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Preface

Computer simulations are now an integral part of contemporary basic and applied physics, and
computation has become as important as theory and experiment. The ability to compute is now
part of the essential repertoire of research scientists.

Since writing the first two editions of our text, more courses devoted to the study of physics
using computers have been introduced into the physics curriculum, and many more traditional
courses are incorporating numerical examples. We are gratified to see that our text has helped
shape these innovations. The purpose of our book includes the following:

1. To provide a means for students to do physics.

2. To give students an opportunity to gain a deeper understanding of the physics they have
learned in other courses.

3. To encourage students to “discover” physics in a way similar to how physicists learn in
the context of research.

4. To introduce numerical methods and new areas of physics that can be studied with these
methods.

5. To give examples of how physics can be applied in a much broader context than is dis-
cussed in the traditional physics undergraduate curriculum.

6. To teach object-oriented programming in the context of doing science.

Our overall goal is to encourage students to learn about science through experience and by
asking questions. Our objective always is understanding, not the generation of numbers.

The major change in this edition is the use of the Java programming language instead of
True Basic, which was used in the first two editions. We chose Java for some of the same rea-
sons we originally chose True Basic. Java is available for all popular operating systems, and is
platform independent, contains built-in graphics capabilities, is freely available, and has all the
features needed to write powerful computer simulations. There is an abundance of free open
source tools available for Java programmers, including the Eclipse integrated development en-
vironment. Because Java is popular, it continues to evolve, and its speed is now comparable
to other languages used in scientific programming. In addition, Java is object oriented, which
has become the dominant paradigm in computer science and software engineering, and there-
fore learning Java is excellent preparation for students with interests in physics and computer
science. Java programs can be easily adapted for delivery over the Web. Finally, as for True
Basic, the nongraphical parts of our programs can easily be converted to other languages such
as C/C++, whose syntax is similar to Java.
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When we chose True Basic for our first edition, introductory computer science courses were
teaching Pascal. When we continued with True Basic in the second edition, computer science
departments were experimenting with teaching C/C++. Finally, we are able to choose a lan-
guage that is commonly taught and used in many contexts. Thus, it is likely that some of the
students reading our text will already know Java and can contribute much to a class that uses
our text.

Java provides many powerful libraries for building a graphical user interface and incor-
porating audio, video, and other media. If we were to discuss these libraries, students would
become absorbed in programming tasks that have little or nothing to do with physics. For this
reason our text uses the Open Source Physics library which makes it easy to write programs that
are simpler and more graphically oriented than those that we wrote in True Basic. In addition,
the Open Source Physics library is useful for other computational physics projects which are
not discussed in this text, as well as general programming tasks. This library provides for easy
graphical input of parameters, tabular output of data, plots, visualizations and animations, and
the numerical solution of ordinary differential equations. It also provides several useful data
structures. The Open Source Physics library was developed by Wolfgang Christian, with the
contributions and assistance of many others. The book Open Source Physics: A User’s Guide with
Examples by Wolfgang Christian is available separately and discusses the Open Source Physics
library in much more detail. A CD that comes with the User’s Guide contains the source code
for the Open Source Physics library, the programs in this book, as well as ready-to-run ver-
sions of these programs. The source code and the library can also be downloaded freely from
<www.opensourcephysics.org/sip>.

The ease of doing visualizations is a new and important aspect of Java and the Open Source
Physics library, giving Java an advantage over other languages such as C++ and Fortran, which
do not have built-in graphics capabilities. For example, when debugging a program, it is fre-
quently much quicker to detect when the program is not working by looking at a visual repre-
sentation of the data rather than by scanning the data as lists of numbers. Also, it is easier to
choose the appropriate values of the parameters by varying them and visualizing the results.
Finally, more insight is likely to be gained by looking at a visualization than a list of num-
bers. Because animations and the continuous plotting of data usually cause a program to run
more slowly, we have designed our programs so that the graphical output can be turned off or
implemented infrequently during a simulation.

Java provides support for interacting with a program during runtime. The Open Source
Physics library makes this interaction even easier, so that we can write programs that use a
mouse to input data, such as the location of a charge, or toggle the value of a cell in a lattice. We
also do not need to input how long a simulation should run and can stop the program at any
time to change parameters.

As with our previous editions, we assume no background in computer programming. Much
of the text can be understood by students with only a semester each of physics and calculus.
Chapter[2]introduces Java and the Open Source Physics library. In Chapter [3|we discuss the con-
cept of interfaces and how to use some of the important interfaces in the Open Source Physics
library. Later chapters introduce more Java and Open Source Physics constructs as needed, but
essentially all of the chapters after Chapter [3|can be studied independently and in any order.
We include many topics that are sometimes considered too advanced for undergraduates, such
as random walks, chaos, fractals, percolation, simulations of many particle systems, and top-
ics in the theory of complexity, but we introduce these topics so that very little background
is required. Other chapters discuss optics, electrodynamics, relativity, rigid body motion, and
quantum mechanics, which require knowledge of the physics found in the corresponding stan-
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dard undergraduate courses.

This text is written so that the physics drives the choice of algorithms and the programming
syntax that we discuss. We believe that students can learn how to program more quickly with
this approach because they have an immediate context, namely doing simulations, in which
to hone their skills. In the beginning most of the programming tasks involve modifying the
programs in the text. Students should then be given some assignments that require them to
write their own programs by following the format of those in the text. The students may later
develop their own style as they work on their projects.

Our text is most appropriately used in a project-oriented course that lets students with a
wide variety of backgrounds and abilities work at their own pace. The courses that we have
taught using this text have a laboratory component. From our experience we believe that active
learning where students are directly grappling with the material in this text is the most efficient.
In a laboratory context students who already know a programming language can help those
who do not. Also, students can further contribute to a course by sharing their knowledge from
various backgrounds in physics, chemistry, computer science, mathematics, biology, economics,
and other subjects.

Although most of our text is at the undergraduate level, many of the topics are considered
to be graduate level and thus would be of interest to graduate students. One of us regularly
teaches a laboratory-based course on computer simulation with both undergraduate and grad-
uate students. Because the course is project oriented, students can go at their own pace and
work on different problems. In this context, graduate and undergraduate students can learn
much from each other.

Some instructors who might consider using our text in a graduate-level context might think
that our text is not sufficiently rigorous. For example, in the suggested problems we usually do
not explicitly ask students to do an extensive data analysis. However, we do discuss how to
estimate errors in Chapter We encourage instructors to ask for a careful data analysis on
at least one assignment, but we believe that it is more important for students to spend most of
their time in an exploratory mode where the focus is on gaining physical insight and obtaining
numerical results that are qualitatively correct.

There are four types of suggested student activities. The exercises, which are primarily
found in the beginning of the text, are designed to help students learn specific programming
techniques. The problems, which are scattered throughout each chapter, are open ended and
require students to run, analyze, and modify programs given in the text, or write new, but simi-
lar programs. Students will soon learn that the format for most of the programs is very similar.
Starred problems require either significantly more background or work and may require the
writing of a program from scratch. However, the programs for these problems still follow a
similar format. The projects at the end of most of the chapters are usually more time consum-
ing and would be appropriate for term projects or independent student research. Many new
problems and projects have been added to this edition, while others have been improved or
eliminated. Instructors and students should view the problem descriptions and questions as
starting points for thinking about the system of interest. It is important that students read the
problems even if they do not plan to do them.

We encourage instructors to ask students to write laboratory reports for at least some of the
problems. The Appendix to Chapter 1 provides guidance on what these reports should include.
Part of the beauty and fun of doing computer simulations is that one is forced to think about
the choice of algorithm, its implementation, the choice of parameters, what to measure, and
the results. Do the results make sense? What happens if you change a parameter? What if you
change the algorithm? Much physics can be learned in this way.
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Although all of the programs discussed in the text can be downloaded freely, most are
listed in the text to encourage students to read them carefully. Students might find some useful
techniques that they can use elsewhere, and the discussion in the text frequently refers to the
listings.

A casual perusal of the text might suggest that the text is bereft of figures. One reason that
we have not included more figures is that most of the programs in the text have an important
visual component in color. Black and white figures pale in comparison. Much of the text is
meant to be read while working on the programs. Thus, students can easily see the plots and
animations produced by the programs while they are reading the text.

As new technologies become available and the backgrounds and expectations of students
change, the question of what is worth knowing needs to be reconsidered. Today, calculators
not only do arithmetic and numerical operations, but most can do algebra, calculus, and plot-
ting. Students have lost the sense of number and most can only do the simplest mathematical
manipulations in their head. On the other hand, most students feel comfortable using com-
puters and gathering information off the Web. Because there exist programs and applets that
can perform many of the simulations in this text, why should students learn how to write their
own programs? We have at least two answers. First, most innovative scientific research involves
writing programs that do not fit into the domains of existing software. More importantly, we
believe that students obtain a deeper understanding of the physics and the algorithms them-
selves by writing and modifying their own programs. Just as we need to insure that students
can carry out basic mathematical operations without a calculator so that they understand what
these operations mean, we must do the same when it comes to computational physics.

The recommended readings at the end of each chapter have been selected for their pedagog-
ical value rather than for completeness or for historical accuracy. We apologize to our colleagues
whose work has been inadvertently omitted, and we would appreciate suggestions for new and
additional references.

Because students come with a different skill set than most of their instructors, it is impor-
tant that instructors realize that certain aspects of this text might be easier for their students
than for them. Some instructors might be surprised that much of the code for organizing the
simulations is “hidden” in the Open Source Physics library (although the source code is freely
available). Some instructors will initially think that Chapter [2| contains too much material.
However, from the student’s perspective this material is not that difficult to learn. They are
used to downloading files, using various software environments, and learning how to make
software do what they want. The difficult parts of the text, where instructor input is most
needed, is understanding the physics and the algorithms. Converting algorithms to programs
is also difficult for many students, and we spend much time in the text explaining the programs
that implement various algorithms. In some cases instructors will find it difficult to set up an
environment to use Java and the Open Source Physics library. Because this task depends on the
operating system, we have placed instructions on how to set up an environment for Java and
Open Source Physics at <opensourcephysics.org>. This website also contains links to updates
of the evolving Open Source Physics library as well as other resources for this text including the
source code for the programs in the text.

We acknowledge generous support from the National Science Foundation which has al-
lowed us to work on many ideas that have found their way into this textbook. We also thank
Kipton Barros, Mario Belloni, Doug Brown, Francisco Esquembre, and Joshua Gould for their
advice, suggestions, and contributions to the Open Source Physics library and to the text. We
thank Anne Cox for suggesting numerous improvements to the narrative and for hosting an
Open Source Physics developer’s workshop at Eckerd College.
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We are especially grateful to Louis Colonna-Romano for drawing almost all of the figures.
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We are especially thankful to students and faculty at Clark University, Davidson College,
and Kalamazoo College who have generously commented on the Open Source Physics project
as they class tested early versions of this manuscript. Carlos Ortiz helped prepare the index for
this book.

Many individuals reviewed parts of the text and we thank them for their assistance. They
include Lowell M. Boone, Roger Cowley, Shamanthi Fernando, Alejandro L. Garcia, Alexander
L. Godunov, Rubin Landau, Donald G. Luttermoser, Cristopher Moore, Anders Sandvik, Ross
Spencer, Dietrich Stauffer, Jutta Luettmer-Strathmann, Daniel Suson, Matthias Troyer, Slavomir
Tuleja, and Michael T. Vaughn. We thank all our friends and colleagues for their encouragement
and support.
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Chapter 1

Introduction

The importance of computers in physics and the nature of computer simulation is discussed.
The nature of object-oriented programming and various computer languages is also considered.

1.1 Importance of computers in physics

Computation is now an integral part of contemporary science and is having a profound effect
on the way we do physics, on the nature of the important questions, and on the physical systems
we choose to study. Developments in computer technology are leading to new ways of thinking
about physical systems. Asking “How can I formulate this problem on a computer?” has led
to the understanding that it is practical and natural to formulate physical laws as rules for a
computer rather than only in terms of differential equations.

For the purposes of discussion, we will divide the use of computers in physics into the
following categories: numerical analysis, symbolic manipulation, visualization, simulation, and
the collection and analysis of data. Numerical analysis refers to the solution of well-defined
mathematical problems to produce numerical (in contrast to symbolic) solutions. For example,
we know that the solution of many problems in physics can be reduced to the solution of a set
of simultaneous linear equations. Consider the equations

2x+3y =18
x-y=4

It is easy to find the analytical solution x = 6, y = 2 using the method of substitution. Suppose
we wish to solve a set of four simultaneous equations. We again can find an analytical solution,
perhaps using a more sophisticated method. However, if the number of simultaneous equations
becomes much larger, we would need to use a computer to find a solution. In this mode the
computer is a tool of numerical analysis. Because it is often necessary to compute multidimen-
sional integrals, manipulate large matrices, or solve nonlinear differential equations, this use of
the computer is important in physics.

One of the strengths of mathematics is its ability to use the power of abstraction, which
allows us to solve many similar problems simultaneously by using symbols. Computers can be
used to do much of the symbolic manipulation. As an example, suppose we want to know the
solution of the quadratic equation, ax? + bx + ¢ = 0. A symbolic manipulation program can give
the solution as x = [-b + Vb? —4ac]/2a. In addition, such a program can give the usual numeri-
cal solutions for specific values of a, b, and c. Mathematical operations such as differentiation,
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sin X

Figure 1.1: What is the meaning of the sine function?

integration, matrix inversion, and power series expansion can be performed using symbolic
manipulation programs. The calculation of Feynman diagrams, which represent multidimen-
sional integrals of importance in quantum electrodynamics, has been a major impetus to the
development of computer algebra software that can manipulate and simplify symbolic expres-
sions. Maxima, Maple, and Mathematica are examples of software packages that have symbolic
manipulation capabilities as well as many tools for numerical analysis. Matlab and Octave are
examples of software packages that are convenient for computations involving matrices and
related tasks.

As the computer plays an increasing role in our understanding of physical phenomena,
the visual representation of complex numerical results is becoming even more important. The
human eye in conjunction with the visual processing capacity of the brain is a very sophisticated
device. Our eyes can determine patterns and trends that might not be evident from tables of
data and can observe changes with time that can lead to insight into the important mechanisms
underlying a system’s behavior. The use of graphics can also increase our understanding of the
nature of analytical solutions. For example, what does a sine function mean to you? We suspect
that your answer is not the series, sinx = x — x3/3! + x°/5! +---, but rather a periodic, constant
amplitude curve (see Figure[L.I). What is most important is the mental image gained from a
visualization of the form of the function.

Traditional modes of presenting data include two- and three-dimensional plots including
contour and field line plots. Frequently, more than three variables are needed to understand
the behavior of a system, and new methods of using color and texture are being developed to
help researchers gain greater insights into their data.

An essential role of science is to develop models of nature. To know whether a model is con-
sistent with observation, we have to understand the behavior of the model and its predictions.
One way to do so is to implement the model on a computer. We call such an implementation a
computer simulation or simulation for short. For example, suppose a teacher gives $10 to each
student in a class of 100. The teacher, who also begins with $10 in her pocket, chooses a student
at random and flips a coin. If the coin is heads, the teacher gives $1 to the student; otherwise,
the student gives $1 to the teacher. If either the teacher or the student would go into debt by
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this transaction, the transaction is not allowed. After many exchanges, what is the probability
that a student has s dollars? What is the probability that the teacher has t dollars? Are these
two probabilities the same? Although these particular questions can be answered by analytical
methods, many problems of this nature cannot be solved in this way (see Problem [L.1).

One way to determine the answers to these questions is to do a classroom experiment. How-
ever, such an experiment would be difficult to arrange, and it would be tedious to do a sufficient
number of transactions.

A more practical way to proceed is to convert the rules of the model into a computer pro-
gram, simulate many exchanges, and estimate the quantities of interest. Knowing the results
might help us gain more insight into the nature of an analytical solution if one exists. We can
also modify the rules and ask “what if?” questions. For example, would the probabilities change
if the students could exchange money with one another? What would happen if the teacher was
allowed to go into debt?

Simulations frequently use the computational tools of numerical analysis and visualization,
and occasionally symbolic manipulation. The difference is one of emphasis. Simulations are
usually done with a minimum of analysis. Because simulation emphasizes an exploratory mode
of learning, we will stress this approach.

Computers are also involved in all phases of a laboratory experiment, from the design of
the apparatus to the collection and analysis of data. LabView is an example of a data acquisition
program. Some of the roles of the computer in laboratory experiments, such as the varying of
parameters and the analysis of data, are similar to those encountered in simulations. However,
the tasks involved in real-time control and interactive data analysis are qualitatively different
and involve the interfacing of computer hardware to various types of instrumentation. We will
not discuss this use of the computer.

1.2 The importance of computer simulation

Why is computation becoming so important in physics? One reason is that most of our ana-
lytical tools such as differential calculus are best suited to the analysis of linear problems. For
example, you probably have analyzed the motion of a particle attached to a spring by assuming
a linear restoring force and solving Newton’s second law of motion. In this case a small change
in the displacement of the particle leads to a small change in the force. However, many natural
phenomena are nonlinear, and a small change in a variable might produce a large change in
another. Because relatively few nonlinear problems can be solved by analytical methods, the
computer gives us a new tool to explore nonlinear phenomena.

Another reason for the importance of computation is the growing interest in systems with
many variables or with many degrees of freedom. The money exchange model described in
Section [I.1]is a simple example of a system with many variables. A similar problem is given at
the end of this chapter.

Computer simulations are sometimes referred to as computer experiments because they share
much in common with laboratory experiments. Some of the analogies are shown in Table
The starting point of a computer simulation is the development of an idealized model of a phys-
ical system of interest. We then need to specify a procedure or algorithm for implementing the
model on a computer and decide what quantities to measure. The results of a computer sim-
ulation can serve as a bridge between laboratory experiments and theoretical calculations. In
some cases we can obtain essentially exact results by simulating an idealized model that has no
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Laboratory Experiment Computer Simulation

sample model

physical apparatus computer program
calibration testing of program
measurement computation

data analysis data analysis

Table 1.1: Analogies between a computer simulation and a laboratory experiment.

laboratory counterpart. The results of the idealized model can serve as a stimulus to the devel-
opment of the theory. On the other hand, we sometimes can do simulations of a more realistic
model than can be done theoretically, and hence make a more direct comparison with labo-
ratory experiments. Computation has become a third way of doing physics and complements
both theory and experiment.

Computer simulations, like laboratory experiments, are not substitutes for thinking, but
are tools that we can use to understand natural phenomena. The goal of all our investigations
of fundamental phenomena is to seek explanations of natural phenomena that can be stated
concisely.

1.3 Programming languages

There is no single best programming language any more than there is a best natural language.
Fortran is the oldest of the more popular scientific programming languages and was developed
by John Backus and his colleagues at IBM between 1954 and 1957. Fortran is commonly used in
scientific applications and continues to evolve. Fortran 90/95/2000 has many modern features
that are similar to C/C++.

The Basic programming language was developed in 1965 by John Kemeny and Thomas
Kurtz at Dartmouth College as a language for introductory courses in computer science. In
1983 Kemeny and Kurtz extended the language to include platform independent graphics and
advanced control structures necessary for structured programming. The programs in the first
two editions of our textbook were written in this version of Basic, known as True Basic.

C was developed by Dennis Ritchie at Bell Laboratories around 1972 in parallel with the
Unix operating system. C++ is an extension of C designed by Bjarne Stroustrup at Bell labora-
tories in the mid-eighties. C++ is considerably more complex than C and has object oriented
features, as well as and other extensions. In general, programs written in C/C++ have high
performance, but can be difficult to debug. C and C++ are popular choices for developing op-
erating systems and software applications because they provide direct access to memory and
other system resources.

Python, like Basic, was designed to be easy to learn and use. Python enthusiasts like to say
that C and C++ were written to make life easier for the computer, but Python was designed
to be easier for the programmer. Guido van Rossum created Python in the late 80’s and early
90’s. It is an interpreted, object-oriented, general-purpose programming language that is also
good for prototyping. Because Python is interpreted, its performance is significantly less than
optimized languages like C or Fortran.

Java is an object-oriented language that was created by James Gosling and others at Sun
Microsystems. Since Java was introduced in late 1995, it has rapidly evolved and is the language
of choice in most introductory computer science courses. Java borrows much of its syntax from
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C++ but has a simpler structure. Although the language contains only fifty keywords, the
Java platform adds a rich library that enables a Java program to connect to the internet, render
images, and perform other high-level tasks.

Most modern languages incorporate object-oriented features. The idea of object-oriented
programming is that functions and data are grouped together in an object, rather than treated
separately. A program is a structured collection of objects that communicate with each other
causing the internal state within a given object to change. A fundamental goal of object-oriented
design is to increase the understandability and reusability of program code by focusing on what
an object does and how it is used, rather than how an object is implemented.

Our choice of Java for this text is motivated in part by its platform independence, flexible
standard graphics libraries, good performance, and its no cost availability. The popularity of
Java ensures that the language will continue to evolve, and that programming experience in
Java is a valuable and marketable skill. The Java programmer can leverage a vast collection of
third-party libraries, including those for numerical calculations and visualization. Java is also
relatively simple to learn, especially the subset of Java that we will need to simulate physical
systems.

Java can be thought of as a platform in itself, similar to the Macintosh and Windows, be-
cause it has an application programming interface (API) that enables cross-platform graphics
and user interfaces. Java programs are compiled to a platform neutral byte code so that they
can run on any computer that has a Java Virtual Machine. Despite the high level of abstraction
and platform independence, the performance of Java is becoming comparable with native lan-
guages. If a project requires more speed, the computationally demanding parts of the program
can be converted to C/C++ or Fortran.

Readers who wish to use another programming language should find the algorithmic com-
ponents of the Java program listings in the text to be easily converted into a language of their
choice.

1.4 Object oriented techniques

If you already know how to program, try reading a program that you wrote several years or
even several weeks ago. Many of us would not be able to follow the logic of our own program
and would have to rewrite it. And your program would probably be of little use to a friend
who needs to solve a similar problem. If you are learning programming for the first time, it is
important to learn good programming habits to minimize this problem. One way is to employ
object-oriented techniques such as encapsulation, inheritance, and polymorphism.

Encapsulation refers to the way that an object’s essential information is exposed through a
well-documented interface, but unnecessary details of the code are hidden. For example, we
can model a particle as an object. Whenever a particle moves, it calculates its acceleration from
the total force on it. Someone who wishes to use the trajectory of the particle, for example to
animate the particle’s trajectory, needs to refer only to the interface and does not need to know
how the trajectory is calculated.

Inheritance allows a programmer to add capabilities to existing code without having to
rewrite it or even know the details of how the code works. For example, you will write pro-
grams that show the evolution of planetary systems, quantum mechanical wave functions, and
molecular models. Many of these programs will use (extend) code in the Open Source Physics
library known as an AbstractSimulation. This code has a timer that periodically executes code
in your program and then refreshes the on-screen animation. Using the Open Source Physics
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library will let you focus your efforts on programming the physics, because it is not necessary
to write the code to produce the timer or to refresh the screen. Similarly, we have designed a
general purpose graphical user interface (GUI) by extending code written by Sun Microsystems
known as a JFrame. Our GUI has the features of a standard user interface such as a menu bar,
minimize button, and title, even though we did not write the code to implement these features.

Polymorphism helps us to write reusable code. For example, it is easy to imagine many types
of objects that are able to evolve over time. In Chapter[I5|we will simulate a system of particles
using random numbers rather than forces to move the particles. By using polymorphism, we
can write general purpose code to do animations with both types of systems.

Science students have a rich context in which to learn programming. The past several
decades of doing physics with computers has given us numerous examples that we can use
to learn physics, programming, and data analysis. Unlike many programming manuals, the
emphasis of this book is on learning by example. We will not discuss all aspects of Java, and
this text is not a substitute for a text on Java. Think of how you learned your native language.
First you learned by example, and then you learned more systematically.

Although using an object oriented language makes it easier to write well-structured pro-
grams, it does not guarantee that your programs will be well written or even correct. The single
most important criterion of program quality is readability. If your program is easy to read and
follow, it is probably a good program. There are many analogies between a good program and a
well-written paper. Few papers and programs come out perfectly on their first draft, regardless
of the techniques and rules we use to write them. Rewriting is an important part of program-
ming.

1.5 How to use this book

Most chapters in this text begin with a brief background summary of the nature of a system and
the important questions. We then introduce the computer algorithms, new syntax as needed,
and discuss a sample program. The programs are meant to be read as text on an equal basis
with the discussions and are interspersed throughout the text. It is strongly recommended that
all the problems be read, because many concepts are introduced after you have had a chance to
think about the result of a simulation.

It is a good idea to maintain a computer-based notebook to record your programs, results,
graphical output, and analysis of the data. This practice will help you develop good habits for
future research projects, prevent duplication, organize your thoughts, and save you time. After
a while you will find that most of your new programs will use parts of your earlier programs.
Ideally, you will use your files to write a laboratory report or a paper on your work. Guidelines

for writing a laboratory report are given in [Appendix [I}A|

Many of the problems in the text are open ended and do not lend themselves to simple
“back of the book” answers. So how will you know if your results are correct? How will you
know when you have done enough? There are no simple answers to either question, but we can
give some guidelines. First, you should compare the results of your program to known results
whenever possible. The known results might come from an analytical solution that exists in
certain limits or from published results. You should also look at your numbers and graphs, and
determine if they make sense. Do the numbers have the right sign? Are they the right order
of magnitude? Do the trends make sense as you change the parameters? What is the statistical
error in the data? What is the systematic error? Some of the problems explicitly ask you to do
these checks, but you should make it a habit to do as many as you can whenever possible.
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How do you know when you are finished? The main guideline is whether you can tell a
coherent story about your system of interest. If you have only a few numbers and do not know
their significance, then you need to do more. Let your curiosity lead you to more explorations.
Do not let the questions asked in the problems limit what you do. The questions are only
starting points, and frequently you will be able to think of your own questions.

The following problem is an example of the kind of problems that will be posed in the
following chapters. Note its similarity to the questions posed on page (3| Although most of the
simulations that we will do will be on the kind of physical systems that you will encounter in
other physics courses, we will consider simulations in related areas, such as traffic flow, small
world networks, and economics. Of course, unless you already know how to do simulations, you
will have to study the following chapters so that you will able to do problems like the following.

Problem 1.1. Distribution of money

The distribution of income in a society f(m) behaves as f(m) «c m~1~%, where m is the income
(money) and the exponent « is between 1 and 2. The quantity f(m) can be taken to be the
number of people who have an amount of money between m and m + Am. This power law
behavior of the income distribution is often referred to as Pareto’s law or the 80/20 rule (20%
of the people have 80% of the income) and was proposed in the late 1800’s by Vilfredo Pareto,
an economist and sociologist. In the following, we consider some simple models of a closed
economy to determine the relation between the microdynamics and the resulting macroscopic
distribution of money.

a. Suppose that N agents (people) can exchange money in pairs. For simplicity, we assume
that all the agents are initially assigned the same amount of money 1, and the agents are
then allowed to interact. At each time step, a pair of agents i and j with money m; and m;
is randomly chosen and a transaction takes place. Again for simplicity, let us assume that
m; — m; and m; — m]’ by a random reassignment of their total amount of money, m; + m;,
such that

m

€(m; +mj) (1.1a)

(1-¢€)(m; +m;) (1.1b)

m j

,
i
’
]

where € is a random number between 0 and 1. Note that this reassignment ensures that the
agents have no debt after the transaction, that is, they are always left with an amount m > 0.
Simulate this model and determine the distribution of money among the agents after the
system has relaxed to an equilibrium state. Choose N = 100 and 1, = 1000.

b. Now let us ask what happens if the agents save a fraction A of their money before the trans-
action. We write

m, = m; +om (1.2a)
m]' =mj—om (1.2b)
om=(1-A)[em;—(1-e)m;]. (1.2¢)

Modify your program so that this savings model is implemented. Consider A = 0.25, 0.50,
0.75, and 0.9. For some of the values of A, as many as 107 transactions will need to be
considered. Does the form of f(m) change for A > 0?

The form of f(m) for the model in Problem [1.1ja| can be found analytically and is known to
students who have had a course in statistical mechanics. However, the analytical form of f(m)
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in Problem [1.1blis not known. More information about this model can be found in the article
by Patriarca, Chakraborti, and Kaski (see the references at the end of this chapter).

Problem [L.1] illustrates some of the characteristics of simulations that we will consider in
the following chapters. Implementing this model on a computer would help you to gain insight
into its behavior and might encourage you to explore variations of the model. Note that the
model lends itself to asking a relatively simple “what if” question, which in this case leads to
qualitatively different behavior. Asking similar questions might require modifying only a few
lines of code. However, such a change might convert an analytically tractable problem into one
for which the solution is unknown.

Problem 1.2. Questions to consider

a. You are familiar with the fall of various objects near the earth’s surface. Suppose that a ball
is in the earth’s atmosphere long enough for air resistance to be important. How would you
simulate the motion of the ball?

b. Suppose that you wish to model a simple liquid such as liquid Argon. Why is such a lig-
uid simpler to simulate than water? What is the maximum number of atoms that can be
simulated in a reasonable amount of time using present computer technology? What is the
maximum real time that is possible to simulate? That is, if we run our program for a week of
computer time, what would be the equivalent time that the liquid has evolved?

c. Discuss some examples of systems that would be interesting to you to simulate. Can these
systems be analyzed by analytical methods? Can they be investigated experimentally?

d. An article by Post and Votta (see references) claims that “...(computers) have largely re-
placed pencil and paper as the theorist’s main tool.” Do you agree with this statement? Ask
some of the theoretical physicists that you know for their opinions.

Appendix [T/A: Laboratory reports

Laboratory reports should reflect clear writing style and obey proper rules of grammar and
correct spelling. Write in a manner that can be understood by another person who has not done
the research. In the following, we give a suggested format for your reports.

Introduction. Briefly summarize the nature of the physical system, the basic numerical method
or algorithm, and the interesting or relevant questions.

Method. Describe the algorithm and how it is implemented in the program. In some cases this
explanation can be given in the program itself. Give a typical listing of your program.
Simple modifications of the program can be included in an appendix if necessary. The
program should include your name and date and be annotated in a way that is as self-
explanatory as possible. Be sure to discuss any important features of your program.

Verification of program. Confirm that your program is not incorrect by considering special cases
and by giving at least one comparison to a hand calculation or known result.

Data. Show the results of some typical runs in graphical or tabular form. Additional runs can
be included in an appendix. All runs should be labeled, and all tables and figures must
be referred to in the body of the text. Each figure and table should have a caption with
complete information, for example, the value of the time step.
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Analysis. In general, the analysis of your results will include a determination of qualitative and
quantitative relationships between variables and an estimation of numerical accuracy.

Interpretation. Summarize your results and explain them in simple physical terms whenever
possible. Specific questions that were raised in the assignment should be addressed here.
Also give suggestions for future work or possible extensions. It is not necessary to answer
every part of each question in the text.

Critique. Summarize the important physical concepts for which you gained a better under-
standing and discuss the numerical or computer techniques you learned. Make specific
comments on the assignment and suggestions for improvements or alternatives.

Log. Keep a log of the time spent on each assignment and include it with your report.

References and suggestions for further reading

Programming

We list some of our favorite Java programming books here. There are many useful online tuto-
rials.

Joshua Bloch, Effective Java (Addison-Wesley, 2001). This excellent book is for advanced Java
programmers and should be read after you have become familiar with Java.

Rogers Cadenhead and Laura Lemay Teach Yourself Java in 21 Days 4th ed. (Sams, 2004). An
inexpensive self-study guide that uses a step by step tutorial approach to cover the basics.

Stephen J. Chapman, Java for Engineers and Scientists, 2nd ed. (Prentice Hall, 2004).

Wolfgang Christian, Open Source Physics: A User’s Guide with Examples (Addison—-Wesley,
2006). This guide is a useful supplement to our text.

Bruce Eckel, Thinking in Java, 3rd ed. (Prentice Hall. 2003). This text discusses the finer points
of object-oriented programming and is recommended after you have become familiar with
Java. See also <www.mindview.net/Books/>.

David Flanagan, Java in a Nutshell, 5th ed. (O’Reilly, 2005) and Java Examples in a Nutshell,
3rd ed. (O’Reilly, 2004). A fast-paced Java tutorial for those who already know another
programming language.

Brian D. Hahn and Katherine M. Malan, Essential Java for Scientists and Engineers (Butterworth-
Heinemann, 2002).

Cay S. Horstmann and Gary Cornell, Core Java 2: Fundamentals and Core Java 2: Advanced
Features, both in 7th ed. (Prentice Hall, 2005). A two-volume set that covers all aspects of
Java programming.

Patrick Niemeyer and Jonathan Knudsen, Learning Java, 2nd ed. (O’Reilly, 2002). A compre-
hensive introduction to Java that starts with HelloWorld and ends with a discussion of
XML. The book contains many examples showing how the core Java API is used. This
book is one of our favorites for beginning Java programmers. However, it might be intim-
idating to someone who does not have some familiarity with computers.
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Sherry Shavor, Jim D’Anjou, Pat McCarthy, John Kellerman, and Scott Fairbrothe, The Java De-
veloper’s Guide to Eclipse (Addison—Wesley Professional, 2003). A good reference for the
open source Eclipse development environment. Check for new versions because Eclipse is
evolving rapidly.

General References on Physics and Computers

Richard E. Crandall, Projects in Scientific Computation (Springer—Verlag, 1994).
Paul L. DeVries, A First Course in Computational Physics (John Wiley & Sons, 1994).

Alejandro L. Garcia, Numerical Methods for Physics, 2nd ed. (Prentice Hall, 2000). Matlab,
C++, and Fortran are used.

Neil Gershenfeld, The Nature of Mathematical Modeling (Cambridge University Press, 1998).

Nicholas J. Giordano and Hisao Nakanishi, Computational Physics. 2nd ed. (Prentice Hall,
2005).

Dieter W. Heermann, Computer Simulation Methods in Theoretical Physics, 2nd ed. (Springer—
Verlag, 1990). A discussion of molecular dynamics and Monte Carlo methods directed
toward advanced undergraduate and beginning graduate students.

David Landau and Kurt Binder, A Guide to Monte Carlo Simulations in Statistical Physics,
2nd ed. (Cambridge University Press, 2005). The authors emphasize the complementary
nature of simulation to theory and experiment.

Rubin H. Landau, A First Course in Scientific Computing (Princeton University Press, 2005).
P. Kevin MacKeown, Stochastic Simulation in Physics (Springer, 1997).
Tao Pang, Computational Physics (Cambridge University Press, 1997).
Franz J. Vesely, Computational Physics, 2nd ed. (Plenum Press, 2002).

Michael M. Woolfson and Geoffrey J. Perl, Introduction to Computer Simulation (Oxford Uni-
versity Press, 1999).

Other References

Ruth Chabay and Bruce Sherwood, Matter & Interactions (John Wiley & Sons, 2002). This
two-volume text uses computer models written in VPython to present topics not typically
discussed in introductory physics courses.

H. Gould, “Computational physics and the undergraduate curriculum,” Computer Physics
Communications 127 (1), 6-10 (2000).

Brian Hayes, “g-OLOGY,” Am. Scientist 92 (3), 212-216 (2004) discusses the g-factor of the
electron and the importance of algebraic and numerical calculations.

Problem is based on a paper by Marco Patriarca, Anirban Chakraborti, and Kimmo Kaski,
“Gibbs versus non-Gibbs distributions in money dynamics,” Physica A 340, 334-339 (2004).

An interesting article on the future of computational science by Douglass E. Post and Lawrence
G. Votta, “Computational science demands a new paradigm,” Physics Today 58 (1), 35-41
(2005) raises many interesting questions.
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Ross L. Spencer, “Teaching computational physics as a laboratory sequence,” Am. J. Phys. 73,
151-153 (2005).



Chapter 2

Tools for Doing Simulations

We introduce some of the core syntax of Java in the context of simulating the motion of falling
particles near the Earth’s surface. A simple algorithm for solving first-order differential equa-
tions numerically is also discussed.

2.1 Introduction

If you were to take a laboratory-based course in physics, you would soon be introduced to the
oscilloscope. You would learn the function of many of the knobs, how to read the display, and
how to connect various devices so that you could measure various quantities. If you did not
know already, you would learn about voltage, current, impedance, and AC and DC signals.
Your goal would be to learn how to use the oscilloscope. In contrast, you would learn only a
little about the inner workings of the oscilloscope.

The same approach can be easily adopted with an object-oriented language such as Java. If
you are new to programming, you will learn how to make Java do what you want, but you will
not learn everything about Java. In this chapter, we will present some of the essential syntax of
Java and introduce the Open Source Physics library, which will facilitate writing programs with
a graphical user interface and visual output such as plots and animations.

One of the ways that science progresses is by making models. If the model is sufficiently
detailed, we can determine its behavior and then compare the behavior with experiment. This
comparison might lead to verification of the model, changes in the model, and further simu-
lations and experiments. In the context of computer simulation, we usually begin with a set
of initial conditions, determine the dynamical behavior of the model numerically, and generate
data in the form of tables of numbers, plots, and animations. We begin with a simple example
to see how this process works.

Imagine a particle such as a ball near the surface of the Earth subject to a single force, the
force of gravity. We assume that air friction is negligible, and the gravitational force is given by

Fg:—mg (2'1)

where m is the mass of the ball and g = 9.8 N/kg is the gravitational field (force per unit mass)
near the Earth’s surface. To make our example as simple as possible, we first assume that there
is only vertical motion. We use Newton’s second law to find the motion of the ball,
d?y
—Z = 2.2
mo 2 (2.2)

12
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where v is the vertical coordinate defined so that up is positive, t is the time, F is the total force
on the ball, and m is the inertial mass [which is the same as the gravitational mass in (2.1)]. If

we set F = Fg, (2.1) and lead to
d%y
dr?
Equation is a statement of a model for the motion of the ball. In this case the model is in
the form of a second-order differential equation.

=-g. (2.3)

You are probably familiar with the model summarized in (2.3) and know the analytic solu-
tion:

(6) = 9(0) + v(0)t - g7 (.42
v(t) =v(0) - gt. (2.4b)

Nevertheless, we will determine the motion of a freely falling particle numerically in order to
introduce the tools that we will need in a familiar context.

We begin by expressing (2.3)) as two first-order differential equations:

dy
E =v (25a)
dv

where v is the vertical velocity of the ball. We next approximate the derivatives by small (finite)
differences:

y(t+At) —y(t)

= 2.
At v(t) (2.6a)
v(t+At)-v(t)
At =-g. (2.6b)
Note that in the limit At — 0, reduces to (2.5). We can rewrite as
y(t+At) = y(t) + v(t)At (2.7a)
v(t+ At) = v(t) — gAt. (2.7b)

The finite difference approximation we used to obtain (2.7) is an example of the Euler algorithm.
Equation (2.7)) is an example of a finite difference equation, and At is the time step.

Now we are ready to follow y(t) and v(t) in time. We begin with an initial value for y and v
and then iterate . If At is sufficiently small, we will obtain a numerical answer that is close
to the solution of the original differential equations in (2.6). In this case we know the answer,
and we can test our numerical results directly.

Exercise 2.1. A simple example
Consider the first-order differential equation

dy
= 2.8
o= f) (2.8)
where f(x) is a function of x. The approximate solution as given by the Euler algorithm is

Yn+1 :yn"'f(xn)Ax- (2'9)

Note that the rate of change of y has been approximated by its value at the beginning of the
interval, f(x,).
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(a) Suppose that f(x) = 2x and yp(x = 0) = 0. The analytic solution is y(x) = x2, which we can
confirm by taking the derivative of y(x). Convert into a finite difference equation using
the Euler algorithm. For simplicity, choose Ax = 0.1. It would be a good idea to first use a
calculator or pencil and paper to determine y,, for the first several time steps.

(b) Sketch the difference between the exact solution and the approximate solution given by the
Euler algorithm. What condition would the rate of change f(x) have to satisfy for the Euler
algorithm to give the exact answer? O

Problem 2.2. Invent your own numerical algorithm

As we have mentioned, the Euler algorithm evaluates the rate of change of y by its value at the
beginning of the interval, f(x,). The choice of where to approximate the rate of change of y
during the interval from x to x + Ax is arbitrary, although we will learn that some choices are
better than others. All that is required is that the finite difference equation must reduce to the
original differential equation in the limit Ax — 0. Think of several other algorithms that are
consistent with this condition. O

2.2 Simulating Free Fall

The source code for the class FirstFallingBallApp shown in Listing is defined in a file
named FirstFallingBallApp.java. The code consists of a sequence of statements that create vari-
ables and define methods. Each statement ends with a semicolon. Each source code file is com-
piled into byte code that can then be executed. The compiler places the byte code in a file with the
same name as the Java source code file with the extension class. For example, the compiler con-
verts FirstFallingBallApp.java into byte code and produces the FirstFallingBallApp.class file.
One of the features of Java is that this byte code can be used by any computer that can run Java
programs.

A Java application is a class that contains a main method. The following application is an
implementation of the Euler algorithm given in (2.7). The program also compares the numerical
and analytic results. We will next describe the syntax used in each line of the program.

Listing 2.1: First version of a simulation of a falling particle.

v // example of a single line comment statement (ignored by compiler)
» package org.opensourcephysics.sip.ch02; // location of file

s // beginning of class definition

4+ public class FirstFallingBallApp {

5 // beginning of method definition

6 public static void main(String|[] args) f{

7 // braces { } used to group statements.

8 // indent statements within a block so that

9 // they can be easily identified

10 // following statements form the body of main method
1 // example of declaration and assignment statement
12 double y0 = 10;

13 double v0 = 0; // initial wvelocity

14 double t = 0; // time

15 double dt = 0.01; // time step

16 double y = yO0;

17 double v = v0;

18 double g = 9.8; // gravitational field
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19 // beginning of loop, n++ equivalent to n = n + 1

20 for(int n = 0;n<100;n++) {

21 // repeat following three statements 100 times

2 y = y+vxdt; // indent statements in loop for clarity
2 v = v-gxdt; // use Euler algorithm

24 t = t+dt;

2 } // end of for loop

2 System.out. println ("Results");

27 System.out.println("final time = "+t);

28 // display numerical result

2 System.out. println("y = "+y+" v = "+v);

30 // display analytic result

31 double yAnalytic = y0+v0xt—0.5xg=txt;

3 double vAnalytic = v0-g=t;

33 System.out.println ("analytic y = "+yAnalytic+" v = "+vAnalytic);
34 } // end of method definition

55 ) // end of class definition

The first line in Listing is an example of a single line comment statement. Comment
statements are ignored by the computer but can be very important for the user. Multiple line
comments begin with /* and end with */. Javadoc comments begin with /xx, but have been
removed from the code listings in the book to save space. Download the source code from
comPADRE to view the complete code with documentation.

The second line in Listing declares a package name, which corresponds to the loca-
tion (directory) of the source and byte code files. According to the package declaration, the
file FirstFallingBallApp.java is in the directory org/opensourcephysics/sip/ch02. The package
statement must be the first noncomment statement in the source file. For organizational con-
venience, it is a good idea to put related files in the same package. When executing a Java
program, the Java Virtual Machine (the run-time environment) will search a specific set of di-
rectories (called the classpath) for the relevant class files. The documentation for your local
development environment will describe how to specify the classpath.

The third line in Listing [2.1]declares the class name, FirstFallingBallApp. The Java con-
vention is to begin a class name with an uppercase letter. If a name consists of more than one
word, the words are joined together, and each succeeding word begins with an uppercase letter
(another Java convention). The keyword public means that this class can be used by any other
Java class.

Braces are used to delimit a block of code. The left brace {, after the name of the class,
begins the body of the class definition, and the corresponding right brace }, inserted at the end
of the code listing on line 31 ends the class definition.

The fourth line in Listing[2.1]begins the definition of the main method. A method describes
a sequence of actions that use the associated data and can be called (invoked) within the class or
by other classes. The main method has a special status in Java. To run a class as a stand-alone
program (an application), the class must define the main method. (In contrast, a Java applet
runs inside a browser and does not require a main method; instead, it has methods such as init
and start.) The main method is the application’s starting point. The argument of the main
method will always be the same, and understanding its syntax is not necessary here.

Because the code for this book contains hundreds of classes, we will adopt our own conven-
tion that classes that define main methods have names that end with App. We sometimes refer
to an application that we are about to run as the target class.

Familiarize yourself with your Java development environment by doing Exercise
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Exercise 2.3. Our first application

(a) Enter the listing of FirstFallingBallApp into a source file named FirstFallingBallApp.java.
(Java programs can be written using any text editor that supports standard ASCII charac-
ters.) Be sure to pay attention to capitalization because Java is case sensitive. In what direc-
tory should you place the source file?

(b) Compile and run FirstFallingBallApp. Do the results look reasonable to you? In what
directory did the compiler place the byte code? O

Digital computers represent numbers in base 2, that is, sequences of ones and zeros. Each
one or zero is called a bit. For example, the number 13 is equivalent to 1101 or (1x2%)+(1x22)+
(0x 21) + (1 x 29). It would be difficult to write a program if we had to write numbers in base
2. Computer languages allow us to reference memory locations using identifiers or variable
names. A valid variable name is a series of characters consisting of letters, digits, underscores,
and dollar signs ($) that does not begin with a digit nor contain any spaces. Because Java dis-
tinguishes between upper and lowercase characters, T and t are different variable names. The
Java convention is that variable names begin with a lowercase letter, except in special cases, and
each succeeding word in a variable name begins with an uppercase letter.

In a purely object-oriented language, all variables would be objects that would be intro-
duced by their class definitions. However, there are certain variable types that are so common
that they have a special status and are especially easy to create and access. These types are called
primitive data types and represent integer, floating point, boolean, and character variables. An
example that illustrates that classes are effectively new programmer-defined types is given in
Appendix[2A.

An integer variable, a floating point variable, and a boolean variable are created and initial-
ized by the following statements:

int n = 10;

double y0 = 10.0;

boolean inert = true;

char ¢ = 'A’; // used for single characters

There are four types of integers, byte, short, int, and long, and two types of floating
point numbers; the differences are the range of numbers that these types can store. We will
almost always use type int because it does not require as much memory as type long. There
are two types of floating point numbers, but we will always use type double, the type with
greater precision, to minimize roundoff error and to avoid having to provide multiple versions
of various algorithms. A variable must be declared before it can be used, and it can be initialized
at the same time that its type is declared as is done in Listing [2.1}

Integer arithmetic is exact, in contrast to floating point arithmetic which is limited by the
maximum number of decimal places that can be stored. Important uses of integers are as coun-
ters in loops and as indices of arrays. An example of the latter is on page[38} where we discuss
the motion of many balls.

A subtle and common error is to use integers in division when a floating point number
is needed. For example, suppose we flip a coin 100 times and find 53 heads. What is the
percentage of heads? In the following we show an unintended side effect of integer division and
several ways of obtaining a floating point number from an integer.
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int heads = 53;

int tosses = 100;

double percentage = heads/tosses; // percentage will equal 0
percentage = (double)heads/tosses; // percentage will equal 0.53
percentage = (1.0xheads)/tosses; // percentage will equal 0.53

These statements indicate that if at least one number is a double, the result of the division will
be a double. The expression (double)heads is called a cast and converts heads to a double.
Because a number with a decimal point is treated as a double, we can also do this conversion by
first multiplying heads by 1.0 as is done in the last statement.

Note that we have used the assignment operator, which is the equal (=) sign. This operator
assigns the value to the memory location that is associated with a variable, such as y0 and t. The
following statements illustrate an important difference between the equal sign in mathematics
and the assignment operator in most programming languages.

int x = 10;
X =X + 1;

The equal sign replaces a value in memory and is not a statement of equality. The left and right
sides of an assignment operator are usually not equal.

A statement is analogous to a complete sentence, and an expression is similar to a phrase.
The simplest expressions are identifiers or variables. More interesting expressions can be cre-
ated by combining variables using operators, such as the following example of the plus (+) oper-
ator:

x + 3.0

Lines twelve through eighteen of Listing[2.1|declare and initialize variables. If a variable is
declared but not initialized, for example,

double dt;

then the default value of the variable is 0 for numbers and false for boolean variables. It is a
good idea to initialize all variables explicitly and not rely on their default values.

A very useful control structure is the for loop in line 15 of Listing[2.1} Loops are blocks of
statements that are executed repeatedly until some condition is satisfied. They typically require
the initialization of a counter variable, a test to determine if the counter variable has reached
its terminal value, and a rule for changing the counter variable. These three parts of the for
loop are contained within parentheses and are separated by semicolons. It is common in Java to
iterate from 0 to 99, as is done in Listing 2.1} rather than from 1 to 100. Note the use of the ++
operator in the loop construct rather than the equivalent statement n = n + 1. It is important
to indent all the statements within a block so that they can be easily identified. Java ignores
these spaces, but they are important visual cues to the structure of the program.

After the program finishes the loop, the result is displayed using the System.out.println
method. We will explain the meaning of this syntax later. The parameter passed to this method,
which appears between the parentheses, is a String. A String is a sequence of characters and
can be created by enclosing text in quotation marks as shown in the first println statement in
Listing We displayed our numerical results by using the + operator. When applied to a
String and a number, the number is converted to the appropriate String and the two strings
are concatenated (joined). This use is shown in the next three println statements in lines 27,
29, and 33 of Listing 2.1} Note the different outputs produced by the following two statements:
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n

System.out.println (("x = " + 2) + 3); // displays x
System.out. println("x = " + (2 + 3)); // displays x

23
5

The parentheses in the second line force the compiler to treat the enclosed + operator as the
addition operator, but both + operators in the first line are treated as concatenation operators.

Exercise 2.4. Exploring FirstFallingBallApp

(a) Run FirstFallingBallApp for various values of the time step At. Do the numerical results
become closer to the analytic results as At is made smaller?

(b) Use an acceptable value for At and run the program for various values for the number of
iterations. What criteria do you have for acceptable? At approximately what time does the
ball hit the ground at y = 0?

(c) What happens if you replace the System.out.println method by the System.out.print
method?

(d) What happens if you try to access the value of the counter variable n outside the for loop?
The scope of n extends from its declaration to the end of the loop block; n is said to have
block scope. If a loop variable is not needed outside the loop, it should be declared in the
initialization expression so that its scope is limited. O

You might have found that doing Exercise was a bit tedious and frustrating. To do
Exercise [2.4/[a) it would be desirable to change the number of iterations at the same time that
the value of At is changed so that we could compare the results for y and v at the same time.
And it is difficult to do Exercise because we don’t know in advance how many iterations
are needed to reach the ground. For starters we can improve FirstFallingBallApp using a
while statement instead of the for loop.

while (y > 0) {
// statements go here
J

In this example the boolean test for the while statement is done at the beginning of a loop.
It is also possible to do the test at the end:

do {
// statements go here
J

while (y > 0);

Exercise 2.5. Using while statements

Modify FirstFallingBallApp so that the while statement is used and the program ends when
the ball hits the ground at y = 0. Then repeat Exercise|2.4{[b). O

Exercise 2.6. Summing a series
(a) Write a program to sum the following series for a given value of N:

N
S:ZW' (2.10)

m=1

The following statements may be useful:
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double sum = 0; // sum is
for (int m = 1; m <= N; m++) {

sum = sum + 1.0/(msm); // put this statement in for loop
J

Note that in this case it is more convenient to start the loop from m = 1 instead of m = 0.
Also note that we have not followed the Java convention, because we have used the variable
name N instead of n so that the Java statements look more like the mathematical equations.

equivalent to S in (2.10)

First run your program with N = 10. Then run for larger values of N. Does the series
converge as N — co? What value of N is needed to obtain S to within two decimal places?

Modify your program so that it uses a while loop so that the summation continues until the
added term to the sum is less than some value €. Run your program for € = 1072,1073, and
107¢.

Instead of using the = operator in the statement

sum = sum + 1.0/(mxm);

use the equivalent operator:

sum += 1.0/ (m#m);

Check that you obtain the same results. O

Java provides several shortcut assignment operators that allow you to combine an arith-

metic and an assignment operation. Table[2.1shows the operators that we will use most often.

Operator Operand Description Sample Expression Result

++, -- number increment, decrement X++; 8.0 stored in x

+, - numbers addition, subtraction 3.5 + x 11.5

! boolean logical complement '(x == y) true

= any assignment y=3; 3.0storediny

=, [, % numbers multiplication, division, modulus 7/2 3.0

== any test for equality X ==y false

+= numbers x += 3;equivalenttox = x + 3; x += 3; 14.5 stored in x

-= numbers x -= 2;equivalenttox = x - 2; x -= 2.3; 12.2 stored in x

*= numbers x *= 4; equivalent to x = 4*x; X *= 4; 48.8 stored in x
= numbers x /= 2;equivalenttox = x/2; x [= 2; 24.4 stored in x

%= numbers x %= 5;equivalenttox = x % 5; x %= 5; 4.4 stored in x

Table 2.1: Common operators. The result for each row assumes that the statements from previ-
ous rows have been executed with double x = 7, y = 3declared initially. The mod or modulus
operator % computes the remainder after the division by an integer has been performed.

2.3 Getting Started with Object-Oriented Programming

The first step in making our program more object-oriented is to separate the implementation
of the model from the implementation of other programming tasks such as producing output.
In general, we will do so by creating two classes. The class that defines the model is shown in
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Listing The FallingBall class first declares several (instance) variables and one constant
that can be used by any method in the class. To aid reusability, we need to be very careful
about the accessibility of these class variables to other classes. For example, if we write private
double dt, then the value of dt would only be available to the methods in FallingBall. If we
wrote public double dt, then dt would be available to any class in any package that tried to
access it. For our purposes we will use the default package protection, which means that the
instance variables can be accessed by classes in the same package.

Listing 2.2: FallingBall class.
package org.opensourcephysics.sip.ch02;
public class FallingBall ({
double y, v, t; // instance wvariables
double dt; // default package protection
final static double g = 9.8;

public FallingBall () { // constructor
System.out. println ("A new FallingBall object is created.");
J

public void step () {
y = y+vxdt; // Euler algorithm for numerical solution
v = v—gxdt;
t = t+dt;

J

public double analyticPosition (double y0, double v0) {
return y0+vO0xt—0.5xgxtxt;
J

public double analyticVelocity (double v0) ({
return v0—g=t;
J

J

As we will see, a class is a blueprint for creating objects, not an object itself. Except for
the constant g, all the variable declarations in Listing are instance variables. Each time an
object is created or instantiated from the class, a separate block of memory is set aside for the
instance variables. Thus, two objects created from the same class will, in general, have different
values of the instance variables. We can insure that the value of a variable is the same for all
objects created from the class by adding the word static to the declaration. Such a variable is
called a class variable and is appropriate for the constant g. In addition, you might not want the
quantity referred to by an identifier to change. For example, g is a constant of nature. We can
prevent a change by adding the keyword final to the declaration. Thus the statement

final static double g = 9.8;

means that a single copy of the constant g will be created and shared among all the objects
instantiated from the class. Without the final qualifier, we could change the value of a class
variable in every instantiated object by changing it in any one object. Static variables and meth-
ods are accessed from another class using the class name without first creating an instance (see
page[25).

Another Java convention is that the names of constants should be in upper case. But in
physics the meaning of g, the gravitational field, and G, the gravitational constant, have com-
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pletely different meanings. So we will disregard this convention if doing so makes our programs
more readable.

We have used certain words such as double, false, main, static, and final. These re-
served words cannot be used as variable names and are examples of keywords.

In addition to the four instance variables y, v, t, and dt, and one class variable g, the
FallingBall class has four methods. The first method is FallingBall and is a special method
known as the constructor. A constructor must have the same name as the class and does not have
an explicit return type. We will see that constructors allocate memory and initialize instance
variables when an object is created.

The second method is step, a name that we will frequently use to advance a system’s coor-
dinates by one time step. The qualifier void means that this method does not return a value.

The next two methods, analyticPosition and analyticVelocity, each return a double
value and have arguments enclosed by parentheses, the parameter list. The list of parameters
and their types must be given explicitly and be separated by commas. The parameters can be
primitive data types or class types. When the method is invoked, the argument types must
match that given in the definition or be convertible into the type given in the definition, but
need not have the same names. (Convertible means that the given variable can be unambigu-
ously converted into another data type. For example, an integer can always be converted into a
double.) For example, we can write

double y0 = 10; // declaration and assignment
int vO = 0; // note v0 is an integer

// v0 becomes a double before method is called
double y = analyticPosition(y0,v0);

double v = analyticVelocity(v0);

but the following statements are incorrect:

// can’t convert String to double automatically
double y = analyticPosition(y0,"0");

// method expects only one argument

double v = analyticVelocity(v0,0);

If a method does not receive any parameters, the parentheses are still required as in method
step().

The FallingBall class in Listing[2.2]cannot be used in isolation because it does not contain
a main method. Thus, we create a target class which we place in a separate file in the same
package. This class will communicate with FallingBall and include the output statements.
This class is shown in Listing [2.3]

Listing 2.3: FallingBallApp class.

// package statement appears before beginning of class definition
package org.opensourcephysics.sip.ch02;
// beginning of class definition
public class FallingBallApp ({
// beginning of method definition
public static void main(String[] args) f{
// declaration and instantiation
FallingBall ball = new FallingBall ();
// example of declaration and assignment statement
double y0 = 10;
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double v0 = 0;
// note use of dot operator to access instance variable

ball.t = 0;
ball.dt = 0.01;
ball.y = yO0;
ball.v = v0;

while (ball.y>0) {
ball.step ();
J

System.out. println ("Results");

System.out. println("final time = "+ball.t);

// displays numerical results

System.out. println("y = "+ball.y+" v = "+ball.v);

// displays analytic results

System.out.println("analytic y = "+ball.analyticPosition(y0, v0));
System.out. println("analytic v = "+ball.analyticVelocity(v0));
System.out. println ("acceleration = "+FallingBall.g);

} // end of method definition
} // end of class definition

Note how FallingBall is declared and instantiated by creating an object called ball and
how the instance variables and the methods are accessed. The statement

FallingBall ball = new FallingBall(); // declaration and instantiation

is equivalent to two statements:

FallingBall ball; // declaration
ball = new FallingBall (); // instantiation

The declaration statement tells the compiler that the variable ball is of type FallingBall. It
is analogous to the statement int x for an integer variable. The new operator allocates memory
for this object, initializes all the instance variables, and invokes the constructor. We can create
two identical balls using the following statements:

FallingBall balll = new FallingBall ();
FallingBall ball2 = new FallingBall ();

The variables and methods of an object are accessed by using the dot operator. For example,
the variable t of object ball is accessed by the expression ball.t, and the method step is called
as ball.step(). Because the methods, analyticPosition and analyticVelocity return val-
ues of type double, they can appear in any expression in which a double-valued constant or
variable can appear. In the present context the values returned by these two methods will be
displayed by the println statement. Note that the static variable g in class FallingBallApp is
accessed through the class name.

Exercise 2.7. Use of two classes

(a) Enter the listing of FallingBall into a file named FallingBall.java and FallingBallApp into
a file named FallingBallApp.java and put them in the same directory. Run your program
and make sure your results are the same as those found in Exercise[2.5]

(b) Modify FallingBallApp by adding a second instance variable ball2 of the same type as
ball. Add the necessary code to initialize ball2, iterate ball2, and display the results for
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both objects. Write your program so that the only difference between the two balls is the
value of At. How much smaller does At have to be to reduce the error in the numerical
results by a factor of two for the same final time? What about a factor of four? How does
the error depend on A#?

(c) Add the statement FallingBall.g = 2.0 to your program from part (b) and use the same
value of dt for ball and ball2. What happens when you try to compile the program?

(d) Delete the final qualifier for g in FallingBall and recompile and run your program. Is
there any difference between the results for the two balls? Is there a difference between the
results compared to what you found for g = 9.8?

(e) Remove the qualifier static. Now g must be accessed using the object name, ball or ball2
instead of FallingBall. Recompile your program again, and run your program. How do
the results for the two balls compare now?

(f) Explain in your own words the meaning of the qualifiers static and final. O

It is possible for a class to have more than one constructor. For example, we could have a
second constructor defined by

public FallingBall (double dt) {
// "this.dt" refers to an instance variable that has the
// same name as the argument
this.dt = dt;
J

Note the possible confusion of the variable name dt in the argument of the FallingBall con-
structor and the variable defined near the beginning of the FallingBall class. A variable that
is passed to a method as an argument (parameter) or that is defined (created) within a method
is known as a local variable. A variable that is defined outside of a method is known as an in-
stance variable. Instance variables are more powerful than local variables because they can be
referenced (used) anywhere within an object, and because their values are not lost when the
execution of the method is finished. When a variable name conflict occurs, it is necessary to
use the keyword this to access the instance variable. Otherwise, the program would access the
variable in the argument (the local variable) with the same name.

Exercise 2.8. Multiple constructors

(a) Add a second constructor with the argument double dttoFallingBall, but make no other
changes. Run your program. Nothing changed because you didn’t use this new constructor.

(b) Now modify FallingBallApp to use the new constructor:

// declaration and instantiation
FallingBall ball = new FallingBall(0.01);

What statement in FallingBallApp can now be removed? Run your program and make
sure it works. How can you tell that the new constructor was used?

(c) Show that the number of parameters and their type in the argument list determines which
constructor is used in FallingBall. For example, show that the statements
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double tau = 0.01;
// declaration and instantiation
FallingBall ball = new FallingBall(tau);

are equivalent to the syntax used in part (D). O

It is easy to create additional models for other kinds of motion. Cut and paste the code in
the FallingBall into a new file named SHO.java, and change the code to solve the following
two first-order differential equations for a ball attached to a spring:

dx

E =7 (2118.)
dv k

E ——ZX (211b)

where x is the displacement from equilibrium and k is the spring constant. Note that the new
class shown in Listing[2.4/has a structure similar to that of the class shown in Listing

Listing 2.4: SHO class.

package org.opensourcephysics.sip.ch02;
public class SHO {
double x, v, t;
double dt;
double k = 1.0; // spring constant
double omega0 = Math.sqrt(k); // assume unit mass

public SHO() | // constructor
System.out.println ("A new harmonic oscillator object is created.");

J

public void step () {
// modified Euler algorithm
v = v—kxxxdt;
x = x+vxdt; // note that updated v is used
t = t+dt;

J

public double analyticPosition (double y0, double v0) {
return y0xMath.cos (omega0Oxt)+v0/omega0+Math.sin (omegaOx*t );
J

public double analyticVelocity (double y0, double v0) {
return —-yOxomega0OxMath.sin (omega0Oxt)+v0+Math.cos(omegaOxt);
J

J
Exercise 2.9. Simple harmonic oscillator

(a) Explain how the implementation of the Euler algorithm in the step method of class SHO
differs from what we did previously.

(b) The general form of the analytic solution of can be expressed as

y(t) = Acoswyt + Bsinwyt (2.12)



CHAPTER 2. TOOLS FOR DOING SIMULATIONS 25

where w? = k/m. What is the form of v(t)? Show that (2.12) satisfies (2.11) with A = y(t = 0)
and B = v(t = 0)/wq. These analytic solutions are used in class SHO.

(c) Write a target class called SHOApp that creates an SHO object and solves (2.11). Start the ball
with displacements of x =1, x = 2, and x = 4. Is the time it takes for the ball to reach x =0
always the same? O

The methods that we have written so far have been nonstatic methods (except for main). As
we have seen, these methods cannot be used without first creating or instantiating an object.
In contrast, static methods can be used directly without first creating an object. A class that is
included in the core Java distribution and that we will use often is the Math class, which provides
many common mathematical methods, including trigonometric, logarithmic, exponential, and
rounding operations, and predefined constants. Some examples of the use of the Math class
include:

double theta = Math.PI/4; // constant pi defined in Math class
double u = Math.sin (theta); // sine of theta

double v = Math.log(0.1); // matural logarithm of 0.1

double w = Math.pow(10,0.4); // 10 to the 0.4 power

double x = Math.atan (3.0); // inverse tangent

Note the use of the dot notation in these statements and the Java convention that constants such
as the value of 7t are written in uppercase letters, that is, Math.PI. Exercise asks you to
read the Math class documentation to learn about the methods in the Math class. To use these
methods we need only to know what mathematical functions they compute; we do not need to
know about the details of how the methods are implemented.

Exercise 2.10. The Math class

The documentation for Java is a part of most development environments. It can also be down-
loaded from <docs.oracle.com/javase/8/docs/api/>. Look for API docs and a link to the
latest standard edition.

(a) Read the documentation of the Math class and describe the difference between the two ver-
sions of the arctangent method.

(b) Write a program to verify the output of several of the methods in the Math class. O

2.4 Inheritance

The falling ball and the simple harmonic oscillator have important features in common. Both
are models of physical systems that represent a physical object as if all its mass was concen-
trated at a single point. Writing two separate classes by cutting and pasting is straightforward
and reasonable because the programs are small and easy to understand. But this approach
fails when the code becomes more complex. For example, suppose that you wish to simulate
a model of a liquid consisting of particles that interact with one another according to some
specified force law. Because such simulations are now standard (see Chapter [8), efficient code
for such simulations is available. In principle, it would be desirable to use an already written
program, assuming that you understood the nature of such simulations. However, in practice,
using someone else’s program can require much effort if the code is not organized properly. For-
tunately, this situation is changing as more programmers learn object- oriented techniques and
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write their programs so that they can be used by others without needing to know the details of
the implementation.

For example, suppose that you decided to modify an already existing program by changing
to a different force law. You change the code and save it under a new name. Later you discover
that you need a different numerical algorithm to advance the particles’ positions and velocities.
You again change the code and save the file under yet another name. At the same time the
original author discovers a bug in the initialization method and changes her code. Your code
is now out of date because it does not contain the bug fix. Although strict documentation and
programming standards can minimize these types of difficulties, a better approach is to use
object oriented features such as inheritance. Inheritance avoids duplication of code and makes
it easier to debug a number of classes without needing to change each class separately.

We now write a new class that encapsulates the common features of the falling ball and the
simple harmonic oscillator. We name this new class Particle. The falling ball and harmonic
oscillator that we will define later implement their distinguishing features.

Listing 2.5: Particle class.

package org.opensourcephysics.sip.ch02;
abstract public class Particle f{

double y, v, t; // instance variables
double dt; // time step
public Particle() { // constructor

System.out.println ("A new Particle is created.");

J

abstract protected void step();
abstract protected double analyticPosition ();
abstract protected double analyticVelocity ();

J

The abstract keyword allows us to define the Particle class without knowing how the
step,analyticPosition,and analyticVelocity methods will be implemented. Abstract classes
are useful in part because they serve as templates for other classes. The abstract class contains
some but not all of what a user will need. By making the class abstract, we must express the
abstract idea of “particle” explicitly and customize the abstract class to our needs.

By using inheritance we now extend the Particle class (the superclass) to another class
(the subclass). The FallingParticle class shown in Listing implements the three abstract
methods. Note the use of the keyword extends. We also have used a constructor with the initial
position and velocity as arguments.

Listing 2.6: FallingParticle class.

package org.opensourcephysics.sip.ch02;

public class FallingParticle extends Particle ({
final static double g = 9.8; // constant
// initial position and velocity
private double y0 = 0, v0 = 0;

public FallingParticle (double y, double v) { // constructor
System.out.println ("A new FallingParticle object is created.");
this.y = y; // instance value set equal to passed value
this.v = v; // instance value set equal to passed value
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y0 = y; // no need to use "this" because there is only one y0
v0

A

J

public void step () {
y = y+vxdt; // Euler algorithm
v = v-gx+dt;
t = t+dt;

J

public double analyticPosition () {
return y0+vOxt—(gxtxt)/2.0;

J

public double analyticVelocity () {
return v0-gxt;
J
}

FallingParticle is a subclass of its superclass Particle. Because the methods and data
of the superclass are available to the subclass (except those that are explicitly labeled private),
FallingParticle inherits the variables y, v, t, and th]

We now write a target class to make use of our new abstraction. Note that we create a new
FallingParticle, but assign it to a variable of type Particle.

Listing 2.7: FallingParticleApp class.

package org.opensourcephysics.sip.ch02;
// beginning of class definition
public class FallingParticleApp ({
// beginning of method definition
public static void main(String[] args) f{
// declaration and instantiation
Particle ball = new FallingParticle (10, 0);
ball.t = 0;
ball.dt = 0.01;
while (ball.y>0) {
ball.step ();
J

System.out. println ("Results");

System.out. println("final time = "+ball.t);

// numerical result

System.out.println("y = "+ball.y+" v = "+ball.v);

// analytic result

System.out. println("y analytic = "+ball.analyticPosition ());

} // end of method definition
} // end of class definition

Problem 2.11. Inheritance

(a) Run the FallingParticleApp class. How can you tell that the constructor of the superclass
was called?

!n this case Particle and FallingParticle must be in the same package. If FallingParticle was in a different
package, it would be able to access these variables only if they were declared protected or public.
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(b) Rewrite the SHO class so that it is a subclass of Particle. Remove all unnecessary variables
and implement the abstract methods.

(c) Write the target class SHOParticleApp to use the new SHOParticle class. Use the ana-
lyticPosition and analyticVelocity methods to compare the accuracy of the numerical
and analytic answers in both the falling particle and harmonic oscillator models.

(d) Try to instantiate a Particle directly by calling the Particle constructor. Explain what
happens when you compile this program. O

If you examine the console output in Problem you should find that whenever an
object from the subclass is instantiated, the constructor of the superclass is executed as well as
the constructor of the subclass. You will also find that an abstract class cannot be instantiated
directly; it must be extended first.

Exercise 2.12. Extending classes

(a) Extend the FallingParticle and SHOParticle classes and give them names such as Fall-
ingParticleEC and SHOParticleEC, respectively. These subclasses should redefine the
step method so that it first calculates the new velocity and then calculates the new posi-
tion using the new velocity, that is,

public void step() |

v = v — gxdt; // falling ball
y =y + vxdt;f
t =t + dt;

J

public void step() {

v = v — kxxxdt; // harmonic oscillator
X = X + vxdt;
t = t + dt;

J

Methods can be redefined (overloaded) in the subclass by writing a new method in the
subclass definition with the same name and parameter list as the superclass definition.

(b) Confirm that your new step method is executed instead of the one in the superclass.

(c) The algorithm that is implemented in the redefined step method is known as the Euler—
Cromer algorithm. Compare the accuracy of this algorithm to the original Euler algorithm
for both the falling particle and the harmonic oscillator. We will explore the Euler-Cromer
algorithm in more detail in Problem O

The falling particle and harmonic oscillator programs are simple, but they demonstrate
important object-oriented concepts. However, we typically will not build our models using
inheritance because our focus is on the physics and not on producing a software library, and also
because readers will not use our programs in the same order. We will find that our main use of
inheritance will be to extend abstract classes in the Open Source Physics library to implement
calculations and simulations by customizing a small number of methods.

So far our target classes have only included one method, main. We could have used more
than one method, but for the short demonstration and test programs we have written so far,
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Initial y 10
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Euler method v=-9800.10
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exacty=-9800.10

clear

Figure 2.1: An Open Source Physics control that is used to input parameter values and display
results.

such a practice is unnecessary. When you send a short email to a friend, you are not likely to
break up your message into paragraphs. But when you write a paper longer than about a half
a page, it makes sense to use more than one paragraph. The same sensitivity to the need for
structure should be used in programming. Most of the programs in the following chapters will
consist of two classes, each of which will have several instance variables and methods.

2.5 The Open Source Physics Library

For each exercise in this chapter, you have had to change the program, compile it, and then run
it. It would be much more convenient to input initial conditions and values for the parameters
without having to recompile. However, a discussion of how to make input fields and buttons
using Java would distract us from our goal of learning how to simulate physical systems. More-
over, the code we would use for input (and output) would be almost the same in every program.
For this reason input and output should be in separate classes so that we can easily use them
in all our programs. Our emphasis will be to describe how to use the Open Source Physics li-
brary as a tool for writing graphical interfaces, plotting graphs, and doing visualizations. If you
are interested, you can read the source code of the many Open Source Physics classes and can
modify or subclass them to meet your special needs.

We first introduce the Open Source Physics library in several simple contexts. Download
the Open Source Physics library from <www.opensourcephysics.org> and include the library
in your development environment. The following program illustrates how to make a simple
plot.

Listing 2.8: An example of a simple plot.

package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.frames.PlotFrame;

public class PlotFrameApp {
public static void main(String[] args) f{

PlotFrame frame = new PlotFrame("x", "sin(x)/x", "Plot example");
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for(int i = 1;i<=100; i++) {

double x = i%0.2;

frame.append (0, x, Math.sin(x)/x);
J

frame.setVisible (true);
frame.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);

J

The import statement tells the Java compiler where to find the Open Source Physics classes
that are needed. A frame is often referred to as a window and can include a title and a menu
bar as well as objects such as buttons, graphics, and text information. The Open Source Physics
frames package defines several frames that contain data visualization and analysis tools. We
will use the PlotFrame class to plot x-y data. The constructor for PlotFrame has three argu-
ments corresponding to the name of the horizontal axis, the name of the vertical axis, and the
title of the plot. To add data to the plot, we use the append method. The first argument of append
is an integer that labels a particular set of data points, the second argument is the horizontal (x)
value of the data point, and the third argument is the vertical (y) value. The setVisible(true)
method makes a frame appear on the screen or brings it to the front. The last statement makes
the program exit when the frame is closed. What happens when this statement is not included?

The example from the Open Source Physics library in Listing[2.9]illustrates how to control a
calculation with two buttons, determine the value of an input parameter, and display the result
in the text message area.

Listing 2.9: An example of a Calculation.

package org.opensourcephysics.sip.ch02;
// + means get all classes in controls subdirectory

import org.opensourcephysics.controls.x;

public class CalculationApp extends AbstractCalculation {
public void calculate() { // Does a calculation
control . println("Calculation button pressed.");
// String must match argument of setValue
double x = control.getDouble("x value");
control . println ("x*x = "+(xx*x));
control . println ("random = "+Math.random ());

J

public void reset () |
// describes parameter and sets its wvalue
control.setValue("x value", 10.0);

J

// Creates a calculation control structure using this class

public static void main(String[] args) ({
CalculationControl.createApp (new CalculationApp ());

J

J

AbstractCalculation is an abstract class, which as we have seen means that it cannot be
instantiated directly and must be extended in order to implement the calculate method, that
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is, you must write (implement) the calculate method. You can also write an optional reset
method, which is called whenever the Reset button is clicked. Finally, we need to create a
graphical user interface that will invoke methods when the Calculate and Reset buttons are
clicked. This user interface is an object of type CalculationControl:

CalculationControl.createApp (new CalculationApp ());

The method createApp is a static method that instantiates an object of type CalculationCon-
trol and returns this object. We could have written

CalculationControl control = CalculationControl.createApp (new CalculationApp ());

which shows explicitly the returned object which we gave the name control. However, because
we do not use the object control explicitly in the main method, we do not need to actually
declare an object name for it.

Exercise 2.13. CalculationApp

Compile and run CalculationApp. Describe what the graphical user interface looks like and
how it works by clicking the buttons (see Figure[2.1). O

The reset method is called automatically when a program is first created and whenever
the Reset button is clicked. The purpose of this method is to clear old data and recreate the
initial state with the default values of the parameters and instance variables. The default values
of the parameters are displayed in the control window so that they can be changed by the user.
An example of how to show values in a control follows:

public void reset () {
// describes parameter and sets the wvalue
control.setValue("x value" ,10.0);

J

The string appearing in the setValue method must be identical to the one appearing in the
getDouble method. If you write your own reset method, it will override the reset method
that is already defined in the AbstractCalculation superclass.

After the reset method stores the parameters in the control, the user can edit the parame-
ters and we can later read these parameters using the calculate method:

public void calculate () {
// String must match argument of setValue
double x = control.getDouble("x value");

control . println ("x*x = + (x*xx));

Exercise 2.14. Changing parameters

(a) Run CalculateApp to see how the control window can be used to change a program’s pa-
rameters. What happens if the string in the getDouble method does not match the string in
the setValue method?

(b) Incorporate the plot statements in Listing[2.8|into a class that extends the AbstractCalculation
class and plots the function sin kx for various values of the input parameter k. O
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When you run the modified CalculationApp in Exercise [2.14} you should see a window
with two buttons and an input parameter and its default value. Also, there should be a text
area below the buttons where messages can appear. When the Calculate button is clicked,
the calculate method is executed. The control.getDouble method reads in values from the
control window. These values can be changed by the user. Then the calculation is performed
and the result displayed in the message area using the control.println method, similar to the
way we used System.out.println earlier. If the Reset button is clicked, the message area is
cleared and the reset method is called.

We will now use a CalculationControl to change the input parameters for a falling parti-
cle. The modified FallingParticleApp is shown in Listing

Listing 2.10: FallingParticleCalcApp class.

package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.controls.x;

// beginning of class definition
public class FallingParticleCalcApp extends AbstractCalculation ({
public void calculate () {
// gets initial conditions
double y0 = control.getDouble("Initial y");
double v0 = control.getDouble("Initial v");
// sets initial conditions
Particle ball = new FallingParticle(y0, v0);
// reads parameters and sets dt
ball.dt = control.getDouble("dt");
while (ball.y>0) {
ball.step ();
J

control . println ("final time = "+ball.t);

// displays numerical results

control.println("y = "+ball.y+" v = "+ball.v);

// displays analytic position

control . println ("analytic y = "+ball.analyticPosition ());
// displays analytic velocity

control . println ("analytic v = "+ball.analyticVelocity ());

J

public void reset () {
control.setValue("Initial y", 10);
control.setValue("Initial v", 0);
control.setValue("dt", 0.01);

J

// creates a calculation control structure using this class
public static void main(String[] args) f{

CalculationControl.createApp (new FallingParticleCalcApp());
J

} // end of class definition

Exercise 2.15. Input of parameters and initial conditions

(a) Run FallingParticleCalcApp and make sure you understand how the control works. Try
inputting different values of the parameters and the initial conditions.
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(b) Vary At and find the value of t when y = 0 to two decimal places. O

Exercise 2.16. Displaying floating point numbers

Double precision numbers store 16 significant digits and every digit is included when the num-
ber is converted to a string. We can reduce the number of digits that are displayed using the
DecimalFormat class in the java.text package. A formatter is created using a pattern, such as
#0.00 or #0.00EO, and this format is applied to a number to produce a string.

DecimalFormat decimal2 = new DecimalFormat("#0.00");
double x = 1.0/3.0;
System.out. println("x = "+decimal2.format(x)); // displays 3.33

(a) Use the DecimalFormat class to modify the output from FallingParticleCalcApp so that
it matches the output shown in Figure

(b) Modify the output so that results are shown using scientific notation with three decimal
places.

(c) The Open Source Physics ControlUtils class in the controls package contains a static
method £3 that formats a floating point number using three decimal places. Use this method
to format the output from FallingParticleCalcApp. O

You probably have found that it is difficult to write a program so that it ends exactly when
the falling ball is at y = 0. We could write the program so that At keeps changing near y = 0
so that the last value computed is at y = 0. Another limitation of our programs that we have
written so far is that we have shown the results only at the end of the calculation. We could put
println statements inside the while loop, but it would be better to plot the results and have a
table of the data. An example is shown in Listing[2.11]

Listing 2.11: FallingParticlePlotApp class.

package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.controls.x;
import org.opensourcephysics.frames.x;

public class FallingParticlePlotApp extends AbstractCalculation ({
PlotFrame plotFrame = new PlotFrame("t", "y", "Falling Ball");

public void calculate () {
// data not cleared at beginning of each calculation
plotFrame.setAutoclear(false);
// gets initial conditions
double y0 = control.getDouble("Initial y");
double v0 = control.getDouble("Initial v");
// sets initial conditions
Particle ball = new FallingParticle(y0, v0);
// gets parameters
ball.dt = control.getDouble("dt");
double t = ball.t; // gets wvalue of time from ball object
while(ball.y>0) ({
ball .step ();
plotFrame.append(0, ball.t, ball.y);
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plotFrame.append(1, ball.t, ball.analyticPosition ());

J

public void reset () {
control.setValue("Initial y", 10);
control.setValue("Initial v", 0);
control.setValue("dt", 0.01);

J

// sets up calculation control structure using this class
public static void main(String[] args) ({

CalculationControl.createApp (new FallingParticlePlotApp ());
J

J

The two data sets, indexed by 0 and 1, correspond to the numerical data and the analytic results,
respectively. The default action in the Open Source Physics library is to clear the data and
redraw data frames when the Calculate button is clicked. This automatic clearing of data
can be disabled using the setAutoclear method. We have disabled it here to allow the user
to compare the results of multiple calculations. Data is automatically cleared when the Reset
button is clicked.

Exercise 2.17. Data output

(a) Run FallingParticlePlotApp. Under the Views menu choose DataTable to see a table of
data corresponding to the plot. You can copy this data and use it in another program for
further analysis.

(b) Your plotted results probably look like one set of data because the numerical and analytic
results are similiar. Let dt = 0.1 and click the Calculate button. Does the discrepancy
between the numerical and analytic results become larger with increasing time? Why?

(c) Run the program for two different values of dt. How do the plot and the table of data differ
when two runs are done, first separated without clicking Reset, and then done by click-
ing Reset between calculations? Make sure you look at the entire table to see the difference.

When is the data cleared? What happens if you eliminate the plotF rame.setAutoclear(false)

statement? When is the data cleared now?

(d) Modify your program so that the velocity is shown in a separate window from the position.
O

2.6 Animation and Simulation

The AbstractCalculation class provides a structure for doing a single computation for a fixed
amount of time. However, frequently we do not know how long we want to run a program, and
it would be desirable if the user could intervene at any time. In addition, we would like to be
able to visualize the results of a simulation and do an animation. To do so involves a program-
ming construct called a thread. Threads enable a program to execute statements independently
of each other as if they were run on separate processors (which would be the case on a multi-
processor computer). We will use one thread to update the model and display the results. The
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other thread, the event thread, will monitor the keyboard and mouse so that we can stop the
computation whenever we desire.

The AbstractSimulation class provides a structure for doing simulations by performing
a series of computations (steps) that can be started and stopped by the user using a graphical
user interface. You will need to know nothing about threads because their use is “hidden” in the
AbstractSimulation class. However, it is good to know that the Open Source Physics library is
written so that the graphical user interface does not let us change a program’s input parameters
while the simulation is running. Most of the programs in the text will be done by extending the
AbstractSimulation class and implementing the doStep method as shown in Listing[2.12] Just
as the AbstractCalculation class uses the graphical user interface of type CalculationCon-
trol, the AbstractSimulation class uses one of type SimulationControl. This graphical user
interface has three buttons whose labels change depending on the user’s actions. As was the
case with CalculationControl, the buttons in SimulationControl invoke specific methods.

Listing 2.12: A simple example of the extension of the AbstractSimulation class.
package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.controls.AbstractSimulation;
import org.opensourcephysics.controls.SimulationControl;

public class SimulationApp extends AbstractSimulation |
int counter = 0;

public void doStep() { // does a simulation step
control . println ("Counter = "+(counter ——));

J

public void initialize () {
counter = control.getInt("counter");
J

public void reset() { // invoked when reset button is pressed
// allows dt to be changed after initializaton
control.setAdjustableValue("counter", 100);

J

public static void main(String[] args) f{
// creates a simulation structure using this class
SimulationControl.createApp (new SimulationApp ());

Exercise 2.18. AbstractSimulation class

Run SimulationApp and see how it works by clicking the buttons. Explain the role of the var-
ious buttons. How many times per second is the doStep method invoked when the simulation
is running? O

The buttons in the SimulationControl that were used in SimulationApp in Listing
invoke methods in the AbstractSimulation class. These methods start and stop threads and
perform other housekeeping chores. When the user clicks the Initialize button, the simula-
tion’s Initialize method is executed. When the Reset button is clicked, the reset method is
executed. If you don’t write your own versions of these two methods, their default versions will
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be used. After the Initialize button is clicked, it becomes the Start button. After the Start
button is clicked, it is replaced by a Stop button, and the doStep method is invoked continually
until the Stop button is clicked. The default is that the frames are redrawn every time doStep is
executed. Clicking the Step button will cause the doStep method to be executed once. The New
button changes the Start button to an Initialize button, which forces the user to initialize
a new simulation before restarting. Later we will learn how to add other buttons that give the
user even more control over the simulation.

A typical simulation needs to (1) specify the initial state of the system in the initialize
method, (2) tell the computer what to execute while the thread is running in the doStep method,
and (3) specify what state the system should return to in the reset method.

We could modify the falling particle model to use AbstractSimulation, but such a mod-
ification would not be very interesting because there is only one particle and all motion takes
place in one dimension. Instead, we will define a new class that models a ball moving in two
dimensions, and we will allow the ball to bounce off the ground and off of the walls.

Listing 2.13: BouncingBall class.

package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.display.Circle;

// Circle is a class that can draw itself
public class BouncingBall extends Circle {
final static double g = 9.8;
final static double WALL = 10;
// initial position and velocity
private double x, y, vx, vy;

public BouncingBall (double x, double vx, double y, double vy) {

this.x = x; // sets instance value equal to passed wvalue
this.vx = vx; // sets instance value equal to passed value
this.y =y;

this.vy = vy;
// sets the position using setXY in Circle superclass
setXY(x, y);

J

public void step(double dt) {
x = x+vxxdt; // Euler algorithm for numerical solution

y = y+vy=dt;
vy = vy-gxdt;
if (x>WALL) {

vx = —Math.abs(vx); // bounce off right wall
} else if (x<-WALL) {

vx = Math.abs(vx); // bounce off left wall
J

if (y<0) f{
vy = Math.abs(vy); // bounce off floor
J

setXY(x, y);

J

To model the bounce of the ball off a wall, we have added statements such as
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if (y < 0) vy = Math.abs(vy);

This statement insures that the ball will move up if y <0, and is a crude implementation of an
elastic collision. (The Math.abs method returns the absolute value of its argument.)

Note our first use of the if statement. The general form of an if statement is as follows:

if (boolean_expression) {

// code executed if boolean expression is true
} else {

// code executed if boolean expression is false

}

We can test multiple conditions by chaining if statements:

if (boolean_expression) {
// code goes here

} else if (boolean_expression) {
// code goes here

} else {
// code goes here

J

If the first boolean expression is true, then only the statements within the first brace will be exe-
cuted. If the first boolean expression is false, then the second boolean expression in the else if
expression will be tested, and so forth. If there is an else expression, then the statements after
it will be executed if all the other boolean expressions are false. If there is only one statement
to execute, the braces are optional.

The BouncingBall class is similar to the FallingBall class except that it extends Circle.
We inherit from the Circle class because this class includes a simple method that allows the
object to draw itself in an Open Source Physics frame called DisplayF rame, which we will use
in BouncingBallApp. In the latter we instantiate BouncingBall and DisplayFrame objects so
that the circle will be drawn at its x-p location when the frame is displayed or while a simulation
is running.

To make the animation more interesting, we will animate the motion of many noninter-
acting balls with random initial velocities. BouncingBallApp creates an arbitrary number of
noninteracting bouncing balls by creating an array of BouncingBall objects.

Listing 2.14: BouncingBallApp class.

package org.opensourcephysics.sip.ch02;
import org.opensourcephysics.controls.x;
import org.opensourcephysics.frames.x;

public class BouncingBallApp extends AbstractSimulation {
// declares and instantiates a window to draw balls
DisplayFrame frame = new DisplayFrame("x", "y", "Bouncing Balls");
BouncingBall[] ball; // declares an array of BouncingBall objects

double time, dt;

public void initialize () f{
// sets boundaries of window in world coordinates
frame.setPreferredMinMax(-10.0, 10.0, 0, 10);
time = 0;
frame.clearDrawables (); // removes old particles
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int n = control.getInt("number of balls");
int v = control.getInt("speed");
// instantiates array of n BouncingBall objects
ball = new BouncingBall[n];
for(int i = 0;i<n;i++) {
double theta = Math.PI«Math.random (); // random angle
// instantiates the ith BouncingBall object
ball[i] = new BouncingBall(0, vs«Math.cos(theta), 0, v+Math.sin(theta));
// adds ball to frame so that it will be displayed
frame.addDrawable(ball[i]);
J
// decimalFormat instantiated in superclass and used to format numbers conveniently
// message appears in lower right hand corner
frame.setMessage ("t = "+decimalFormat.format(time));

J

// invoked every 1/10 second by timer in AbstractSimulation superclass
public void doStep() {
for(int i = 0;i<ball.length;i++) {
ball[i].step(dt);
J

time += dt;
frame.setMessage ("t="+decimalFormat.format(time));

J

// invoked when start or step button is pressed
public void startRunning () ({

dt = control.getDouble("dt"); // gets time step
J

public void reset() { // invoked when reset button is pressed
// allows dt to be changed after initializaton
control.setAdjustableValue ("dt", 0.1);

control.setValue("number of balls", 40);
control.setValue("speed", 10);

|

public static void main(String[] args) ({

SimulationControl.createApp (new BouncingBallApp ());

J
J

Because we will advance the dynamical variables of each ball using a loop, we store them in
an array. An array such as ball is a data structure that holds many objects (or primitive data)
of the same type. The elements of an array are accessed using an index in square brackets. The
index begins at 0 and ends at the length of the array minus 1. Arrays are created with the new
operator and have several properties such as length. We will discuss arrays in more detail in
Section[3.4

In Listing [2.13] we represent each ball as an object of type BouncingBall in an array. This
use of objects is appealing, but for better performance, it is usually better to store the positions
and the velocities of the balls in an array of doubles. In Chapter [§|we will simulate a system of
N mutually interacting particles. Because computational speed will be very important in this
case, we will not allocate separate objects for each particle, and instead will treat the system of
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N particles as one object.

The initialize method in BouncingBallApp reads the number of particles and creates
an array of the appropriate length. Creating an array sets primitive variables to zero and object
values to null. For this reason we next loop to create the balls and add each ball to the frame. We
place each ball initially at (0,0) with a random velocity. To produce random angles for the initial
velocity, the Math. random() method is used. This method returns a random double between 0
and 1, not including the exact value 1. We define the random angle to be between 0 and 7 so
that the initial vertical component of the velocity is positive. Clicking the Initialize button
removes old objects from the drawing.

Most programming languages, including Java, use pixels to define the location on a win-
dow, with the origin at the upper left-hand corner and the vertical coordinate increasing in
the downward direction. This choice of coordinates is usually not convenient in physics, and
it often is more convenient to choose coordinates such that the vertical coordinate increases
upward. The Circle.setXY method uses world or physical coordinates to set the position of
the circle, and its implementation converts these coordinates to pixels so that the Java graphics
methods can be used. In initialize we set the boundaries for the world coordinates using
the setPreferredMinMax method whose arguments are the minimum x-coordinate, maximum
x-coordinate, minimum y-coordinate, and maximum y-coordinate, respectively.

The doStep method implements a straightforward loop to advance the dynamical state of
each ball in the array. It then advances the time and displays the time in the frame. Frames are
automatically redrawn each time the doStep method is executed.

Finally, we note that there are two types of input parameters. Some parameters, such as the
number of particles, determine properties of the model that should not be changed after the
model has been created. We refer to these parameters as fixed because their values should be
determined when the model is initialized. Other parameters, such as the time step At, can be
changed between computations, but should not be changed during a computation. For example,
if the time step is changed while a differential equation is being solved, one variable might
be advanced using the old value of the time step while another variable is advanced using
the new value. This type of synchronization error can be avoided by reading the parameters
before the doStep method is executed. If you wish to allow a parameter to be changed between
computations, you can use the optional startRunning method. This method is invoked once
when the Step button is clicked and once when the Run button is clicked. In other words this
method is called before the thread starts and insures that the simulation has the opportunity to
read the most recent values.

In BouncingBallApp the time step dt is set using the setAdjustableValue method rather
than the setValue method. Parameters that are set using setAdjustableValue are editable in
the SimulationControl after the program has been initialized, whereas those that are set using
setValue are only editable before the program has been initialized.

Exercise 2.19. Follow the bouncing balls

(a) Run BouncingBallApp and try the different buttons and note how they affect the input
parameters.

(b) Add the statement enableStepsPerDisplay(true) to the reset method, and run your pro-
gram again. You should see a new input in the control window that lets you change the
number of simulation steps that are computed between redrawing the frame. Vary this
input and note what happens.
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(c) What is wrong with the physics of the simulation?

(d) Add a method to the BouncingBall class to calculate and return the total energy. Sum the
energy of the balls in the program’s doStep method and display this value in the message
box. Does the simple model make sense?

(e) Look at the source code for the setXY method. If you are using an Integrated Development
Environment (IDE), finding the method and looking at the source code is easy. What would
you need to do to change the radius of the circle that is drawn? O

Many of the visualization components in the Open Source Physics library are written using
classes provided by others. The goal of this library is to make it easier for you to begin writing
your own programs. You are encouraged to look under the hood as you gain experience. The
Open Source Physics controls and visualizations will almost always inherit from the JFrame
class. Drawing is almost always done on a DrawingPanel which inherits from the JPanel class.
Both these superclasses are defined in the javax.swing package.

Exercise 2.20. Peeking into Open Source Physics

(a) Look at the source code for PlotFrame (in the frames package) and follow its inheritance
until you reach the JFrame class. How many subclasses are there between JFrame and
PlotFrame? Follow the inheritance from SimulationControl (in the controls package) to
JFrame. Describe in general terms what features are added in each subclass.

(b) Read through the different methods in PlotFrame. Don’t worry about how the methods are
implemented, but try to understand what they do. Which methods have not yet appeared
in a program listing? When might you use them?

(c) Look at the source code for PlottingPanel (in the display package), which is used in many
of the frames. Follow its inheritance until you reach the JPanel class. Do you see why we
have not described the PlottingPanel class in detail? Look through the various methods,
and describe in your own words what several of them do and how they might be used.

(d) Find the closest common ancestor (superclass) for JFrame and JPanel in the core Java li-
brary. Note that all objects have Object as a common ancestor. O

2.7 Model-View-Controller

Developing large software programs is best viewed as a design process. One criterion for good
design is the reuse of data structures and behaviors that can facilitate reuse. Separating the
physics (the model) from the user interface (the controller) and the data visualization (the view)
facilitate good design. In Open Source Physics, the control object is responsible for handling
user initiated events, such as button clicks, and passing them to other objects. The plots that
we have constructed present visual representations of the data and are examples of a view. By
using this design strategy, it is possible to have multiple views of the same data. For example,
we can show a plot and a table view of the same data. The physics is expressed in terms of a
model which contains the data and provides the methods by which the data can change.

At this point we have described a large fraction of the Java syntax and Open Source Physics
tools that we will need in the rest of this book. One important topic that we still need to discuss
is the use of interfaces. There is also much more in the Open Source Physics library that we can
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Figure 2.2: A complex number z can be defined by its real and imaginary parts, real and imag,
respectively, or by its magnitude |z| and phase angle 6.

use. For example, there are classes to draw and manipulate lattices as well as classes to iterate
differential equations more accurately than the Euler method used in this chapter.

At this stage we hope that you have gained a feel for how Java works, and can focus on the
physics in the rest of the text. Additional aspects of Java will be taught by example as they are
needed.

Appendix [2A: Complex Numbers

Complex numbers are used in physics to represent quantities such as alternating currents and
quantum mechanical wave functions which have an amplitude and phase (see Figure[2.2). Java
does not provide a complex number as a primitive data type, so we will write a class that im-
plements some common complex arithmetic operations. This class is an explicit example of the
fact that classes are effectively new programmer-defined types.

If our new class is called Complex, we could test it by using code such as the following:

package org.opensourcephysics.sip.ch02;
public class ComplexApp {
public static void main(String[] args) ({

Complex a = new Complex (3.0, 2.0); // complex number 3 + i2
Complex b = new Complex (1.0, —-4.0); // complex number 1 — i4
System.out. println(a); // display a using a.toString()
System.out. println (b); // display b using b.toString()
Complex sum = b.add(a); // add a to b
System.out. println (sum); // display sum
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Complex product = b.multiply(a); // multiply b by a
System.out. println (product); // display product
a.conjugate (); // complex conjugate of a
System.out. println(a);

J

Because the methods of class Complex are not static, we must first instantiate a Complex object
with a statement such as

Complex a = new Complex (3.0, 2.0);

The variable a is an object of class Complex. As before, we can think of new as creating the
instance variables and memory of the object. Compare the form of this statement to the decla-
ration

double x = 3.0;

A variable of class type Complex is literally more complex than a primitive variable because its
definition also involves associated methods and instance variables.

Note that we have first written a class that uses the Complex class before we have actually
written the latter. Although programming is an iterative process, it is usually a good idea to
first think about how the objects of a class are to be used. Exercise encourages you to do
so.

Exercise 2.21. Complex number test

What will be the output when ComplexApp is run? Make reasonable assumptions about how the
methods of the Complex class will perform using your knowledge of Java and complex numbers.
O

We need to define methods that add, multiply, and take the conjugate of complex numbers
and define a method that prints their values. We next list the code for the Complex class.

Listing 2.15: Listing of the Complex class.

package org.opensourcephysics.sip.ch02;
public class Complex {
private double real
private double imag

0;
0;

public Complex () {
this (0, 0); // invokes second constructor with 0 + i0

J

public Complex(double real, double imag) {
this.real = real;
this.imag = imag;

J

public void conjugate () {
imag = —imag;

J

public Complex add(Complex c¢) {
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// result also is complex so need to introduce another variable
// of type Complex

Complex sum = new Complex ();

sum.real = real+c.real;

sum.imag = imag+c.imag;

return sum;

J

public Complex multiply (Complex c) ({
Complex product = new Complex();
product.real = (realxc.real)—(imag+c.imag);
product.imag = (realxc.imag)+(imag+c.real);
return product;

J

public String toString () {
// note example of method overriding
if (imag>=0) {
return real+" + i"+Math.abs(imag);
} else {
return real+" - i"+Math.abs(imag);
J

J

The Complex class defines two constructors that are distinguished by their parameter list.
The constructor with two arguments allows us to initialize the values of the instance variables.
Notice how the class encapsulates (hides) both the data and the methods that characterize a
complex number. That is, we can use the Complex class without any knowledge of how its
methods are implemented or how its data is stored.

The general features of this class definition are as before. The variables real and imag are
the instance variables of class Complex. In contrast, the variable sum in method add is a local
variable because it can be accessed only within the method in which it is defined.

The most important new feature of the Complex class is that the add and multiply methods
return new Complex objects. One reason we need to return a variable of type Complex is that a
method returns (at most) a single value. For this reason we cannot return both sum.real and
sum.imag. More importantly, we want the sum of two complex numbers to be also of type
Complex so that we can add a third complex number to the result. Note also that we have
defined add and multiply so that they do not change the values of the instance variables of the
numbers to be added, but create a new complex number that stores the sum.

Exercise 2.22. Complex numbers

Another way to represent complex numbers is by their magnitude and phase, |z[e?. If z = a +1b,
then

|z| = Va2 + b2 (2.13a)

and

0 = arctan Z. (2.13b)

(a) Write methods to get the magnitude and phase of a complex number, getMagnitude and
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getPhase, respectively. Add test code to invoke these methods. Be sure to check the phase
in all four quadrants.

b) Create a new class named ComplexPolar that stores a complex number as a magnitude and
p 8

phase. Define methods for this class so that it behaves the same as the Complex class. Test

this class using the code for ComplexApp. O

This example of the Complex class illustrates the nature of objects, their limitations, and
the tradeoffs that enter into design choices. Because accessing an object requires more com-
puter time than accessing primitive variables, it is faster to represent a complex number by two
doubles, corresponding to its real and imaginary parts. Thus N complex data points could be
represented by an array of 2N doubles, with the first N values corresponding to the real val-
ues. Considerations of computational speed are important only if complex data types are used
extensively.

References and Suggestions for Further Reading

By using the Open Source Physics library, we have hidden most of the Java code needed to
use threads, and have only touched on the graphical capabilities of Java. See the Open Source
Physics: A User’s Guide with Examples for a description of additional details on how threads
and the other Open Source Physics tools are implemented and used. The source code for
all the programs in the text and the Open Source Physics library can be downloaded from
<www.compadre.org/portal/items/detail.cfm?ID=7147>.

There are many good books on Java graphics and Java threads. We list a few of our favorites
in the following.

David M. Geary, Graphic Java: Vol. 2, Swing, 3rd ed. (Prentice Hall, 1999).
Jonathan Knudsen, Java 2D Graphics (O’Reilly, 1999).
Scott Oaks and Henry Wong, Java Threads, 3rd ed. (O’Reilly, 2004).



Chapter 3

Simulating Particle Motion

We discuss several numerical methods needed to simulate the motion of particles using New-
ton’s laws and introduce interfaces, an important Java construct that makes it possible for unre-
lated objects to declare that they perform the same methods.

3.1 Modified Euler algorithms

To motivate the need for a general differential equation solver, we discuss why the simple Euler
algorithm is insufficient for many problems. The Euler algorithm assumes that the velocity and
acceleration do not change significantly during the time step At. Thus, to achieve an accept-
able numerical solution, the time step At must be chosen to be sufficiently small. However, if
we make At too small, we run into several problems. As we do more and more iterations, the
round-off error due to the finite precision of any floating point number will accumulate, and
eventually the numerical results will become inaccurate. Also, the greater the number of iter-
ations, the greater the computer time required for the program to finish. In addition to these
problems, the Euler algorithm is unstable for many systems, which means that the errors ac-
cumulate exponentially, and thus the numerical solution becomes inaccurate very quickly. For
these reasons more accurate and stable numerical algorithms are necessary.

To illustrate why we need algorithms other than the simple Euler algorithm, we make a very
simple change in the Euler algorithm and write

v(t+At) =v(t) +a(t)At (3.1a)
y(t+At) =y(t) +v(t + At)At (3.1b)

where a is the acceleration. The only difference between this algorithm and the simple Euler
algorithm,

v(t+At) = v(t) +a(t)At (3.2a)
y(t+At) = y(t) +v(t)At (3.2b)
is that the computed velocity at the end of the interval, v(t + At), is used to compute the new
position, (t + At) in (3.1b). As we found in Problem and will see in more detail in Prob-

lem 3.1} this modified Euler algorithm is significantly better for oscillating systems. We refer to
this algorithm as the Euler-Cromer algorithm.

45
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Problem 3.1. Comparing Euler algorithms

(a) Write a class that extends Particle and models a simple harmonic oscillator for which
F = —kx. For simplicity, choose units such that k =1 and m = 1. Determine the numerical
error in the position of the simple harmonic oscillator after the particle has evolved for
several cycles. Is the original Euler algorithm stable for this system? What happens if you
run for longer times?

(b) Repeat part (a) using the Euler-Cromer algorithm. Does this algorithm work better? If so,
in what way?

(c) Modify your program so that it computes the total energy, Eg,, = v2/2 + x%/2. How well is
the total energy conserved for the two algorithms? Also consider the quantity E = Eg,, +
(At/2)xp. What is the behavior of this quantity for the Euler—Cromer algorithm? O

Perhaps it has occurred to you that it would be better to compute the velocity at the middle
of the interval rather than at the beginning or at the end. The Euler—Richardson algorithm is
based on this idea. This algorithm is particularly useful for velocity-dependent forces, but does
as well as other simple algorithms for forces that do not depend on the velocity. The algorithm
consists of using the Euler algorithm to find the intermediate position y,,;4 and velocity v;q at
a time ty,;q = t+ At/2. We then compute the force, F(Vmid, Vmid> fmid) and the acceleration a,;q at
t = tniq- The new position y,,,; and velocity v, at time t,,1 are found using v,;q and a,;q and
the Euler algorithm. We summarize the Euler—Richardson algorithm as:

ay = F(Vp, vy ty)/m (3.3a)

1
VUmid = Vn + EanAt (3.3b)

1
Ymid :yn‘{'EVnAt (3.3¢)

1
Amid = F(ymid’vmid’ t+ EAt)/m (3.3d)
and

Vpsl = Uy + Amig At (3.4a)
Y+l = VU + Vmid At (Euler-Richardson algorithm). (3.4b)

Although we need to do twice as many computations per time step, the Euler-Richardson
algorithm is much faster than the Euler algorithm because we can make the time step larger and
still obtain better accuracy than with either the Euler or Euler—-Cromer algorithms. A derivation
of the Euler-Richardson algorithm is given in Appendix [3A.

Exercise 3.2. The Euler-Richardson algorithm

(a) Extend FallingParticle in Listing[2.6]to a new class that implements the Euler-Richardson
algorithm. All you need to do is write a new step method.

(b) Use At =0.08, 0.04, 0.02, and 0.01 and determine the error in the computed position when
the particle hits the ground. How do your results compare with the Euler algorithm? How
does the error in the velocity depend on At for each algorithm?
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(c) Repeat part (b)) for the simple harmonic oscillator and compute the error after several cycles.
O

As we gain more experience simulating various physical systems, we will learn that no
single algorithm for solving Newton’s equations of motion numerically is superior under all
conditions.

The Open Source Physics library includes classes that can be used to solve systems of cou-
pled first-order differential equations using different algorithms. To understand how to use this
library, we first discuss interfaces and then arrays.

3.2 Interfaces

We have seen how to combine data and methods into a class. A class definition encapsulates this
information in one place, thereby simplifying the task of the programmer who needs to modify
the class and the user who needs to understand or use the class.

Another tool for data abstraction is known as an interface. An interface specifies methods
that an object performs but does not implement these methods. In other words, an interface
describes the behavior or functionality of any class that implements it. Because an interface is
not tied to a given class, any class can implement any particular interface as long as it defines
all the methods specified by the interface. An important reason for interfaces is that a class can
inherit from only one superclass, but it can implement more than one interface.

An example of an interface is the Function interface in the numerics package:

public interface Function {
public double evaluate (double x);

J

The interface contains one method, evaluate, with one argument, but no body. Notice that the
definition uses the keyword interface rather then the keyword class.

We can define a class that encapsulates a quadratic polynomial as follows:

public class QuadraticPolynomial implements Function ({
double a,b,c;

public QuadraticPolynomial (double a, double b, double c) ({
this.a = a;
this.b = b;
this.c = ¢;

J

public double evaluate (double x) {
return axx*x + bxx + c;

J
J

Quadratic polynomials can now be instantiated and used as needed.

Function f = new QuadraticPolynomial (1,0,2);

for(int x = 0; x < 10; x++) {
System.out.println("x = "

}

+ x + " f(x)" + f.evaluate(x));
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By using the Function interface, we can write methods that use this mathematical abstrac-
tion. For example, we can program a simple plot as follows:

public void plotFunction (Function f, double xmin, double xmax) {

PlotFrame frame = new PlotFrame("x","y", "Function");
double n = 100; // number of points in plot
double x = xmin, dx = (xmax — xmin)/(n-1);
for (int i = 0; i < 100; i++) {
frame.append(0,x,f.evaluate(x));
X += dx;
J
frame.setVisible (true); // display frame on screen

J

We can also compute a numerical derivative based on the definition of the derivative found
in calculus textbooks.

public double derivative (Function f, double x, double dx) {
return (f.evaluate(x+dx) — f.evaluate(x))/dx;
}

This way of approximating a derivative is not optimum, but that is not the point here. (A better
approximation is given in Problem [3.8]) The important point is that the interface enables us to
define the abstract concept y = f(x) and to write code that uses this abstraction.

Exercise 3.3. Function interface

(a) Define a class that encapsulates the function f(u) = ae~bv?

(b) Write a test program that plots f(u#) with b =1 and b = 4. Choose a = 1 for simplicity.

(c) Write a test program that plots the derivatives of the functions used in part (b) without
using the analytic expression for the derivative. O

Although interfaces are very useful for developing large scale software projects, you will
not need to define interfaces to do the problems in this book. However, you will use several
interfaces, including the Function interface, that are defined in the Open Source Physics library.
We describe two of the more important interfaces in the following sections.

3.3 Drawing

An interface that we will use often is the Drawable interface:

package org.opensourcephysics.display;
import java.awt.x;

public interface Drawable {
public void draw (DrawingPanel panel, Graphics g);
J

Notice that this interface contains only one method, draw. Objects that implement this interface
are rendered in a DrawingPanel after they have been added to a DisplayFrame. As we saw in
Chapter 2} a DisplayFrame consists of components including a title bar, menu, and buttons
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for minimizing and closing the frame. The DisplayFrame contains a DrawingPanel on which
graphical output will be displayed. The Graphics class contains methods for drawing simple
geometrical objects such as lines, rectangles, and ovals on the panel. In Listing [3.1we define a
class that draws a rectangle using pixel-based coordinates.

Listing 3.1: PixelRectangle.

package org.opensourcephysics.sip.ch03;

import
import

public
int
int

java.awt.x; // uses Abstract Window Toolkit

org.opensourcephysics. display .x;

class PixelRectangle implements Drawable {

left , top;

// position of rectangle in pixels

width, height; // size of rectangle in pixels

PixelRectangle (int left, int top, int width, int height) ({
this.left = left; // location of left edge

J

public void draw(DrawingPanel panel, Graphics g)

J

In method draw we used fillRect, a primitive method in the Graphics class. This method
draws a filled rectangle using pixel coordinates with the origin at the top left corner of the

panel.

To use PixelRectangle, we instantiate an object and add it to a DisplayF rame as shown in

this.top = top; // location of top edge

this .width = width;
this.height = height;

{

// this method implements the Drawable interface

g.setColor (Color .RED);

g.fillRect (left, top, width, height);

Listing[3.2}

Listing 3.2: Listing of DrawingApp.

package org.opensourcephysics.sip.ch03;

import
import
import

public class DrawingApp extends AbstractCalculation
DisplayFrame frame = new DisplayFrame (

org.opensourcephysics.controls .x;
org.opensourcephysics.display .x;
org.opensourcephysics.frames.x;

public DrawingApp () |

J

frame.setPreferredMinMax (0, 10, 0,

public void calculate () {

// gets rectangle location

int left = control.getInt("xleft");
int top = control.getInt("ytop");
// gets rectangle dimensions

// set drawing color to red
// draws rectangle

X

10);

int width = control.getInt("width");

y

{

"Graphics");
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int height = control.getInt("height");

Drawable rectangle = new PixelRectangle(left, top, width, height);
frame.addDrawable(rectangle );

// frame is automatically rendered after Calculate button

// is clicked

J

public void reset () {
// removes drawables added by the user
frame.clearDrawables ();
// sets default input values
control.setValue("xleft", 60);
control.setValue("ytop", 70);
control.setValue("width", 100);
control .setValue("height", 150);

J

// creates a calculation control structure using this class

public static void main(String|[] args) f{
CalculationControl.createApp (new DrawingApp());

J

J

Note that multiple rectangles are drawn in the order that they are added to the drawing panel.
Rectangles or portions of rectangles may be hidden because they are outside the drawing panel.

Although it is possible to use pixel-based drawing methods to produce visualizations, cre-
ating even a simple graph in such an environment would require much tedious programming.
The DrawingPanel object passed to the draw method simplifies this task by defining a system
of world coordinates that enable us to specify the location and size of various objects in physical
units rather than pixels. In the WorldRectangle class in Listing[3.3} methods from the Drawing-
Panel class are used to convert pixel coordinates to world coordinates. The range of the world
coordinates in the horizontal and vertical directions is defined in the frame.setPreferredMinMax
method in DrawingApp. (This method is not needed if pixel coordinates are used.)

Listing 3.3: WorldRectangle illustrates the use of world coordinates.

package org.opensourcephysics.sip.ch03;
import java.awt.x;
import org.opensourcephysics.display.x;

public class WorldRectangle implements Drawable {
double left, top; // position of rectangle in world coordinates
double width, height; // size of rectangle in world units

public WorldRectangle (double left , double top, double width,
double height) ({
this.left = left; // location of left edge
this.top = top; // location of top edge
this.width = width;
this.height = height;
J

public void draw(DrawingPanel panel, Graphics g) {
// This method implements the Drawable interface
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g.setColor (Color .RED); // set drawing color to red

// converts from world to pixel coordinates

int leftPixels = panel.xToPix(left);

int topPixels = panel.yToPix(top);

int widthPixels = (int) (panel.getXPixPerUnit ()= width);

int heightPixels = (int) (panel.getYPixPerUnit ()*height);

// draws rectangle

g.fillRect(leftPixels , topPixels, widthPixels, heightPixels);

J
Exercise 3.4. Simple graphics

(a) Run DrawingApp and test how the different inputs change the size and location of the rect-
angle. Note that the pixel coordinates that are obtained from the control window are not
the same as the world coordinates that are displayed.

(b) Read the documentation at <java.sun.com/reference/api/> for the Graphics class, and
modify the WorldRectangle class to draw lines, filled ovals, and strings of characters. Also
play with different colors.

(c) Modify DrawingApp to use the WorldRectangle class and repeat part @) Note that the
coordinates that are displayed and the inputs are now consistent.

(d) Define and test a TextMessage class to display text messages in a drawing panel using world
coordinates to position the text. In the draw method use the syntax g.drawString("string
to draw",x,y), where (x,y) are the pixel coordinates. O

Although simple geometric shapes such as circles and rectangles are often all that are
needed to visualize many physical models, Java provides a drawing environment based on the
Java 2D Application Programming Interface (API) which can render arbitrary geometric shapes,
images, and text using composition and matrix-based transformations. We will use a subset of
these features to define the DrawableShape and InteractiveShape classes in the display pack-
age of Open Source Physics, which we will introduce in Chapter [9] (See also the Open Source
Physics User’s Guide.)

So far we have created rectangles using two different classes. Each implementation of a
Drawable rectangle defined a different draw method. Notice that in the display frame’s defi-
nition of addDrawable in DrawingApp, the argument is specified to be the interface Drawable
rather than a specific class. Any class that implements Drawable can be an argument of ad-
dDrawable. Without the interface construct, we would need to write an addDrawable method
for each type of class.

3.4 Specifying The State of a System Using Arrays

Imagine writing the code for the numerical solution of the motion of three particles in three di-
mensions using the Euler—Richardson algorithm. The resulting code would be tedious to write.
In addition, for each problem we would need to write and debug new code to implement the
numerical algorithm. The complications become worse for better algorithms, most of which are
algebraically more complex. Moreover, the numerical solution of simple first-order differential
equations is a well- developed part of numerical analysis, and thus there is little reason to worry



CHAPTER 3. SIMULATING PARTICLE MOTION 52

about the details of these algorithms now that we know how they work. In Section [3.5| we will
introduce an interface for solving the differential equations associated with Newton’s equations
of motion. Before we do so we discuss a few features of arrays that we will need.

As we discussed on page ordered lists of data are most easily stored in arrays. For
example, if we have an array variable named x, then we can access its first element as x[0], its
second element as x[ 1], etc. All elements must be of the same data type, but they can be just
about anything: primitive data types such as doubles or integers, objects, or even other arrays.
The following statements show how arrays of primitive data types are defined and instantiated:

// x defined to be an array of doubles

double[] x;

double x[]; // same meaning as double [] x
// x array created with 32 elements

x = new double[32];

// v array defined and created in one statement

double[] y = new double[32];

int[] num = new int[100]; // array of 100 integers
double [] x,y // preferred notation
// same meaning as double [] x,y

double x[], y[]

// array of doubles specified by two indices

double [][] sigma = new double[3][3];

// reference to first row of sigma array

double[] row = sigma[0];

We will adopt the syntax double[] x instead of double x[]. The array index starts at zero,
and the largest index is one less than the number of elements. Note that Java supports multiple
array indices by creating arrays of arrays. Although sigma[0][0] refers to a single value of type
double in the sigma object, we can refer to an entire row of values in the sigma object using the
syntax sigma[i].

As shown in Chapter 2} arrays can contain objects such as bouncing balls.

// array of two BouncingBall objects

BouncingBall [] ball = new BouncingBall[2];

ball[0] = new BouncingBall(0,10.0,0,5.0); // creates first ball
ball[1] = new BouncingBall(0,-13.0,0,7.0); // creates second ball

The first statement allocates an array of BouncingBall objects, each of which is initialized to
null. We need to create each object in the array using the new operator.

The numerical solution of an ordinary differential equation (frequently called an ODE)
begins by expressing the equation as several first-order differential equations. If the highest
derivative in the ODE is order n (for example, d"x/dt"), then it can be shown that the ODE can
be written equivalently as n first-order differential equations. For example, Newton’s equation
of motion is a second-order differential equation and can be written as two first-order differ-
ential equations for the position and velocity in each spatial dimension. For example, in one
dimension we can write

dy _
== v(t) (3.5a)
v _ )= E(tym. (3.5b)

i
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If we have more than one particle, there are additional first-order differential equations for each
particle. It is convenient to have a standard way of handling all these cases.

Let us assume that each differential equation is of the form

% = 1i(X0, Xj, X0, ..., X1, ) (3.6)
where x; is a dynamical variable such as a position or a velocity. The rate function r; can depend
on any of the dynamical variables including the time t. We will store the values of the dynamical
variables in the state array and the values of the corresponding rates in the rate array. In the
following we show some examples:

// one particle in one dimension:
state[0] // stores x

state[1] // stores v

state[2] // stores t (time)

// one particle in two dimensions:
state[0] // stores «x

state[1] // stores wvx

state[2] // stores y

state[3] // stores wvy

state [4] //stores t

// two particles in one dimension:
state[0] // stores xI

state[1] // stores vl

state[2] // stores x2

state[3] // stores v2

state [4] // stores t

Although the Euler algorithm does not assume any special ordering of the state variables,
we adopt the convention that a velocity rate follows every position rate in the state array so
that we can efficiently code the more sophisticated numerical algorithms that we discuss in Ap-
pendix3]A and in later chapters. To solve problems for which the rate contains an explicit time
dependence, such as a driven harmonic oscillator (see Section , we store the time variable in
the last element of the state array. Thus, for one particle in one dimension, the time is stored in
state[2]. In this way we can treat all dynamical variables on an equal footing.

Because arrays can be arguments of methods, we need to understand how Java passes vari-
ables from the class that calls a method to the method being called. Consider the following
method:

public void example(int r, int s[]) {
r = 20;
s[0] = 20;

}

What do you expect the output of the following statements to be?

int x = 10;

int[] y = {10}; // array of one element initialized to y[0] = 10
example(x, y);

System.out.println("x = " + x + " y[0] = " + y[0]);

The answer is that the output will be x = 10, y[0] = 20. Java parameters are “passed-by-
value,” which means that the values are copied. The method cannot modify the value of the
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x variable because the method received only a copy of its value. In contrast, when an object
or an array is in a method’s parameter list, Java passes a copy of the reference to the object or
the array. The method can use the reference to read or modify the data in the array or object.
For this reason the step method of the ODE solvers, discussed in Section does not need to
explicitly return an updated state array, but implicity changes the contents of the state array.

Exercise 3.5. Pass by value

As another example of how Java handles primitive variables differently from arrays and objects,
consider the statements

int x = 10;
int y = x;
x = 20;

What is y? Next consider
// declares an array of one element initialized to the wvalue 10

int[] x

int[] y
x[0] = 20;

{10};

X5

Whatis y[0]? O]

We are now ready to discuss the classes and interfaces from the Open Source Physics library
for solving ordinary differential equations.

3.5 The ODE Interface

To introduce the ODE interface, we again consider the equations of motion for a falling particle.
We use a state array ordered as s = (y,v, t), so that the dynamical equations can be written as:

Sp = S1 (3.7a)
s1=-g¢ (3.7b)
s,=1. (3.7¢)

The ODE interface enables us to encapsulate (3.7)) in a class. The interface contains two methods,
getState and getRate, as shown in Listing[3.4]

Listing 3.4: The ODE interface.

package org.opensourcephysics.numerics;

public interface ODE {
public double[] getState ();
public void getRate(double[] state, double[] rate);

J

The getState method returns the state array (sg,sy,...,5,). The getRate method evaluates
the derivatives using the given state array and stores the result in the rate array, (Sq,$1,...,5,)-

An example of a Java class that implements the ODE interface for a falling particle is shown
in Listing [3.5]



CHAPTER 3. SIMULATING PARTICLE MOTION 55

Listing 3.5: Example of the implementation of the ODE interface for a falling particle.

package org.opensourcephysics.sip.ch03;
import org.opensourcephysics.numerics.x;

public class FallingParticleODE implements ODE ({
final static double g = 9.8;
double[] state = new double[3];

public FallingParticleODE (double y, double v) {

state [0] = y;
state[1] = v;
state[2] = 0; // initial time

J

// required to implement ODE interface
public double[] getState () ({

return state;
J

public void getRate(double[] state, double[] rate) f{

rate[0] = state[1]; // rate of change of vy is v
rate[1] = -g;
rate[2] = 1; // rate of change of time is 1

3.6 The ODESolver Interface

There are many possible numerical algorithms for advancing a system of first-order ODEs from
an initial state to a final state. The Open Source Physics library defines ODE solvers such as
Euler and EulerRichardson, as well as RK4, a fourth-order algorithm that is discussed in Ap-
pendix[3] You can write additional classes for other algorithms if they are needed. Each of these
classes implements the ODESolver interface, which is defined in Listing

Listing 3.6: The ODE solver interface. Note the four methods that must be defined.

package org.opensourcephysics.numerics;

public interface ODESolver {
public void initialize (double stepSize);
public double step ();
public void setStepSize (double stepSize);
public double getStepSize ();

}

A system of first-order differential equations is now solved by creating an object that im-
plements a particular algorithm and repeatedly invoking the step method for that solver class.
The argument for the solver class constructor must be a class that implements the ODE interface.
As an example of the use of ODESolver, we again consider the dynamics of a falling particle.

Listing 3.7: A falling particle program that uses an ODESolver.
package org.opensourcephysics.sip.ch03;
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import org.opensourcephysics.controls.x;
import org.opensourcephysics.numerics.x;

public class FallingParticleODEApp extends AbstractCalculation {
public void calculate () {
// gets initial conditions
double y0 = control.getDouble("Initial y");
double v0 = control.getDouble("Initial v");
// creates ball with initial conditions
FallingParticleODE ball = new FallingParticleODE(y0, v0);
// mote how particular algorithm is chosen
ODESolver solver = new Euler(ball);
// sets time step dt in the solver
solver.setStepSize (control.getDouble("dt"));
while (ball.state[0]>0) {
solver.step ();
J

control . println ("final time = "+ball.state[2]);

control . println("y = "+ball.state[0]+" v = "+ball.state[1]);

J

public void reset() {
// sets default input values
control.setValue("Initial y", 10);
control.setValue("Initial v", 0);
control.setValue("dt", 0.01);

J

// creates a calculation control structure for this class
public static void main(String[] args) ({
CalculationControl.createApp (new FallingParticleODEApp());
J
}

The ODE classes are located in the numerics package, and thus we need to import this pack-
age as done in the third statement of FallingParticleODEApp. We declare and instantiate the
variables ball and solver in the calculate method. Note that ball, an instance of Falling-
ParticleODE, is the argument of the Euler constructor. The object ball can be an argument
because FallingParticleODE implements the ODE interface.

It would be a good idea to look at the source code of the ODE Euler class in the numerics
package. The Euler class gets the state of the system using getState and then sends this state
to getRate which stores the rates in the rate array. The state array is then modified using the
rate array in the Euler algorithm. You don’t need to know the details, but you can read the
step method of the various classes that implement ODESolver if you are interested in how the
different algorithms are programmed.

Because FallingParticleODE appears to be more complicated than FallingParticle, you
might ask what we have gained. One answer is that it is now much easier to use a different
numerical algorithm. The only modification we need to make is to change the statement

ODESolver solver = new Euler(ball);

to, for example,

ODESolver solver = new EulerRichardson(ball);



CHAPTER 3. SIMULATING PARTICLE MOTION 57

We have separated the physics (in this case a freely falling particle) from the implementation of
the numerical method.

Exercise 3.6. ODE solvers

Run FallingParticleODEApp and compare your results with our previous implementation of
the Euler algorithm in FallingParticleApp. How easy is it to use a different algorithm? O

3.7 Effects of Drag Resistance

We have introduced most of the programming concepts that we will use in the remainder of
this text. If you are new to programming, you will likely feel a bit confused at this point by
all the new concepts and syntax. However, it is not necessary to understand all the details to
continue and begin to write your own programs. A prototypical simulation program is given
in Listings and These classes simulate a projectile on the surface of the Earth with no
air friction, including a plot of position versus time and an animation of a projectile moving
through the air. In the following, we discuss more realistic models that can be simulated by
modifying the projectile classes.

Listing 3.8: A simple projectile simulation that is useful as a template for other simulations.

package org.opensourcephysics.sip.ch03;
import java.awt.x;

import org.opensourcephysics.display.x;
import org.opensourcephysics.numerics.x;

public class Projectile implements Drawable, ODE {
static final double g = 9.8;
double[] state = new double[5]; // {x,vx,y,vy,t}
/ pixel radius for drawing of projectile
int pixRadius = 6;
EulerRichardson odeSolver = new EulerRichardson(this);

public void setStepSize (double dt) f{
odeSolver.setStepSize (dt);
J

public void step () {
odeSolver.step (); // do one time step using selected algorithm
J

public void setState(double x, double vx, double y, double vy) {
state[0] = x;

state[1] = vx;
state[2] = y;
state[3] = vy;

state[4] = 0;
J

public double[] getState () ({
return state;
J
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public void getRate(double[] state, double[] rate)

rate[0] = state[1l]; // rate of change of x
rate[1] = 0; // rate of change of wvx
rate[2] = state[3]; // rate of change of y
rate[3] = -g; // rate of change of vy
rate[4] = 1; // dt/dt =1

J

{

public void draw(DrawingPanel drawingPanel, Graphics g) {

int xpix = drawingPanel.xToPix(state[0]);
int ypix = drawingPanel.yToPix(state[2]);
g.setColor (Color.red);

g.fillOval (xpix—pixRadius, ypix—pixRadius, 2+pixRadius,

g.setColor (Color.green);

int xmin = drawingPanel.xToPix(-100);
int xmax = drawingPanel.xToPix(100);
int y0 = drawingPanel.yToPix(0);

// draw a line to represent the ground
g.drawLine (xmin, y0, xmax, y0);

Listing 3.9: A target class for projectile motion simulation.

package org.opensourcephysics.sip.ch03;
import org.opensourcephysics.controls .x
import org.opensourcephysics.frames.x;

public class ProjectileApp extends AbstractSimulation

PlotFrame plotFrame = new PlotFrame("Time", "x,y",
Projectile projectile = new Projectile ();
PlotFrame animationFrame = new PlotFrame("x", "y",

public ProjectileApp () {
animationFrame.addDrawable ( pr0]ect11e )5
plotFrame .setXYColumnNames(0, "t", ");
plotFrame .setXYColumnNames(1, "t", ")

J

public void initialize () f{
double dt = control.getDouble("dt");
double x = control.getDouble("initial x");
double vx = control.getDouble("initial vx");
double y = control.getDouble("initial y");
double vy = control.getDouble("initial vy");
projectile.setState(x, vx, y, Vy);
projectile .setStepSize (dt);
// estimate of size mneeded for display
double size = (vx*vx+vy*vy)/10;
animationFrame.setPreferredMinMax (-1, size, -1,

J

public void doStep() {
// x wvs time data added

{

"Position versus time

"Trajectory"

size);

);

58

2xpixRadius);

wy L
);
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plotFrame.append (0, projectile.state[4], projectile.state[0]);

// vy vs time data added

plotFrame.append (1, projectile.state[4], projectile.state[2]);

// trajectory data added

animationFrame.append (0, projectile.state[0], projectile.state[2]);
projectile .step (); // advance the state by one time step

J

public void reset () {

control.setValue("initial x", 0);
control.setValue("initial vx", 10);
control.setValue("initial y", 0);
control .setValue("initial vy", 10);
control.setValue("dt", 0.01);
enableStepsPerDisplay(true);

J

public static void main(String[] args) ({

SimulationControl.createApp (new ProjectileApp ());

J
J

The analytic solution for free fall near the Earth’s surface, , is well known, and thus
finding a numerical solution is useful only as an introduction to numerical methods. It is not
difficult to think of more realistic models of motion near the Earth’s surface for which the equa-
tions of motion do not have simple analytic solutions. For example, if we take into account the
variation of the Earth’s gravitational field with the distance from the center of the Earth, then
the force on a particle is not constant. According to Newton’s law of gravitation, the force due
to the Earth on a particle of mass m is given by

_ GMm _ GMm _ LY
F_(R+y)2_R2(1+y/R)2_mg(1 2R+ ) (3.8)

where p is measured from the Earth’s surface, R is the radius of the Earth, M is the mass of the
Earth, G is the gravitational constant, and ¢ = GM/R?.

Problem 3.7. Position-dependent force

Extend FallingParticleODE to simulate the fall of a particle with the position-dependent force
law (3.8). Assume that a particle is dropped from a height h with zero initial velocity and
compute its impact velocity (speed) when it hits the ground at y = 0. Determine the value of h
for which the impact velocity differs by one percent from its value with a constant acceleration
¢ = 9.8m/s?. Take R = 6.37 x 10° m. Make sure that the one percent difference is due to the
physics of the force law and not the accuracy of your algorithm. O

For particles near the Earth’s surface, a more important modification is to include the drag
force due to air resistance. The direction of the drag force F;(v) is opposite to the velocity of the
particle (see Figure[3.1). For a falling body, F;(v) is upward as shown in Figure Hence,
the total force F on the falling body can be expressed as

F=-mg+F,. (3.9)
The velocity dependence of F;(v) is known theoretically in the limit of very low speeds for

small objects. In general, it is necessary to determine the velocity dependence of F;(v) empiri-
cally over a limited range of velocities. One way to obtain the form of F;(v) is to measure y as
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Figure 3.1: (a) Coordinate system with y measured positive upward from the ground. (b) The
force diagram for upward motion. (c) The force diagram for downward motion.

a function of ¢ and then compute v(t) by calculating the numerical derivative of y(t). Similarly,
we can use v(t) to compute a(t) numerically. From this information, it is possible in principle to
find the acceleration as a function of v and to extract F;(v) from (3.9). However, this procedure
introduces errors (see Problem [3.8b) because the accuracy of the derivatives will be less than the
accuracy of the measured position. An alternative is to reverse the procedure, that is, assume an
explicit form for the v dependence of F;(v), and use it to solve for y(t). If the calculated values
of y(t) are consistent with the experimental values of y(t), then the assumed v dependence of
F;(v) is justified empirically.
The two common assumed forms of the velocity dependence of F;(v) are

Fi4(v)=Cyv (3.10a)

and

Fp4(v) = Cv? (3.10b)

where the parameters C; and C, depend on the properties of the medium and the shape of
the object. In general, (3.10a) and (3.10b) are useful phenomenological expressions that yield
approximate results for F;(v) over a limited range of v.

Because F;(v) increases as v increases, there is a limiting or terminal velocity (speed) at which
the net force on a falling object is zero. This terminal speed can be found from (3.9) and (3.10)
by setting F; = mg and is given by

Vi = % (linear drag) (3.11a)
1
Vo = (2—5)1/2 (quadratic drag) (3.11b)

for the linear and quadratic cases, respectively. It is often convenient to express velocities
in terms of the terminal velocity. We can use (3.10) and (3.11) to write F; in the linear and
quadratic cases as

v
Fig=Civ, (—):m > (3.12a)
! ! V1t gvl,t

v

o v 2 2
F2,d :Cz”l/z’t (E) :mg(a) . (312b)
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t(s) Position (m) t(s) Position (m) t(s) Position (m)
0.2055 0.4188 0.4280 0.3609 0.6498 0.2497
0.2302 0.4164 0.4526 0.3505 0.6744 0.2337
0.2550 0.4128 0.4773 0.3400 0.6990 0.2175
0.2797 0.4082 0.5020 0.3297 0.7236 0.2008
0.3045 0.4026 0.5266 0.3181 0.7482 0.1846
0.3292 0.3958 0.5513 0.3051 0.7728 0.1696
0.3539 0.3878 0.5759 0.2913 0.7974 0.1566
0.3786 0.3802 0.6005 0.2788 0.8220 0.1393
0.4033 0.3708 0.6252 0.2667 0.8466 0.1263

Table 3.1: Results for the vertical fall of a coffee filter. Note that the initial time is not zero.
The time difference is ~ 0.0247. This data is also available in the falling. txt file in the ch03
package.

Hence, we can write the net force (per unit mass) on a falling object in the convenient forms

Fl(v)/m:—g(l—%), (3.13a)
Fy(v)/m = —g(l - ;jz ) (3.13b)

To determine if the effects of air resistance are important during the fall of ordinary ob-
jects, consider the fall of a pebble of mass m = 1072kg. To a good approximation, the drag
force is proportional to v2. For a spherical pebble of radius 0.01 m, C, is found empirically to
be approximately 1072 kg/m. From we find the terminal velocity to be about 30 m/s.
Because this speed would be achieved by a freely falling body in a vertical fall of approximately
50m in a time of about 3 s, we expect that the effects of air resistance would be appreciable for
comparable times and distances.

Data often is stored in text files, and it is convenient to be able to read this data into a
program for analysis. The Resourceloader class in the Open Source Physics tools package
makes reading these files easy. This class can read many different data types including images
and sound. An example of how to use the ResourcelLoader class to read string data is given in
DataloaderApp.

Listing 3.10: Example of the use of the ResourcelLoader class to read data into a program.

package org.opensourcephysics.sip.ch03;
import org.opensourcephysics.tools .x;

public class DataLoaderApp {
public static void main(String[] args) f{
// reads from directory where DataLoaderApp is located
String fileName = "falling.txt";
// gets the data file
Resource res = ResourceLoader.getResource(fileName,
DataLoaderApp.class);

String data = res.getString();
// split string on newline character
String [] lines = data.split("\n");
// extract x-y data from every line
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Figure 3.2: A falling coffee filter does not fall with constant acceleration due to the effects of
air resistance. The motion sensor below the filter is connected to a computer which records
position data and stores it in a text file.

for(int i = 0, n = lines.length;i<n;i++) {
if (lines[i].trim ().startsWith("//")) {
continue;

J

// split on any white space

String [] numbers = lines[i].trim ().split("\\s");
System.out. print("t = "+numbers[0]);

System.out. println(" y = "+numbers[1]);

}
Problem 3.8. The fall of a coffee filter

(a) Use the empirical data for the height y(t) of a coffee filter in the falling. txt data file to
determine the velocity v(t) using the central difference approximation given by

(1) ~ y(t+At)—y(t - At)
- 2At
Show that if we write the acceleration as a(t) ~ [v(t + At) — v(t)]/At and use the backward

difference approximation for the velocity,

f)—y(t— At
v(t) = % (backward difference approximation), (3.15)

(central difference approximation). (3.14)

we can express the acceleration as

_y(E+ A =2y(t) +y(t - At)
a(t) = (A1) .

(3.16)
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Use (3.16) to determine the acceleration.

Determine the terminal velocity from the data given in the falling. txt file. This deter-
mination is difficult, in part because the terminal velocity has not been reached during the
time that the fall of the coffee filter was observed. Use your approximate results for v(t)
and a(t) to plot a as a function of v and, if possible, determine the nature of the velocity
dependence of a. Discuss the accuracy of your results for the acceleration.

Choose one of the numerical algorithms that we have discussed and write a class that en-
capsulates this algorithm for the motion of a particle with quadratic drag resistance.

Choose the terminal velocity as an input parameter and take as your first guess for the
terminal velocity the value you found in part (b). Make sure that your computed results
for the height of the particle do not depend on At to the necessary accuracy. Compare your
plot of the computed values of y(¢) for different choices of the terminal velocity with the
empirical values of y(¢) in falling. txt.

Repeat parts (c) and (d) assuming linear drag resistance. What are the qualitative differences
between the two computed forms of y(t) for the same terminal velocity?

Visually determine which form of the drag force yields the best overall fit to the data. If
the fit is not perfect, what is your criteria for which fit is better? Is it better to match your
results to the experimental data at early times or at later times? Or did you adopt another
criterion? What can you conclude about the velocity dependence of the drag resistance on
a coffee filter? O

Problem 3.9. Effect of air resistance on the ascent and descent of a pebble

(a)

Verify the claim made in Section [3.7)that the effects of air resistance on a falling pebble can
be appreciable. Compute the speed at which a pebble reaches the ground if it is dropped
from rest at a height of 50 m. Compare this speed to that of a freely falling object under
the same conditions. Assume that the drag force is proportional to v? and that the terminal
velocity is 30 m/s.

Suppose a pebble is thrown vertically upward with an initial velocity vy. In the absence of
air resistance, we know that the maximum height reached by the pebble is 1/3/ 2g, its velocity
upon return to the Earth equals vy, the time of ascent equals the time of descent, and the
total time in the air is 2vy/g. Before doing a simulation, give a simple qualitative explanation
of how you think these quantities will be affected by air resistance. In particular, how will
the time of ascent compare with the time of descent?

Do a simulation to determine if your qualitative answers in part (b) are correct. Assume
that the drag force is proportional to v2. Choose the coordinate system shown in Figure
with p positive upward. What is the net force for v > 0 and v < 0? We can characterize
the magnitude of the drag force by a terminal velocity even if the motion of the pebble
is upward and even if the pebble never attains this velocity. Choose the terminal velocity
vy = 30m/s, corresponding to a drag coefficient of C, =~ 0.01089. It is a good idea to choose
an initial velocity that allows the pebble to remain in the air for a time sufficiently long so
that the effect of the drag force is appreciable. A reasonable choice is v(t = 0) = 50 m/s. You
might find it convenient to express the drag force in the form F; o —v+Math.abs(v). One
way to determine the maximum height of the pebble is to use the statement
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if (vxvold < 0) {
control.println ("maximum height = " + y);
J

where v = v,,,; and vold = v,. Why is this criterion preferable to other criteria that you
might imagine using? O

3.8 Two-Dimensional Trajectories

You are probably familiar with two-dimensional trajectory problems in the absence of air resis-
tance. For example, if a ball is thrown in the air with an initial velocity vy at an angle 8, with
respect to the ground, how far will the ball travel in the horizontal direction, and what is its
maximum height and time of flight? Suppose that a ball is released at a nonzero height / above
the ground. What is the launch angle for the maximum range? Are your answers still applicable
if air resistance is taken into account? We consider these and similar questions in the following.
Consider an object of mass m whose initial velocity v is directed at an angle 6, above
the horizontal [see Figure[3.3(a)]. The particle is subjected to gravitational and drag forces of
magnitude mg and Fj; the direction of the drag force is opposite to v (see Figure [3.33.3(b)).
Newton’s equations of motion for the x and y components of the motion can be written as

dv,
=—F 1
m— 1C0s0 (3.17a)
dv, ]
m—- = —mg—F;sin6. (3.17b)

For example, let us maximize the range of a round steel ball of radius 4cm. A reasonable
assumption for a steel ball of this size and typical speed is that F; = C,v?. Because v, = vcos0

and v, = vsin0, we can rewrite 1) as

dv

md—tx =-Cyvv, (3.18a)
dv,

m— - =-—mg— Crvvy. (3.18b)

Note that ~C,vv, and —C,vv, are the x and y components of the drag force —-C,v?. Because

(]3.18a[) and (]3.18b[) for the change in v, and v, involve the square of the velocity, vi=v2+ vyz,
we cannot calculate the vertical motion of a falling body without reference to the horizontal
component, that is, the motion in the x and y direction is coupled.
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(a) (b)

Figure 3.3: (a) A ball is thrown from a height & at a launch angle 8, measured with respect to
the horizontal. The initial velocity is vq. (b) The gravitational and drag forces on a particle.

Problem 3.10. Trajectory of a steel ball

(a)

Use Projectile and ProjectileApp to compute the two-dimensional trajectory of a ball
moving in air without air friction and plot y as a function of x. Compare your computed
results with the exact results. For example, assume that a ball is thrown from ground level
at an angle 6 above the horizontal with an initial velocity of vy = 15m/s. Vary 6 and show
that the maximum range occurs at 6y = 6,,,, = 45°. What is R,,,, the maximum range, at
this angle? Compare your numerical result to the analytic result Ry, = v3/g.

Suppose that a steel ball is thrown from a height h at an angle 6, above the horizontal with
the same initial speed as in part (a). If you neglect air resistance, do you expect 6, to
be larger or smaller than 45°? What is 6., for h = 2m? By what percent is the range R
changed if 6 is varied by 2% from 6,,,,?

Consider the effects of air resistance on the range and optimum angle of a steel ball. For
a ball of mass 7 kg and cross-sectional area 0.01 m?, the parameter C, ~ 0.1. What are the
units of C,? It is convenient to exaggerate the effects of air resistance so that you can more
easily determine the qualitative nature of the effects. Hence, compute the optimum angle
for h=2m, vy =30m/s,and C,/m = 0.1 and compare your answer to the value found in part
(B). Is R more or less sensitive to changes in Oy from Oy, than in part (b)? Determine the
optimum launch angle and the corresponding range for the more realistic value of C, = 0.1.
A detailed discussion of the maximum range of the ball has been given by Lichtenberg and
Wills. O

Problem 3.11. Comparing the motion of two objects

Consider the motion of two identical objects that both start from a height h. One object is
dropped vertically from rest and the other is thrown with a horizontal velocity vy. Which object
reaches the ground first?

(a)
(b)

Give reasons for your answer assuming that air resistance can be neglected.

Assume that air resistance cannot be neglected and that the drag force is proportional to v2.
Give reasons for your anticipated answer for this case. Then perform numerical simulations
using, for example, Cp/m = 0.1, h = 10 m, and vq = 30m/s. Are your qualitative results
consistent with your anticipated answer? If they are not, the source of the discrepancy
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might be an error in your program. Or the discrepancy might be due to your failure to
anticipate the effects of the coupling between the vertical and horizontal motion.

(c) Suppose that the drag force is proportional to v rather than to v2. Is your anticipated answer
similar to that in part (b)? Do a numerical simulation to test your intuition. O

3.9 Decay Processes

The power of mathematics when applied to physics comes in part from the fact that seemingly
unrelated problems frequently have the same mathematical formulation. Hence, if we can solve
one problem, we can solve other problems that might appear to be unrelated. For example, the
growth of bacteria, the cooling of a cup of hot water, the charging of a capacitor in a RC circuit,
and nuclear decay can all be formulated in terms of equivalent differential equations.

Consider a large number of radioactive nuclei. Although the number of nuclei is discrete,
we may often treat this number as a continuous variable because the number of nuclei is very
large. In this case the law of radioactive decay is that the rate of decay is proportional to the

number of nuclei. Thus we can write IN

dt
where N is the number of nuclei and A is the decay constant. Of course, we do not need to use
a computer to solve this decay equation, and the analytic solution is

=-AN (3.19)

N(t) = Noe M (3.20)

where N is the initial number of particles. The quantity A in (3.19) or (3.20) has dimensions of
inverse time.

Problem 3.12. Single nuclear species decay

(a) Write a class that solves and plots the nuclear decay problem. Input the decay constant
A from the control window. For A =1 and At = 0.01, compute the difference between the
analytic result and the result of the Euler algorithm for N(¢)/N(0) at t =1 and ¢ = 2. Assume
that time is measured in seconds.

(b) A common time unit for radioactive decay is the half-life T;,,, the time it takes for one-half
of the original nuclei to decay. Another natural time scale is the time 7 it takes for 1/e of the
original nuclei to decay. Use your modified program to verify that T;,, = In2/A. How long
does it take for 1/e of the original nuclei to decay? How is Ty, related to 7?

(c) Because it is awkward to treat very large or very small numbers on a computer, it is conve-
nient to choose units so that the computed values of the variables are not too far from unity.
Determine the decay constant A in units of s~ for 238U — 234Th if the half-life is 4.5 x 10°
years. What units and time step would be appropriate for the numerical solution of (3.19)?
How would these values change if the particle being modeled was a muon with a half-life
of 2.2x1076s?

(d) Modify your program so that the time t is expressed in terms of the half-life. Thatis,att =1,
one half of the particles would have decayed and at t = 2, one quarter of the particles would
have decayed. Use your program to determine the time for 1000 atoms of 238U to decay to
20% of their original number. What would be the corresponding time for muons? O
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Multiple nuclear decays produce systems of first-order differential equations. Problem
asks you to model such a system using the techniques similar to those that we have already
used.
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Figure 3.4: The decay scheme of >!'Rn. Note that >!!Rn decays via two branches, and the final
product is the stable isotope 207Pb. All vertical transitions are by electron capture, and all
diagonal transitions are by alpha decay. The times represent half-lives.

Problem 3.13. Multiple nuclear decays

(a) 7®Kr decays to 7®Br via electron capture with a half-life of 14.8h, and 7®Br decays to 7°Se
via electron capture and positron emission with a half-life of 16.1 h. In this case there are
two half-lives, and it is convenient to measure time in units of the smallest half-life. Write a
program to compute the time dependence of the amount of 7°Kr and 7°Se over an interval
of one week. Assume that the sample initially contains 1 gm of pure 7°Kr.

(b) 2®Mn decays via beta emission to 22 Al with a half-life of 21 h, and 22 Al decays by positron
emission to 28Si with a half-life of 2.31 min. If we were to use minutes as the unit of time,
our program would have to do many iterations before we would see a significant decay of
the 2Mn. What simplifying assumption can you make to speed up the computation?

(c) 2!'Rn decays via two branches as shown in Figure Make any necessary approximations
and compute the amount of each isotope as a function of time, assuming that the sample
initially consists of 1 ug of 2! Rn. O
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Problem 3.14. Cooling of a cup of coffee

The nature of the energy transfer from the hot water in a cup of coffee to the surrounding air
is complicated and, in general, involves the mechanisms of convection, radiation, evaporation,
and conduction. However, if the temperature difference between the water and its surround-
ings is not too large, the rate of change of the temperature of the water may be assumed to be
proportional to the temperature difference. We can formulate this statement more precisely in
terms of a differential equation:

aT

dt
where T is the temperature of the water, T; is the temperature of its surroundings, and r is
the cooling constant. The minus sign in (3.21) implies that if T > T, the temperature of the
water will decrease with time. The value of the cooling constant r depends on the heat transfer
mechanism, the contact area with the surroundings, and the thermal properties of the water.
The relation (3.21)) is sometimes known as Newton’s law of cooling, even though the relation is
only approximate, and Newton did not express the rate of cooling in this form.

—r(T-T,) (3.21)

(a) Write a program that computes the numerical solution of (3.21). Test your program by
choosing the initial temperature Ty = 100°C, T, = 0°C, r = 1, and At = 0.1.

(b) Model the cooling of a cup of coffee by choosing r = 0.03. What are the units of r? Plot
the temperature T as a function of the time using T, = 87°C and T, = 17°C. Make sure
that your value of At is sufficiently small so that it does not affect your results. What is the
appropriate unit of time in this case?

(c) Suppose that the initial temperature of a cup of coffee is 87°C, but the coffee can be sipped
comfortably only when its temperature is < 75°C. Assume that the addition of cream cools
the coffee by 5°C. If you are in a hurry and want to wait the shortest possible time, should
the cream be added first and the coffee be allowed to cool, or should you wait until the
coffee has cooled to 80°C before adding the cream? Use your program to “simulate” these
two cases. Choose r = 0.03 and T; = 17°C. What is the appropriate unit of time in this case?
Assume that the value of  does not change when the cream is added. O

3.10 *Visualizing Three-Dimensional Motion

The world in which we live is three-dimensional (3D), and it sometimes is necessary to visualize
phenomena in three dimensions. There are several 3D visualization packages available, includ-
ing Java3D developed by Oracle. Because we want a three-dimensional visualization framework
designed for physics simulations, we have developed our own APIEI

The Open Source Physics 3D drawing framework is defined in subpackages in the dis-
play3d package and provides a high level of abstraction for rendering three-dimensional ob-
jects. These 3D drawable objects implement the Element interface in the core package, which
enables their position, size, and appearance to be controlled. Elements can be grouped with
other elements, can change their visibility, and respond to mouse actions. Listing shows
that it is not much more difficult to define and manipulate a three-dimensional model than a
two-dimensional model. The most significant change is that the program instantiates a Dis-
play3DFrame and adds Element objects such as spheres and boxes to this frame.

1A framework consists of several classes and an API that does a particular task. In general, these classes are in
different packages.
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Listing 3.11: A three-dimensional bouncing ball created using the Open Source Physics dis-

play3D.simple3d package.

package org.opensourcephysics.sip.ch03;

import java.awt.x;

import org.opensourcephysics.controls.x;

import org.opensourcephysics.frames.Display3DFrame;
import org.opensourcephysics.display3d.simple3d.x;

import org.opensourcephysics.display3d.core.Resolution;

public class Ball3DApp extends AbstractSimulation {

Display3DFrame frame = new Display3DFrame("3D Ball");

Element ball = new ElementEllipsoid ();
double time = 0, dt = 0.1;
double vz = 0;

public Ball3DApp() |
frame.setPreferredMinMax(-5.0, 5.0, -5.0, 5.0,
ball.setXYZ(0, 0, 9);

// ball displayed in 3D as a planar ellipse of size

ball .setSizeXYZ (1, 1, 1);

frame.addElement (ball );

Element box = new ElementBox ();

box.setXYZ (0, 0, 0);

box.setSizeXYZ (4, 4, 1);
box.getStyle (). setFillColor (Color.RED);

// divide sides of box into smaller rectangles

10.0);

(dx,dy,dz)

box.getStyle ().setResolution (new Resolution(5, 5, 2));

frame.addElement (box);

frame.setMessage("time = "+ControlUtils.f2(time));

J

protected void doStep() f{
time += 0.1;
double z = ball.getZ()+vz+dt—4.9xdtxdt;
vz —= 9.8xdt;
if ((vz<0)&&(z<1)) |
vz = —-vz;
J

ball .setZ(z);

frame.setMessage("time = "+ControlUtils.f2(time));

J

public static void main(String[] args) ({
SimulationControl.createApp (new Ball3DApp());
J

J

Note that the 3D drawing API is similar to the 2D drawing API described in Section
The setPreferredMinMax method, for example, has a variant that accepts up to six double
parameters. You can set the size and location of objects in three dimensions before or after they

are added to the frame.

Although the Display3DF rame is designed for three-dimensional visualizations, it can also
show two-dimensional projections. For example, we can project onto the yz-plane by invoking
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Figure 3.5: The Magnus force on a spinning ball pushes a ball with topspin down.

frame.setDisplayMode ( VisualizationHints . DISPLAY PLANAR YZ);

Projections onto various planes are available at runtime using the frame’s menu. The full capa-
bilities of Open Source Physics 3D are discussed in the Open Source Physics User’s Guide.

We will require only a small subset of the methods of the Open Source Physics 3D frame-
work to create the three-dimensional visualizations in this book and will introduce the nec-
essary objects as needed. Readers may wish to run the demonstration programs in the ch03
directory to obtain an overview of its drawing capabilities.

Of particular interest to baseball fans is the curve of balls in flight due to their rotation.
This force was first investigated in 1850 by G. Magnus, and the curvature of the trajectories
of spinning objects is now known as the Magnus effect. It can be explained qualitatively by
observing that the speed of the ball’s surface relative to the air is different on opposite edges
of the ball. If the drag force has the form Fy, ~ v2, then the unbalanced force due to the
difference in the velocity on opposite sides of the ball due to its rotation is given by

Fragnus ~ VAv. (3.22)

We can express the velocity difference in terms of the ball’s angular velocity and radius and
write
Fragnus ~ VT @. (3.23)

The direction of the Magnus force is perpendicular to both the velocity and the rotation
axis. For example, if we observe a ball moving to the right and rotating clockwise (that is, with
topspin), then the velocity of the ball’s surface relative to the air at the top, v+ wr, is higher than
the velocity at the bottom, v — wr. Because the larger velocity will produce a larger force, the
Magnus effect will contribute a force in the downward direction. These considerations suggest
that the Magnus force can be expressed as a vector product:

Fmagnus/m = Cum(w xv) (3.24)

where m is the mass of the ball. The constant, Cy;, depends on the radius of the ball, the
viscosity of air, and other factors such as the orientation of the stitching. We will assume that
the ball is rotating fast enough so that it can be modeled using an average value. (If the ball
does not rotate, the pitcher has thrown a knuckleball.) The total force on the baseball is given
by

F/m =g— Cplvlv + Cpr(w x v). (3.25)
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Equation (3.25) leads to the following rates for the velocity components:
dv,

i =-Cpvvy + Cp(wyv, — w,vy) (3.26a)
dvy

Tl —Cpvvy + Cp(w, v — wyvy) (3.26b)
e covv, + Coplwyv, — wyvs) (3.26¢)
T DVVYz M\ Wy Vy = WyVy) =& -£06¢

where we will assume that w is a constant. The rate for each of the three position variables is
the corresponding velocity. Typical parameter values for a 149 gram baseball are Cp = 6 x 1073
and Cy; = 4x 107, See the book by Adair for a more complete discussion.

Problem 3.15. Curveballs

(a) Create a class that implements (3.26). Assume that the initial ball is released at z = 1.8 m
above and x = 18m from home plate. Set the initial angle above the horizontal and the
initial speed using the constructor.

(b) Write a program that plots the vertical and horizontal deflection of the baseball as it travels
toward home plate. First set the drag and Magnus forces to zero and test your program
using analytic results for a 40 m/s fast ball. What initial angle is required for the pitch to
pass over home plate at a height of 1.5m?

(c) Add the drag force with Cp = 6 x 1072. What initial angle is required for this pitch to be a
strike assuming that the other initial conditions are unchanged? Plot the vertical deflection
with and without drag for comparison.

(d) Add topspin to the pitch using a typical spin of w, = 200rad/s and Cp; = 4 x 107%. How
much does topspin change the height of the ball as it passes over the plate? What about
backspin?

(e) How much does a 35m/s curve ball deflect if it is pitched with an initial spin of 200 rad/s?
O

Problem 3.16. Visualizing baseball trajectories in three dimensions

Add a 3D visualization of the baseball’s trajectory to Problem [3.15|using ElementTrail to dis-
play the path of the ball. The following code fragment shows how a trail is created and used.

ElementTrail trail = new ElementTrail ();

trail .setMaximumPoints (500);

trail.getStyle ().setLineColor(java.awt.Color.RED);
// frame3D is an OSP3DFrame
frame3D.addElement(trail );

// points are added to a trail to show a trajectory
trail .addPoint(x,y,z); // adds a point to the trace

O

Coupled three-dimensional equations of motion occur in electrodynamics when a charged
particle travels through electric and magnetic fields. The equation of motion can be written in
vector form as

mv =gE +q(vxB) (3.27)
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where m is the mass of the particle, q is the charge, and E and B represent the electric and
magnetic fields, respectively. For the special case of a constant magnetic field, the trajectory
of a charged particle is a spiral along the field lines with a cyclotron orbit whose period of
revolution is 27tm/qB. The addition of an electric field changes this motion dramatically.

The rates for the velocity components of a charged particle using units such that m =g =1
are

d

% — E,+v,B,—v,B, (3.28a)
dvy

W = E}) + VZBX — Vsz (328b)
d

% =E; +v,By—v,B,. (3.28¢)

The rate for each of the three position variables is again the corresponding velocity.

Problem 3.17. Motion in electric and magnetic fields

(a) Write a program to simulate the two-dimensional motion of a charged particle in a constant
electric and magnetic field with the magnetic field in the Z direction and the electric field in
the ¢ direction. Assume that the initial velocity is in the xy plane.

(b) Why does the trajectory in part (a) remain in the x-y plane?

(c) In what direction does the charged particle drift if there is an electric field in the x direction
and a magnetic field in the z direction if it starts at rest from the origin? What type of curve
does the charged particle follow?

(d) Create a three-dimensional simulation of the trajectory of a particle in constant electric
and magnetic fields. Verify that a charged particle undergoes spiral motion in a constant
magnetic field and zero electric field. Predict the trajectory if an electric field is added and
compare the results of the simulation to your prediction. Consider electric fields that are
parallel to and perpendicular to the magnetic field. O

Although the trajectory of a charged particle in constant electric and magnetic fields can be
solved analytically, the trajectories in the presence of dipole fields cannot. A magnetic dipole
with dipole moment p = |p|p produces the following magnetic field:

Hom A oava A
= 3p-7)f -pJ. 3.29
47worg,[ p-#)f —p] (3.29)
(The distinction between the symbol p for the dipole moment and p for momentum should be
clear from the context.)

“Problem 3.18. Motion in a magnetic dipole field
Model the Earth’s Van Allen radiation belt using the following formula for the dipole field:

B:BO(%)a[(&ﬁ : f)f—p] (3.30)

where Rp is the radius of the Earth, and the magnetic field at the equator is By = 3.5x 107 tesla.
Note that a 1 MeV electron at 2 Earth radii travels in very tight spirals with a cyclotron period
that is much smaller than the travel time between the north and south poles. Better visual
results can be obtained by raising the electron energies by a factor of ~ 1000. Use classical
dynamics, but include the relativistic dependence of the mass on the particle speed.
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3.11 Levels of Simulation

So far we have considered models in which the microscopic complexity of the system of interest
has been simplified considerably. Consider, for example, the motion of a pebble falling through
the air. First we reduced the complexity by representing the pebble as a particle with no internal
structure. Then we reduced the number of degrees of freedom even more by representing the
collisions of the pebble with the many molecules in the air by a velocity-dependent friction
term. The resultant phenomenological model is a fairly accurate representation of realistic
physical systems. However, what we gain in simplicity, we lose in range of applicability.

In a more detailed model, the individual physical processes would be represented micro-
scopically. For example, we could imagine doing a simulation in which the effects of the air
are represented by a fluid of particles that collide with one another and with the falling body.
How accurately do we need to represent the potential energy of interaction between the fluid
particles? Clearly the level of detail that is needed depends on the accuracy of the correspond-
ing experimental data and the type of information in which we are interested. For example, we
do not need to take into account the influence of the moon on a pebble falling near the Earth’s
surface. And the level of detail that we can simulate depends in part on the available computer
resources.

The terms simulation and modeling are frequently used interchangeably, and their precise
meanings are not important. Many practitioners might say that so far we have solved several
mathematical models numerically and have not yet done a simulation. Beginning with the next
chapter, we will be able to say that we are doing simulations. The difference is that our models
will represent physical systems in more detail, and we will give more attention to what physical
quantities we should measure. In other words our simulations will become more analogous to
laboratory experiments.

Appendix 3A: Numerical Integration of Newton’s Equation of
Motion

We summarize several of the common finite difference methods for the solution of Newton’s
equations of motion with continuous force functions. The number and variety of algorithms
currently in use is evidence that no single method is superior under all conditions.

To simplify the notation, we consider the motion of a particle in one dimension and write
Newton’s equations of motion in the form

% =af(t) (3.31a)
% =v(t) (3.31b)

where a(t) = a(x(t),v(t),t). The goal of finite difference methods is to determine the values of
Xpy1 and vy, at time t,,, = t, + At. We already have seen that At must be chosen so that
the integration method generates a stable solution. If the system is conservative, At must be
sufficiently small so that the total energy is conserved to the desired accuracy.

The nature of many of the integration algorithms can be understood by expanding v,,; =
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v(t, + At) and x,,,1 = x(t, + At) in a Taylor series. We write

Vpel = vn+anAt+O((At)2), (3.32a)
1
Xyl = Xy + VAL + Ean(At)2+o((At)3). (3.32b)
The familiar Euler algorithm is equivalent to retaining the O(At) terms in (3.32):
Vg1 = Uy +a, At (3.33a)
Xp41 = X + v, AL (Euler algorithm). (3.33Db)

Because order At terms are retained in , the local truncation error, the error in one time
step, is order (At)z. The global error, the total error over the time of interest, due to the accu-
mulation of errors from step to step is order At. This estimate of the global error follows from
the fact that the number of steps into which the total time is divided is proportional to 1/At.
Hence, the order of the global error is reduced by a factor of 1/At relative to the local error. We
say that an algorithm is nth order if its global error is order (At)". The Euler algorithm is an
example of a first-order algorithm.

The Euler algorithm is asymmetrical because it advances the solution by a time step At, but
uses information about the derivative only at the beginning of the interval. We have already
found that the accuracy of the Euler algorithm is limited and that frequently its solutions are
not stable. We have found also that a simple modification of yields solutions that are
stable for oscillatory systems. For completeness, we repeat the Euler-Cromer algorithm here:

Vsl = Uy + a, AL (3.34a)

Xp41 = Xp + Uy At (Euler-Cromer algorithm). (3.34b)

An obvious way to improve the Euler algorithm is to use the mean velocity during the
interval to obtain the new position. The corresponding midpoint algorithm can be written as

Vsl = Uy + a, AL (3.35a)
and
1
Xpyl = Xy + E(vn+1 +v,)At (midpoint algorithm). (3.35b)
Note that if we substitute (3.35a)) for v,,,1 into (3.35b), we obtain
1
Xyl =Xy + VAt + 4, A2, (3.36)

Hence, the midpoint algorithm yields second-order accuracy for the position and first-order
accuracy for the velocity. Although the midpoint approximation yields exact results for constant
acceleration, it does not usually yield much better results than the Euler algorithm. In fact, both
algorithms are equally poor because the errors increase with each time step.

A higher order algorithm whose error is bounded is the half-step algorithm. In this algo-
rithm, the average velocity during an interval is taken to be the velocity in the middle of the
interval. The half-step algorithm can be written as

Uyl SV, 1 +a,At, (3.37a)
Xpyl = Xp + vn%At. (half-step algorithm) (3.37b)

Note that the half-step algorithm is not self-starting, that is, (3.37a) does not allow us to cal-
culate VL. This problem can be overcome by adopting the Euler algorithm for the first half
step:
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2

1
V1 :v0+§a0At. (337C)

Because the half-step algorithm is stable, it is a common textbook algorithm. The Euler-Richardson
algorithm can be motivated as follows. We first write x(t + At) as

x1 ~ x(t + At) :x(t)+v(t)At+%a(t)(At)2. (3.38)

The notation x; implies that x(t + At) is related to x(t) by one time step. We may also divide the
step At into half steps and write the first half step, x(¢ + %At), as

1 At 1 At\?
x(t+EAt)~x(t)+v(t)7+§a(t)(7) . (3.39)
The second half step, x,(t + At), may be written as
1 1, \At 1 1 At\?
Xz(t+At)~X(t+5At)+V(t+5At)7+§a(t+§At)(7) . (340)
We substitute (3.39) into (3.40) and obtain
1 1 1 1 1 2
xo(t+ At) ~ x(t) + E[v(t) Fo(t+ EAt)]At + E[a(t) + a(t + EAt)](EAt) . (3.41)
Now a(t + %At) ~a(t)+ %a’(t)At. Hence to order (At)?, i becomes
xo(t+At) = x(£) + l[v(t) ; v(t + lAt)]At ‘ l[2a(t)](lm)2 (3.42)
2 N 2 2 2 27 ‘

We can find an approximation that is accurate to order (At)3 by combining 1i and 1}
so that the terms to order (At)? cancel. The combination that works is 2x, — x;, which gives the
Euler-Richardson result:

1
Xer(t+ AF) = 23 (£ + At) = x, (£ + AL) = x(£) + v(t ; EAt)At L O(AtY. (3.43)
The same reasoning leads to an approximation for the velocity accurate to (At)? giving

1
Ve = 205 (£ + At) vy (£ + ML) = v(t) + a(t ; EAt)At + O(A1, (3.44)

A bonus of the Euler-Richardson algorithm is that the quantities |x, — x;| and |v, — v{| give
an estimate for the error. We can use these estimates to change the time step so that the error is
always within some desired level of precision. We will see that the Euler-Richardson algorithm
is equivalent to the second-order Runge-Kutta algorithm [see (3.54)].

One of the most common drift-free higher order algorithms is commonly attributed to Ver-
let. We write the Taylor series expansion for x,,_; in a form similar to (3.32b):

1
Xp_1 = Xy — Uy AL+ Ean(m)z. (3.45)

If we add the forward and reverse forms, (3.32b)) and (3.45) respectively, we obtain

Xl + Xpo1 = 2%, + ay(A1) + O((AD)*) (3.46)
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or
Xpa1 = 2%, — Xp_q + ap(AL)? (leapfrog algorithm). (3.47a)

Similarly, the subtraction of the Taylor series for x,,,; and x,_; yields
v, = % (leapfrog algorithm). (3.47b)

Note that the global error associated with the leapfrog algorithm is third-order for the
position and second-order for the velocity. However, the velocity plays no part in the integra-
tion of the equations of motion. The leapfrog algorithm is also known as the explicit central
difference algorithm. Because this form of the leapfrog algorithm is not self-starting, another
algorithm must be used to obtain the first few terms. An additional problem is that the new
velocity is found by computing the difference between two quantities of the same order
of magnitude. Such an operation results in a loss of numerical precision and may give rise to
roundoff errors.

A mathematically equivalent version of the leapfrog algorithm is given by
1
Xyl = X, + U, AL+ Ea,,(At)2 (3.48a)
1
Vpyyl = Uy + E(anﬂ +a,)At (velocity Verlet algorithm). (3.48b)

We see that (3.48), known as the velocity form of the Verlet algorithm, is self-starting and min-
imizes roundoff errors. Because we will not use in the text, we will refer to as the
Verlet algorithm.

We can derive ([3.48) from (3.47) by the following considerations. We first solve for
x,_1 and write x,_; = x,,; — 2v,At. If we substitute this expression for x,_; into and
solve for x,,,1, we find the form (3.48a). Then we use to write v,,,1 as

Uyt = —x’“;A_tx” (3.49)

and use (3.47a) to obtain x,,5 = 2x,,, — X, + a,,1(At)?. If we substitute this form for x,, into
(3.49), we obtain

Xp41 — X 1

Vpsl = % + Eﬂn+1At. (350)
Finally, we use (3.48a)) for x,,,; to eliminate x,,; —x,, from (3.50); after some algebra we obtain
the desired result (3.48b)).

Another useful algorithm that avoids the roundoff errors of the leapfrog algorithm is due
to Beeman and Schofield. We write the Beeman algorithm in the form

1
Xpa1 = Xy + VAL + 8(4“” —a,_1)(At)? (3.51a)
1
Vpsl = Vy + g(2an+1 +5a, —a,_1)At (Beeman algorithm). (3.51b)
Note that (3.51) does not calculate particle trajectories more accurately than the Verlet algo-

rithm. Its advantage is that it generally does a better job of maintaining energy conservation.
However, the Beeman algorithm is not self-starting.
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The most common finite difference method for solving ordinary differential equations is the
Runge—Kutta method. To explain the many algorithms based on this method, we consider the
solution of the first-order differential equation

d
d_’; = f(x, ). (3.52)

Runge-Kutta algorithms evaluate the rate f(x, t) multiple times in the interval [t, t + At]. For ex-
ample, the classic fourth-order Runge—Kutta algorithm, which we will discuss in the following,
evaluates f(x,t) at four times t,, t, + a;At, t, + a,At, and t,, + agAt. Each evaluation of f(x,t)
produces a slightly different rate ry, r,, 13, and r4. The idea is to advance the solution using a
weighted average of the intermediate rates:

VYl = Y + (C171 + Cotp + 373 + C414) AL, (3.53)

The various Runge—Kutta algorithms correspond to different choices for the constants a;
and c;. These algorithms are classified by the number of intermediate rates {r;, i = 1,...,N}. The
determination of the Runge—Kutta coefficients is difficult for all but the lowest order methods,
because the coefficients must be chosen to cancel as many terms in the Taylor series expansion of
f(x,t) as possible. The first non-zero expansion coefficient determines the order of the Runge—
Kutta algorithm. Fortunately, these coefficients are tabulated in most numerical analysis books.

To illustrate how the various sets of Runge-Kutta constants arise, consider the case N = 2.
The second-order Runge-Kutta solution of (3.52) can be written using standard notation as

Xpe1 = X, + ko + O((A1)?) (3.54a)

where
ky=f(x, + %, t,+ %)At (3.54b)
ki = f(xy, t,)At. (3.54c¢)

Note that the weighted average uses ¢c; = 0 and ¢, = 1. The interpretation of is as follows.
The Euler algorithm assumes that the slope f(x,,t,) at (x,,t,) can be used to extrapolate to the
next step, that is, x,,.1 = x,, + f (x,,, t,)At. A plausible way of making a more accurate determina-
tion of the slope is to use the Euler algorithm to extrapolate to the midpoint of the interval and
then to use the midpoint slope across the full width of the interval. Hence, the Runge-Kutta
estimate for the rate is f(x*,t, + %At), where x* = x,, + %f(xn, t,)At [see ]

The application of the second-order Runge—Kutta algorithm to Newton’s equation of motion

yields

kiy = an(x,, vy, ty)At (3.55a)
kix =v,At (3.55b)
k k At
ko = a(x,, + %,vn + %, t+ T)At (3.55¢)
_ klv
k2x =\v, + T At (35561)
and
Vpy1 =Vt ko (3.56a)

X1 = Xy + oy (second-order Runge Kutta) (3.56b)
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Note that the second-order Runge—Kutta algorithm in 5) and (3.56) is identical to the Euler—
Richardson algorithm.

Other second-order Runge—Kutta type algorithms exist. For example, if we set ¢; = ¢, = %
we obtain the endpoint method:

Vel = Vn + %kl + %kz (3.57a)

where
ki = f(x,, t,)At (3.57b)
ky = f(x, +kq, t, + At)At. (3.57¢)

And if we set ¢; = % and ¢; = %, we obtain Ralston’s method:

1 2
Yne1 =ynt gkt 5ka (3.58a)
where
ky = f (xp, ta) At (3.58b)
k2 :f(xn+zk1/trl+zAt)At. (358C)

Note that Ralston’s method does not calculate the rate at uniformly spaced subintervals of At.
In general, a Runge-Kutta method adjusts the partition of At as well as the constants a; and ¢;
so as to minimize the error.

In the fourth-order Runge—Kutta algorithm, the derivative is computed at the beginning of
the time interval, in two different ways at the middle of the interval, and again at the end of
the interval. The two estimates of the derivative at the middle of the interval are given twice
the weight of the other two estimates. The algorithm for the solution of can be written in
standard notation as

Xy tn) (3.59a)

A
x4 KL t)At (3.59b)

A
xn+ St + —)At (3.59¢)

x,,+k3,t + At)At (3.59d)

and .
Xpyl =Xy + g(kl + 2k2 + 2k3 + k4) (360)

The application of the fourth-order Runge—Kutta algorithm to Newton’s equation of motion
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yields

kiy = a(x,, vy, t,)At (3.61a)
kiy = v, At (3.61b)
At
ko = a(xn + k%,vn + kITV,t,, + 7)At (3.61c¢)
_ klv
k2x =\v, + T At (361d)
k k At
k3 :a(xn+%,vn+%,t,,+?)At (3.61e)
kay = (v, + %)At (3.61f)
k4v = a(xn+k3x,vn+k3v,t+At)At (361g)
kax = (vy + k3 )At, (3.61h)
and
1
Unt1 =V + g(klv + 2kay + 2k3y + kyy) (3.62a)
1
Xpp1 =Xy + g(klx + 2kyy + 2k3y + kygy)  (fourth-order Runge-Kutta). (3.62b)

Because Runge—Kutta algorithms are self-starting, they are frequently used to obtain the first
few iterations for an algorithm that is not self-starting.

As we have discussed, one way to determine the accuracy of a solution is to calculate it
twice with two different values of the time step. One way to make this comparison is to choose
time steps At and At/2 and compare the solution at the desired time. If the difference is small,
the error is assumed to be small. This estimate of the error can be used to adjust the value of
the time step. If the error is too large, than the time step can be halved. And if the error is much
less than the desired value, the time step can be increased so that the program runs faster.

A better way of controlling the step size was developed by Fehlberg who showed that it
is possible to evaluate the rate in such a way as to simultaneously obtain two Runge-Kutta
approximations with different orders. For example, it is possible to run a fourth-order and
fifth-order algorithm in tandem by evaluating five rates. We thus obtain different estimates of
the true solution using different weighed averages of these rates:

Yur1 = Y + Crky + Coka + c3ks + caky + c5ks (3.63a)
Vi = Vn +Clky + Cyky + Ciks + chky. (3.63b)

Because we can assume that the fifth-order solution is closer to the true solution than the fourth-
order algorithm, the difference |y — y*| provides a good estimate of the error of the fourth-order
method. If this estimated error is larger than the desired tolerance, then the step size is de-
creased. If the error is smaller than the desired tolerance, the step size is increased. The RK45
ODE solver in the numerics package implements this technique for choosing the optimal step
size.

In applications where the accuracy of the numerical solution is important, adaptive time
step algorithms should always be used. As stated in Numerical Recipes: “Many small steps
should tiptoe through treacherous terrain, while a few great strides should speed through un-
interesting countryside. The resulting gains in efficiency are not mere tens of percents or factors
of two; they can sometimes be factors of ten, a hundred, or more."
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Adaptive step size algorithms are not well suited for tabulating functions or for simulation
because the intervals between data points are not constant. An easy way to circumvent this
problem is to use a method that takes multiple adaptive steps while checking to insure that the
last step does not overshoot the desired fixed step size. The ODEMultistepSolver implements
this technique. The solver acts like a fixed step size solver, even though the solver monitors its
internal step size so as to achieve the desired accuracy.

It also is possible to combine the results from a calculation using two different values of the
time step to yield a more accurate expression. Consider the Taylor series expansion of f (¢ + At)
about f:

f(t+At)=f(t)+ f'(t)At + %f”(t)(At)z ool (3.64)

Similarly, we have
] 1 V2
f(t=At)=f(t)- f'(t)At + 2—!f () (AL)2 +---. (3.65)

We subtract (3.65) from (3.64) to find the usual central difference approximation for the deriva-
tive
’ f(t+At)_f(t_At) (At)z ”
t)~ Dy (At) = - t). 3.66
£/(1)= Dy (A1) . 1) (3.66)
The truncation error is order (At)?. Next consider the same relation, but for a time step that is

twice as large:

, (t+2At)— f(t—2At)  4(At)?
Fity~ Dy 2an) = T 2ADTUZ 280 KA ooy (3.67)
Note that the truncation error is again order (At)?, but is four times bigger. We can eliminate

this error to leading order by dividing (3.67) by 4 and subtracting it from (3.66):

P 3F(0)= /(0% Dy(an) - 1Dy (240
or
iy~ D (At);Dl(ZAt)' 568

It is easy to show that the error for f’(t) is order (At)*. Recursive difference formulas for deriva-
tives can be obtained by canceling the truncation error at each order. This method is called
Richardson extrapolation.

Another class of algorithms are predictor—corrector algorithms. The idea is to first predict the
value of the new position:

Xp = Xyo1 + 2V, At (predictor). (3.69)

The predicted value of the position allows us to predict the acceleration a,. Then using a,, we
obtain the corrected values of v, and x,,,1:

1
Vpil :vn+5(ap+an)At (3.70a)
1
Xyl = X, + E(vnﬂ +v,)At (corrected). (3.70b)
The corrected values of x,,,; and v, are used to obtain a new predicted value of a,,;, and,

hence, a new predicted value of v, | and x,,,1. This process is repeated until the predicted and
corrected values of x,,,; differ by less than the desired value.
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Note that the predictor-corrector algorithm is not self-starting. The predictor—corrector al-
gorithm gives more accurate positions and velocities than the leapfrog algorithm and is suitable
for very accurate calculations. However, it is computationally expensive, needs significant stor-
age (the forces at the last two stages and the coordinates and velocities at the last step), and
becomes unstable for large time steps.

As we have emphasized, there is no single algorithm for solving Newton’s equations of
motion that is superior under all conditions. It is usually a good idea to start with a simple
algorithm and then to try a higher order algorithm to see if any real improvement is obtained.

We now discuss an important class of algorithms, known as symplectic algorithms, which
are particularly suitable for doing long time simulations of Newton’s equations of motion when
the force is only a function of position. The basic idea of these algorithms derives from the
Hamiltonian theory of classical mechanics. We first give some basic results needed from this
theory to understand the importance of symplectic algorithms.

In Hamiltonian theory the generalized coordinates gq; and momenta p; take the place of the
usual positions and velocities familiar from Newtonian theory. The index i labels both a particle
and a component of the motion. For example, in a two- particle system in two dimensions, i
would run from 1 to 4. The Hamiltonian (which for our purposes can be thought of as the total
energy) is written as

H(qi,pi)=T+V (3.71)

where T is the kinetic energy and V is the potential energy. Hamilton’s theory is most relevant
for nondissipative systems, which we consider here. For example, for a two particle system in
two dimensions connected by a spring, H would take the form

2 2 2 2
pi P> P3Py 1 2 1 2
H=—+->=+—+-"=+-k(q - —k(g, - 72
o T om 2 T o T 31— 43)" + 5 k(92— 44) (3.72)
where if the particles are labeled as A and B, we have py = py 4, p2 = Py, P3 = Px,B» P4 = Py,B/
and similarly for the g;. The equations of motion are written as first-order differential equations
known as Hamilton’s equations:

. oH
pi = —a—qi (373&)
. OH

4=, (3.73b)

which are equivalent to Newton’s second law and an equation relating the velocity to the mo-
mentum. The beauty of Hamiltonian theory is that these equations are correct for other co-
ordinate systems such as polar coordinates, and they also describe rotating systems where the
momenta become angular momenta, and the position coordinates become angles.

Because the coordinates and momenta are treated on an equal footing, we can consider
the properties of flow in phase space where the dimension of phase space includes both the
coordinates and momenta. Thus, one particle moving in one dimension corresponds to a two-
dimensional phase space. If we imagine a collection of initial conditions in phase space forming
a volume in phase space, then one of the results of Hamiltonian theory is that this volume does
not change as the system evolves. A slightly different result, called the symplectic property, is
that the sum of the areas formed by the projection of the phase space volume onto the planes
q;,p; for each pair of coordinates and momenta also does not change with time. Numerical
algorithms that have this property are called symplectic algorithms. These algorithms are built
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from the following two statements which are repeated M times for each time step.

png) = pgk) + asz(k)ét (3.74a)
et = g0 4 pp st (3.74b)
where F;k) = —9V(q§k))/9ql(-k). The label k runs from 0 to M —1 and one time step is given by

At = Mot. (We will see that 6t is the time step of an intermediate calculation that is made
during the time step At.) Note that in the update for g;, the already updated p; is used. For
simplicity, we assume that the mass is unity.

Different algorithms correspond to different values of M, ay, and by. For example, ay = by =
M =1 corresponds to the Euler-Cromer algorithm, and M =2,a9=a; =1, by =2,and b; =0
is equivalent to the Verlet algorithm as we will now show. If we substitute in the appropriate
values for a; and by into (3.74), we have

p =p %+ FVs¢ (3.75a)
gV =g\ 4 2pMst (3.75b)
pi.z) :pf.l) +F§1)5t (3.75c¢)
qu) = qgl). (3.75d)

We next combine (3.75a)) and (3.75c) for the momentum coordinate and (3.75b)) and (3.75d) for
the position and obtain

pgz) _ pgo) N (P(O) +P(1))6t (3.76a)

i i

0” =g\ + 2pMst. (3.76b)
We take 6t = At/2 and combine (3.76b) with (3.75a) and find

2 0,1 0 1
p! =p! )+E(Ff '+ FY)At (3.77a)
1
g =q" +p" At EFEO)(At)2 (3.77b)

which is identical to the Verlet algorithm , because for unit mass the force and acceleration
are equal.

Reversing the order of the updates for the coordinates and the momenta also leads to sym-
plectic algorithms:

"= "+ byopl (3.78a)
l. ' apotpFY (3.78b)

H
A third variation uses (3.74) and (3.78) for different values of k in one algorithm. Thus, if M = 2,
which corresponds to two intermediate calculations per time step, we could use ([3.74) for the
first intermediate calculation and (3.78) for the second.

Why are these algorithms important? Because of the symplectic property, these algorithms
will simulate an exact Hamiltonian, although not the one we started with in general (see Prob-
lem [3.1f], for example). However, this Hamiltonian will be close to the one we wish to simulate
if the a; and by are properly chosen. Second, these algorithms are frequently more accurate
and stable than nonsymplectic algorithms. Finally, for even values of M, the algorithms are
time-reversible invariant, which is a property of the actual systems we are trying to simulate.
Examples and comparisons for various algorithms are given in the paper by Gray et al.

(k+1
i
(k+1) (k
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Chapter 4

Oscillations

We explore the behavior of oscillatory systems, including the simple harmonic oscillator, a sim-
ple pendulum, and electrical circuits, and introduce the concept of phase space.

4.1 Simple Harmonic Motion

There are many physical systems that undergo regular, repeating motion. Motion that repeats
itself at definite intervals, for example, the motion of the earth about the sun, is said to be
periodic. If an object undergoes periodic motion between two limits over the same path, we
call the motion oscillatory. Examples of oscillatory motion that are familiar to us from our
everyday experience include a plucked guitar string and the pendulum in a grandfather clock.
Less obvious examples are microscopic phenomena such as the oscillations of the atoms in
crystalline solids.

To illustrate the important concepts associated with oscillatory phenomena, consider a
block of mass m connected to the free end of a spring. The block slides on a frictionless, hori-
zontal surface (see Figure [4.1). We specify the position of the block by x and take x = 0 to be
the equilibrium position of the block, that is, the position when the spring is relaxed. If the
block is moved from x = 0 and then released, the block oscillates along a horizontal line. If the
spring is not compressed or stretched too far from x = 0, the force on the block at position x is
proportional to x:

F = —kx. (4.1)

The force constant k is a measure of the stiffness of the spring. The negative sign in (4.1) implies
that the force acts to restore the block to its equilibrium position. Newton’s equation of motion
for the block can be written as 5

dx )

—— = —wp X 4.2

dt2 0 ( )

where the angular frequency wy is defined by

we? = —. (4.3)

=

The dynamical behavior described by (4.2) is called simple harmonic motion and can be
solved analytically in terms of sine and cosine functions. Because the form of the solution will

85
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x=0 X

Figure 4.1: A one-dimensional harmonic oscillator. The block slides horizontally on the fric-
tionless surface.

help us introduce some of the terminology needed to discuss oscillatory motion, we include the
solution here. One form of the solution is

x(t) = Acos(wgt + 0) (4.4)

where A and ¢ are constants and the argument of the cosine is in radians. It is straightforward
to check by substitution that is a solution of (4.2). The constants A and & are called the
amplitude and the phase, respectively, and are determined by the initial conditions for x and
the velocity v = dx/dt.

Because the cosine is a periodic function with period 27, we know that x(t) in (4.4) is also
periodic. We define the period T as the smallest time for which the motion repeats itself, that
is,

x(t+T) = x(t). (4.5)
Because wyT corresponds to one cycle, we have

T 27 B 27
wo \/k/m.

The frequency v of the motion is the number of cycles per second and is given by v = 1/T. Note
that T depends on the ratio k/m and not on A and 6. Hence, the period of simple harmonic
motion is independent of the amplitude of the motion.

(4.6)

Although the position and velocity of the oscillator are continuously changing, the total
energy E remains constant and is given by

1 1 1
E= Emv2 + Ekx2 = EkA?. (4.7)

The two terms in (4.7) are the kinetic and potential energies, respectively.

Problem 4.1. Energy conservation

(a) Use the Euler ODESolver to solve the dynamical equations for a simple harmonic oscillator
by extending AbstractSimulation and implementing the doStep method. (See Section [4.2]
for an example of such a program for the pendulum.) Have your program plot AE,, = E,,—E,,
where E is the initial energy and E,, is the total energy at time ¢, = t5 + nAt. (It is necessary
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to consider only the energy per unit mass.) Plot the difference AE, as a function of ¢, for
several cycles for a given value of At. Choose x(t = 0) =1, v(t = 0) = 0 and wy? = k/m =9
and start with At = 0.05. Is the difference AE,, uniformly small throughout the cycle? Does
AE,, drift, that is, become bigger with time? What is the optimum choice of A#?

(b) Implement the Euler-Cromer algorithm by writing an Euler—-Cromer ODESolver and answer
the same questions as in part (a).

(c) Modify your program so that the Euler-Richardson or Verlet algorithms are used and answer
the same questions as in part (a). (The Verlet algorithm is discussed in Appendix[3A.)

(d) Describe the qualitative differences between the time dependence of AE, using the various
algorithms. Which algorithm is most consistent with the requirement of conservation of
energy? For fixed At, which algorithm yields better results for the position in comparison
to the analytic solution (4.4)? Is the requirement of conservation of energy consistent with
the relative accuracy of the computed positions?

(e) Choose the best algorithm based on your criteria, and determine the values of At that are
needed to conserve the total energy to within 0.1% over one cycle for wy = 3 and for wy = 12.
Can you use the same value of At for both values of wy? If not, how do the values of At
correspond to the relative values of the period in the two cases? O

Problem 4.2. Analysis of simple harmonic motion

a) Use your results from Problem[4.1]to select an appropriate numerical algorithm and value of
At for the simple harmonic oscillator, and modify your program so that the time dependence
of the potential and kinetic energies is plotted. Where in the cycle is the kinetic energy
(potential energy) a maximum?

b) Compute the average value of the kinetic energy and the potential energy during a complete
cycle. What is the relation between the two averages?

c) Compute x(t) for different values of A and show that the shape of x(t) is independent of A;
that is, show that x(t)/A is a universal function of t for a fixed value of wy. In what units
should the time be measured so that the ratio x(#)/A is independent of wg?

d) The dynamical behavior of the one-dimensional oscillator is completely specified by x(t) and
p(t), where p is the momentum of the oscillator. These quantities may be interpreted as the
coordinates of a point in a two-dimensional space known as phase space. As the time in-
creases, the point (x(t), p(t)) moves along a trajectory in phase space. Modify your program
so that the momentum p is plotted as a function of x; that is, choose p and x as the vertical
and horizontal axes, respectively. Choose w( = 3 and compute the phase space trajectory for
the initial condition x(t = 0) = 1,v(t = 0) = 0. What is the shape of this trajectory? What is
the shape for the initial conditions x(t = 0) = 0,v(t = 0) = 1 and x(t = 0) = 4,v(t = 0) = 0? Do
you find a different phase trajectory for each initial condition? What physical quantity dis-
tinguishes the phase space trajectories? Is the motion of a representative point (x, p) always
in the clockwise or counterclockwise direction? O

Problem 4.3. Lissajous figures

A computer display can be used to simulate the output seen on an oscilloscope. Imagine that the
vertical and horizontal inputs to an oscilloscope are sinusoidal in time; that is, x = A, sin(w,t +
$x) and y = Aysin(wyt + ¢y). If the curve that is drawn repeats itself, such a curve is called
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a Lissajous figure. Write a program to plot y versus x, as t advances from t = 0. First choose
A=Ay =1, 0,=2,w, =3, ¢, = 71/6, and ¢y = 1t/4. For what values of the angular frequencies
wy and w, do you obtain a Lissajous figure? How do the phase factors ¢, and ¢, and the
amplitudes A, and A, affect the curves? O

Waves are ubiquitous in nature and give rise to important phenomena such as beats and
standing waves. We investigate their behavior in Problem We will study the behavior of
waves more systematically in Chapter|[9}

Problem 4.4. Superposition of waves

(a) Write a program to plot Asin(kx + wt) from x = xp;, to X = X4, as a function of ¢. (Imple-
ment an AbstractSimulation rather than an AbstractCalculation.) For simplicity, take
A=1,w=2mk=21/A, with A = 2.

(b) Modify your program so that it plots the sum of y; = sin(kx — wt) and v, = sin(kx + wt). The
quantity y; + v, corresponds to the superposition of two waves. Choose A =2 and w = 2m.
What kind of a wave do you obtain?

(c) Use your program to demonstrate beats by plotting y; + v, as a function of time in the
range Xmin = —10 and X, = 10. Determine the beat frequency for each of the following
superpositions: y;(x,t) = sin[8.4(x — 1.1¢t)], yo(x,t) = sin[8.0(x — 1.1¢)]; v (x, ) = sin[8.4(x —
1.21)], v2(x,t) = sin[8.0(x — 1.0¢t)]; and p;(x, t) = sin[8.4(x — 1.0t)], v,(x, t) = sin[8.0(x — 1.2¢)].
What differences do you observe between these superpositions? O

4.2 The Motion of a Pendulum

A common example of a mechanical system that exhibits oscillatory motion is the simple pen-
dulum (see Figure[4.2). A simple pendulum is an idealized system consisting of a particle or
bob of mass m attached to the lower end of a rigid rod of length L and negligible mass; the up-
per end of the rod pivots without friction. If the bob is pulled to one side from its equilibrium
position and released, the pendulum swings in a vertical plane.

Because the bob is constrained to move along the arc of a circle of radius L about the center
O, the bob’s position is specified by its arc length or by the angle O (see Figure [4.2). The linear
velocity and acceleration of the bob as measured along the arc are given by

de

dze
a= LW' (4.9)

In the absence of friction, two forces act on the bob: the force mg vertically downward and the
force of the rod which is directed inward to the center if |8 < 7t/2. Note that the effect of the
rigid rod is to constrain the motion of the bob along the arc. From Figure[4.2] we can see that the
component of mg along the arc is mgsin 0 in the direction of decreasing 6. Hence, the equation
of motion can be written as

d?

de—t? =-mgsin® (4.10)

or
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mg

Figure 4.2: Force diagram for a simple pendulum. The angle 0 is measured from the vertical
direction and is positive if the mass is to the right of the vertical and negative if it is to the left.

o g .
ﬁ:—zsmﬂ. (411)
Equation (4.11) is an example of a nonlinear equation because sin 0 rather than 6 appears.
Most nonlinear equations do not have analytic solutions in terms of well-known functions, and
(4.11) is no exception. However, if the amplitude of the pendulum oscillations is sufficiently
small, then sin6 ~ 0, and (4.11) reduces to
a’o g

ﬁz_fe (0 <«1). (4.12)

Remember that 0 is measured in radians.

Part of the fun of studying physics comes from realizing that equations that appear in dif-
ferent contexts are often similar. An example can be seen by comparing and (4.12). If we
associate x with 6, we see that the two equations are identical in form, and we can immediately
conclude that for 6 « 1, the period of a pendulum is given by

L
T = 271\/; (small amplitude oscillations). (4.13)

One way to understand the motion of a pendulum with large oscillations is to solve (4.11})
numerically. Because we know that the numerical solutions must be consistent with conserva-
tion of energy, we derive the form of the total energy here. The potential energy can be found
from the following considerations. If the rod is deflected by the angle 6, then the bob is raised
by the distance h = L — LcosO (see Figure [4.2). Hence, the potential energy of the bob in the
gravitational field of the earth is

U =mgh=mgL(1 —cos0) (4.14)

where the zero of the potential energy corresponds to 6 = 0. Because the kinetic energy of the

pendulum is %mv2 = %mLZ(dQ/dt)z, the total energy E of the pendulum is

1 do\?
E= EmLz(d_?) +mgL(1 —cos0). (4.15)
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We use two classes to simulate and visualize the motion of a pendulum problem, Pendulum
and PendulumApp. The Pendulum class implements the Drawable and ODE interfaces and solves
the dynamical equations using the Euler—Richardson algorithm.

Listing 4.1: A Drawable class that models the simple pendulum.

package org.opensourcephysics.sip.ch04;
import java.awt.x;

import org.opensourcephysics.display.x;
import org.opensourcephysics.numerics.x;

public class Pendulum implements Drawable, ODE ({
double omegalOSquared = 3; // g/L
double|[] state = new double[] {0, 0, 0}; // {theta, dtheta/dt, t}
Color color = Color.RED;
int pixRadius = 6;
EulerRichardson odeSolver = new EulerRichardson(this);

public void setStepSize (double dt) {
odeSolver.setStepSize (dt);
J

public void step () {
odeSolver.step (); // execute one Euler—Richardson step
J

public void setState (double theta, double thetaDot) {
state[0] = theta;
state[1] = thetaDot; // time rate of change of theta

J

public double[] getState () ({
return state;
}

public void getRate(double[] state, double[] rate) {

rate[0] = state[1]; // rate of change of angle

// rate of change of dtheta/dt

rate[1] = —omegaOSquared+Math.sin(state[0]);

rate[2] = 1; // rate of change of time dt/dt =1

J

public void draw(DrawingPanel drawingPanel, Graphics g) {
int xpivot = drawingPanel.xToPix (0);
int ypivot = drawingPanel.yToPix (0);
int xpix = drawingPanel.xToPix (Math.sin(state[0]));
int ypix = drawingPanel.yToPix(—Math.cos(state[0]));
g.setColor (Color. black);
g.drawLine(xpivot, ypivot, xpix, ypix); // the string
g.setColor(color);
g.fillOval (xpix—pixRadius, ypix—-pixRadius, 2+pixRadius,

2+pixRadius); // the bob
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Note that Pendulum implements the draw method as required by the Drawable interface.

The target class, PendulumApp, is shown in Listing The angle 0 is plotted as a function
of time and an animation of the motion is drawn.

Listing 4.2: Visualization of the motion of a pendulum.

package org.opensourcephysics.sip.ch04;
import org.opensourcephysics.controls.x;
import org.opensourcephysics.frames.x;

public class PendulumApp extends AbstractSimulation {
PlotFrame plotFrame = new PlotFrame("Time", "Theta",
"Theta versus time");
Pendulum pendulum = new Pendulum ();
DisplayFrame displayFrame = new DisplayFrame("Pendulum");

public PendulumApp()
displayFrame.addDrawable (pendulum );
displayFrame.setPreferredMinMax(-1.2, 1.2, -1.2, 1.2);
J

public void initialize () f{
double dt = control.getDouble("dt");
double theta = control.getDouble("initial theta");
double thetaDot = control.getDouble("initial dtheta/dt");
pendulum. setState (theta, thetaDot);
pendulum.setStepSize (dt);

J

public void doStep() {
// angle vs time data added
plotFrame.append (0, pendulum.state[2], pendulum.state[0]);
pendulum. step (); // advances the state by one time step

J

public void reset() {
pendulum. state[2] = 0; // set time = 0
control.setValue("initial theta", 0.2);
control.setValue("initial dtheta/dt", 0);
control .setValue("dt", 0.1);

J

// creates a simulation control structure using this class

public static void main(String[] args) ({
SimulationControl.createApp (new PendulumApp());

J

Problem 4.5. Oscillations of a pendulum

(a) Make the necessary changes so that the analytic solution for small angles is also plotted.

(b) Test the program at sufficiently small amplitudes so that sin@ ~ 6. Choose wy = +/¢/L =
3 and the initial conditions O(t = 0) = 0.2 and dO(t = 0)/dt = 0. Determine the period
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numerically and compare your result to the expected analytic result for small amplitudes.
Explain your method for determining the period. Estimate the error due to the small angle
approximation for these initial conditions.

(c) Consider larger amplitudes and make plots of 6(t) and d6(t)/dt versus t for the initial con-
ditions 6(t = 0) = 0.1, 0.2, 0.4, 0.8, and 1.0 with dO(t = 0)/dt = 0. Choose At so that the
numerical algorithm generates a stable solution; that is, monitor the total energy and en-
sure that it does not drift from its initial value. Describe the qualitative behavior of 6 and
d0/dt. What is the period T and the amplitude O,,,, in each case? Plot T versus 0,,x and
discuss the qualitative dependence of the period on the amplitude. How do your results for
T compare in the linear and nonlinear cases; for example, which period is larger? Explain
the relative values of T in terms of the relative magnitudes of the restoring force in the two
cases. O

4.3 Damped Harmonic Oscillator

We know from experience that most oscillatory motion in nature gradually decreases until the
displacement becomes zero; such motion is said to be damped and the system is said to be dis-
sipative rather than conservative. As an example of a damped harmonic oscillator, consider the
motion of the block in Figure[4.1]when a horizontal drag force is included. For small velocities,
it is a reasonable approximation to assume that the drag force is proportional to the first power
of the velocity. In this case the equation of motion can be written as

d?x 2 dx
W:—a)o X—)/E. (416)
The damping coefficient y is a measure of the magnitude of the drag term. Note that the drag
force in (4.16) opposes the motion. We simulate the behavior of the damped linear oscillator in
Problem

Problem 4.6. Damped linear oscillator

(a) Incorporate the effects of damping into your harmonic oscillator simulation and plot the
time dependence of the position and the velocity. Describe the qualitative behavior of x(t)
and v(t) for wg =3 and y = 0.5 with x(t =0) =1, v(t = 0) = 0.

(b) The period of the motion is the time between successive maxima of x(t). Compute the period
and corresponding angular frequency and compare their values to the undamped case. Is
the period longer or shorter? Make additional runs for y = 1, 2, and 3. Does the period
increase or decrease with greater damping? Why?

(c) The amplitude is the maximum value of x during one cycle. Compute the relaxation time
7, the time it takes for the amplitude of an oscillation to decrease by 1/e ~ 0.37 from its
maximum value. Is the value of 7 constant throughout the motion? Compute 7 for the
values of y considered in part (b) and discuss the qualitative dependence of 7 on .

(d) Plot the total energy as a function of time for the values of y considered in part (b). If the
decrease in energy is not monotonic, explain.
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(e) Compute the time dependence of x(t) and v(t) for y = 4, 5, 6, 7, and 8. Is the motion
oscillatory for all y? How can you characterize the decay? For fixed wy, the oscillator is
said to be critically damped at the smallest value of y for which the decay to equilibrium
is monotonic. For what value of y does critical damping occur for wy = 4 and wy = 2? For
each value of w(, compute the value of y for which the system approaches equilibrium most
quickly.

(f) Compute the phase space diagram for wg =3 and y = 0.5, 2, 4, 6, and 8. Why does the phase
space trajectory converge to the origin, x = 0, v = 0? This point is called an attractor. Are
these qualitative features of the phase space plot independent of y? O

Problem 4.7. Damped nonlinear pendulum

Consider a damped pendulum with wy = \/ﬁ = 3 and a damping term equal to —yd6/dt.
Choose ¥ =1 and the initial condition O(t = 0) = 0.2,dO(¢t = 0)/dt = 0. In what ways is the
motion of the damped nonlinear pendulum similar to the damped linear oscillator? In what
ways is it different? What is the shape of the phase space trajectory for the initial condition 6(t =
0) = 1,w(t = 0) = 0? Do you find a different phase space trajectory for other initial conditions?
Remember that 0 is restricted to be between —m and +7. O

4.4 Response to External Forces

How can we determine the period of a pendulum that is not already in motion? The obvious
way is to disturb the system, for example, to displace the bob and observe its motion. We will
find that the nature of the response of the system to a small perturbation tells us something
about the nature of the system in the absence of the perturbation.

Consider the driven damped linear oscillator with an external force F(t) in addition to the
linear restoring force and linear damping force. The equation of motion can be written as

d’x 1
ﬁ :—CL)OZX—VV'FaF(t). (417)

It is customary to interpret the response of the system in terms of the displacement x rather
than the velocity v.

The time dependence of F(t) in (4.17) is arbitrary. Because many forces in nature are peri-

odic, we first consider the form

1
aF(t):Aocoswt (4.18)

where w is the angular frequency of the driving force.

Problem 4.8. Response of a driven damped linear oscillator

(a) Modify your simple harmonic oscillator program so that an external force of the form (4.18)
is included. Add this force to the class that encapsulates the equations of motion without
changing the target class. The angular frequency of the driving force should be added as an
input parameter.

(b) Choose wy =3, ¥ = 0.5, @ = 2 and the amplitude of the external force Ay = 1 for all runs
unless otherwise stated. For these values of wj and y, the dynamical behavior in the absence
of an external force corresponds to an underdamped oscillator. Plot x(t) versus ¢ in the
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(8)

(h)
(i)

presence of the external force with the initial condition x(t = 0) = 1,v(t = 0) = 0. How does
the qualitative behavior of x(t) differ from the nonperturbed case? What is the period and
angular frequency of x(t) after several oscillations? Repeat the same observations for x(t)
with x(t = 0) = 0,v(t = 0) = 1. Identify a transient part of x(t) that depends on the initial
conditions and decays in time and a steady state part that dominates at longer times and is
independent of the initial conditions.

Compute x(t) for several combinations of wy and w. What is the period and angular fre-
quency of the steady state motion in each case? What parameters determine the frequency
of the steady state behavior?

A measure of the long-term behavior of the driven harmonic oscillator is the amplitude of
the steady state displacement A(w), which can be be computed for a given value of w if the
simulation is run until a steady state has been achieved. One way to determine A is to check
the position after every time step to see if a new maximum has been reached as is done by
the following code:

if (x > Math.abs(amplitude)) {
amplitude = Math.abs(x);
control. println("new amplitude = " + amplitude);

J

Measure the amplitude and phase shift to verify that the steady state behavior of x(¢) is
given by
x(t) = A(w) cos(wt + 9). (4.19)

The quantity o is the phase difference between the applied force and the steady state motion.
Compute A(w) and 6(w) for wg =3, y =0.5,and w = 0, 1.0, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2,
and 3.4. Choose the initial condition x(t = 0) = 0,v(t = 0) = 0. Repeat the simulation for
¥ = 3.0, and plot A(w) and 6(w) versus w for the two values of y. Discuss the qualitative
behavior of A(w) and 6(w) for the two values of y. If A(w) has a maximum, determine the
angular frequency wp,x at which the maximum of A occurs. Is the value of wp,,, close to
the natural angular frequency wy? Compare wy,,y to wg and to the frequency of the damped
linear oscillator in the absence of an external force.

Compute x(t) and A(w) for a damped linear oscillator with the amplitude of the external
force Ay = 4. How do the steady state results for x(t) and A(w) compare to the case Ay = 1?
Does the transient behavior of x(t) satisfy the same relation as the steady state behavior?

What is the shape of the phase space trajectory for the initial condition x(t = 0) = 1,v(t =
0) = 0? Do you find a different phase space trajectory for other initial conditions?

Why is A(w = 0) < A(w) for small w? Why does A(w) — 0 for w > wq?

Does the mean kinetic energy resonate at the same frequency as does the amplitude? Com-
pute the mean kinetic energy over one cycle once steady state conditions have been reached.
Choose wy =3 and y = 0.5. O

In Problem[4.8]we found that the response of the damped harmonic oscillator to an external

driving force is linear. For example, if the magnitude of the external force is doubled, then the
magnitude of the steady state motion is also doubled. This behavior is a consequence of the
linear nature of the equation of motion. When a particle is subject to nonlinear forces, the
response can be much more complicated (see Section [6.8).
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For many problems, the sinusoidal driving force in is not realistic. Another example
of an external force can be found by observing someone pushing a child on a swing. Because the
force is nonzero for only short intervals of time, this type of force is impulsive. In the following
problem, we consider the response of a damped linear oscillator to an impulsive force.
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Figure 4.3: A half-wave driving force corresponding to the positive part of a cosine function.

“Problem 4.9. Response of a damped linear oscillator to nonsinusoidal external forces

(a)

Assume a swing can be modeled by a dampled linear oscillator. The effect of an impulse is
to change the velocity. For simplicity, let the duration of the push equal the time step At.
Introduce an integer variable for the number of time steps and use the % operator to ensure
that the impulse is nonzero only at the time step associated with the period of the external
impulse. Determine the steady state amplitude A(w) for v = 1.0, 1.3, 1.4, 1.5, 1.6, 2.5, 3.0,
and 3.5. The corresponding period of the impulse is given by T = 27t/w. Choose wg = 3 and
y = 0.5. Are your results consistent with your experience of pushing a swing and with the
comparable results of Problem

Consider the response to a half-wave external force consisting of the positive part of a cosine
function (see Figure [4.3). Compute A(w) for wy = 3 and y = 0.5. At what values of w does
A(w) have a relative maxima? Is the half-wave cosine driving force equivalent to a sum
of cosine functions of different frequencies? For example, does A(w) have more than one
resonance?

Compute the steady state response x(t) to the external force

1 1 1 2 2
—F(t)=—+ = P+ — 2t — —— 4t. 4.20
- (t) —*3 cos oy cos Tom cos ( )

How does a plot of F(t) versus t compare to the half-wave cosine function? Use your results
to conjecture a principle of superposition for the solutions to linear equations. O

In many of the problems in this chapter, we have asked you to draw a phase space plot

for a single oscillator. This plot provides a convenient representation of both the position and
velocity. When we study chaotic phenomena, such plots will become almost indispensable
(see Chapter [6). Here we will consider an important feature of phase space trajectories for
conservative systems.

If there are no external forces, the undamped simple harmonic oscillator and undamped

pendulum are examples of conservative systems; that is, systems for which the total energy is
a constant. In Problems and we will study two general properties of conservative
systems, the nonintersecting nature of their trajectories in phase space and the preservation of
area in phase space. These concepts will become more important when we study the properties
of conservative systems with more than one degree of freedom.
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Figure 4.4: What happens to a given area in phase space for conservative systems?

Problem 4.10. Trajectory of a simple harmonic oscillator in phase space

(a) We explore the phase space behavior of a single harmonic oscillator by simulating N initial
conditions simultaneously. Write a program to simulate N identical simple harmonic os-
cillators each of which is represented by a small circle centered at its position and velocity
in phase space as shown in Figure [4.4, One way to do so is to adapt the BouncingBallApp
class introduced in Section Choose N = 16 and consider random initial positions and
velocities. Do the phase space trajectories for different initial conditions ever cross? Explain
your answer in terms of the uniqueness of trajectories in a deterministic system.

(b) Choose a set of initial conditions that form a rectangle (see Figure [4.4). Does the shape of
this area change with time? OWhat happens to the total area in comparison to the
original area?

Problem 4.11. Trajectory of a pendulum in phase space

(a) Modify your program from Problem[4.10]so that the phase space trajectories (w versus 6) of
N =16 pendula with different initial conditions can be compared. Plot several phase space
trajectories for different values of the total energy. Are the phase space trajectories closed?
Does the shape of the trajectory depend on the total energy?

(b) Choose a set of initial conditions that form a rectangle in phase space and plot the state of
each pendulum as a circle. Does the shape of this area change with time? What happens to
the total area? O

4.5 Electrical Circuit Oscillations

In this section we discuss several electrical analogues of the mechanical systems that we have
considered. Although the equations of motion are similar in form, it is convenient to consider
electrical circuits separately, because the nature of the questions of interest is somewhat differ-
ent.

The starting point for electrical circuit theory is Kirchhoff’s loop rule, which states that the
sum of the voltage drops around a closed path of an electrical circuit is zero. This law is a



CHAPTER 4. OSCILLATIONS 98

Element | Voltage Drop | Symbol Units
resistor VR =1IR resistance R ohms (Q)
capacitor | Vo =Q/C capacitance C | farads (F)
inductor | Vi =LdlI/dt inductance L | henries (H)

Table 4.1: The voltage drops across the basic electrical circuit elements. Q is the charge
(coulombs) on one plate of the capacitor, and I is the current (amperes).

Figure 4.5: A simple series RLC circuit with a voltage source V.

consequence of conservation of energy, because a voltage drop represents the amount of energy
that is lost or gained when a unit charge passes through a circuit element. The relations for the
voltage drops across each circuit element are summarized in Table

Imagine an electrical circuit with an alternating voltage source Vi(t) attached in series to a
resistor, inductor, and capacitor (see Figure[4.5)). The corresponding loop equation is

Vi + Vg + Ve = Vi(b). (4.21)

The voltage source term V; in (4.21)) is the emf and is measured in units of volts. If we substitute
the relationships shown in Table we find

d’Q dQ Q
L——+R——+ ==Vt 4.22
where we have used the definition of current I = dQ/dt. We see that (4.22) for the series RLC
circuit is identical in form to the damped harmonic oscillator (4.17). The analogies between
ideal electrical circuits and mechanical systems are summarized in Table [4.2]

Although we are already familiar with (4.22), we first consider the dynamical behavior of

an RC circuit described by

dQ Q

R— =V (t)- =. 4.23

P AURE= (4.23)
Two RC circuits corresponding to (4.23) are shown in Figure Although the loop equation
(4.23) is identical regardless of the order of placement of the capacitor and resistor in Figure[4.6}
the output voltage measured by the oscilloscope in Figure [4.6]is different. We will see in Prob-
lem that these circuits act as filters that pass voltage components of certain frequencies
while rejecting others.

RI(t) =

An advantage of a computer simulation of an electrical circuit is that the measurement of a
voltage drop across a circuit element does not affect the properties of the circuit. In fact, digital
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Electric Circuit Mechanical System
charge Q displacement x
current I = dQ/dt velocity v = dx/dt
voltage drop force

inductance L mass m

inverse capacitance 1/C  spring constant k
resistance R damping y

Table 4.2: Analogies between electrical parameters and mechanical parameters.

Figure 4.6: Examples of RC circuits used as low and high pass filters. Which circuit is which?

computers are often used to optimize the design of circuits for special applications. The RCApp
program is not shown here because it is similar to PendulumApp, but this program is available in
the Chapter [4] package. The RCApp program simulates an RC circuit with an alternating current
(AC) voltage source of the form V(t) = coswt and plots the time dependence of the charge on
the capacitor. You are asked to modify this program in Problem [4.12]

Problem 4.12. Simple filter circuits

(a) Modify the RCApp program to simulate the voltages in an RC filter. Your program should
plot the voltage across the resistor Vi and the voltage across the source V;, in addition to the
voltage across the capacitor V¢. Run this program with R = 1000Q and C = 1.0 uF (107 farads).
Find the steady state amplitude of the voltage drops across the resistor and across the ca-
pacitor as a function of the angular frequency w of the source voltage V; = cos wt. Consider
the frequencies f =10, 50, 100, 160, 200, 500, 1000, 5000, and 10000 Hz. (Remember that
w =27 f.) Choose At to be no more than 0.0001 s for f = 10 Hz. What is a reasonable value
of At for f =10000Hz?

(b) The output voltage depends on where the digital oscilloscope is connected. What is the
output voltage of the oscilloscope in Figure [4.6p? Plot the ratio of the amplitude of the
output voltage to the amplitude of the input voltage as a function of w. Use a logarithmic
scale for w. What range of frequencies is passed? Does this circuit act as a high pass or
a low pass filter? Answer the same questions for the oscilloscope in Figure [4.6b. Use your
results to explain the operation of a high and low pass filter. Compute the value of the cutoff
frequency for which the amplitude of the output voltage drops to 1/v2 (half-power) of the
input value. How is the cutoff frequency related to RC?
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Figure 4.7: Square wave voltage with period T and unit amplitude.

Plot the voltage drops across the capacitor and resistor as a function of time. The phase
difference ¢ between each voltage drop and the source voltage can be found by finding the
time t,, between the corresponding maxima of the voltages. Because ¢ is usually expressed
in radians, we have the relation ¢/27 = t,,/T, where T is the period of the oscillation. What
is the phase difference ¢ between the capacitor and the voltage source and the phase dif-
ference ¢ between the resistor and the voltage source? Do these phase differences depend
on w? Does the current lead or lag the voltage; that is, does the maxima of Vy(t) come before
or after the maxima of V,(#)? What is the phase difference between the capacitor and the
resistor? Does the latter difference depend on w?

Modify your program to find the steady state response of an LR circuit with a source voltage
V,(t) = coswt. Let R=100Q and L = 2 x 1073 H. Because L/R = 2 x 107> s, it is convenient
to measure the time and frequency in units of Ty = L/R. We write t* = t/T), 0* = wTp, and
rewrite the equation for an LR circuit as

ari) 1

= —cosw't". (4.24)

I(£") + I R

Because it will be clear from the context, we now simply write ¢t and w rather than t* and .
What is a reasonable value of the step size At? Compute the steady state amplitude of the
voltage drops across the inductor and the resistor for the input frequencies f =10, 20, 30,
35, 50, 100, and 200 Hz. Use these results to explain how an LR circuit can be used as a low
pass or a high pass filter. Plot the voltage drops across the inductor and resistor as a function
of time and determine the phase differences ¢z and ¢ between the resistor and the voltage
source and the inductor and the voltage source. Do these phase differences depend on w?
Does the current lead or lag the voltage? What is the phase difference between the inductor
and the resistor? Does the latter difference depend on w? O

Problem 4.13. Square wave response of an RC circuit

Modify your program so that the voltage source is a periodic square wave as shown in Figure[4.7}
Use a 1.0 yF capacitor and a 3000 Q2 resistor. Plot the computed voltage drop across the capacitor
as a function of time. Make sure the period of the square wave is long enough so that the
capacitor is fully charged during one half-cycle. What is the approximate time dependence of
Vc(t) while the capacitor is charging (discharging)? O

We now consider the steady state behavior of the series RLC circuit shown in Figure[4.5]and

represented by (4.22). The response of an electrical circuit is the current rather than the charge
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on the capacitor. Because we have simulated the analogous mechanical system, we already know
much about the behavior of driven RLC circuits. Nonetheless, we will find several interesting
features of AC electrical circuits in the following two problems.

Problem 4.14. Response of an RLC circuit

(a)

Consider an RLC series circuit with R =100Q), C = 3.0F, and L = 2mH. Modify the sim-
ple harmonic oscillator program or the RC filter program to simulate an RLC circuit and
compute the voltage drops across the three circuit elements. Assume an AC voltage source
of the form V(t) = Vycoswt. Plot the current I as a function of time and determine the
maximum steady state current I, for different values of w. Obtain the resonance curve by
plotting I« () as a function of w and compute the value of w at which the resonance curve
is a maximum. This value of w is the resonant frequency.

The sharpness of the resonance curve of an AC circuit is related to the quality factor or
Q value. (Q should not be confused with the charge on the capacitor.) The sharper the
resonance, the larger the value of Q. Circuits with high Q (and hence, a sharp resonance)
are useful for tuning circuits in a radio so that only one station is heard at a time. We define
Q = wo/Aw, where the width Aw is the frequency interval between points on the resonance
curve I, (w) that are V2/2 of I, at its maximum. Compute Q for the values of R, L, and C
given in part (a). Change the value of R by 10% and compute the corresponding percentage
change in Q. What is the corresponding change in Q if L or C is changed by 10%?

Compute the time dependence of the voltage drops across each circuit element for approx-
imately fifteen frequencies ranging from 1/10 to 10 times the resonant frequency. Plot the
time dependence of the voltage drops.

The ratio of the amplitude of the sinusoidal source voltage to the amplitude of the current
is called the impedance Z of the circuit; that is, Z = V,/Imax- This definition of Z is a
generalization of the resistance that is defined by the relation V = IR for direct current
circuits. Use the plots of part @ to determine I, and Vj,, for different frequencies and
verify that the impedance is given by

Z(w) = \R? + (0L~ 1/wC)>. (4.25)

For what value of w is Z a minimum? Note that the relation V = IZ holds only for the
maximum values of [ and V and not for I and V at any time.

Compute the phase difference ¢ between the voltage drop across the resistor and the volt-
age source. Consider w < wy, @ = wy, and w > w(. Does the current lead or lag the voltage
in each case; that is, does the current reach a maxima before or after the voltage? Also com-
pute the phase differences ¢; and ¢ and describe their dependence on w. Do the relative
phase differences between V-, Vi, and V| depend on w?

Compute the amplitude of the voltage drops across the inductor and the capacitor at the
resonant frequency. How do these voltage drops compare to the voltage drop across the re-
sistor and to the source voltage? Also compare the relative phases of V- and V} at resonance.
Explain how an RLC circuit can be used to amplify the input voltage. O
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4.6 Accuracy and Stability

Now that we have learned how to use numerical methods to find numerical solutions to sim-
ple first-order differential equations, we need to develop some practical guidelines to help us
estimate the accuracy of the various methods. Because we have replaced a differential equation
by a difference equation, our numerical solution is not identically equal to the true solution of
the original differential equation, except for special cases. The discrepancy between the two
solutions has two causes. One cause is that computers do not store numbers with infinite pre-
cision, but rather to a maximum number of digits that is hardware and software dependent.
As we have seen, Java allows the programmer to distinguish between floating point numbers;
that is, numbers with decimal points, and integer numbers. Arithmetic with numbers repre-
sented by integers is exact, but we cannot solve a differential equation using integer arithmetic.
Arithmetic operations involving floating point numbers, such as addition and multiplication,
introduce roundoff error. For example, if a computer only stored floating point numbers to two
significant figures, the product 2.1x3.2 would be stored as 6.7 rather than 6.72. The significance
of roundoff errors is that they accumulate as the number of mathematical operations increases.
Ideally, we should choose algorithms that do not significantly magnify the roundoff error; for
example, we should avoid subtracting numbers that are nearly the same in magnitude.

The other source of the discrepancy between the true answer and the computed answer is
the error associated with the choice of algorithm. This error is called the truncation error. A
truncation error would exist even on an idealized computer that stored floating point numbers
with infinite precision and hence had no roundoff error. Because the truncation error depends
on the choice of algorithm and can be controlled by the programmer, you should be motivated
to learn more about numerical analysis and the estimation of truncation errors. However, there
is no general prescription for the best algorithm for obtaining numerical solutions of differen-
tial equations. We will find in later chapters that the various algorithms have advantages and
disadvantages, and the appropriate selection depends on the nature of the solution, which you
might not know in advance, and on your objectives. How accurate must the answer be? Over
how large an interval do you need the solution? What kind of computer(s) are you using? How
much computer time and personal time do you have?

In practice, we usually can determine the accuracy of a numerical solution by reducing the
value of At until the numerical solution is unchanged at the desired level of accuracy. Of course,
we have to be careful not to make At too small, because too many steps would be required and
the computation time and roundoff error would increase.

In addition to accuracy, another important consideration is the stability of an algorithm. As
discussed in Appendix 3]A, it might happen that the numerical results are very good for short
times, but diverge from the true solution for longer times. This divergence might occur if small
errors in the algorithm are multiplied many times, causing the error to grow geometrically. Such

an algorithm is said to be unstable for the particular problem. We consider the accuracy and the
stability of the Euler algorithm in Problems and

Problem 4.15. Accuracy of the Euler algorithm

(a) Use the Euler algorithm to compute the numerical solution of dy/dx = 2x with y = 0 at
x = 0 and Ax = 0.1, 0.05, 0.025, 0.01, and 0.005. Make a table showing the difference
between the exact solution and the numerical solution. Is the difference between these
solutions a decreasing function of Ax? That is, if Ax is decreased by a factor of two, how
does the difference change? Plot the difference as a function of Ax. If your points fall
approximately on a straight line, then the difference is proportional to Ax (for Ax < 1). The



CHAPTER 4. OSCILLATIONS 103

numerical method is called nth order if the difference between the analytic solution and the
numerical solution is proportional to (Ax)" for a fixed value of x. What is the order of the
Euler algorithm?

(b) One way to determine the accuracy of a numerical solution is to repeat the calculation with
a smaller step size and compare the results. If the two calculations agree to p decimal places,
we can reasonably assume that the results are correct to p decimal places. What value of Ax
is necessary for 0.1% accuracy at x = 2?2 What value of Ax is necessary for 0.1% accuracy at
x=4? O

Problem 4.16. Stability of the Euler algorithm

(a) Consider the differential equation with Q = 0 at t = 0. This equation represents
the charging of a capacitor in an RC circuit with a constant applied voltage V. Choose
R =2000Q, C =107%farads, and V = 10volts. Do you expect Q(t) to increase with ? Does
Q(t) increase indefinitely, or does it reach a steady-state value? Use a program to solve
numerically using the Euler algorithm. What value of At is necessary to obtain three
decimal accuracy at t = 0.005?

(b) What is the nature of your numerical solution to (4.23) at t = 0.05 for At = 0.005, 0.0025,
and 0.001? Does a small change in At lead to a large change in the computed value of Q? Is
the Euler algorithm stable for reasonable values of At? O

4.7 Projects

Project 4.17. Chemical oscillations

The kinetics of chemical reactions can be modeled by a system of coupled first-order differential
equations. As an example, consider the following reaction:

A+2B—3B+C (4.26)

where A, B, and C represent the concentrations of three different types of molecules. The corre-
sponding rate equations for this reaction are

dA

= _kAB? 427
T k (4.27a)
dB 5

= = kAB (4.27b)
dc

~— —kAB?. 427
T (4.27¢)

The rate at which the reaction proceeds is determined by the reaction constant k. The terms
on the right-hand side of are positive if the concentration of the molecule increases in
as it does for B and C, and negative if the concentration decreases as it does for A. Note
that the term 2B in the reaction appears as B? in the rate equation . In we
have assumed that the reactants are well stirred so that there are no spatial inhomogeneities. In
Section [7.8]we will discuss the effects of spatial inhomogeneities due to molecular diffusion.

Most chemical reactions proceed to equilibrium, where the mean concentrations of all
molecules are constant. However, if the concentrations of some molecules are replenished, it is
possible to observe oscillations and chaotic behavior (see Chapter[6). To obtain oscillations, it
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is essential to have a series of chemical reactions such that the products of some reactions are
the reactants of others. In the following, we consider a simple set of reactions that can lead to
oscillations under certain conditions (see Lefever and Nicolis):

A—X (4.28a)
B+X—>Y+D (4.28b)
2X+Y —3X (4.28¢)
X C. (4.28d)

If we assume that the reverse reactions are negligible and A and B are held constant by an
external source, the corresponding rate equations are

ax

E:A—(B+1)X+X2Y (4.29a)
% = BX - X?Y. (4.29b)

For simplicity, we have chosen the rate constants to be unity.

(a) The steady state solution of (4.29) can be found by setting dX/dt and dY/dt equal to zero.
Show that the steady state values for (X,Y) are (A, B/A).

(b) Write a program to solve numerically the rate equations given by (4.29). Your program
should input the initial values of X and Y and the fixed concentrations A and B, and plot X
versus Y as the reactions evolve.

(c) Systematically vary the initial values of X and Y for given values of A and B. Are their
steady state behaviors independent of the initial conditions?

(d) Let the initial value of (X,Y) equal (A + 0.001, B/A) for several different values of A and B,
that is, choose initial values close to the steady state values. Classify which initial values
result in steady state behavior (stable) and which ones show periodic behavior (unstable).
Find the relation between A and B that separates the two types of behavior. O

Project 4.18. Nerve impulses

In 1952 Hodgkin and Huxley developed a model of nerve impulses to understand the nerve
membrane potential of a giant squid nerve cell. The equations they developed are known as the
Hodgkin-Huxley equations. The idea is that a membrane can be treated as a capacitor where
CV =g, and thus the time rate of change of the membrane potential V is proportional to the
current dg/dt flowing through the membrane. This current is due to the pumping of sodium
and potassium ions through the membrane, a leakage current, and an external current stimulus.
The model is capable of producing single nerve impulses, trains of nerve impulses, and other
effects. The model is described by the following first-order differential equations:

CAY < gV~ Vi)~ griam®h(V Vi) g1V~ Vi) + () (4.30a)
Z_rtl =a,(1-n)-p,n (4.30D)
ii_”; =ty (1 = m) = By (4.30c)
dh _ ay(1-h)— pyh (4.30d)
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where V is the membrane potential in millivolts (mV), n, m, and h are time dependent functions
that describe the gates that pump ions into or out of the cell, C is the membrane capacitance
per unit area, the g; are the conductances per unit area for potassium, sodium, and the leakage
current, V; are the equilibrium potentials for each of the currents, and a; and f; are nonlinear
functions of V. We use the notation n, m, and h for the gate functions because the notation is
universally used in the literature. These gate functions are empirical attempts to describe how
the membrane controls the flow of ions into and out of the nerve cell. Hodgkin and Huxley
found the following empirical forms for a; and g;:

a, =0.01(V +10)/[e+V/10 _1] (4.31a)
Bn=0.125¢"/80 (4.31b)
ay, = 0.1(V +25)/[2>7V/10) _ 1] (4.31c¢)
B =4e"/18 (4.31d)
ay =0.077/20 (4.31e)
B = 1/[e3+V/10 4 1], (4.31f)

The values of the parameters are C = l.OyF/cmz, gk =36 mmho/cm?, gna =120 mmho/cm?,
gr = 0.3mmho/cm?, Vg = 12mV, Vy, = —115mV, and V; = 10.6 mV. The unit mho represents
ohm™!, and the unit of time is milliseconds (ms). These parameters assume that the resting
potential of the nerve cell is zero; however, we now know that the resting potential is about
-70mV.

We can use the ODE solver to solve (4.30) with the state vector {V,n,m, h,t}; the rates are
given by the right-hand side of (4.30). The following questions ask you to explore the properties
of the model.

(a) Write a program to plot n, m, and h as a function of V' in the steady state (for which 7 =1 =
h = 0). Describe how these gates are operating.

(b) Write a program to simulate the nerve cell membrane potential and plot V(t). You can use
a simple Euler algorithm with a time step of 0.01 ms. Describe the behavior of the potential
when the external current is 0.

(c) Consider a current that is zero except for a one millisecond interval. Try a current spike
amplitude of 7 uA (that is, the external current equals 7 in our units). Describe the resulting
nerve impulse V(t). Is there a threshold value for the current below which there is no large
spike but only a broad peak?

(d) A constant current should produce a train of spikes. Try different amplitudes for the current
and determine if there is a threshold current and how the spacing between spikes depends
on the amplitude of the external current.

(e) Consider a situation where there is a steady external current I; for 20ms and then the
current increases to I, = I} + AI. There are three types of behavior depending on I, and
Al. Describe the behavior for the following four situations: (1) I; = 2.0 uA, Al = 1.5 uA; (2)
I =2.0uA, Al =5.0uA; (3) I, =7.0uA, Al =1.0uA; and (4) I; = 7.0uA, Al = 4.0puA. Try
other values of I; and AI as well. In which cases do you obtain a steady spike train? Which
cases produce a single spike? What other behavior do you find?
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(f) Once a spike is triggered, it is frequently difficult to trigger another spike. Consider a
current pulse at ¢t = 20 ms of 7 yA that lasts for one millisecond. Then give a second current
pulse of the same amplitude and duration at t = 25ms. What happens? What happens if
you add a third pulse at 30 ms? O
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Chapter 5

Few-Body Problems: The Motion of
the Planets

We apply Newton’s laws of motion to planetary motion and other systems of a few particles and
explore some of the counterintuitive consequences of Newton’s laws.

5.1 Planetary Motion

Planetary motion is of special significance because it played an important role in the conceptual
history of the mechanical view of the universe. Few theories have affected Western civilization
as much as Newton’s laws of motion and the law of gravitation, which together relate the motion
of the heavens to the motion of terrestrial bodies.

Much of our knowledge of planetary motion is summarized by Kepler’s three laws, which
can be stated as

1. Each planet moves in an elliptical orbit with the sun located at one of the foci of the ellipse.

2. The speed of a planet increases as its distance from the sun decreases such that the line
from the sun to the planet sweeps out equal areas in equal times.

3. The ratio T?/a® is the same for all planets that orbit the sun, where T is the period of the
planet and a is the semimajor axis of the ellipse.

Kepler obtained these laws by a careful analysis of the observational data collected over many
years by Tycho Brahe.

Kepler’s first and third laws describe the shape of the orbit rather than the time dependence
of the position and velocity of a planet. Because it is not possible to obtain this time dependence
in terms of elementary functions, we will obtain the numerical solution of the equations of
motion of planets and satellites in orbit. In addition, we will consider the effects of perturbing
forces on the orbit and problems that challenge our intuitive understanding of Newton’s laws
of motion.

108
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5.2 The Equations of Motion

The motion of the Sun and Earth is an example of a two-body problem. We can reduce this
problem to a one-body problem in one of two ways. The easiest way is to use the fact that
the mass of the Sun is much greater than the mass of the Earth. Hence we can assume that,
to a good approximation, the Sun is stationary and is a convenient choice of the origin of our
coordinate system.

If you are familiar with the concept of a reduced mass, you know that the reduction to a one-
body problem is more general. That is, the motion of two objects of mass m and M, whose total
potential energy is a function only of their relative separation, can be reduced to an equivalent
one-body problem for the motion of an object of reduced mass p given by

B Mm
K= m+M’

(5.1)

Because the mass of the Earth, m = 5.99 x 1024 kg, is so much smaller than the mass of the Sun,
M =1.99x103° kg, we find that for most practical purposes, the reduced mass of the Sun and
the Earth is that of the Earth alone. In the following, we consider the problem of a single particle
of mass m moving about a fixed center of force, which we take as the origin of the coordinate
system.

Newton’s universal law of gravitation states that a particle of mass M attracts another par-
ticle of mass m with a force given by

F:— f’:— I (52)

where the vector r is directed from M to m (see Figure [5.1). The negative sign in (5.2) implies
that the gravitational force is attractive; that is, it tends to decrease the separation r. The gravi-
tational constant G is determined experimentally to be

3

G:6.67x10‘11&. (5.3)

The force law applies to the motion of the center of mass for objects of negligible
spatial extent. Newton delayed publication of his law of gravitation for twenty years while he
invented integral calculus and showed that also applies to any uniform sphere or spherical
shell of matter if the distance r is measured from the center of each mass.

The gravitational force has two general properties: its magnitude depends only on the sep-
aration of the particles, and its direction is along the line joining the particles. Such a force is
called a central force. The assumption of a central force implies that the orbit of the Earth is
restricted to a plane (x-y), and the angular momentum L is conserved and lies in the third (z)
direction. We write L, in the form

L, = (rxmv), = m(xvy - yvy) (5.4)

where we have used the cross-product definition L = r x p and p = mv. An additional constraint
on the motion is that the total energy E is conserved and is given by
1 5, GMm

E=omy? - 2o (5.5)
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Figure 5.1: An object of mass m moves under the influence of a central force F. Note that
cosO = x/r and sin@ = y/r, which provide useful relations for writing the equations of motion
in component form suitable for numerical solutions.

If we fix the coordinate system at the mass M, the equation of motion of the particle of mass
mis

d’r  GMm
Wlﬁ = —r—SI'. (56)
It is convenient to write the force in Cartesian coordinates (see Figure|5.1)):
GM GM
Fo=- chosez— 3mx (5.7a)
r r
GMm . GMm
F,=- p sinf = - 3 Y (5.7b)

Hence, the equations of motion in Cartesian coordinates are

d>x GM
W = —r—ax (583.)
d*’y  GM
FT (5.:8b)

where 2 = x? + y2. Equations (5.8a)) and (5.8b) are examples of coupled differential equations
because each equation contains both x and yp.

5.3 Circular and Elliptical Orbits

Because many planetary orbits are nearly circular, it is useful to obtain the condition for a
circular orbit. The magnitude of the acceleration a is related to the radius r of the circular orbit

by

- 5.9

a=? (5.9)

where v is the speed of the object. The acceleration is always directed toward the center and is
due to the gravitational force. Hence, we have

mv?  GMm

r r2

(5.10)
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Figure 5.2: The characterization of an ellipse in terms of the semimajor axis a and the eccentric-
ity e. The semiminor axis b is the distance OB. The origin O in Cartesian coordinates is at the
center of the ellipse.

and
GM \l/2
v:(—) .
r

(5.11)

The relation (5.11) between the radius and the speed is the general condition for a circular orbit.

We can also find the dependence of the period T on the radius of a circular orbit using the

relation,
2nr

T=—— 5.12
. (5.12)
in combination with (5.11) to obtain
4r®
T? = — 1. 5.13
GM' (513)

The relation (5.13) is a special case of Kepler’s third law with the radius r corresponding to the
semimajor axis of an ellipse.

A simple geometrical characterization of an elliptical orbit is shown in Figure The two
foci of an ellipse, F and F,, have the property that for any point P, the distance F{P + F,P is a
constant. In general, an ellipse has two perpendicular axes of unequal length. The longer axis
is the major axis; half of this axis is the semimajor axis a. The shorter axis is the minor axis; the
semiminor axis b is half of this distance. It is common to specify an elliptical orbit by a and by
the eccentricity e, where e is the ratio of the distance between the foci to the length of the major
axis. Because F P + F,P = 24, it is easy to show that

[ 2
e= 1—2—2 (5.14)
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with 0 < e < 1. (Choose the point P at x = 0,y = b.) A special case is b = g, for which the ellipse
reduces to a circle and e = 0.

5.4 Astronomical Units

It is convenient to choose a system of units in which the magnitude of the product GM is not
too large and not too small. To describe the Earth’s orbit, the convention is to choose the length
of the Earth’s semimajor axis as the unit of length. This unit of length is called the astronomical
unit (AU) and is

1AU =1.496 x10'' m. (5.15)

The unit of time is assumed to be one year or 3.15 x 107 s. In these units, the period of the Earth
is T = 1 years and its semimajor axis is a = 1 AU. Hence, from ([5.13)

41%q3

GM = T 47t AU%/years?® (astronomical units). (5.16)

As an example of the use of astronomical units, a program distance of 1.5 would correspond to
1.5%(1.496 x 10'1) = 2.244 x 10! m.

5.5 Log-log and Semilog Plots

The values of T and a for our solar system are given in Table We first analyze these values
and determine if T and a satisfy a simple mathematical relationship.

Suppose we wish to determine whether two variables y and x satisfy a functional relation-
ship, v = f(x). To simplify the analysis, we ignore possible errors in the measurements of y and
x. The simplest relation between y and x is linear; that is, y = mx + b. The existence of such a
relation can be seen by plotting y versus x and finding if the plot is linear. From Table [5.1] we
see that T is not a linear function of a. For example, an increase in T from 0.24 to 1, an increase
of approximately 4, yields an increase in a of approximately 2.5.

For many problems, it is reasonable to assume an exponential relation
y=Ce™ (5.17)
or a power law relation

y=Cx" (5.18)

where C, r, and n are unknown parameters.

If we assume the exponential form (5.17), we can take the natural logarithm of both sides
to find
Iny=InC +rx. (5.19)

Hence, if (5.17) is applicable, a plot of Iny versus x would yield a straight line with slope r and
intercept In C.

The natural logarithm of both sides of the power law relation (5.18) yields
Iny=InC+nlnx. (5.20)

If (5.18) applies, a plot of Iny versus Inx yields the exponent # (the slope), which is the usual
quantity of physical interest if a power law dependence holds.
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Planet T (Earth years) | a (AU)
Mercury 0.241 0.387
Venus 0.615 0.723
Earth 1.0 1.0
Mars 1.88 1.523
Jupiter 11.86 5.202
Saturn 29.5 9.539
Uranus 84.0 19.18
Neptune 165 30.06
Pluto 248 39.44

Table 5.1: The period T and semimajor axis a of the planets. The unit of length is the astronom-
ical unit (AU). The unit of time is one (Earth) year.

We illustrate a simple analysis of the data in Table Because we expect that the relation
between T and a has the power law form T = Ca", we plot In T versus Ina (see Figure[5.3). A vi-
sual inspection of the plot indicates that a linear relationship between In T and In a is reasonable
and that the slope is approximately 1.50 in agreement with Kepler’s second law. In Chapter
we will discuss the least squares method for fitting a straight line through a number of data
points. With a little practice, you can do a visual analysis that is nearly as good.

The PlotFrame class contains the axes and titles needed to produce linear, log-log, and
semilog plots. It also contains the methods needed to display data in a table format. This table
can be displayed programmatically or by right-clicking (control-clicking) at runtime. Listing|[5.1]
shows a short program that produces the log-log plot of the semimajor axis of the planets ver-
sus the orbital period. The arrays a and T contain the semimajor axis of the planets and their
periods, respectively. Setting the log scale option causes the PlotFrame to transform the data
as it is being plotted and causes the axis to change how labels are rendered. Note that the plot
automatically adjusts itself to fit the data because the autoscale option is true by default. Also
the grid and the tick-labels change as the window is resized.

Listing 5.1: A simple program that producs a log-log plot to demonstrate Kepler’s second law.

package org.opensourcephysics.sip.ch05;
import org.opensourcephysics.frames.PlotFrame;

public class SecondLawPlotApp {
public static void main(String[] args) ({
PlotFrame frame = new PlotFrame("1n(a)", "1In(T)",
"Kepler’s second law");
frame.setLogScale (true, true);
frame.setConnected (false );
double[] period = {
0.241, 0.615, 1.0, 1.88, 11.86, 29.50, 84.0, 165, 248
}s
double[] a = {
0.387, 0.723, 1.0, 1.523, 5.202, 9.539, 19.18, 30.06, 39.44
}s
frame.append (0, a, period);
frame.setVisible (true);
// defines titles of table columns
frame .setXYColumnNames(0, "T (years)", "a (AU)");
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InT

Ina

Figure 5.3: Plot of InT versus Ina using the data in Table Verify that the slope is 1.50.

X yix) ya(x)  ys(x)

0 0.00 0.00 2.00
0.5 0.75 1.59 5.44
1.0 3.00 2.00 14.78
1.5 6.75 2.29 40.17
2.0 12.00 2.52 109.20
2.5 18.75 2.71 296.83

Table 5.2: Determine the functional forms of y(x) for the three sets of data. There are no mea-
surement errors, but there are roundoff errors.

// shows data table; can also be done from frame menu
frame.showDataTable(true);
frame.setDefaultCloseOperation (javax.swing.JFrame .EXIT_ON_CLOSE );

J
Exercise 5.1. Simple functional forms

(a) Run SecondLawPlotApp and convince yourself that you understand the syntax.

(b) Modify SecondLawPlotApp so that the three sets of data shown in Table are plotted.
Generate linear, semilog, and log-log plots to determine the functional form of y(x) that
best fits each data set. O
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5.6 Simulation of the Orbit

We now develop a program to simulate the Earth’s orbit about the Sun. The PlanetApp class
shown in Listing organizes the startup process and creates the visualization. Because this

class extends AbstractSimulation, it is sufficient to know that the superclass invokes the
doStep method periodically when the thread is running or once each time the Step button is
clicked. The preferred scale and the aspect ratio for the plot frame are set in the constructor. The
statement frame.setSquareAspect(true) ensures that a unit of distance will equal the same
number of pixels in both the horizontal and vertical directions; the statement planet.initialize(new
double[]{x, vx, y, vy, 0}) intheinitialize method is used to create an array on the fly

as the argument to another method.

Listing 5.2: PlanetApp.

package org.opensourcephysics.sip.ch05;
import org.opensourcephysics.controls.x;
import org.opensourcephysics.frames.x;

public class PlanetApp extends AbstractSimulation {
PlotFrame frame = new PlotFrame("x (AU)", "y (AU)",
"Planet Simulation");
Planet planet = new Planet ();

public PlanetApp () |{
frame.addDrawable( planet );
frame.setPreferredMinMax (-5, 5, -5, 5);
frame.setSquareAspect(true);

J

public void doStep () {

for(int i = 0;i<5;i++) { // do 5 steps between screen draws
planet.doStep (); // advances time

J

frame.setMessage ("t = "+decimalFormat.format(planet.state[4]))

J

public void initialize () f{
planet.odeSolver.setStepSize (control.getDouble("dt"));
double x = control.getDouble("x");
double vx = control.getDouble("vx");
double y = control.getDouble("y");
double vy = control.getDouble("vy");
// create an array on the fly as the argument to another method
planet.initialize (new double[] {x, vx, y, vy, 0});
frame.setMessage("t = 0");

J

public void reset ()

control.setValue("x", 1);
control.setValue("vx 0);
control.setValue("y", 0);
control .setValue("vy", 6.28);
control.setValue("dt", 0.01);

initialize ();
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J

public static void main(String[] args) ({
SimulationControl.createApp (new PlanetApp ());

J
J

The Planet class in Listing[5.3| defines the physics and instantiates the numerical method.
The latter is the Euler algorithm, which will be replaced in Problem 5.2} Note how the argument
tothe initialize methodis used. The System.arraycopy(array1,index1,array2,index2,length
method in the core Java API copies blocks of memory, such as arrays, and is optimized for par-
ticular operating systems. This method copies length elements of array1 starting at index1
into array? starting at index2. In most applications index1 and index2 will be set equal to 0.

Listing 5.3: Class that models the rate equation for a planet acted on by an inverse square law
force.

package org.opensourcephysics.sip.ch05;
import java.awt.x;

import org.opensourcephysics.display.x;
import org.opensourcephysics.numerics.x;

public class Planet implements Drawable, ODE ({
// GM in units of (AU)A3/(yr)A2
final static double GM = 4xMath.PI+«Math.PI;
Circle circle = new Circle ();
Trail trail = new Trail ();
double[] state = new double[5]; /] {x,vx,y,vy,t}
Euler odeSolver = new Euler(this); // creates numerical method

public void doStep() {
odeSolver.step (); // advances time
trail .addPoint(state[0], state[2]); // x,v

J

void initialize (double[] initState) f{
System.arraycopy(initState , 0, state, 0, initState.length);
// reinitializes the solver in case the solver accesses data
// from previous steps
odeSolver.initialize (odeSolver.getStepSize ());
trail .clear ();

J

public void getRate(double[] state, double[] rate) {
// state[]: x, vx, y, vy, t
double r2 = (state[O]xstate[0])+(state[2]xstate[2]); // r squared

double r3 = r2«Math.sqrt(r2); // r cubed
rate[0] = state[1]; // x rate

rate[1] = (-GMxstate[0])/r3; // vx rate

rate[2] = state[3]; // v rate

rate[3] = (-GMxstate[2])/13; // vy rate

rate[4] = 1; // time rate
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public double[] getState () {
return state;
}

public void draw(DrawingPanel panel, Graphics g) {
circle.setXY(state[0], state[2]);
circle .draw(panel, g);
trail .draw(panel, g);

J

The Planet class implements the Drawable interface and defines the draw method as de-
scribed in Section In this case we did not use graphics primitives such as fillOval to
perform the drawing. Instead, the method calls the methods circle.draw and trail.draw to
draw the planet and its trajectory, respectively.

Invoking a method in another object that has the desired functionality is known as forward-
ing or delegating the method. One advantage of forwarding is that we can change the implemen-
tation of the drawing within the Planet class at any time and still be assured that the planet
object is drawable. We could, for example, replace the circle by an image of the Earth. Note
that we have created a composite object by combining the properties of the simpler circle
and trace objects. These techniques of encapsulation and composition are common in object
oriented programming.

Problem 5.2. Verification of Planet and PlanetApp for circular orbits

(a) Verify Planet and PlanetApp by considering the special case of a circular orbit. For ex-
ample, choose (in astronomical units) x(t = 0) = 1, y(t = 0) = 0, and v,(t = 0) = 0. Use the
relation 1} to find the value of v,(t = 0) that yields a circular orbit. How small a value
of At is needed so that a circular orbit is repeated over many periods? Your answer will de-
pend on your choice of differential equation solver. Find the largest value of At that yields
an orbit that repeats for many revolutions using the Euler, Euler-Cromer, Verlet, and RK4
algorithms. Is it possible to choose a smaller value of At, or are some algorithms, such as the
Euler method, simply not stable for this dynamical system?

(b) Write a method to compute the total energy [see (5.5)] and compute it at regular intervals as
the system evolves. (It is sufficient to calculate the energy per unit mass, E/m.) For a given
value of At, which algorithm conserves the total energy best? Is it possible to choose a value
of At that conserves the energy exactly? What is the significance of the negative sign for the
total energy?

(c) Write a separate method to determine the numerical value of the period. (See Problem
for a discussion of a similar condition.) Choose different sets of values of x(t = 0) and v,(t =
0), consistent with the condition for a circular orbit. For each orbit determine the radius and
the period and verify Kepler’s third law. O

Problem 5.3. Verification of Kepler’s second and third law

(a) Set y(t =0) = 0 and v,(t = 0) = 0 and find by trial and error several values of x(t = 0) and
vy(t = 0) that yield elliptical orbits of a convenient size. Choose a suitable algorithm and plot
the speed of the planet as the orbit evolves. Where is the speed a maximum (minimum)?
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(b)

(e)”

Use the same initial conditions as in part (a) and compute the total energy, angular momen-
tum, semimajor and semiminor axes, eccentricity, and period for each orbit. Plot your data
for the dependence of the period T on the semimajor axis a and verify Kepler’s third law.
Given the ratio of T2/a> that you found, determine the numerical value of this ratio in SI
units for our solar system.

The force center is at (x,y) = (0,0) and is one focus. Find the second focus by symmetry.
Compute the sum of the distances from each point on the orbit to the two foci and verify
that the orbit is an ellipse.

According to Kepler’s second law, the orbiting object sweeps out equal areas in equal times.
If we use an algorithm with a fixed time step At, it is sufficient to compute the area of the
triangle swept in each time step. This area equals one-half the base of the triangle times its
height, or %At(r XV)= %At(xvy —yvy). Is this area a constant? This constant corresponds to
what physical quantity?

Show that algorithms with a fixed value of At break down if the “planet” is too close to
the sun. What is the cause of the failure of the method? What advantage might there be to
using a variable time step? What are the possible disadvantages? (See Project for an
example where a variable time step is very useful.) O

Problem 5.4. Noninverse square forces

(a)

Consider the dynamical effects of a small change in the attractive inverse-square force law,
for example, let the magnitude of the force equal Cm/r>*®, where 6 << 1. For simplicity, take
the numerical value of the constant C to be 47c? as before. Consider the initial conditions
x(t=0)=1,y(t=0) =0, v(t =0) =0, and v,(t = 0) = 5. Choose 6 = 0.05 and determine
the nature of the orbit. Does the orbit of the planet retrace itself? Verify that your result is
not due to your choice of At. Does the planet spiral away from or toward the sun? The path
of the planet can be described as an elliptical orbit that slowly rotates or precesses in the
same sense as the motion of the planet. A convenient measure of the precession is the angle
between successive orientations of the semimajor axis of the ellipse. This angle is the rate of
precession per revolution. Estimate the magnitude of this angle for your choice of 6. What
is the effect of decreasing the semimajor axis for fixed 6? What is the effect of changing 6 for
fixed semimajor axis?

Einstein’s theory of gravitation (the general theory of relativity) predicts a correction to the

force on a planet that varies as 1/r* due to a weak gravitational field. The result is that the

equation of motion for the trajectory of a particle can be written as

d’r  GM GM 2 1
(%)

- = al — ) —
dt? r2 2/ r?

f, (5.21)
where the parameter a is dimensionless. Take GM = 47 and assume a = 1073, Determine
the nature of the orbit for this potential. (For our solar system, the constant « is a maximum

for the planet Mercury, but is much smaller than 10_3.)

Suppose that the attractive gravitational force law depends on the inverse cube of the dis-
tance, Cm/r3. What are the units of C? For simplicity, take the numerical value of C to be
472, Consider the initial condition x(t = 0) = 1, y(t = 0) = 0, v,(t = 0) = 0 and determine
analytically the value of v,(t = 0) required for a circular orbit. How small a value of At is
needed so that the simulation yields a circular orbit over several periods? How does this
value of At compare with the value needed for the inverse-square force law?
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() (b)

Figure 5.4: (a) An impulse applied in the tangential direction. (b) An impulse applied in the
radial direction.

(d) Vary v,(t = 0) by approximately 2% from the circular orbit condition that you determined
in part (c). What is the nature of the new orbit? What is the sign of the total energy? Is the
orbit bound? Is it closed? Are all bound orbits closed? O

Problem 5.5. Effect of drag resistance on a satellite orbit

Consider a satellite in orbit about the Earth. In this case it is convenient to measure distances in
terms of the radius of the Earth, R = 6.37 x 10° m, and the time in terms of hours. Because the
force on the satellite is proportional to Gm, where m = 5.99 x 1024 kg is the mass of the Earth,
we need to evaluate the product Gm in Earth units (EU). In these units the value of Gm is given

by

3 3
_ -11_m 1EU 3. m\ 24
Gm = 6.67x10 kg-52(6.37x106m) (3.6><10 s/h)’(5.99x 10**kg)
=20.0EU%/h? (Earth units). (5.22)

Modify the Planet class to incorporate the effects of drag resistance on the motion of an orbit-
ing Earth satellite. Assume that the drag force is proportional to the square of the speed of the
satellite. To be able to observe the effects of air resistance in a reasonable time, take the mag-
nitude of the drag force to be approximately one-tenth of the magnitude of the gravitational
force. Choose initial conditions such that a circular orbit would be obtained in the absence of
drag resistance and allow at least one revolution before “switching on” the drag resistance. De-
scribe the qualitative change of the orbit due to drag resistance. How does the total energy and
the speed of the satellite change with time? O

5.7 Impulsive Forces

What happens to the orbit of an Earth satellite when it is hit by space debris? We now discuss
the modifications we need to make in Planet and PlanetApp so that we can apply an impulsive
force (a kick) by a mouse click. If we apply a vertical kick when the position of the satellite is as
shown in Figure[5.4p, the impulse would be tangential to the orbit. A radial kick can be applied
when the satellite is as shown in Figure[5.4b.
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User actions, such as mouse clicks or keyboard entries, are passed from the operating sys-
tem to Java event listeners. Although this standard Java framework is straightforward, we have
simplified it to respond to mouse actions within the Open Source Physics panels and frames[]
In order for an Open Source Physics program to respond to mouse actions, the program imple-
ments the InteractiveMouseHandler interface and then registers its ability to process mouse
actions with the PlotFrame. This procedure is demonstrated in the following test program.
You can copy the handleMouseAction code into your program and replace the print state-
ments with useful methods. Other mouse actions, such as MOUSE_CLICKED, MOUSE_MOVED, and
MOUSE_ENTERED are defined in the InteractivePanel class.

Listing 5.4: InteractiveMouseHandler interface test program.

package org.opensourcephysics.sip.ch05;
import java.awt.event.x;

import javax.swing.x;

import org.opensourcephysics.display.x;
import org.opensourcephysics.frames.x;

public class MouseApp implements InteractiveMouseHandler {

PlotFrame frame = new PlotFrame("x", "y", "Interactive Handler");

public MouseApp () {
frame.setInteractiveMouseHandler (this );
frame.setVisible (true);
frame.setDefaultCloseOperation (JFrame .EXIT_ON_CLOSE);
J

public void handleMouseAction(InteractivePanel panel,
MouseEvent evt) {

switch (panel. getMouseAction ()) {

case InteractivePanel .MOUSE DRAGGED :
panel.setMessage ("Dragged");
break;

case InteractivePanel .MOUSE_PRESSED :
panel.setMessage ("Pressed");
break;

case InteractivePanel .MOUSE_RELEASED :
panel.setMessage (null);
break;

J

public static void main(String|[] args) f{
new MouseApp ();
J

J

The switch statement is used in Listing[5.4]instead of a chain of if statements. The panel’s
getMouseAction method returns an integer. If this integer matches one of the named constants
following the case label, then the statements following that constant are executed until a break
statement is encountered. If a case does not include a break, then the execution continues with

1See the Open Source Physics User’s Guide for an extensive discussion of interactive drawing panels.
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the next case. The equivalent of the else construct in an if statement is default followed by
statements that are executed if none of the explicit cases occur.

We now challenge your intuitive understanding of Newton’s laws of motion by considering
several perturbations of the motion of an orbiting object. Modify your planet program to sim-
ulate the effects of the perturbations in Problem In each case answer the questions before
doing the simulation.

Problem 5.6. Tangential and radial perturbations

(a) Suppose that a small tangential “kick” or impulsive force is applied to a satellite in a circular
orbit about the Earth (see Figure .) Choose Earth units so that the numerical value of
the product Gm is given by (5.22). Apply the impulsive force by stopping the program after
the satellite has made several revolutions and click the mouse to apply the force. Recall that
the impulse changes the momentum in the desired direction. In what direction does the
orbit change? Is the orbit stable, for example, does a small impulse lead to a small change in
the orbit? Does the orbit retrace itself indefinitely if no further perturbations are applied?
Describe the shape of the perturbed orbit.

(b) How does the change in the orbit depend on the strength of the kick and its duration?
(c) Determine if the angular momentum and the total energy are changed by the perturbation.

(d) Apply a radial kick to the satellite as in Figure and answer the same questions as in
parts (a)-(d).

(e) Determine the stability of the inverse-cube force law (see Problem to radial and tan-
gential perturbations. O

Mouse actions are not the only possible way to affect the simulation. We can also add custom
buttons to the control. These buttons are added when the program is instantiated in the main
method.

public static void main(String[] args) {
// OSPControl is a superclass of SimulationControl
OSPControl control = SimulationControl.createApp (new PlanetApp());
control.addButton("doRadialKick", "Kick!", "Perform a radial kick");

J

Note that SimulationControl (and CalculationControl) extend the OSPControl superclass
and therefore support the addButton method where this method is defined. We assign the vari-
able returned by the static createApp method to a variable of type OSPControl to highlight the
object-oriented structure of the Open Source Physics library.

The first parameter in the addButton method specifies the method that will be invoked
when the button is clicked, the second parameter specifies the text label that will appear on the
button, and the third parameter specifies the tool tip that will appear when the mouse hovers
over the button. Custom buttons can be used for just about anything, but the corresponding
method must be defined.

Exercise 5.7. Custom buttons

Use a custom button in Problem rather than a mouse click to apply an impulsive force to
the planet. O
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Figure 5.5: The orbit of a particle in velocity space. The vector w points from the origin in
velocity space to the center of the circular orbit. The vector u points from the center of the orbit
to the point (vy, vy).

5.8 Velocity Space

In Problem [5.6]your intuition might have been incorrect. For example, you might have thought
that the orbit would elongate in the direction of the kick. In fact the orbit does elongate butin a
direction perpendicular to the kick. Do not worry; you are in good company! Few students have
a good qualitative understanding of Newton’s law of motion, even after taking an introductory
course in physics. A qualitative way of stating Newton’s second law is

Forces act on the trajectories of particles by changing velocity, not position.

If we fail to take into account this property of Newton’s second law, we will encounter physical
situations that appear counterintuitive.

Because force acts to change velocity, it is reasonable to consider both velocity and position
on an equal basis. In fact position and momentum are treated in such a manner in advanced
formulations of classical mechanics and in quantum mechanics.

In Problem [5.8 we explore some of the properties of orbits in velocity space in the context
of the bound motion of a particle in an inverse-square force. Modify your program so that the
path in velocity space of the Earth is plotted. That is, plot the point (v,,v,) the same way you
plotted the point (x,p). The path in velocity space is a series of successive values of the object’s
velocity vector. If the position space orbit is an ellipse, what is the shape of the orbit in velocity
space?

Problem 5.8. Properties of velocity space orbits

(a) Modify your program to display the orbit in position space and in velocity space at the
same time. Verify that the velocity space orbit is a circle, even if the orbit in position space
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is an ellipse. Does the center of this circle coincide with the origin (v, v,) = (0,0) in velocity
space? Choose the same initial conditions that you considered in Problems|[5.2]and [5.3}

(b)* Let u denote the radius vector of a point on the velocity circle and w denote the vector
from the origin in velocity space to the center of the velocity circle (see Figure [5.5). Then
the velocity of the particle can be written as

V=u+w. (5.23)
Compute u and verify that its magnitude is given by
u=GMm/L (5.24)

where L is the magnitude of the angular momentum. Note that L is proportional to m so
that it is not necessary to know the magnitude of m.

(c)* Verify that at each moment in time, the planet’s position vector r is perpendicular to u.
Explain why this relation holds. O

Problem 5.9. Effect of impulses in velocity space

How does the velocity space orbit change when an impulsive kick is applied in the tangential or
in the radial direction? How do the magnitude and direction of w change? From the observed
change in the velocity orbit and the above considerations, explain the observed change of the
orbit in position space. 0

5.9 A Mini-Solar System

So far our study of planetary orbits has been restricted to two-body central forces. However,
the solar system is not a two-body system, because the planets exert gravitational forces on
one another. Although the interplanetary forces are small in magnitude in comparison to the
gravitational force of the sun, they can produce measurable effects. For example, the existence
of Neptune was conjectured on the basis of a discrepancy between the experimentally measured
orbit of Uranus and the predicted orbit calculated from the known forces.

The presence of other planets implies that the total force on a given planet is not a cen-
tral force. Furthermore, because the orbits of the planets are not exactly in the same plane, an
analysis of the solar system must be extended to three dimensions if accurate calculations are
required. However, for simplicity, we will consider a model of a two-dimensional solar system
with two planets in orbit about a fixed sun.

The equations of motion of two planets of mass m; and mass m, can be written in vector
form as (see Figure|5.6)

dzrl GMml Gm1m2

m = r| + r 5.25a
1 dtz 7’13 1 7’213 21 ( )
d2r2 GMm2 Gm1m2

m =- ry)— r 5.25b
2 dtz T23 2 7’213 21 ( )

where r; and r, are directed from the sun to planets 1 and 2 respectively, and r; =r, —rq is the
vector from planet 1 to planet 2. It is convenient to divide (5.25a) by m; and (5.25b)) by m, and
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M

Figure 5.6: The coordinate system used in (5.25). Planets of mass #; and m; orbit a sun of mass
M.

to write the equations of motion as

d’r, GM Gm

_ 2
dt2 = —7.1—31'1 + ?I’z] (5263.)
d’r, GM Gmy
dt2 = —7’2—31'2 - ?1'21. (526b)

A numerical solution of can be obtained by the straightforward extension of the
Planet class as shown in Listing To simplify the drawing of the particle trajectories, the
Planet?2 class defines an inner class, Mass, which extends Circle and contains a Trail. When-
ever a planet moves, a point is added to the trail so that its location and path are shown on
the plot. Inner classes are an organizational convenience that save us the trouble of having
to create another file, which in this case would be named Mass. java. When we compile the
Planet?2 class, we will produce a bytecode file named Planet2$Mass.class in addition to the
file Planet2.class. Inner classes are most effective as short helper classes which work in con-
juction with the containing class because they have access to all the data (including private
variables) in the containing class.

Listing 5.5: A class that implements the rate equation for two interacting planets acted on by
an inverse-square law force.

package org.opensourcephysics.sip.ch05;
import java.awt.x;

import org.opensourcephysics.display.x;
import org.opensourcephysics.numerics.x;

public class Planet2 implements Drawable, ODE {
// GM in units of (AU)N3/(yr)A2
final static double GM = 4x«Math.PI+«Math.PI;
final static double GMl = 0.04xGQMj;
final static double GM2 = 0.001+GM;
double[] state = new double[9];
ODESolver odeSolver = new RK45MultiStep (this );
Mass massl = new Mass(), mass2 = new Mass();
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public void doStep() {
odeSolver.step ();
massl.setXY (state[0],
mass2.setXY (state[4],

state [2]);
state [6]);

J

public void draw(DrawingPanel panel,
massl.draw (panel, g);
mass2.draw (panel, g);

Graphics g) |

J

initState) {
0, state,

void initialize (double][]
System.arraycopy(initState ,

125

0, initState.length);

massl.clear (); // clears data from the old trail
mass2. clear ();
massl.setXY (state[0], state[2]);
mass2.setXY (state[4], state[6]);

J

public void getRate(double[] state, double[] rate) {
// state[]: x1, vx1, yl1, vyl, x2, vx2, y2, vy2, t
double rl1Squared = (state[O]xstate[0])+(state[2]xstate[2]);
double r1Cubed = rlSquared+Math.sqrt(rlSquared);
double r2Squared = (state[4]xstate[4])+(state[6]xstate[6]);
double r2Cubed = r2Squared+Math.sqrt(r2Squared);
double dx = state[4]-state[0]; // x12 separation
double dy = state[6]—state[2]; // yl2 separation
double dr2 = (dxxdx)+(dyxdy); // r12 squared
double dr3 = Math.sqrt(dr2)=dr2; // r12 cubed
rate[0] = state[1]; // x1 rate
rate[2] = state[3]; // vyl rate
rate[4] = state[5]; // x2 rate
rate[6] = state[7]; // v2 rate
rate[1] = ((-GMxstate[0])/r1Cubed)+((GMlxdx)/dr3); // vxl rate
rate[3] = ((-GMxstate[2])/r1Cubed)+((GMlxdy)/dr3); // vyl rate
rate[5] = ((-QMxstate[4])/r2Cubed) —((GM2xdx)/dr3); // vx2 rate
rate[7] = ((-GMxstate[6])/r2Cubed)—((GM2xdy)/dr3); // vy2 rate
rate[8] = 1; // time rate

J

public double []
return state;
}

getState () {

class Mass extends Circle {
Trail trail = new Trail ();

public void draw(DrawingPanel panel,
trail .draw(panel, g);
super.draw(panel, g);

Graphics g) |

J

void clear () {
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trail .clear ();

J

public void setXY(double x, double y) {
super.setXY(x, y);
trail .addPoint(x, y);

J

The target application, Planet2App, extends AbstractSimulation in the usual way. Be-
cause it is almost identical to Listing[5.2} it is not shown here. The complete program is available
in the ch(5| package.

Problem 5.10. Planetary perturbations

Use Planet2App with the initial conditions given in the program. For illustrative purposes,
we have adopted the numerial values m;/M = 103 and m,/M = 4 x 1072 and hence GM1 =
(my/M)GM = 0.04GM and GM2 = (m/M)GM = 0.001GM. What would be the shape of the orbits
and the periods of the two planets if they did not mutually interact? What is the qualitative ef-
fect of their mutual interaction? Describe the shape of the two orbits. Why is one planet affected
more by their mutual interaction than the other? Are the angular momentum and the total en-
ergy of planet one conserved? Are the total energy and total angular momentum of the two
planets conserved? A related but more time consuming problem is given in Project[5.18] O

Problem 5.11. Double stars

Another interesting dynamical system consists of one planet orbiting about two fixed stars of
equal mass. In this case there are no closed orbits, but the orbits can be classified as either
stable or unstable. Stable orbits may be open loops that encircle both stars, figure eights, or
orbits that encircle only one star. Unstable orbits will eventually collide with one of the stars.
Modify Planet?2 to simulate the double-star system, with the first star located at (—1,0) and the
second star of equal mass located at (1,0). Place the planet at (0.1,1) and systematically vary
the x and y components of the velocity to obtain different types of orbits. Then try other initial
positions. O

5.10 Two-Body Scattering

Much of our understanding of the structure of matter comes from scattering experiments. In
this section we explore one of the more difficult concepts in the theory of scattering, the differ-
ential cross section.

A typical scattering experiment involves a beam with many incident particles all with the
same kinetic energy. The coordinate system is shown in Figure[5.7] The incident particles come
from the left with an initial velocity v in the +x direction. We take the center of the beam and
the center of the target to be on the x-axis. The impact parameter b is the perpendicular distance
from the initial trajectory to a parallel line through the center of the target (see Figure [5.7).
We assume that the width of the beam is larger than the size of the target. The target contains
many scattering centers, but for calculational purposes, we may consider scattering off only one
particle if the target is sufficiently thin.

When an incident particle comes close to the target, it is deflected. In a typical experiment,
the scattered particles are counted in a detector that is far from the target. The final velocity of
the scattered particles is v/, and the angle between v and v’ is the scattering angle 6.



CHAPTER 5. FEW-BODY PROBLEMS: THE MOTION OF THE PLANETS 127

ol ()
\s

2mb db

o< 27 sin 0 |d6|

Figure 5.7: The coordinate system used to define the differential scattering cross section. Parti-
cles passing through the beam area 27tb db are scattered into the solid angle dQ.

Let us assume that the scattering is elastic and that the target is much more massive than
the beam particles so that the target can be considered to be fixed. (The latter condition can
be relaxed by using center of mass coordinates.) We also assume that no incident particle is
scattered more than once. These considerations imply that the initial speed and final speed of
the incident particles are equal. The functional dependence of 6 on b depends on the force
on the beam particles due to the target. In a typical experiment, the number of particles in an
angular region between 6 and 6 + 40 is detected for many values of 6. These detectors measure
the number of particles scattered into the solid angle dQ) = sin6d60d¢ centered about 6. The
differential cross section o(0) is defined by the relation

AN _

N = 10(0)dQ (5.27)

where dN is the number of particles scattered into the solid angle d() centered about 6 and the
azimuthal angle ¢, N is the total number of particles in the beam, and # is the target density
defined as the number of targets per unit area.

The interpretation of is that the fraction of particles scattered into the solid angle
dQ) is proportional to d() and the density of the target. From we see that ¢(0) can be
interpreted as the effective area of a target particle for the scattering of an incident particle
into the element of solid angle dQ. Particles that are not scattered are ignored. Another way of
thinking about ¢(0) is that it is the ratio of the area bdbd¢ to the solid angle dQ) =sin6d0d¢,
where bdbd¢ is the infinitesimal cross-sectional area of the beam that scatters into the solid
angle defined by 6 to 6 +d6 and ¢ to ¢ + d¢. The alternative notation for the differential cross
section, do/d(), comes from this interpretation.

To do an analytic calculation of ¢(60), we write

do b

o(0) = FTe) - sin @

¥ (5.28)

db’

We see from (5.28) that the analytic calculation of ¢(8) involves b as a function of 6, or more
precisely, how b changes to give scattering through an infinitesimally larger angle 6 + d6.

In a scattering experiment, particles enter from the left (see Figure[5.7) with random values
of the impact parameter b and azimuthal angle ¢, and the number of particles scattered into the
various detectors is measured. In our simulation, we know the value of b, and we can integrate
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Newton’s equations of motion to find the angle at which the incident particle is scattered. Hence,
in contrast to the analytic calculation, a simulation naturally yields 6 as a function of b.

Because the differential cross section is usually independent of ¢, we need to consider beam
particles only at ¢ = 0. We have to take into account the fact that in a real beam, there are more
particles at some values of b than at others. That is, the number of particles in a real beam is
proportional to 27tbAb, the area of the ring between b and b+ Ab, where we have integrated over
the values of ¢ to obtain the factor of 27t. Here Ab is the interval between the values of b used
in the program. Because there is only one target in the beam, the target density is n = 1/(rtR?).

The scattering program requires the Scatter, ScatterAnalysis, and ScatterApp classes.
The ScatterApp class in Listing[5.6|organizes the startup process and creates the visualizations.
As usual, it extends AbstractSimulation by overriding the doStep method. However, in this
case a single step is not a time step. A step calculates a trajectory and scattering angle for the
given impact parameter. After a trajectory is calculated, the impact parameter is incremented
and the panel is repainted. If necessary, you can eliminate this visualization to increase the
computational speed. If the new impact parameter exceeds the beam radius bmax, the animation
is stopped and the accumulated data is analyzed. Note that the calculateTrajectory method
returns true if the calculation succeeded and that an error message is printed if the calculation
fails. Including a failsafe mechanism to stop a computation is good programming practice.

Listing 5.6: A program that calculates the scattering trajectories and computes the differential
cross section.
public class ScatterApp extends AbstractSimulation ({

PlotFrame frame = new PlotFrame("x", "y", "Trajectories");
ScatterAnalysis analysis = new ScatterAnalysis ();

Scatter trajectory = new Scatter ();

double vx; // speed of the incident particle

double b, db; // impact parameter and increment

double bmax; // maximum impact parameter

/**

« Constructs ScatterApp.

*/

public ScatterApp () {
frame.setPreferredMinMax (-5, 5, -5, 5);
frame.setSquareAspect(true);

J

public void doStep() {
if (trajectory.calculateTrajectory (frame, b, vx)) ({
analysis.detectParticle(b, trajectory.getAngle());

} else |

control . println ("Trajectory did not converge at b = "+b);
}
frame.setMessage("b = "+decimalFormat.format(b));

b += db; // increases the impact parameter

frame.repaint ();

if (b>bmax) {
control.calculationDone ("Maximum impact parameter reached");
analysis.plotCrossSection(b);

J
J
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public

VX

void initialize () ({
= control.getDouble("vx");

bmax = control.getDouble("bmax");

db

= control.getDouble("db");

b =db/2; // starts b at average value of first interval 0->db

//

b will increment to 3xdb/2, 5xdb/2, 7xdb/2,

frame.setMessage("b = 0");
frame.clearDrawables (); // removes old trajectories
analysis.clear ();

J

public

{
control .setValue (
control.setValue("bmax", 0.25);
control.setValue (

void reset ()
"ux", 3);

"db", 0.01);

initialize ();

J

public

static void main(String[] args) {

SimulationControl.createApp (new ScatterApp ());

J
J
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The Scatter class shown in Listing calculates the trajectories by expressing the equa-
tion of motion as a rate equation. The most important method is calculateTrajectory, which
calculates a trajectory by stepping the differential equation solver and adding the resulting data
to a trail to display the path. Because the beam source is far away, we stop the calculation when
the distance of the scattered particle from the target exceeds the initial distance. Note the use
of the ternary ?: operator. This very efficient and compact operator uses three expressions. The
first expression evaluates to a boolean. If this expression is true, then the statement after the ? is
executed. If this expression is false, then the statement after the : is executed. However, because
some potentials may trap particles for long periods of time, we also stop the calculation after a
predetermined number of time steps.

Listing 5.7: A class that models particle scattering using a central force law.

package org.opensourcephysics.sip.ch05;

import
import
import
import

public

java.awt.x;
org.opensourcephysics.display .x;
org.opensourcephysics.frames.x;
org.opensourcephysics.numerics.x;

class Scatter implements ODE |

double[] state = new double[5];
RK4 odeSolver = new RK4(this);

public

Scatter () {

odeSolver.setStepSize (0.05);

J

boolean calculateTrajectory (PlotFrame frame, double b, double vx) {

state[0] = -5.0; // x
state[1] = vx; /] vx
state[2] = b; !/l y
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state [3] 0; /] vy

state[4] = 0; // time

Trail trail = new Trail ();

trail .color = Color.red;

frame.addDrawable(trail );

double r2 = (state[O]+state[0])+(state[2]+state[2]);

double count = 0;

while ((count<=1000)&&((2+r2)>((state [0]+state [0])+(state[2]xstate[2])))) {
trail.addPoint(state[0], state[2]);
odeSolver.step ();
count++;

J

return count<1000;

J

private double force(double r) ({
// Coulomb force law
return(r==0) 2 0 : (1/r/r); // returns 0 if r =0

J

public void getRate(double[] state, double[] rate) {
double r = Math.sqrt ((state[0]+state[0])+(state[2]xstate[2]));
double f = force(r);

rate[0] = state[1];
rate[1] = (fxstate[0])/r;
rate[2] = state[3];
rate[3] = (fxstate[2])/r;
rate[4] = 1;

J

public double[] getState () {
return state;

J

double getAngle () {
return Math.atan2(state[3], state[1]);// /Math.PI; xx

J
}

The ScatterAnalysis class performs the data analysis. This class creates an array of bins to
sort and accumulate the trajectories according to the scattering angle. The values of the scatter-
ing angle between 0° and 180° are divided into bins of width dtheta. To compute the number
of particles coming from a ring of radius b, we accumulate the value of b associated with each
bin or “detector” and write bins[index] += b (see the detectParticle method), because the
number of particles in a ring of radius b is proportional to b. The total number of scattered
particles is computed in the same way:

totalN += b;
You might want to increase the number of bins and the range of angles for better resolution.

Listing 5.8: The ScatterAnalysis class accumulates the scattering data and plots the differen-
tial cross section.

public class ScatterAnalysis {
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int numberOfBins = 18;

PlotFrame frame = new PlotFrame("angle", "sigma",
"differential cross section");

double[] bins = new double[numberOfBins |;

double dtheta = Math.PI/(numberOfBins);

double totalN = 0; // total number of scattered particles

void clear () {

for(int i = 0;i<numberOfBins;i++) {
bins[i] = 0;

J

totalN = 0;

frame.clearData ();
frame.repaint ();

J

void detectParticle (double b, double theta) {
// treats positive and negative angles equally to get better statistics
theta = Math.abs(theta);
int index = (int) (theta/dtheta);
bins[index] += b;
totalN += b;

J

void plotCrossSection (double radius) {

double targetDensity = 1/Math.PI/radius/radius;

double delta = (dthetax180)/Math.PI; // uses degrees for plot

frame.clearData ();

for(int i = 0;i<numberOfBins;i++) |
double domega = 2+Math.PI+Math.sin ((i+0.5)+dtheta)*dtheta;
double sigma = bins[i]/totalN/targetDensity/domega;
frame.append(0, (i+0.5)xdelta, sigma);

J

frame.setVisible (true);

Problem 5.12. Total cross section

The total cross section o7 is defined as

or :Ja(@)dQ. (5.29)

Add code to calculate and display the total cross section in the plotCrossSection method.
Design a test to verify that the ODE solver in the Scatter class has sufficient accuracy. O

In Problem we consider a model of the hydrogen atom for which the force on a beam
particle is zero for r > a. Because we do not count the beam particles that are not scattered,
we set the beam radius equal to a. For forces that are not identically zero, we need to choose a
minimum angle for 6 such that particles whose scattering angle is less than this minimum are
not counted as scattered (see Problem .

Problem 5.13. Scattering from a model hydrogen atom
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(a)

()

(d)

Consider a model of the hydrogen atom for which a positively-charged nucleus of charge +e
is surrounded by a uniformly distributed negative charge of equal magnitude. The spher-
ically symmetric negative charge distribution is contained within a sphere of radius a. It
is straightforward to show that the force between a positron of charge +e and this model
hydrogen atom is given by

0 r>a.

fr)= {m2 “rfa rsa (5.30)

We have chosen units such that e?/(47eg) = 1, and the mass of the positron is unity. What
is the ionization energy in these units? Modify the Scatter class to incorporate this force.
Is the force on the positron from the model hydrogen atom purely repulsive? Choose a = 1
and set the beam radius bmax = 1. Use E = 0.125 and At = 0.01. Compute the trajectories for
b =0.25, 0.5, and 0.75 and describe the qualitative nature of the trajectories.

Determine the cross section for E = 0.125. Choose nine bins so that the angular width of a
detector is delta = 20°, and let db = 0.1, 0.01, and 0.002. How does the accuracy of your
results depend on the number of bins? Determine the differential cross section for different
energies and explain its qualitative energy dependence.

What is the value of o for E = 0.125? Does o depend on E? The total cross section has
units of area, but a point charge does not have an area. To what area does it refer? What
would you expect the total cross section to be for scattering from a hard sphere?

Change the sign of the force so that it corresponds to electron scattering. How do the trajec-
tories change? Discuss the change in o(6). O

Problem 5.14. Rutherford scattering

(a)

()

(d)

One of the most famous scattering experiments was performed by Geiger and Marsden
who scattered a beam of alpha particles on a thin gold foil. Based on these experiments,
Rutherford deduced that the positive charge of the atom is concentrated in a small region
at the center of the atom rather than distributed uniformly over the entire atom. Use a 1/r2
force in class Scatter and compute the trajectories for b = 0.25, 0.5, and 0.75 and describe
the trajectories. Choose E = 5 and At = 0.01. The default value of x, the initial x-coordinate
of the beam, is xy = —5. Is this value reasonable?

For E = 5 determine the cross section with numberOfBins = 18. Choose the beam width
bmax = 2. Then vary db (or numberOfBins) and compare the accuracy of your results to the
analytic result for which ¢(0) varies as [sin(6/2)]7*. How do your computed results compare
with this dependence on 6? If necessary, decrease db. Are your results better or worse at
small angles, intermediate angles, or large angles near 180°? Explain.

Because the Coulomb force is long range, there is scattering at all impact parameters. In-
crease the beam radius and determine if your results for ¢(6) change. What happens to the
total cross section as you increase the beam width?

Compute o(0) for different values of E and estimate the dependence of ¢(6) on E. O

Problem 5.15. Scattering by other potentials



CHAPTER 5. FEW-BODY PROBLEMS: THE MOTION OF THE PLANETS 133

(a)

A simple phenomenological form for the effective interaction between electrons in metals is
the screened Coulomb (or Thomas—Fermi) potential given by

62

~r/a
=— . 5.31
r) 47‘(601’6 ( )

The range of the interaction a depends on the density and temperature of the electrons.
The form is known as the Yukawa potential in the context of the interaction between
nuclear particles and as the Debye potential in the context of classical plasmas. Choose
units such that a = 1 and e?/(4mey) = 1. Recall that the force is given by f(r) = —-dV/dr.
Incorporate this force law into class Scatter and compute the dependence of o(6) on the
energy of the incident particle. Choose the beam width equal to 3. Compare your results for
0(0) with your results from the Coulomb potential.

Modify the force law in Scatter so that f(r) = 24(2/r'3 — 1/¢7). This form for f(r) is used
to describe the interactions between simple molecules (see Chapter [8). Describe some typi-
cal trajectories and compute the differential cross section for several different energies. Let
bmax = 2. What is the total cross section? How do your results change if you vary bmax?
Choose a small angle as the minimum scattering angle. How sensitive is the total cross sec-
tion to this minimum angle? Does the differential cross section vary for any other angles
besides the smallest scattering angle? O

5.11 Three-body problems

Poincaré showed that it is impossible to obtain an analytic solution for the unrestricted motion
of three or more objects interacting under the influence of gravity. However solutions are known
for a few special cases, and it is instructive to study the properties of these solutions.

The ThreeBody class computes the trajectories of three particles of equal mass moving in

a plane and interacting under the influence of gravity. Both the physics and the drawing are
implemented in the ThreeBody class shown in Listing Note that the getRate and compute-
Force methods compute trajectories for an arbitrary number of masses. Note how the compute-
Force method uses the arraycopy method to quickly zero the arrays. To simplify the drawing
of the particle trajectories, the ThreeBody class uses an inner class that extends a Circle and
contains a Trail.

Listing 5.9: A class that models the dynamics of the three-body problem.

package org.opensourcephysics.sip.ch05;
import java.awt.x;

import org.opensourcephysics.display.x;
import org.opensourcephysics.numerics.x;

public class ThreeBody implements Drawable, ODE ({

int n = 3; // number of interacting bodies

// state= {x1, vx1, yl, vyl, x2, vx2, y2, vy2, x3, vx3, y3, vy3, t}
double[] state = new double[4xn+1];

double[] force = new double[2xn]

double[] zeros = new double[2xn];

ODESolver odeSolver = new RK45MultiStep(this);
Mass massl = new Mass(), mass2 = new Mass(), mass3 = new Mass();
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public void draw(DrawingPanel panel, Graphics g) {
massl.draw (panel, g);
mass2.draw (panel, g);
mass3.draw (panel, g);

J

public void doStep() {
odeSolver.step ();
massl.setXY (state[0], state[2]);
mass2.setXY (state[4], state[6]);
mass3.setXY (state[8], state[10]);

J

void initialize (double[] initState) f{
// copies initState to state
System.arraycopy(initState , 0, state, 0, 13);
massl.clear ();
mass2.clear ();
mass3.clear ();
massl.setXY (state[0], state[2]);
mass2.setXY (state[4], state[6]);
mass3.setXY (state[8], state[10]);

J

void computeForce(double[] state) {
// sets force array elements to 0
System.arraycopy(zeros, 0, force, 0, force.length);
for(int i = 0;i<n;i++) {
for(int j = i+1;j<n;j++) {
double dx = state[4xi]-state[4xj];
double dy = state[4xi+2]-state[4xj+2];
double r2 = dxsdx+dyxdy;
double r3 = r2«Math.sqrt(r2);
double fx = dx/r3;
double fy = dy/r3;
force[2xi] —= fx;
force[2+xi+1] —= fy;
force[2xj] += fx;
force[2xj+1] += fy;

J

public void getRate(double[] state, double[] rate) f{

computeForce(state ); // force array alternates fx and fy

for(int i = 0;i<n;i++) {
int i4 = 4xi;
rate[i4] = state[i4d+1]; // x rate is vx

rate[i4+1] = force[2x1i];
rate[i4+2] = state[i4+3];
rate[i4+3] = force[2xi+1];

J

// vx rate is fx
// vy rate is vy
// vy rate is fy

rate[state.length-1] = 1; // time rate is last

134
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J

public double[] getState () ({
return state;
}

class Mass extends Circle {
Trail trail = new Trail ();
// Draws the mass
public void draw(DrawingPanel panel, Graphics g) {
trail .draw(panel, g);
super.draw(panel, g);

J

// Clears trail
void clear () {

trail.clear ();
J

// Sets postion and adds to trail
public void setXY(double x, double y) ({
super.setXY(x, y);
trail .addPoint(x, y);

J

The initial conditions for our examples are contained in the ThreeBodyInitialConditions
class. This file is available in the ch(5|package but is not listed here because it contains mostly
numeric data.

In 1765 Euler discovered an analytic solution in which three masses start on a line and
rotate so that the central mass stays fixed. The EULER array in ThreeBodyInitialConditions
initializes the model to produce this type of solution. The first mass is placed at the center, and
the other two masses are placed on opposite sides with velocities that are equal but opposite.
Because of the symmetry, the trajectories are ellipses with a common focus at the center.

A second analytic solution to the unrestricted three-body problem was found by Lagrange
in 1772. This solution starts with three masses at the corners of an equilateral triangle. Each
mass moves in an ellipse in such a way that the triangle formed by the masses remains equilat-
eral. The LAGRANGE array initializes this solution.

A spectacular new solution that adds to the sparse list of analytic three-body solutions was
first discovered numerically by Moore and proven to be stable by Chenciner and Montgomery.
The MONTGOMERY array contains the initial conditions for this solution.

The ThreeBodyApp class in Listing is the target class for the three-body program. The
doStep method merely increments the model’s differential equations solver and repaints the
view.

Listing 5.10: A program that displays the trajectories of three bodies interacting via gravita-
tional forces.

package org.opensourcephysics.sip.ch05;

import org.opensourcephysics.controls.x;

import org.opensourcephysics.frames.x;
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public class ThreeBodyApp extends AbstractSimulation ({

PlotFrame frame = new PlotFrame("x", "y", "Three-Body Orbits");
ThreeBody trajectory = new ThreeBody ();

public ThreeBodyApp() {
frame.addDrawable(trajectory );
frame.setSquareAspect(true);
frame.setSize (450, 450);

J

public void initialize () f{
trajectory.odeSolver.setStepSize (control.getDouble("dt"));
trajectory.initialize (ThreeBodyInitialConditions .MONIGOMERY);
frame.setPreferredMinMax(-1.5, 1.5, -1.5, 1.5);

J

public void reset() |
control.setValue("dt", 0.1);
enableStepsPerDisplay (true);
initialize ();

J

protected void doStep() {
trajectory.doStep ();
frame.setMessage ("t="+decimalFormat.format(trajectory.state[4]));

J

public static void main(String|[] args) f{
SimulationControl.createApp (new ThreeBodyApp());
J

Problem 5.16. Stability of solutions to the three-body problem

Examine the stability of the three solutions to the three-body problem by slightly varying the
initial velocity of one of the masses. Before passing your new initial state to trajectory.initialize,
calculate the center of mass velocity and subtract this velocity from every object. Show that any
instability is due to the physics and not to the numerical differential equation solver. Which
of the three analytic solutions is stable? Check conservation of the total energy and angular
momentum. O

5.12 Projects
Project 5.17. Effect of a “solar wind”

(a) Assume that a satellite is affected not only by the Earth’s gravitational force, but also by a
weak uniform “solar wind” of magnitude W acting in the horizontal direction. The equa-
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tions of motion can be written as

d’x  GMx
ﬁ = - 3 +W (5323.)
d%y GMy
W = - r3 . (532b)

Choose initial conditions so that a circular orbit would be obtained for W = 0. Then choose
a value of W whose magnitude is about 3% of the acceleration due to the gravitational field
and compute the orbit. How does the orbit change?

Determine the change in the velocity space orbit when the solar wind is applied. How
does the total angular momentum and energy change? Explain in simple terms the previ-
ously observed change in the position space orbit. See Luehrmann for further discussion of
this problem. O

Project 5.18. Resonances and the asteroid belt

(a)

A histogram of the number of asteroids versus their distance from the sun shows some
distinct gaps. These gaps, called the Kirkwood gaps, are due to resonance effects. That is, if
asteroids were in these gaps, their periods would be simple fractions of the period of Jupiter.
Modify class P1lanet?2 so that planet two has the mass of Jupiter by setting GM1 = 0.001xGM.
Because the asteroid masses are very small compared to that of Jupiter, the gravitational
force on Jupiter due to the asteroids can be neglected. The initial conditions listed in Planet2
are approximately correct for Jupiter. The initial conditions for the asteroid (planet one in
Planet2) correspond to the 1/3 resonance (the period of the asteroid is one third that of
Jupiter). Run the program with these changes and describe the orbit of the asteroid.

Use Kepler’s third law, T%a3 = constant, to determine the values of a, the asteroid’s semi-
major axis, such that the ratio of its period of revolution about the Sun to that of Jupiter is
1/2, 3/7, 2/5, and 2/3. Set the initial value of x(1) equal to a for each of these ratios and
choose the initial value of vy (1) so that the asteroid would have a circular orbit if Jupiter
was not present. Describe the orbits that you obtain.

It is instructive to plot a as a function of time. However, because it is not straightforward to
measure a directly in the simulation, it is more convenient to plot the quantity -2GMm/E,
where E is the total energy of the asteroid and m is the mass of the asteroid. Because E is
proportional to m, the quantity —2GMm/E is independent of m. If the interaction of the
asteroid with Jupiter is ignored, it can be shown that a = -2GMm/E, where E is the as-
teroid kinetic energy plus the asteroid-sun potential energy. Derive this result for circular
orbits. Plot the quantity —2GMm/E versus time for about thirty revolutions for the initial
conditions in Problem [5.18bl

Compute the time dependence of —-2GMm/E for asteroid orbits whose initial position x (1)
ranges from 2.0 to 5.0 in steps of 0.2. Choose the initial values of vy(1) so that circular
orbits would be obtained in the absence of Jupiter. Are there any values of x(1) for which
the time dependence of a is unusual?

Make a histogram of the number of asteroids versus the value of ~2GMm/E at t = 2000.
(You can use the HistogramF rame class described on page if you wish.) Assume that
the initial value of x (1) ranges from 2.0 to 5.0 in steps of 0.02 and choose the initial values
of vy (1) as before. Use a histogram bin width of 0.1. If you have time, repeat for t = 5000
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Figure 5.8: Orbits of the two electrons in the classical helium atom with the initial condition
r; =(3,0),r, =(1,0),v; =(0,0.4), and v, = (0,-1) (see Project [5.19c).

and compare the histogram with your previous results. Is there any evidence for Kirkwood
gaps? A resonance occurs when the periods of the asteroid and Jupiter are related by simple
fractions. We expect the number of asteroids with values of a corresponding to resonances
to be small.

(f) Repeat part () with initial velocities that vary from their values for a circular orbit by 1, 3,
and 5%. O
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Project 5.19. The classical helium atom

The classical helium atom is a relatively simple example of a three-body problem and is similar
to the gravitational three-body problem of a heavy sun and two light planets. The important
difference is that the two electrons repel one another, unlike the planetary case where the in-
traplanetary interaction is attractive. If we ignore the small motion of the heavy nucleus, the
equations of motion for the two electrons can be written as

I r-n

a; =-2- 3 (5.33a)
n 5P)

ay=-22 4210 (5.33b)
3 5P)

where ry and r, are measured from the fixed nucleus at the origin, and ry, is the distance be-
tween the two electrons. We have chosen units such that the mass and charge of the electron
are both unity. The charge of the helium nucleus is two in these units. Because the electrons
are sometimes very close to the nucleus, their acceleration can become very large, and a very
small time step At is required. It is not efficient to use the same small time step throughout
the simulation, and instead a variable time step or an adaptive step size algorithm is suggested.
An adaptive step size algorithm can be used with any standard numerical algorithm for solving
differential equations. The RK45 algorithm described in[Appendix[3[A]is adaptive and is a good
all-around choice for these types of problems.

(a) For simplicity, we restrict our atom to two dimensions. Modify Planet2 to simulate the clas-
sical helium atom. Choose units such that the electron mass is one and the other constants
are absorbed into the unit of charge so that the force between two electrons is

1
|F| = = (5.34)

Choose the initial value of the time step to be At = 0.001. Some of the possible orbits are
similar to those we have seen in our mini-solar system. For example, try the initial condition
r; =(2,0),r, =(-1,0),vy =(0,0.95), and v, = (0,-1).

(b) Most initial conditions result in unstable orbits in which one electron eventually leaves
the atom (autoionization). The initial condition r; = (1.4,0),r, = (-1,0),v; = (0,0.86), and
v, = (0,-1) gives “braiding” orbits. Make small changes in this initial condition to observe
autoionization.

(c) The classical helium atom is capable of very complex orbits (see Figure[5.8). Investigate the
motion for the initial condition r; = (3,0),r, = (1,0),v; = (0,0.4), and v, = (0,—1). Does the
motion conserve the total angular momentum? Also try r; = (2.5,0),r, = (1,0),v; = (0,0.4),
and v, = (0,-1).

(d) Choose the initial condition r; = (2,0),r, = (-1,0), and v, = (0,—1). Then vary the initial
value of v; from (0.6,0) to (1.3,0) in steps of Av = 0.02. For each set of initial conditions,
calculate the time it takes for autoionization. Assume that ionization occurs when either
electron exceeds a distance of six from the nucleus. Run each simulation for a maximum
time of 2000. Plot the ionization time versus v;,. Repeat for a smaller interval of Av cen-
tered about one of the longer ionization times. These calculations require much computer
resources. Do the two plots look similar? If so, such behavior is called “self-similar” and is
characteristic of chaotic systems and the geometry of fractals (see Chapters[6|and[13). More
discussion on the nature of the orbits can be found in Yamamoto and Kaneko. O
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Chapter 6

The Chaotic Motion of Dynamical
Systems

We study simple nonlinear deterministic models that exhibit chaotic behavior. We will find that
the use of the computer to do numerical experiments will help us gain insight into the nature
of chaos.

6.1 Introduction

Most natural phenomena are intrinsically nonlinear. Weather patterns and the turbulent mo-
tion of fluids are everyday examples. Although we have explored some of the properties of
nonlinear systems in Chapter [4} it is easier to introduce some of the important concepts in the
context of ecology. Our first goal will be to motivate and analyze the one-dimensional difference
equation

Xpy1 = 4rx,(1—x,) (6.1)

where x,, is the ratio of the population in the nth generation to a reference population. We
shall see that the dynamical properties of are surprisingly intricate and have important
implications for the development of a more general description of nonlinear phenomena. The
significance of the behavior of is indicated by the following quote from the ecologist Robert
May:

“Its study does not involve as much conceptual sophistication as does elementary calculus. Such
study would greatly enrich the student’s intuition about nonlinear systems. Not only in research
but also in the everyday world of politics and economics we would all be better off if more people
realized that simple nonlinear systems do not necessarily possess simple dynamical properties.”

The study of chaos is of much current interest, but the phenomena is not new and has
been of interest, particularly to astronomers and mathematicians, for over one hundred years.
Much of the current interest is due to the use of the computer as a tool for making empirical
observations. We will use the computer in this spirit.

142
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6.2 A Simple One-Dimensional Map

Imagine an island with an insect population that breeds in the summer and leaves eggs that
hatch the following spring. Because the population growth occurs at discrete times, it is ap-
propriate to model the population growth by a difference equation rather than by a differential
equation. A simple model of population growth that relates the population in generation n + 1
to the population in generation # is given by

Pyy1 =aby (6.2)

where P, is the population in generation n and a is a constant. In the following, we will assume
that the time interval between generations is unity and will refer to n as the time.

If a < 1, the population decreases at each generation, and eventually the population be-
comes extinct. If a > 1, each generation will be 4 times larger than the previous one. In this case
leads to geometrical growth and an unbounded population. Although the unbounded
nature of geometrical growth is clear, it is remarkable that most of us do not integrate our un-
derstanding of geometrical growth into our everyday lives. Can a bank pay 4% interest each
year indefinitely? Can the world’s human population grow at a constant rate forever?

It is natural to formulate a more realistic model in which the population is bounded by the
finite carrying capacity of its environment. A simple model of density-dependent growth is

Pyi1 = Py(a—bPy). (6.3)

Equation (6.3) is nonlinear due to the presence of the quadratic term in P,. The linear term
represents the natural growth of the population; the quadratic term represents a reduction of
this natural growth caused, for example, by overcrowding or by the spread of disease.

It is convenient to rescale the population by letting P, = (a/b)x,, and rewriting (6.3) as
Xpy1 = ax,(1 = x). (6.4)

The replacement of P, by x,, changes the units used to define the various parameters. To write
(6.4) in the standard form (6.1), we define the parameter r = a/4 and obtain

Xpp1 = f(xn) = 4rx, (1 = x,). (6.5)

The rescaled form has the desirable feature that its dynamics are determined by a single
control parameter r instead of the two parameters a and b. Note that if x,, > 1, x,,,; will be
negative. To avoid this nonphysical feature, we impose the conditions that x is restricted to the
interval 0 < x <1 and 0 <r <1, respectively. Because the function f(x) defined in trans-
forms any point on the one-dimensional interval [0, 1] into another point in the same interval,
the function f is called a one-dimensional map.

The form of f(x) in (6.5) is known as the logistic map. The logistic map is a simple example
of a dynamical system; that is, the map is a deterministic, mathematical prescription for finding
the future state of a system given its present state.

The sequence of values xg, x1, xp, ... is called the trajectory. To check your understanding,
suppose that the initial value of x4 or seed is xy = 0.5 and r = 0.2. Do a calculation to show
that the trajectory is x; = 0.2,x, = 0.128,x3 = 0.089293,.... The first thirty iterations of are
shown for two values of r in Figure

The class IterateMapApp computes the trajectory of the logistic map in (6.5). Note that
we have extended the AbstractCalculation class, which is appropriate because many of the
results of Sections[6.1H6.4| were discovered using a programmable calculator.
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Figure 6.1: (a) The trajectory of x for r = 0.2 and xy = 0.6. The stable fixed point is at x = 0. (b)
The trajectory for r = 0.7 and xy = 0.1. Note the initial transient behavior.

Listing 6.1: The IterateMapApp class iterates the logistic map and plots the resulting trajectory

package org.opensourcephysics.sip.ch06;
import org.opensourcephysics.frames.x;
import org.opensourcephysics.controls.x;

public class IterateMapApp extends AbstractCalculation {
int datasetIndex = 0;
PlotFrame plotFrame = new PlotFrame("iterations", "x",
"trajectory");

public IterateMapApp () {
// keep data between calls to calculate
plotFrame.setAutoclear(false);

J

public void reset ()
control.setValue("r", 0.2);
control.setValue("x", 0.6);
control .setValue("iterations", 50);
datasetIndex = 0;

J

public void calculate () {

double r = control.getDouble("r");
double x = control.getDouble("x");
int iterations = control.getInt("iterations");

for(int i = O;i<=iterations;i++) {
plotFrame.append(datasetIndex, i, x);
x = map(r, x);

J

plotFrame.setMarkerSize (datasetIndex, 1);

plotFrame .setXYColumnNames(datasetIndex,

"calc #"+datasetIndex);
datasetIndex++;

"iteration",
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J

double map(double r, double x) {
return 4xrxxx*(1-x); // iterate map
J

public static void main(String[] args) f{
CalculationControl.createApp (new IterateMapApp());
J

Problem 6.1. The trajectory of the logistic map

(a)

Explore the dynamical behavior of the logistic map in with r = 0.24 for different values
of xyg. Show numerically that x = 0 is a stable fixed point for this value of r. That is, the
iterated values of x converge to x = 0 independently of the value of x. If x represents the
population of insects, describe the qualitative behavior of the population.

Explore the dynamical behavior of for r = 0.26,0.5,0.74, and 0.748. A fixed point is
unstable if for almost all values of x; near the fixed point, the trajectories diverge from it.
Verify that x = 0 is an unstable fixed point for r > 0.25. Show that for the suggested values
of r, the iterated values of x do not change after an initial transient; that is, the long time
dynamical behavior is period 1. In Appendix [6]A we show that for r < 3/4 and for x; in the
interval 0 < xy < 1, the trajectories approach the stable attractor at x = 1 — 1/4r. The set of
initial points that iterate to the attractor is called the basin of the attractor. For the logistic
map, the interval 0 < x <1 is the basin of attraction of the attractor x =1 —1/4r.

Explore the dynamical properties of for r =0.752, 0.76, 0.8, and 0.862. For r = 0.752
and 0.862, approximately 1000 iterations are necessary to obtain convergent results. Show
that if r is greater than 0.75, x oscillates between two values after an initial transient be-
havior. That is, instead of a stable cycle of period 1 corresponding to one fixed point, the
system has a stable cycle of period 2. The value of r at which the single fixed point x* splits
or bifurcates into two values x;* and x," is r = b; = 3/4. The pair of x values, x;* and x,%,
form a stable attractor of period 2.

What are the stable attractors of (6.5) for r = 0.863 and 0.88? What is the corresponding
period? What are the stable attractors and corresponding periods for r = 0.89, 0.891, and
0.8922? O

Another way to determine the behavior of (6.5) is to plot the values of x as a function of

r (see Figure [6.2). The iterated values of x are plotted after the initial transient behavior is
discarded. Such a plot is generated by BifurcateApp. For each value of r, the first ntransient
values of x are computed but not plotted. Then the next nplot values of x are plotted with the
first half with the first half in one color and the second half in another. This process is repeated
for a new value of r until the desired range of r values is reached. The magnitude of nplot
should be at least as large as the longest period that you wish to observe. BifurcateApp extends
AbstractSimulation rather than AbstractCalculation because the calculations can be time
consuming. For 