.13 to show that

dim C' 5 n 2 dim C 5 n 2 k

(Note: Theorems 5.9 and 5.13 are true if Rn is replaced by Zn
2. This is the case for most 

of the nongeometric results about orthogonality.) It follows that C' is an (n, n 2 k) 
code.
(b) Let {v1, . . . , vk} be a basis for C. Then the vectors in C are all the vectors of the 
form

v 5 c1v1 1 c2v2 1 c1 ckvk

where each ci is either 0 or 1. Therefore, there are two possibilities for c1 and, for each 
of these, two possibilities for c2, and so on, making the total number of possibilities 
for v

2 3 2 3 c3 2
k times

5 2k

Thus, C contains exactly 2k vectors. Applying this formula to its (n, n 2 k) dual code, 
we see that C' has 2n2k vectors.

 We now construct one of the oldest families of linear codes, the Reed-Muller 
codes. As mentioned earlier, this is the type of code that was used by the Mariner 
9  spacecraft to transmit pictures of Mars. In order to be transmitted, each photo-
graph had to be broken down into picture elements, or pixels. This was done by 
overlaying the photograph with a 700 3 832 pixel grid and then assigning to each 
pixel one of 64 shades of gray, ranging from white (0) to black (63). Since 64 5 26, 
we can use binary arithmetic to represent each of these shades: white is 000000 and 
black is 111111. We can then rewrite these 64 binary numbers as vectors in Z6

2 and 
 encode them using a code that corrects as many errors as possible. The code that was 
chosen for use by Mariner 9 belongs to a large family of codes that are most easily   
de fined inductively.

Definition   The (first-order) Reed-Muller codes Rn are defined inductively as 
follows:

1. For n 5 0, R0 5 Z2 5 {0, 1}.
2.  For n $ 1, Rn is the subspace of Z2n

2  whose basis consists of all vectors of 
the form

cu
u
d   and   c0

1
d

where u is a basis vector in Rn21, 0 is the zero vector in Z2n21

2 , and 1 is the vector 
of 1s in Z2n21

2 .

 To get a sense of what vectors these codes contain, let’s use the definition to con-
struct R1 and R2. A basis for R0 5 Z2 is just {1}, so a basis for R1 is

e c1
1
d , c0

1
d f

Recall that the binary, or base two, 
representation of a number arises 
from writing it as a sum of distinct 
powers of two. If n 5 bk ? 2k 1 p 1 
b1 ? 2 1 b0, where each bi is 0 or 1, 
then in base two n is represented as 
n 5 bi p b1b0. For example, 25 5 
16 1 8 1 1 5 1 ? 24 1 1 ? 23 1  
0 ? 22 1 0 ? 2 1 1, so the  binary 
 representation of 25 is 11001.

µ

The Reed-Muller codes are named 
after the computer scientists Irving 
S. Reed and David E. Muller, who 
published papers, independently, 
about these codes in 1954.

63247_08_ch08_p620-649.indd   641 01/11/13   12:54 PM



642       Chapter 8  Codes

Theorem 8.5

Thus, by closure under addition, R1 must also contain the vectors

c1
1
d 1 c0

1
d 5 c1

0
d   and   c1

1
d 1 c1

1
d 5 c0

0
d

It is easy to check that no other vectors can be obtained by addition, so

R1 5 e c0
0
d , c0

1
d , c1

0
d , c1

1
d f 5 Z2

2

 Similarly, a basis for R2 is

µ £
1
1
1
1

§ , £
0
1
0
1

§ , £
0
0
1
1

§ ∂

and, by closure under addition, it is easy to check that the 8 5 23 vectors in R2 are

R2 5 µ £
0
0
0
0

§ , £
0
0
1
1

§ , £
0
1
0
1

§ , £
0
1
1
0

§ , £
1
0
1
0

§ , £
1
0
0
1

§ , £
1
1
0
0

§ , £
1
1
1
1

§ ∂

 Notice that in R1 every code vector except 0 and 1 has weight 1, and in R2 every 
code vector except 0 and 1 has weight 2. This is a general property of the  Reed-Muller 
codes, and we prove it as part of the next theorem. But first, note that the complement 
of a vector x in Zn

2 is the vector x obtained by changing all the zeros to 1s and vice 
versa. For example,

x 5 £
1
1
0
1

§ 3 x 5 £
0
0
1
0

§

Observe that x 5 x 1 1, where 1 is the vector consisting entirely of 1s.

For n $ 1, the Reed-Muller code Rn is a (2n, n 1 1) linear code in which every code 
vector except 0 and 1 has weight 2n21.

Proof  We will prove this theorem by induction on n. For n 5 1, we have already 
seen that R1 5 Z2

2 is a (2, 2) 5 (21, 1 1 1) linear code in which every code vector 
except 0 and 1 has weight 1 5 21–1. Assume that the result is true for n 5 k ; that is, 
assume that Rk is a (2k, k 1 1) linear code in which every code vector except 0 and 1 
has weight 2k21. Now consider Rk11.

 By construction, Rk11 has a basis consisting of vectors of the form cu
u
d , where u is 

in Rk, together with the vector c0
1
d . By the induction hypothesis, the vectors u, 0, and 

1 are in Z2k

2 ; hence, the basis vectors for Rk11 are in Z2k11

2 . Moreover, the dimension of 
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Rk is k 1 1, so there are k 1 1 vectors of the form cu
u
d  and one more, c0

1
d . It follows 

that the dimension of Rk11 is k 1 2, and therefore Rk11 is a (2k11, k 1 2) linear code.
 For the final assertion, note that the vectors in Rk11 are obtained as linear combi-
nations of the basis vectors and so are of the form

v 5 c1 cu1

u1
d 1 c1 ck11 cuk11

uk11
d 1 ck12 c01 d

where {u1, . . . , uk11} is a basis for Rk, 0 and 1 are in Z2k

2 , and each ci is 0 or 1. Sup-
pose v 2 0, 1 and let u 5 c1u1 1 c1 ck11uk11. (Hence, u is in Rk.) If ck+2 5 0, then  
u 2 0, 1, so, by the induction hypothesis, u has weight 2k21. But then v has weight  
2 ? 2k21 5 2k. If ck12 5 1, then v has the form

v 5 cu
u
d 1 c0

1
d 5 c u

u 1 1
d 5 cu

u
d

where u is in Rk. Since

w(u) 5 2k 2 w(u)

(why?), we have

w(v) 5 w(u) 1 w(u) 5 2k

as required. This completes the induction, and we conclude that the theorem is true 
for all n $ 1.

 As noted, Mariner 9 required a code with 64 5 26 vectors. By Theorem 8.5, the 
Reed-Muller code R5 has dimension 6 over Z2. As you will see in the next section, it is 
also capable of detecting and correcting multiple errors. That is why the Reed-Muller 
code was the one that NASA used for the transmission of the Mariner photographs. 
Exercises 13–16 explore further aspects of this important class of codes.

Exercises 8.4

Linear Codes

Which of the codes in Exercises 1–8 are linear codes?

 1. C 5 e c1
0
d , c0

1
d , c1

1
d f

 2. C 5 e c0
0
d , c1

1
d f

 3. C 5 • £
0
0
0
§ , £

1
0
1
§ , £

1
1
0
§ , £

0
1
0
§ ¶

 4. C 5 • £
0
0
0
§ , £

1
0
0
§ , £

0
1
0
§ , £

0
0
1
§ ¶

 5. C 5 • £
0
0
0
§ , £

0
1
0
§ , £

0
1
1
§ , £

0
0
1
§ ¶

 6. C 5 µ £
0
0
0
0

§ , £
1
0
1
0

§ , £
0
1
0
1

§ , £
1
1
0
0

§ , £
0
0
1
1

§ , £
1
1
1
1

§ ∂

 7. The even parity code En (See Exercise 18 in Section 8.3.)
 8. The odd parity code On consisting of all vectors in Zn

2 
with odd weight

 9. Find the other two bases for the code C1 in  
Example 8.13.
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The Minimum Distance of a Code
Consider the triple repetition code

C 5 5c0, c16 5 • £
0
0
0
§ , £

1
1
1
§ ¶

If one or two errors occur in the transmission of either of these code vectors, the  resulting 
vector cannot be another vector in C. So C can detect up to two errors. For example, if 
 errors occur in the first and second entries when c0 is transmitted, then the vector

c r 5 £
1
1
0
§

is received. However, the receiver has no way of correcting the error, since c9 would also 
result if a single error occurred during the transmission of c1. But any single error can 
be corrected, since the resulting vector can have arisen in only one way. For  example, if

cs 5 £
0
1
0
§

is received and we know that at most one error has occurred, then the original vector 
must have been c0, since c0 cannot arise from c1 via a single error.
 We will now generalize these ideas. As you will see, the notion of Hamming dis-
tance plays a crucial role in the definition.

Definition   Let C be a (binary) code. The minimum distance of C is the small-
est Hamming distance between any two distinct vectors in C. That is,

d(C) 5 min 5dH (x, y) : x 2 y in C6

8.5

 10. (a)  If a (9, 4) linear code has generator matrix G and 
parity check matrix P, what are the dimensions of 
G and P?

(b) Repeat part (a) for an (n, k) linear code.
 11. For a linear code C, show that (C')' 5 C without 

using matrices.
 12. If C is an (n, k) linear code that is self dual, prove 

that n must be even. [Hint: Use the analogue in Zn
2 of 

 Theorem 5.13.]
 13. Write out the vectors in the Reed-Muller code R3.
 14. Define a family of matrices inductively as follows: 

G0 5 [1] and, for n $ 1,

Gn 5 cGn21  0
Gn21  1

d

  where 0 is a zero vector and 1 is a vector consisting 
 entirely of ones.
(a) Write out G1, G2, and G3.
(b) Using induction, prove that for all n $ 0, Gn is a 

generator matrix for the Reed-Muller code Rn.

 15. Find a parity check matrix for R2.

 16. Find a parity check matrix for R3.
 17. Prove that, for a linear code C, either all the code 

 vectors have even weight or exactly half of them 
do. [Hint: Let E be the set of vectors in C with even 
weight and O the set of vectors in C with odd weight. 
If O is not empty, let co be in O and consider 
O9 5 {co 1 e : e in E}. Show that O9 5 O.]
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 Clearly, the minimum distance of the triple repetition code C above is 3.

Find the minimum distance of the code

C 5 5c0, c1, c2, c36

where c0 5 £
0
0
0
0

§ ,  c1 5 £
0
1
0
1

§ ,  c2 5 £
1
0
1
0

§ ,  c3 5 £
1
1
1
1

§

Solution  We need to compute the Hamming distance between each pair of distinct 

vectors. [There are four vectors, so there are a4
2
b 5 6 pairs.] We find that:

dH(c0, c1) 5 2    dH(c0, c2) 5 2    dH(c0, c3) 5 4

dH(c1, c2) 5 4    dH(c1, c3) 5 2    dH(c2, c3) 5 2

Therefore, d(C) 5 2.

 It is possible to picture the notions of minimum distance and error correction 
geometrically. In the case of the triple repetition code C, we have a subset (actually, 
a subspace) of Z3

2. We can represent the vectors in Z3
2 as the vertices of a unit cube, 

as shown in Figure 8.4(a). The Hamming distance between any two vectors x and y 
is just the number of edges in a shortest path from x to y. The code C corresponds 
to two of these vertices, c0 and c1. The fact that d(C) 5 3 corresponds to the fact 
that c0 and c1 are three units apart, as shown in Figure 8.4(b). If a received vector x 
is within one unit of either of these code vectors and we know that at most one error 
has  occurred, we can correctly decode x as the nearest code vector. In Figure 8.4(b),  
x would be decoded as c0, and y would be decoded as c1. This agrees with the fact that 
C can correct single but not double errors.

0
0
1

0
0
0

1
1
1

1
1
0

0
1
1

1
0
0

1
0
1

0
1
0

(a)

c0

x

y

c1

(b)

Figure 8.4

Example 8.14

 In Exercise 13, you are asked to draw a picture that illustrates the situation in 
 Example 8.14. In general, we cannot draw pictures of Zn

2, but a Euclidean analogy is 
helpful. If a code can correct up to k errors, think of the code vectors as the centers 
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Theorem 8.6

of spheres of radius k. The code vectors themselves are separated by at least d units. 
Then, if a received vector x is inside one of these spheres, it will be decoded as the 
vector corresponding to the center of that sphere. In Figure 8.5, x will be decoded as 
c0. This process is known as nearest neighbor decoding.
 Figure 8.5 suggests that if a code is able to correct k errors, then the “spheres” 
centered at the code vectors cannot touch or overlap; that is, we must have d . 2k. 
This turns out to be correct, as we now make precise. A code is said to detect k  errors 
if, for each code vector c and each vector c9 obtained by changing up to k of the 
 entries of c, c9 is not a code vector. A code is said to correct k errors if, for each code 
vector c and each vector c9 obtained by changing up to k of the entries of c, nearest 
neighbor decoding of c9 produces c.

Let C be a (binary) code with minimum distance d.

a. C detects k errors if and only if d $ k 1 1.
b. C corrects k errors if and only if d $ 2k 1 1.

Proof  (a) Assume that d $ k 1 1 and let c be a vector in C. If up to k errors are 
introduced into c, then the resulting vector c9 has the property that dH(c, c9) # k. But 
then c9 cannot be a code vector, since if it were, we would have

k 1 1 # d # dH (c, c r) # k

which is impossible.
 Conversely, if C can detect up to k errors, then the minimum distance between 
any two code vectors must be greater than k. (Why?) It follows that d $ k 1 1.
(b) Assume that d $ 2k 1 1 and let c be a vector in C. As in the proof of property (a), 
let c9 be a vector such that dH(c, c9) # k. Let b be another vector in C. Then dH(c, b) $ 
d $ 2k 1 1, so, by the Triangle Inequality,

dH(c, c r) 1 dH(c r, b) $ dH(c, b) $ 2k 1 1

Therefore,

dH(c r, b) $ 2k 1 1 2 dH(c, c r) $ 2k 1 1 2 k 5 k 1 1 . dH(c r, c)

So c9 is closer to c than to b, and nearest neighbor decoding correctly decodes c9 as c.
 Conversely, assume that C can correct up to k errors. We will show that if d , 
2k 1 1 (i.e., d # 2k), then we obtain a contradiction. To do this, we will find a code 
vector c and a vector c9 such that dH(c, c9) # k yet nearest neighbor decoding decodes 
c9 as the wrong code vector b 2 c.
 Let b and c be any code vectors in C such that

dH (b, c) 5 d # 2k
There is no harm in assuming that these d errors occur in the first d entries of b. 
 (Otherwise, we can just permute the entries of all the vectors until this is true.) As-
suming that the code vectors in C have length n, we construct a vector c9 in Zn

2 as fol-
lows. Make c9 agree with b in the first k entries, agree with c in the next d 2 k entries 
(why is d $ k?), and agree with both b and c in the last n 2 d entries. In other words, 
the entries of c9 satisfy

c ri 5 •
bi 2 ci if i 5 1, . . . , k
 ci 2 bi if i 5 k 1 1, . . . , d
bi 5 ci if i 5 d 1 1, . . . , n

d

c0

x y

c1

k k

Figure 8.5
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Some books call such a code an 
(n, 2k, d) code or, more gener-
ally, an (n, M, d) code, where n is 
the length of the vectors, M is the 
number of code vectors, and d is 
the minimum distance.
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 Now dH(c, c9) 5 k and dH(c9, b) 5 d 2 k # k. (Why?) Therefore, dH(c9, b) # 
dH(c9, c), so either we have equality and it is impossible to decide whether c9 should 
be decoded as b or c or the inequality is strict and c9 will be incorrectly decoded as b. 
In either case, we have shown that C cannot correct k errors, which contradicts our 
hypothesis. We conclude that d $ 2k 1 1.

 In the case of a linear code, we have the following notation: If an (n, k) linear 
code has minimum distance d, we refer to it as an (n, k, d) code. For example, the 
code in Example 8.14 is a (4, 2, 2) code. Linear codes have the advantage that their 
minimum distance can be easily determined. In Exercise 14, you are asked to show 
that the minimum distance of a linear code is the same as the minimum weight of 
a nonzero code vector. It is also possible to determine d(C ) by examining a parity 
check matrix for C.

Let C be an (n, k) linear code with parity check matrix P. Then the minimum 
 distance of C is the smallest integer d for which P has d linearly dependent columns.

Proof  Assume that d(C) 5 d. The parity check matrix P is an (n 2 k) 3 n matrix 
with the property that, for any vector x in Zn

2, Px 5 0 if and only if x is in C. As you 
will be asked to show in Exercise 14, C contains a vector c of weight d. Then Pc is 
a linear combination of exactly d columns of P. But, since Pc 5 0, this implies that 
some set of d columns of P is linearly dependent. On the other hand, suppose some 
set of d 2 1 columns of P is linearly dependent—say,

pi1
1 pi2

1 c1 pid21
5 0

Let x be a vector in Zn
2 with 1s in positions i1, . . . , id21 and zeros elsewhere. Then x 

is a vector of weight d 2 1 such that Px 5 0. Hence, x is a code vector of weight d 2 1 ,  
d 5 d(C). This is impossible, by Exercise 14, so we deduce that rank (P) 5 d 2 1.
 Conversely, assume that any d 2 1 columns of P are linearly independent but 
some set of d columns of P is linearly dependent. Since Px is a linear combination 
of those columns of P corresponding to the positions of the 1s in x, Px 2 0 for any 
 vector x of weight d 2 1 or less. Therefore, there are no nonzero code vectors of 
weight less than d. But some set of d columns of P is linearly dependent, so there ex-
ists a vector x of weight d such that Px 5 0. Hence, this x is a code vector of weight d. 
By Exer cise 14 again, we deduce that d(C) 5 d.

Show that the Hamming codes all have minimum distance 3.

Solution  Recall that the (n, k) Hamming code has an (n 2 k) 3 n parity check 
matrix P whose columns are all of the nonzero vectors of Zn2k

2 , arranged so that the 
identity matrix occupies the last n 2 k columns. For example, the (7, 4) Hamming 
code has parity check matrix

P 5 £
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

§

Example 8.15
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Example 8.16

Exercises 8.5

The Minimum Distance of a Code

Find the minimum distance of the codes in Exercises 1–6.

 1. C 5 • £
0
0
0
§ , £

0
1
0
§ , £

1
1
0
§ ¶

 2. C 5 µ £
0
0
1
1

§ , £
1
1
0
0

§ , £
1
0
1
0

§ , £
0
1
0
1

§ ∂

 3. The even parity code En

 4. The n-times repetition code Repn

 5. The code with parity check matrix P 5 [I 0  A], where

A 5 £
1 1 0 1 1 0 1
1 0 1 1 1 1 0
0 1 1 1 0 0 0
0 0 0 1 1 1 1

§

 6. The code with parity check matrix

P 5 £
1 1 0 0
1 1 1 1
1 0 0 1

§

In Exercises 7 and 8, compute the minimum distance of the 
code C and decode the vectors u, v, and w using nearest 
neighbor decoding.

 7. C 5 µ  £
1
0
0
1
0

§ , £
1
1
0
0
1

§ , £
0
0
1
0
1

§ , £
0
1
1
1
0

§  ∂, u 5 £
1
1
0
0
0

§ , v 5 £
0
1
0
0
0

§ ,

  w 5 £
0
0
0
0
1

§

 8. C has generator matrix

 G 5  

1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

 , u 5  

1
0
0
0
1
1
0

 , v 5  

1
1
1
0
0
0
0

 , w 5  

0
0
0
0
1
1
1

 

We can always find three linearly dependent columns: Just take the columns corre-
sponding to e1, e2, and e1 1 e2. (In the matrix on the previous page, these would be 
columns 5, 6, and 1, respectively.) But any two columns are linearly independent. By 
Theorem 8.7, this means the Hamming codes have minimum distance 3.

 Example 8.15, combined with Theorem 8.6, tells us that the Hamming codes are 
all single error–correcting. The other major type of linear code that we have consid-
ered is the family of Reed-Muller codes. These are capable of correcting many errors, 
which is one of the reasons they were chosen to transmit photographs from space.

Show that the Reed-Muller code Rn has minimum distance 2n21 for n $ 1.

Solution  By Theorem 8.5, every vector in Rn except 0 and 1 has weight 2n21. Since 1 
has weight 2n, this means that the minimum weight of a nonzero code vector in Rn is 
2n21. Hence, d(Rn) 5 2n21, by Exercise 14.
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In Exercises 9–12, construct a linear (n, k, d) code or prove 
that no such code exists.

 9. n 5 8, k 5 1, d 5 8 10. n 5 8, k 5 2, d 5 8

 11. n 5 8, k 5 5, d 5 5 12. n 5 8, k 5 4, d 5 4

 13. Draw a picture (similar to Figure 8.4) to illustrate 
 Example 8.14.

 14. Let C be a linear code. Show that the minimum dis-
tance of C is equal to the minimum weight of a non-
zero code vector.

 15. Show that d 2 1 # n 2 k for any linear (n, k, d) code.
 16. Let C be a linear (n, k, d) code with parity check ma-

trix P. Prove that d 5 n 2 k 1 1 if and only if every 
n 2 k columns of P are linearly independent.
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