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Preface

Introductory physics courses are full of simplifications: projectiles fly without air
resistance, pendulums swing only at small angles, orbits are always circular, and
no more than two particles move at any time. These kinds of simplifications are
necessary and appropriate when you’re first trying to understand the basic laws of
nature. But the real world is far more complex, and far more interesting. Because
the ultimate goal of physics is to understand the real world, students deserve a
course that applies the laws of physics to more complex situations.

Fortunately, modern electronic computers make it possible to perform extremely
lengthy calculations in a negligible amount of time. These days, therefore, com-
puters offer the best avenue toward applying the basic laws of nature to complex
and realistic physical systems. A computer program that models the behavior of
a physical system is called a computer simulation. Creating and using computer
simulations is an integral part of modern science and engineering.

This manual is intended for a hands-on introductory course in computer simu-
lations of physical systems, using the Python programming language. The goals of
the course are as follows:

• Learn enough of the Python language and the VPython and matplotlib graph-
ics packages to write programs that do numerical calculations with graphical
output;

• Learn some step-by-step procedures for doing mathematical calculations (such
as solving differential equations) on a computer;

• Gain a better understanding of Newton’s laws and other physical principles;

• Study a variety of physical systems that are too complex for simple pencil-
and-paper calculations, and see what sorts of behavior emerge in such systems.

Prerequisites

Before working through the projects in this manual you should have completed a
semester of introductory physics, covering Newton’s laws of motion, conservation
principles, and a bit of thermodynamics. You should also have taken at least one
semester of calculus. Prior expertise in writing computer programs is not required,
but you should be fairly comfortable using a web browser, word processor, and
spreadsheet, and you should have some experience at being careful with computer
syntax (in any programming language).

iv



Preface v

Required materials

Naturally, you’ll need a computer. The first five projects use a cloud-based version
of Python called Web VPython, so for those you can use any computer with an
internet connection and a modern web browser. (A tablet device without a physical
keyboard is not adequate.) For Project 6, you may need to install a free version of
the Python language and environment (if you’re not using a computer on which it
is installed already).

Your Web VPython programs will be automatically saved on Google’s servers,
but for any other files you’ll need to use either some other type of cloud storage or
a USB memory stick for backup.

A pocket calculator (perhaps on your mobile phone) will sometimes come in
handy.

Finally, you’ll need a few low-tech materials such as scratch paper, pencils, a
ruler, and a small three-ring binder to hold this manual.

How to use this manual

This manual is divided into six main chapters, corresponding to six separate projects.
In each project you will write a computer program or (more often) a small number
of closely related computer programs. Rather than giving you complete programs to
run, the project instructions will provide only code fragments and general guidelines
on how to write your programs. This way, once you have completed each program,
it will be yours.

As you create your computer programs, you will inevitably have questions and
encounter difficulties. While you should try to think things through for yourself
whenever possible, don’t spend too much time being stuck and getting frustrated.
Ask your instructor or your lab partner or your other classmates for help. This is
not a test.

Exercises and questions will be sprinkled among the instructions in this manual,
with space for you to write your answers. Please make every effort to work each
exercise and answer each question immediately, before you read on.

The general premise of this manual is that you’ll learn more by trying some-
thing than by reading a comprehensive explanation of it. Computer languages are
like ordinary languages in this respect: We normally learn new words by hearing,
reading, and using them in context, not by studying a dictionary. But if you want
to see a term clearly defined, feel free to ask your instructor or look it up online.

Computer programming is fun because it’s so open-ended. You’ll constantly
think of things to try that go beyond the explicit instructions. By all means, try
anything you want! If you’re not sure how to add a certain feature to one of your
simulations, or if you’re not sure whether it’s practical to do so within a limited
amount of time, be sure to ask your instructor.

When you finish a project, gather the instruction pages and staple them together
with any printed output from your programs. This stapled packet, together with
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the source code of your computer programs, will be your “lab report.”

What this manual is not

This manual is not a comprehensive introduction to the Python programming lan-
guage. Many features of the language are not needed for the types of simulations
we’ll be doing, so we’ll ignore them. Several other features will be used once or
twice but never fully explained.

Standard distributions of Python come with dozens of packages (libraries) for
carrying out a wide variety of common tasks. This manual will describe only a tiny
fraction of them.

At some point you might want to distribute your “finished” Python programs as
web apps or stand-alone applications. This manual won’t tell you how to do that.

I’ve tried to design the examples in this manual to illustrate good programming
practices that are appropriate to the relatively small scale of the projects. This is
not a treatise on the principles of professional software design.

This manual is not a textbook on numerical analysis, nor is it a reference work
on numerical algorithms. We’ll try out just a few algorithms, make some crude
comparisons, and leave it at that.

The projects in this manual touch on some fascinating fields of physics, including
nonlinear dynamics, celestial mechanics, and phase transformations. But this is not
a textbook on any of these subjects.

Perhaps most importantly, this manual is not intended to be of any use what-
soever to someone who merely reads it without actually working through all of the
projects and exercises.

Why Python and Web VPython?

Choosing a computer programming language always involves trade-offs. Fortu-
nately, there are more choices today than ever before.

An obvious choice for this course would be one of the traditional computer
languages like Fortran, C, or C++. These languages are widely used for scien-
tific computation due to their flexibility and speed. The languages are defined by
standards committees rather than by commercial vendors, and free versions are
available. However, they have grown somewhat complex over the years, as features
have been added while maintaining compatibility with older versions. Another dis-
advantage is that none of these languages include built-in support for graphics, and
add-on graphics libraries tend to be difficult to install and use.

The Basic programming language was specifically designed to be easy to learn,
and current versions of Basic have kept this feature. Because Basic is widely used
by students and hobbyists, all modern versions include built-in, easy-to-use graph-
ics support. Some versions are cross-platform, but the most widely used version,
Microsoft’s Visual Basic, runs only on the Windows operating system. The fragmen-
tation of Basic into multiple versions, each with its own idiosyncracies, is a major
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disadvantage. Programs written in Basic also tend to run rather slowly. Most
versions of Basic are sold commercially, though the prices are generally reasonable.

For mathematical calculations, the most convenient choice is often a specialized
mathematical programming environment such as Mathematica (which I use a great
deal), Maple, or Matlab. These packages contain sophisticated, speedy, built-in
routines for a great variety of mathematical tasks, but their high overhead can
make them rather slow and awkward when you need to program a custom step-by-
step algorithm. Because they are commercial products aimed at relatively narrow
markets, these packages tend to be expensive. (However, there is a free product
called Octave that is very similar to Matlab.)

An earlier version of this manual used the Java programming language, intro-
duced by Sun Microsystems (now Oracle) in 1995. Although based on C and C++,
Java is easier to learn and use, and comes with standard cross-platform libraries for
graphics and other common tasks. Its computational performance is remarkably
good, though it isn’t as fast as C or C++ or Fortran. But Java never really caught
on with scientists, and its early use for web-delivered “applets” has now become ob-
solete. More importantly for us, programming in Java requires some inconvenient
software installations and learning to use some rather advanced object-oriented fea-
tures that are really superfluous in a first course in scientific computing.

For web-delivered applications, Java has now been replaced by JavaScript, a
rather different language that was deliberately named to emphasize their superficial
similarities. Every modern web browser can run JavaScript programs, and you’re
running them constantly as you surf the web. Writing JavaScript programs is a
natural extension of creating ordinary web pages. Moreover, in recent years, the
computational performance of the JavaScript engines in the most widely used web
browsers has nearly matched that of Java, which in turn isn’t far behind C (etc.).
The main disadvantage of JavaScript is that for practical purposes it runs only in
a web browser, so for security reasons it cannot access your computer’s file system.
This restriction has limited its use by scientists, at least for serious computational
work.

Python is a relatively new, free, cross-platform language that scientists are using
more and more widely. It is a simple language to get started with, and developers
are creating a growing assortment of add-on packages to make various difficult tasks
fairly easy. These add-on packages include several for numerical calculations and
scientific graphics. One big disadvantage of Python is that every Python installa-
tion is a little different, depending on which Python version and add-on packages
are present. Getting someone else’s Python program to run on your Python system
can therefore be a frustrating task. Another disadvantage is that most Python in-
terpreters do not produce very efficient machine code, so Python programs tend to
run rather slowly—necessitating the use of add-on packages for heavy-duty compu-
tation. Finally, a disadvantage for this course is that none of the graphics packages
included in the more common Python installations are especially convenient for
creating animated graphics or interactive user controls.
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The VPython (short for Visual Python) package is an attempt to address this
last deficiency. It provides a very easy interface to a 3D graphics library, along
with some auxiliary functions for handling vectors and animation. It was created
specifically for use in undergraduate physics courses, and it is being maintained
and improved by Bruce Sherwood, a retired physics teacher and textbook author.
Unfortunately, the VPython package has never been a standard part of most Python
installations, and its graphics systems have not always worked well with all Python
environments. The difficulty of installing VPython and getting it to work correctly
has therefore been a barrier to its use.

More recently, though, Sherwood and others have created GlowScript.org: a
cloud-based environment for writing and running 3D graphics programs in a web
browser. Originally GlowScript required programming in JavaScript, but now it
has a built-in facility for translating Python code into JavaScript behind the scenes.
This variation on the Python language is called Web VPython. It offers most of
the advantages of VPython, without any of the installation hassles. And it runs
significantly faster than standard Python in most cases, because the JavaScript
engines in modern web browsers are so good. The disadvantages of this environment
are mostly the same as those of JavaScript: A Web VPython program cannot
directly access your computer’s file system, and (for the same reason) it does not
have access to the vast world of Python add-on packages. (The common math
functions and a few other essential functions from Python packages are, however,
incorporated into Web VPython.)

The bottom line for this manual is that we will use Web VPython (hosted at
GlowScript.org) for Projects 1 through 5. In Project 6, however, we will switch to a
more standard Python installation, in order to give you some experience with that
environment.

References

Although the project instructions in this manual are fairly self-contained, you may
wish to consult the following references for more information on the Python lan-
guage, Web VPython, numerical computation, and physics simulations.

• VPython online documentation, available via the “Help” link from the Glow-
Script environment or at http://www.glowscript.org/docs/VPythonDocs/
index.html. Although we won’t use every feature described, much of this
reference material will be essential reading. Fortunately, it’s concise and well
written.

• Python for Non-Programmers is a web page with numerous links to Python tu-
torials and other resources for beginners: https://wiki.python.org/moin/

BeginnersGuide/NonProgrammers.

• University Physics Volumes 1 and 2 (OpenStax, 2016), https://openstax.
org/details/books/university-physics-volume-1 and https://openstax.

http://www.glowscript.org/docs/VPythonDocs/index.html
http://www.glowscript.org/docs/VPythonDocs/index.html
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://openstax.org/details/books/university-physics-volume-1
https://openstax.org/details/books/university-physics-volume-1
https://openstax.org/details/books/university-physics-volume-2
https://openstax.org/details/books/university-physics-volume-2
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org/details/books/university-physics-volume-2. If you need to refresh
your memory of the definitions and principles from your introductory physics
course, the free OpenStax textbooks are convenient references (although any
other textbook from such a course will also do). Volume 1 covers topics in
mechanics, while Volume 2 includes thermodynamics.

• Mark Newman, Computational Physics, revised and expanded edition (Cre-
ateSpace, 2013). This is a reasonably comprehensive (and reasonably priced)
textbook on numerical methods, using the Python language (including the
matplotlib and VPython graphics packages) and written with physics stu-
dents in mind.

• Alejandro L. Garcia, Numerical Methods for Physics, second edition, Python
version (CreateSpace, 2017). This well-written textbook was originally pub-
lished by Prentice Hall, and used the Matlab and C++ languages. A very
affordable version became available through CreateSpace several years ago,
and now there is also a Python version. It is similar in spirit to Newman’s
book, though each has its relative strengths.

• Jesse M. Kinder and Philip Nelson, A Student’s Guide to Python for Physical
Modeling, second edition (Princeton University Press, 2021). This rather slim
book is just what it says: an introduction to the Python language intended
for science students. It uses the packages of a standard Python installation
(no VPython), and discusses numerical analysis topics only briefly.

• Harvey Gould, Jan Tobochnik, and Wolfgang Christian, An Introduction to
Computer Simulation Methods, third edition (CreateSpace, 2017). An in-
novative textbook that covers far-ranging physics applications, mostly at a
level accessible to undergraduates. This book inspired much of the manual
you’re now reading, and provides a wealth of ideas for further projects. Ear-
lier editions of this book used the True Basic language, and the third edition
uses Java, but I’ve always ignored most of the code and focused on the ideas
and algorithms. Originally published by Addison-Wesley, this book is now
much more affordable and you can even download a free electronic version at
https://www.compadre.org/osp/items/detail.cfm?ID=7375.

• Nicholas J. Giordano and Hisao Nakanishi, Computational Physics, second
edition (Prentice Hall, 2006). This book is remarkably similar in outline and
level to Gould and Tobochnik, and also used the True Basic language in its
first edition. The second edition gives algorithms in pseudo-code, with an
accompanying web site that provides implementations in True Basic and For-
tran. This book is more focused than Gould and Tobochnik, with fewer topics
but more discussion of the results of the simulations. I’ve borrowed quite a
few ideas from it while writing this manual, and I recommend it as another
source of ideas for further projects. If it weren’t so expensive I might have
assigned it as a textbook for this course.

https://openstax.org/details/books/university-physics-volume-2
https://openstax.org/details/books/university-physics-volume-2
https://www.compadre.org/osp/items/detail.cfm?ID=7375
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• William H. Press et al., Numerical Recipes, third edition (Cambridge Uni-
versity Press, 2007), http://numerical.recipes/. By far the most widely
used reference on numerical algorithms, aimed at professional researchers and
graduate students. Well written but quite advanced. Code implementations
are in C++, although earlier editions are also available in C and Fortran ver-
sions. You probably won’t get any use out of this book during this course,
but if you go on in computational science you’ll eventually need a copy (or an
electronic subscription).

• Ian R. Gatland, “Numerical integration of Newton’s equations including ve-
locity-dependent forces,” American Journal of Physics 62, 259–265 (1993),
https://doi.org/10.1119/1.17610. This excellent article emphasizes the
advantages of the Euler-Richardson algorithm and explains how to implement
adaptive step-size control for this algorithm. Includes references to earlier
AJP articles that advocate other simple algorithms for Newton’s equations.

http://numerical.recipes/
https://doi.org/10.1119/1.17610
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Lab partner(s)

Project 1: Making Shapes

Saying hello

The first goal in learning any new computer programming system is always the
same: Write and run a program to print (or display) a brief message, traditionally
“Hello, world!”

Why bother with such a boring program? Because the steps required to write
and run even the most trivial program can be quite intricate. For some programming
environments you may need to install software, configure the software to work with
your computer’s directory system, and then learn to use various software tools
for editing, compiling, linking, and launching your program. Then you need to
learn enough about the programming language, and about the associated software
libraries for producing the type of output you want, in order to type in the code
needed to produce that output. The number of things that can go wrong during
this whole process is enormous.

Fortunately, the Web VPython system at GlowScript.org is one of the easiest
of all possible programming environments for getting started. There are still some
things that can go wrong, but even if they do, I don’t think they’ll take long to
resolve. Here are the steps:

1. Launch a web browser (Google Chrome is recommended, but most others
should work), and go to the site https://glowscript.org.

2. Sign in with a Google account. Your WSU email credentials should work, or
you can use a personal Google account.

3. Follow the link where it says “your programs are here.”

4. Click on the “Create New Program” link.

5. In the dialog box that appears, type the title “MakingShapes”, then click the
“Create” button.

6. You will now see an editing space that is blank except for the line “Web
VPython 3.2” (possibly with a different version number). Click in the white
space below that line and type the following, verbatim:

print("Hello, Web VPython!")

(Actually you can put almost any message you like between the quotes.)

1

https://glowscript.org


2 Project 1: Making Shapes

7. Then click the “Run this program” link at the top of the page. Your editing
space should then vanish, replaced by a new text area with the words “Hello,
Web VPython!” (or whatever message you put in your code).

Well, did it work? If so, congratulations! You’re up and running. If not, don’t
worry; if you can’t resolve the problem yourself in a few minutes, your instructor, or
perhaps a classmate, can probably help. (The most likely stumbling block is with
the Google account sign-in. If that went smoothly but your program doesn’t work,
be sure to double-check your spelling, capitalization, and punctuation.)

GlowScript.org is a cloud-based system that stores your programs on
Google’s servers. The interface is bare-bones, and I hope you won’t have any trouble
seeing how to create new programs, copy, rename, and delete them, and organize
them into folders. If you have any questions about these procedures, be sure to ask
your instructor.

Now let’s look at your two-line program in a bit of detail. Click the “Edit this
program” link in order to see your code again. The first line, which you don’t
even need to type, tells the GlowScript system what language (Web VPython) and
version (3.2) you want to use. This line is required, and for this course you should
always leave it alone.

We say that the next line, which you typed, “calls the print function and passes
it a string of text characters.” Sorry about the jargon words call, function, pass,
and string. If you’re an experienced programmer then these words are probably
already in your vocabulary; if this is your first time writing code, then you’ll need
to pay attention to these words and practice using them correctly. For now, please
notice two aspects of Python syntax:

• The string of text (that is, a sequence of characters that’s to be treated as
a unit) is enclosed in double-quote marks. Single-quote marks also work, as
long as the beginning and ending quotes match.

• The information passed to the function (its parameter) is enclosed in paren-
theses. In this case there is a single parameter (a string), but we’ll soon see
examples of functions that take multiple parameters, separated by commas.

A function is a portion of a computer program that’s self-contained, hiding the
details of how it works, so all you need to know is the function name, what param-
eter(s) to pass, and what it’s supposed to accomplish. The print function has to
do an awful lot to make those words appear on your screen, but you needn’t know
the details. (Some functions, like print, are built into the Python language; in the
next project you’ll learn how to define your own functions.)
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Your first shape

Next, on a new line below your print instruction, type the following simple instruc-
tion:

box()

Here you’re calling a function called box, and passing it no parameters at all (but
notice that the parentheses are still required). Run the program again, and you
should see a black rectangular area (called a canvas) containing a light gray square
(the box). Again, this function is doing a great deal of work, but you needn’t worry
about how.

The box that you see lives in an imaginary three-dimensional space, but you’re
viewing it from one side, at relatively close range. To change the perspective, you
can do three things:

• Rotate: Press the right mouse button and drag one way or another, or, if
you don’t have a right mouse button, press the control key and drag using
your mouse or trackpad.

• Zoom: Use the scroll wheel on your mouse, or, if there isn’t one, press the alt
or option key and drag using your mouse or trackpad. (On some trackpads
you can also drag using two fingers.)

• Pan: Hold down the shift key while you drag using the mouse or trackpad.

I hope you’re impressed by how hard that little box function is working!

You can change the attributes of your box by passing some parameters to the
box function. Try this:

box(pos=vector(1,0,0), size=vector(.5,.3,.2), color=color.red)

Here you’re providing three parameters, separated by commas, and you’re identify-
ing them by their names (a neat feature of Python), which means you can provide
them in any order. The pos parameter specifies the position of the center of the
box; the size parameter specifies its dimensions; and the color parameter is self-
explanatory. In the first two cases, the parameter values are three-dimensional
vectors, which you create using the vector function. This function in turn takes
three parameters, x, y, and z, which you needn’t name as long as you provide them
in that order. Initially (before you rotate the scene), the x direction points to the
right; the y direction points up; and the z direction points directly outward, toward
you (or toward the “camera”).

To learn more about colors, click the Help link at the upper-right corner of
the window. (I suggest opening the help page in a new browser window or tab.)
Then, from the second drop-down menu in the left sidebar, choose “Color/Opacity”.
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There you’ll find a list of pre-defined colors, and also see how you can use the vector
function to create arbitrary colors.

Exercise: Although VPython includes a predefined color.purple, it isn’t very
vivid. Figure out how to make your box a brighter (more saturated) shade of
purple, and write down how you did it here:

Exercise: Create at least two more boxes, so you’ll have a total of at least three,
each with different positions, sizes, and colors. Keep their positions within the range
−5 to 5 in each dimension, and keep their sizes small enough to leave plenty of room
for more shapes within that range.

More shapes

VPython provides functions for creating quite a variety of shapes, but in this course
you’ll need just two others: spheres and cylinders. Try this instruction to create a
sphere:

sphere(radius=0.25)

The sphere function can also accept the pos and color parameters, so use those
now to change the defaults according to your taste. Don’t forget to separate the
parameters by commas!

Question: What happens if you omit the radius parameter when you call the
sphere function?

Exercise: Create a second sphere, again within the range −5 to 5 in each dimen-
sion, with a (reasonably small) radius and color of your choosing.

Now try this instruction to create a cylinder:

cylinder(axis=vector(0,1.5,0))

Here the axis parameter is a displacement vector that takes you from one end of the
cylinder to the other. You can also provide the pos, radius, and color parameters,
so please put in all three at this time, to change the defaults to suit your taste.

If you check carefully, you’ll discover that the pos of a cylinder is located at one
of its ends, rather than in its center as for a sphere or a box.

Exercise: It would be helpful if your 3D space had some coordinate axes, right?
So create some now, in the form of very skinny cylinders running from −5 to 5 in
each of the three dimensions. Color them light gray.
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Errors and debugging

You may have already had to deal with some error messages, alerting you to typo-
graphical errors (sometimes called bugs) in your program. Now let’s take a deliber-
ate look at one of these messages, and what you should do about it.

Exercise: Remove one of the commas that separate the parameters in one of your
box, sphere, or cylinder function calls. Then try to run your program, and write
down the error message that appears (or at least the beginning of it, including the
line number). Click the “Edit this program” link to go back to your code. Is the
line number in the message the same as the line in which you introduced the error?

In my own experience, the line number is usually the most useful part of an
error message. The rest of the message is often unhelpful, or at least unnecessary.
But even the line number can be off by a little, so when you’re looking for the error
in the code, be sure to look at the surrounding lines as well. Some GlowScript
error messages don’t even include line numbers, in which case you should carefully
scrutinize whatever changes you made most recently to your code.

Besides missing commas, some other common types of Python errors are other
incorrect punctuation, incorrect spelling, and inconsistent capitalization (since all
words in Python are case-sensitive).

Variables and arithmetic

The various shape attributes that you’ve been setting—pos, radius, color, and so
on—are examples of what we call variables. A variable, in computer programming,
is a named location in the computer’s memory in which some information can be
stored. The equals sign tells the computer to store the information on its right in
the variable whose name is on its left.

Besides these pre-named variables, you can create your own. The next exercise
demonstrates this.

Exercise: To keep track of your shapes, you can give them variable names. Name
your x axis by inserting “xaxis = ” at the beginning of the line, like this:

xaxis = cylinder( . . . )

Similarly, name the other two axes yaxis and zaxis.

These variable names make your code easier to read, even if you never use them
in any other way. But here’s a way to make use of one of them:
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Exercise: Your three axes probably all have the same radius and the same color.
So instead of writing out the same specifications three times, put them into only
the instruction that creates the x axis, and then in the other two, say this:

radius=xaxis.radius, color=xaxis.color

Now if you decide to change the radius or the color, you’ll need to make the change
in only one place (try it!).

Exercise: Create a dumbbell shape, by combining a cylinder with two spheres.
Make the cylinder first, with any suitable attributes, naming it bar. Then, when
you create the two spheres, simply set the position of one of them to bar.pos and
the position of the other to bar.pos + bar.axis. This is an example of how you
can use the + sign to do vector addition. Also set the radius of each sphere to
bar.radius*3, and set the color of each sphere to bar.color.

The previous exercise included your first examples of addition and multiplica-
tion. Python also provides the - operator for subtraction and the / operator for
division, as well as other operators that you’ll learn later. You’ll need to do some
subtraction in the next exercise.

Exercise: Create a small table (the furniture kind) in your simulated 3D space,
consisting of a box for the top plus four cylinders for the legs, oriented with the
y direction up. For convenience and flexibility, start by setting the values of some
variables:

tablex = 2.5

tabley = -2

tablez = -1

Don’t feel obligated to use the same numbers as these; I’m just suggesting some
variable names and showing how to assign values to them. Similarly, introduce
and set the variables tableLength, tableWidth, tableHeight, legRadius, and
tableColor. Instead of providing an explicit number for legRadius, use multipli-
cation or division to make it a small fraction of tableWidth. Then create the box
that will be the table’s top, centering it at vector(tablex, tabley, tablez) and
setting its length and width to the corresponding variables. The height of the ta-
ble’s top, however, should be only a small fraction of its total height. (If the line of
code to create the tabletop gets too long, you can break it into two; for readability
you should then indent the second line by a couple of tabs.) Finally, create the leg
cylinders, using arithmetic to position them near the table’s four corners no matter
what the values of all your variables are set to. Try changing some of these values
to make sure your table still looks like a table for any reasonable values.

Exercise: Here’s something easier. The “canvas” in which your shapes appear
has its own variable name: scene. This variable, like color and xaxis, is a so-
called object with its own attributes. (An attribute is essentially a sub-variable that
is associated with some larger, more inclusive variable.) One of the attributes of
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scene is the background color, which is black by default. Change it to white by
inserting this line:

scene.background = color.white

Check that this works, then change the background color to a pale sky blue, or to
some other very light color that won’t use a lot of toner when you later print your
scene. Also set the variable scene.range to 5; this will set the initial zoom level to
put y = 5 at the top edge of the canvas and y = −5 at the bottom edge.

Comments

By now your program is getting long enough to require some organization—not for
the computer’s sake, but for your own as you look at the code.

Exercise: Divide your lines of code into logical groups, separated by blank lines.
Then, at the top of each group, insert an introductory comment such as

# Create a table out of a box and four cylinders:

A comment in Python begins with the # character and continues until the end
of the line. To create a multi-line comment, you need to put the # character at the
beginning of each line. The computer completely ignores comments when it runs
your program.

Exercise: Put a multi-line comment at the top of your program, right after the
line “Web VPython 3.2”, to indicate the name of your program, your own name,
and the date when you created it, and to give a one-sentence description of what it
does. (From now on, please include a similar comment at the top of every program
that you write.)

Animation

In this course you’ll need to depict not just static objects but also physical processes
that play out in time. That calls for animation, and one of the advantages of
VPython is that it makes animation extremely easy.

Exercise: Create a small box near x = −5 and call it movingBox. Then insert the
following code and see what it does:

# Move a box across the scene in a straight line:

while movingBox.pos.x < 5:

rate(50)

movingBox.pos.x += 0.05

Be sure to indent the last two lines; you can use the tab key for this.

If this code works, you should see the box move smoothly across the scene,
stopping when it reaches x = 5. The code that accomplishes this magic is called a
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loop, which in general means a block of code that the computer executes repeatedly.
Some languages use curly braces to denote which lines of code are part of the loop,
but in Python this is indicated by indentation. This particular type of loop begins
with the special word while, followed by the condition that must be true as long as
the loop continues, and then followed by a colon. The condition can involve any of
the comparison operators <, >, <=, >=, == (for “is equal to”), and != (“is not equal
to”), as well as the “boolean” operators and, or, and not.

The two indented lines themselves also require explanation. The first of them,
rate(50), tells the computer how fast to try to execute the loop—in this case, 50
times per second. The next line contains the two-character operator +=, which tells
the computer to add the quantity on the right onto the variable on the left. Saying
x += 42 is completely equivalent to saying x = x + 42. (When appropriate, you
can similarly say -=, *=, and /=.)

Exercise: Change the parameter 50 in the rate function to some other number,
and make sure this change has the expected effect.

Exercise: Add a line or two to your code to make the box move along a diagonal,
rather than directly from left to right. Make sure the box doesn’t move too far in
some other direction before the motion stops.

Exercise: Add code to your program to create a small sphere and then move
that sphere at a steady speed once around a circle in the xy plane, centered at the
origin. Use a variable called theta for the angle around the circle, and set this
variable equal to zero before your while loop begins. Also use a variable called r

for the circle’s radius, and x and y for its rectangular coordinates. To calculate x

and y you can use the built-in trigonometric functions cos and sin, for example,
x = r * cos(theta). Be careful, though, because the trig functions assume that
the parameter you pass to them is in radians; keep this in mind when deciding how
much to change theta during each loop iteration, and in deciding what condition
to use in the while statement. To actually move the sphere in the graphics scene,
use an instruction of the form movingSphere.pos = vector(x, y, 0).

Exercise: Look in the VPython documentation (via the Help link, if you don’t
already have it open) for instructions on how to “attach a trail” to an object
as it moves. (Use the easier make_trail parameter, not the more complicated
attach_trail function.) Attach a trail of points to your moving sphere, using the
interval attribute to space them a little farther apart than the default.

Exercise: Remember the print function? Insert a couple more calls to it in your
code, to print out suitable messages when each of your animation loops (one for the
box, one for the sphere) has finished.



Project 1: Making Shapes 9

Graphing

Often in science we want to visualize a phenomenon not in physical space but instead
in a “space” of other variables such as time, velocity, and so on. While we could

use a 3D VPython canvas to make such an abstract graph, VPython also provides
a graph object that’s usually more suitable.

As an example, let’s graph the x and y positions of your moving sphere as
functions of “time”. Here is the code to set up the graph, with two data sets that
will be plotted as dots in different colors:

graph(width=400, height=250)

xDots = gdots(color=color.green)

yDots = gdots(color=color.magenta)

(I’ve set the width and height attributes to make the graph a little smaller than
the default, so it will fit more easily on small screens and printed pages.) After this
initial setup, you add a dot to the graph by saying something like

xDots.plot(t,x)

and similarly for yDots.

Exercise: Insert the code to set up a graph just before your existing code to move
the sphere around in a circle. Also, in that existing code, insert code to create a
variable t to represent time, initially equal to zero and increasing by 1 during each
loop iteration. Then, also inside the while loop, insert the lines that plot each (t, x)
and (t, y) pair, in green and magenta, respectively. Run the program to make sure
it all works.

Exercise: Look up the other attributes of the graph object in the VPython doc-
umentation, then set the graph’s background color to white, label both axes ap-
propriately, and give it a suitable title. Notice in the documentation that you can
also specify the ranges of values for the graph to show—but for your current graph,
leave these unspecified to enable “auto-scaling”.

Finishing up

Congratulations! You now know how to use Web VPython to do basic arithmetic,
draw and animate shapes, create graphs, and produce text output. You’ll get plenty
of practice with all of these tasks in later projects. For now, just answer a few more
questions and then you’ll be finished with this assignment.

Exercise: Describe one specific bug (error) that you had to fix while working on
this project, or, if you prefer, one specific point at which you became frustrated
or confused. If you can’t think of an example of either, then browse the VPython
documentation and describe one interesting feature that you haven’t used in this
project. (Continue on the top of the next page.)
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Exercise: As a review, briefly but carefully define each of these coding terms:

Variable

Attribute

Function

Parameter

String

Exercise: When you type your code in the GlowScript editing window, it auto-
matically tries to use colors to distinguish different categories of words and symbols.
List these colors below and describe what each seems to be for, keeping in mind
that the process is rather buggy so some of the coloring can be inconsistent.

Before turning in this assignment, please look over your program and make sure
it is well organized and easy to read. The code should be divided up into logically
distinct groups, separated by blank lines, each introduced by a helpful comment.

Finally, run your program one last time and use your browser’s print command to
print the window contents, showing your 3D scene (with a light-colored background!)
with the graph and text output below it. Make sure that all of this fits on a single
printed page. Staple that page to the back of these instruction pages and turn in
the packet to your instructor.

To turn in your actual code, you have two choices. The easier choice is to copy
it into a public GlowScript folder and email a link to the program (or the folder)
to your instructor. However, if for privacy reasons you do not wish to put your
program into a public folder, you may also carefully copy and paste your code into
an email message sent to your instructor, or copy and paste it into a plain text file
and then email that file as an attachment (use the file extension .txt or .py). Please
use “Physics 2300 Project 1” as the subject line of your email.
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Project 2: Projectile Motion

You now know enough about VPython to write your first simulation program.

The idea of a simulation is to program the laws of physics into the computer,
and then let the computer calculate what happens as a function of time, step by
step into the future. In this course those laws will usually be Newton’s laws of
motion, and our goal will be to predict the motion of one or more objects subject to
various forces. Simulations let us do this for any forces and any initial conditions,
even when no explicit formula for the motion exists.

In this project you’ll simulate the motion of a projectile, first in one dimension
and then in two dimensions. When the motion is purely vertical, the state of the
projectile is defined by its position, y, and its velocity, vy. These quantities are
related by

vy =
dy

dt
≈ ∆y

∆t
=
yfinal − yinitial

∆t
. (2.1)

In a computer simulation, we already know the current value of y and want to
predict the future value. So let’s solve this equation for yfinal:

yfinal ≈ yinitial + vy ∆t. (2.2)

Similarly, we can predict the future value of vy if we know the current value as well
as the acceleration:

vy,final ≈ vy,initial + ay ∆t. (2.3)

These equations are valid for any moving object. For a projectile moving near earth’s
surface without air resistance, ay = −g (taking the +y direction to be upward). In
general, ay is given by Newton’s second law,

ay =

∑
Fy
m

, (2.4)

where m is the object’s mass and the various forces can depend on y, vy, or both.

In a computer simulation of one-dimensional motion, the idea is to start with
the state of the particle at t = 0, then use equations 2.2 through 2.4 to calculate
y and vy at t = ∆t, then repeat the calculation for the next time interval, and the
next, and so on. Fortunately, computers don’t mind doing repetitive calculations.

But there’s one remaining issue to address before we try to program these equa-
tions into a computer. Equation 2.2 is ambiguous regarding which value of vy
appears on the right-hand side. Should we use the initial value, or the final value,
or some intermediate value? In the limit ∆t → 0 it wouldn’t matter, but for any

11
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nonzero value of ∆t, some choices give more accurate results than others. The easi-
est choice is to use the initial value of vy, since we already know this value without
any further computation. Similarly, the simplest choice in equation 2.3 is to use the
initial value of ay on the right-hand side.

With these choices, we can use the following Python code to simulate projectile
motion in one dimension without air resistance:

while y > 0:

ay = -g

y += vy * dt # use old vy to calculate new y

vy += ay * dt # use old ay to calculate new vy

t += dt

This simple procedure is called the Euler algorithm, after the mathematician Leonard
Euler (pronounced “oiler”). As we’ll see, it is only one of many algorithms that give
correct results in the limit ∆t→ 0.

Exercise: Write a VPython program called Projectile1 to simulate the motion
of a dropped ball moving only in the vertical dimension, using the Euler algorithm
as written in the code fragment above. Represent the ball in the 3D graphics scene
as a sphere with any reasonable radius (for display only—please ignore the radius
in all physics calculations), and make a very shallow box at y = 0 to represent
the ground. Use a light background color for eventual printing. The ball should
leave a trail of dots as it moves. Be sure to put in the necessary code to initialize
the variables (including g, putting all values in SI units so g is 9.8), add a rate

function inside the simulation loop, and update the ball’s pos attribute during each
loop iteration. Also be sure to format your code to make it easy to read, with
appropriate comments. Use a time step (dt) of 0.1 second. Start the ball at time
zero with a height of 10 meters and a velocity of zero. Notice that I’ve written the
loop to terminate when the ball is no longer above y = 0. Test your program and
make sure the animated motion looks reasonable.

Exercise: Most of the space on your graphics canvas is wasted. To fix this, set
scene.center to half the ball’s starting height (effectively pointing the “camera”
at the middle of the trajectory), and set scene.width to 400 or less.

Exercise: Let’s focus our attention on the time when the ball hits the ground, and
on the final velocity upon impact. To see the numerical values of these quantities,
add the following line to the end of your program:

print("Ball lands at t =", t, "seconds, with velocity", vy, "m/s")

Here we’re passing five successive parameters to the print function: three quoted
strings that are always the same (called literal strings), and the two variables whose
values we want to see. If you look closely, you’ll notice that the print function adds
a space between successive items in the output.
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Exercise: Are the printed values of the landing time and velocity what you would
expect? Do a short calculation in the space below to show the expected values, as
you would predict them in an introductory physics class.

Exercise: The time and velocity printed by your program do not apply at the
instant when the ball reaches y = 0, because that instant occurs somewhere in the
middle of the final time interval. Add some code after the end of the while loop to
estimate the time when the ball actually reaches y = 0. (Hint: Use the final values
of y and vy to make your estimate. The improved time estimate still won’t be exact,
but it will be much more accurate than what your program has been printing so
far.) Have the program print out the improved value of t instead, as well as an
improved estimate of the velocity at this time. Write your new code and your new
results in the space below. Please have your instructor check your answer to this
exercise before you go on to the next.

Exercise: The inaccuracy caused by the nonzero size of dt is called truncation
error. You can reduce the size of the truncation error by making dt smaller. Try
it! (You’ll want to adjust the parameter of the rate function to make the program
run faster when dt is small. The slick way to do this is to make the parameter a
formula that depends on dt. You’ll also want to set the ball’s interval attribute
in a similar way, so the dot spacings are the same for any dt.) How small must dt

be to give results that are accurate to four significant figures? Justify your answer.
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Air resistance

There’s not much point in writing a computer simulation when you can calculate
the exact answer so easily. So let’s make the problem more difficult by adding
some air resistance. At normal speeds, the force of air resistance is approximately
proportional to the square of the projectile’s velocity. This is because a faster
projectile not only collides with more air molecules per unit time, but also imparts
more momentum to each molecule it hits. So we can write the magnitude of the air
force as

|~Fair| = c|~v|2, (2.5)

for some constant c that will depend on the size and shape of the object and the
density of the air. The direction of the air force is always directly opposite to the
direction of ~v (at least for a symmetrical, nonspinning projectile).

Exercise: Assuming that the motion is purely in the y direction, write down a
formula for the y component of the air force, in terms of vy. Your formula should
have the correct sign for both possible signs of vy. (Hint: Use an absolute value
function in a clever way.) Have your instructor check your answer before you go on.

Exercise: Now modify your Projectile1 program to include air resistance. Define
a new variable called drag, equal to the coefficient c in equation 2.5 divided by
the ball’s mass. Then add a term for air resistance to the line that calculates
ay. Python’s absolute value function is called abs(). Run the program for the
following values of drag: 0 (to check that you get the same results as before), 0.01,
0.1, and 1.0. Use the same initial conditions as before, with a time step small enough
to give about four significant figures. Write down the results for the time of flight
and final speed below.

Question: What are the SI units of the drag constant in your program?
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Question: How can you tell that your program is accurate to about four significant
figures, when you no longer have an “exact” result to compare to?

Exercise: Modify your Projectile1 program to plot a graph showing the ball’s
velocity as a function of time. (By default the graph will appear above or below
the graphics canvas, and you may leave it there if you like. If you would prefer to
place the graph to the right of the canvas, you can do so by creating the graph first,
setting its attribute align="right", and immediately plotting at least one point
on the graph to make it appear before you set up the canvas.) Use the xtitle

and ytitle attributes to label both axes of the graph appropriately, including the
units of the plotted quantities. Use the interval parameter of the gdots function
to avoid plotting a dot for every loop iteration (which would be pretty slow). Run
your program again with drag equal to 1.0, and print the whole window including
your canvas and graph. Discuss the results briefly.

Exercise: When the projectile is no longer accelerating, the forces acting on it
must be in balance. Use this fact to calculate your projectile’s terminal speed by
hand, and compare to the result of your computer simulation.

A better algorithm

Today’s computers are fast enough that so far, you shouldn’t have had to wait long
for answers accurate to four signficant figures. Still, the Euler algorithm is suffi-
ciently inaccurate that you’ve needed to use pretty small values of dt, making the
calculation rather lengthy. Fortunately, it isn’t hard to improve the Euler algorithm.

Remember that the Euler algorithm uses the values of vy and ay at the beginning
of the time interval to estimate the changes in the position and velocity, respectively.
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Figure 2.1: The derivative of a function at the middle of an interval (point B) is a much
better approximation to the average slope (AC) than the derivative at the beginning of the
interval (point A).

A much better approximation would be to instead use the values of vy and ay at
the middle of the time interval (see Figure 2.1). Unfortunately, these values are not
yet known. But even a rough estimate of these values should be better than none
at all. Here is an improved algorithm that uses such a rough estimate:

1. Use the values of vy and ay at the beginning of the interval to estimate the
position and velocity at the middle of the time interval.

2. Use the estimated position and velocity at the middle of the interval to cal-
culate an estimated acceleration at the middle of the interval.

3. Use the estimated vy and ay at the middle of the interval to calculate the
changes in y and vy over the whole interval.

This procedure is called the Euler-Richardson algorithm, also known as the second-
order Runge-Kutta algorithm.

Here is an implementation of the Euler-Richardson algorithm in Python for a
projectile moving in one dimension, without air resistance:

while y > 0:

ay = -g # ay at beginning of interval

ymid = y + vy*0.5*dt # y at middle of interval

vymid = vy + ay*0.5*dt # vy at middle of interval

aymid = -g # ay at middle of interval

y += vymid * dt

vy += aymid * dt

t += dt

The acceleration calculations in this example aren’t very interesting, because ay
doesn’t depend on y or vy. Still, the basic idea is to estimate y, vy, and ay in the
middle of the interval and then use these values to update y and vy. Although each



Project 2: Projectile Motion 17

step of the Euler-Richardson algorithm requires roughly twice as much calculation
as the original Euler algorithm, it is usually many times more accurate and therefore
allows us to use a much larger time interval.

Exercise: Write down the correct modifications to the lines that calculate ay and
aymid, for a projectile falling with air resistance. (Be careful to use the correct
velocity value when calculating aymid!)

Question: One of the lines in the Euler-Richardson implementation above is not
needed, even when there’s air resistance. Which line is it, and why do you think I
included it if it isn’t needed?

Exercise: Modify your Projectile1 program to use the Euler-Richardson al-
gorithm. For a drag constant of 0.1 and the same initial conditions as before
(y = 10 m, vy = 0), how small must you now make dt to get answers accurate
to four significant figures? Write down the data to justify your answer. (You
should find that dt can now be significantly larger than before. If this isn’t what
you find, there’s probably an error in your implementation of the Euler-Richardson
algorithm.)

Your Projectile1 program is now finished. Please make sure that it contains
plenty of comments and is well-enough formatted to be easily legible to human
readers.

Two-dimensional projectile motion

Simulating projectile motion is only slightly more difficult in two dimensions than in
one. To do so you’ll need an x variable for every y variable, and about twice as many
lines of code to initialize these variables and update them within the simulation loop.
To calculate the x and y components of the drag force, it’s helpful to draw a picture
(see Figure 2.2).
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Figure 2.2: Assuming that the drag force is always opposite to the velocity vector, the
similar triangles in this diagram can be used to express the force components in terms of
the velocity components.

Exercise: Finish labeling Figure 2.2, and use it to derive formulas for the x and
y components of the drag force, written in terms of vx and vy. The magnitude of
the drag force is again given by equation 2.5. (Hint: This is not an easy exercise
if you’ve never done this sort of thing before. Do not simply guess the answers!
You should find that the correct formula for Fx involves both vx and vy. Have your
instructor check your answers before you go on.)

Exercise: In the space below, write the Python code for calculating the acceleration
components, ax and ay, for a projectile moving in two dimensions with air resistance.
The Python function for taking a square root is sqrt(). To square a quantity you
can either just multiply it by itself, or use the Python exponentiation operator, **.

Exercise: Now think about implementing the Euler-Richardson algorithm in two
dimensions. For each line in the code on page 16 that calculates a y variable, you’ll
need to add a line to calculate the corresponding x variable. But the order of these
lines matters! Should you alternate x, y, x, y . . . , or should you calculate all the x
variables first and then all the y variables, or vice-versa? Explain carefully.
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Exercise: Create a new VPython program called Projectile2 to simulate pro-
jectile motion in two dimensions, for the specific case of a ball launched from the
origin at a given initial speed and angle that are set near the top of the program.
Again use a sphere to represent the ball, leaving a trail as it moves, and use a very
shallow box to represent the ground. Allow for the ball to travel as far as about 150
meters in the x direction before it lands, sizing the box and setting scene.center

appropriately. Set the background to a light color for eventual printing. Use the
Euler-Richardson algorithm, with a time step of 0.01 s. Run your program and
check that everything seems to be working.

Exercise: Add code to your program to calculate and display the landing time,
the value of x at this time (that is, the range of the projectile), and the projec-
tile’s maximum height. Use interpolation for the first two quantities, as you did
in Projectile1. For the maximum height, you’ll need to test during each loop
iteration whether the current height is more than the previous maximum. To do
this you can use an if statement, whose syntax is similar to that of a while loop:

if y > ymax:

ymax = y

Use print functions to display all three of your calculated results, along with the
initial speed and angle, and the drag constant.

Exercise: Check that your Projectile2 program gives the expected results when
there is no air resistance, for a launch angle of 45◦ and your choice of launch speed.
Record your results below, along with your calculations of the expected results.

Exercise: For the rest of this project there is no need to display the numerical
results to so many decimal places. To round these quantities appropriately, you can
use the following (admittedly arcane) syntax:

"Maximum height = {:.2f}".format(ymax)

Here we’re creating a string object (in quotes) and then calling its associated format

function with the parameter ymax. This function replaces the curly braces, and
what’s between them, with the value of ymax, rounded to two decimal places. (To
change this to three decimal places, you would just change .2f to .3f; the f stands
for floating-point format.) Make the needed changes to display all three of the
calculated results to just two decimal places.
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A graphical user interface

Are you tired of having to edit your code and rerun your programs every time
you want to change one of the constants or initial conditions? A more convenient
approach—at least if you’ll be running a simulation more than a handful of times—
is to create a graphical user interface, or GUI, that lets you adjust these numbers
and repeat the simulation while the program is running.

Creating a graphical user interface for a computer program can be a lot of work.
You need to plan out exactly how broad a set of options to offer the user who
runs your program, then design a set of graphical controls (buttons, sliders, etc.) to
control those options, and finally write the code to display the controls and accept
input from them. Fortunately, VPython makes these tasks about as easy as possible.
The documentation refers to its GUI controls as widgets, and in this project we’ll
use three of them: the button, the slider, and the dynamic text widget.

Here’s some minimal code to create a button that merely displays a message:

def launch():

print("Launching the projectile!")

button(text="Launch!", bind=launch)

The first two lines define a new function called launch, and the last line creates a
button that is bound to this function, so the function is called whenever the button
is pressed.

Exercise: Put this code into your Projectile2 program and try it.

You might wonder how to control where the button appears. VPython doesn’t
give you nearly as much control over the placement as would an environment for
developing commercial software. By default, new widgets are placed immediately
below the scene canvas, in what’s called its caption. There are a few other placement
options that you can read about on the Widgets documentation page if you like.

More importantly, your Launch! button doesn’t yet do what we want, namely
launch the projectile! In a local installation of VPython you could make it do so
by moving all your initialization and simulation code into the definition of the new
launch function. But Web VPython doesn’t allow a rate function to appear inside
a bound function, so we have to do it a different way. Although it’s more difficult
in the present context, the following program structure will also be more useful in
future projects.

The basic idea is to turn your while loop into an infinite loop that runs forever,
but to execute most of the code inside the loop only if the simulation is supposed
to be “running”. The code on the following page provides a basic outline.
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while True:

rate(100)

if running:

# carry out an Euler-Richardson step

if y < 0:

running = False

# print out results

The big new idea here is the introduction of a boolean variable (named after logician
George Boole) that I’ve chosen to call running, whose value is always one of the
two boolean constants True or False (note that these are capitalized in Python).
When running is False, we merely call the rate function to delay a bit before the
next loop iteration. When running is True, we carry out a time-integration step
(using the code you’ve already written, omitted here for brevity), then test whether
the ball has dropped below ground level, in which case we set running = False

and print out the results.

Exercise: Insert this new code into your Projectile2 program, replacing the
two comments with the code you’ve already written to carry out the time step
and print the results. Also add a line near the top of the program to initially set
running = True. Test the program to verify that it works exactly as before.

Exercise: You’re now ready to activate your Launch! button. To do so, insert the
following two lines into the indented body of the launch function definition:

global running

running = True

Also change your initialization line near the top of the program to set running =

False instead of True. Test your program again and verify that the projectile is
not launched until you press the button.

Exercise: To allow multiple launches, simply move all of the relevant code to
initialize the variables into your launch function. You’ll also need to add their
names, separated by commas, to the global statement. Leave the initializations
of dt and g outside the function definition, since those values never change. Check
that you can now launch the projectile repeatedly.

Before going on, let me pause to explain that global statement. In Python, any
variable that you change inside a function definition is local by default, meaning that
it exists only within the function definition and not outside it. In longer programs
this behavior is a very good thing, because it frees you, when you’re writing a
function definition, from having to worry about which variable names have already
been used elsewhere in the program. But this means that when you do want to
change a global variable (that is, one that belongs to the larger program), you need
to “declare” it as global inside your function. (JavaScript, by contrast, has the
opposite behavior, making all variables global by default and forcing you to declare
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them with a var statement if you want them to be local to a particular function.)
Notice that you need to use global only if your function is changing the variable;
you don’t need it just to “read” the value of a variable. And for technical reasons,
this means that you don’t need to declare graphics objects as global variables just
to change their attributes.

Now let’s add some controls to let you vary the launch conditions. The best way
to adjust a numerical parameter is usually with a slider control. Here is how you
can add one to adjust the launch angle:

def adjustAngle():

pass # function does nothing for now

scene.append_to_caption("\n\n")

angleSlider = slider(left=10, min=0, max=90, step=1, value=45,

bind=adjustAngle)

The slider function creates the slider, and most of its parameters indicate which
numerical values to associate with the allowed slider positions. The value parameter
is set to an initial value (here intended to be 45 degrees), but will change when
you actually adjust the slider. The left parameter and the append_to_caption

function on the previous line merely insert some space around the slider in the
window layout (“\n” is the code for “new line”). The bind parameter, as before,
binds a function to this control; that function (adjustAngle) will be called whenever
you adjust the slider. For now I’ve used Python’s pass statement to make the
function do nothing.

Exercise: Put this code into your program, and check that the slider appears
underneath the Launch button. Then modify the code that sets the ball’s initial
launch velocity so it uses angleSlider.value instead of whatever angle you were
giving it before. You should now be able to launch multiple projectiles at varying
angles. Try it!

Exercise: The only problem now is that you can’t tell exactly what angle the slider
is set to—at least not until you actually click Launch! and see the output of your
print function. To give the slider a numerical display, add the following code right
after the line that creates the slider:

scene.append_to_caption(" Angle = ")

angleSliderReadout = wtext(text="45 degrees")

Then replace the pass statement in the adjustAngle function with:

angleSliderReadout.text = angleSlider.value + " degrees"

(This line uses the + operator to join two strings together: an example of what’s
called operator overloading.) Verify that the slider’s numerical readout now works
as it should.
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Exercise: Add two more sliders, with numerical readouts, to control the ball’s
initial speed and the drag constant. Let the launch speed range from 0 to 50 m/s
in increments of 1 m/s, and let the drag constant range from 0 to 1.0 in increments
of 0.005 (in SI units). Test these sliders to make sure they work as they should.

Exercise: Add a second button (on the same caption line as the Launch! but-
ton) to clear away the trails from previous launches and start over. To do this,
the bound function should set the ball’s position back to the origin and then call
the ball’s clear_trail function (with no parameters). This button finishes your
Projectile2 program, so look over everything and make any final tweaks to the
graphics, the GUI elements, the code, and the comments before turning it in.

Exercise: Run your Projectile2 program, experimenting with various values of
the drag coefficient, launch speed, and launch angle. You may recall from introduc-
tory physics that when there is no air resistance, the maximum range for a given
launch speed occurs at an angle of 45◦. Check this for a launch speed of 25 m/s,
then increase the drag coefficient to 0.1 and find the angle that gives the maximum
range. Record your data below, and explain why you would expect the optimum
angle to be less when there is air resistance. Also make a printout of your program
window, showing the trails and the numerical results from three (or more) launches
with significantly different settings.

Exercise: The maximum speed of a batted baseball is about 110 mph, or about
50 m/s. At this speed, the ball’s drag coefficient (as defined in your program)
is approximately 0.005 m−1. Using your program with these inputs, estimate the
maximum range of a batted baseball, and the angle at which the maximum range
is attained. Write down and justify your results below. Is your answer reasonable,
compared to the typical distance of an outfield fence from home plate (about 350–
400 feet)? For the same initial speed and angle, how far would the baseball go
without air resistance? (Continue your answer on the following page.)
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Exercise: As a review, list the steps of the (original) Euler algorithm, explaining
each step as clearly as you can in words.

Question: Out of all the coding tasks and exercises you did in this project, which
was the most difficult and why?

Congratulations—you’re now finished with this project! Please turn in these
instruction pages, with answers written in the spaces provided, as your lab report.
Be sure to attach your two printouts of the Projectile1 and Projectile2 program
results. Turn in your code as before, either sending it by email or putting it into a
public GlowScript folder and writing the folder URL below.
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Project 3: Pendulum

In this project you will explore the behavior of a pendulum. There is no better
example of a mechanical system that seems simple at first but turns out to hold
intricate layers of complexity.

Figure 3.1 shows the basic setup: a fixed pivot, a massless rod of length L, and
a point-mass m at the end, swinging in the plane of the page. It’s easiest to analyze
the motion in terms of torque and angular acceleration; recall that the angular
version of Newton’s second law is ∑

τ = Iα. (3.1)

On the left-hand side of this equation is the sum of all the torques acting on the
object. On the right-hand side, I is the object’s moment of inertia, simply mL2 for
our pendulum. The angular acceleration α is defined analogously to the ordinary
acceleration:

α =
dω

dt
=
d2θ

dt2
, (3.2)

where ω is the angular velocity and θ is assumed to be in radians.
From the diagram we see that the torque due to gravity is

τg = −L|~Fg| sin θ = −Lmg sin θ, (3.3)

Figure 3.1: A simple pendulum of mass m and length L, acted upon by a gravitational force
~Fg.

25
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where the minus sign indicates that the torque is negative (clockwise) when θ is
positive, and vice-versa. If there is no friction or other torque acting, then Newton’s
law (equation 3.1) says simply

−Lmg sin θ = mL2α, or α = − g
L

sin θ. (3.4)

Although I drew the diagram for a small positive value of θ, this equation is valid
for all angles—even angles greater than 90◦, if the rod is rigid.

Because the mass m has canceled out of equation 3.4, there will be no need
to specify a mass in your pendulum simulation. You might think you do need to
specify a length L, and also a value of g (depending on which planet the pendulum
lives on), but in fact you don’t, because we still have the freedom to choose our
units for measuring distance and time. (Yes, there are Unit Police who tell us
we must always use SI units for all scientific work, but actual working scientists
ignore the Unit Police and use whatever units are most appropriate for the work
they’re doing.) Our freedom to choose units means that whatever the actual values
of L and g, we can simply specify that we’re using units in which both of these
constants are equal to 1. These units are called natural units, because they are
natural to the physics that we’re studying. One advantage of using natural units is
that equation 3.4 becomes simply α = − sin θ. But the real advantage is that your
simulation will be applicable to any pendulum on any planet. The price is that
in order to apply your results to a particular pendulum, you may need to convert
them from natural units to more conventional units after running the simulation.

Exercise: Suppose (just for this exercise) that we want to study a pendulum on
earth (g = 9.8 m/s2) that is half a meter long. Then our unit of distance will be a
half meter; let’s call this unit the ham. Define a corresponding natural unit of time,
called the tic, such that g = 1.0 ham/tic2. How many seconds are in a tic? (Justify
your answer.)

Exercise: In order to draw a pendulum in the VPython graphics environment, you
will need to express the position of the pendulum bob in rectangular coordinates.
Taking the origin to be at the pivot and the x and y directions to be to the right
and upward, respectively, what are the formulas for x and y in terms of θ?
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Exercise: Write a VPython program called Pendulum1 to simulate the motion of
a pendulum swinging under the influence of gravity and no other torques. Use the
Euler algorithm, with the variables theta (in radians), omega, and alpha playing
the roles of y, vy, and ay in your original Projectile1 simulation. Check carefully
that the order of the lines in the algorithm is the same as in the example on page 12.
In the 3D graphics space, represent the pendulum bob as a sphere, the pendulum
rod as a cylinder, and the pivot at the other end of the rod as a short cylinder
perpendicular to the plane of motion. You may optionally wish to draw a stand
of some sort to “support” the pivot. Use natural units with g = L = 1 (so you
don’t need these variables at all!), and a time step of 0.01 in these units. Choose
initial conditions such that the amplitude of the swing will be fairly small. Once
everything seems to be working, let the simulation run for a while and describe
what you observe.

Exercise: Add a graph of θ (vertically) vs. t (horizontally) to your program. Be
sure to label the axes appropriately. Set the plotting interval to 10, in order
to reduce the slow-down that will occur as more and more points are added to
the graph. (Throughout the rest of this project, use your discretion to adjust the
plotting interval as appropriate.) Use your graph to determine the approximate
period of the pendulum in natural units, and write down the result. Does your
result agree with what you learned in introductory physics? Explain carefully.

Accuracy over long time periods

Exercise: Set your Pendulum1 program to run for about 50 units of time, then run
it. Sketch the appearance of the graph of θ vs. t in the space below, and explain
what’s wrong with it.
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Exercise: Work out a formula for the total energy (kinetic plus gravitational) of
the pendulum, in terms of θ, ω, and constants. Take the gravitational energy to
be zero at the lowest point of the pendulum’s swing. (Use a picture and some
trigonometry to relate θ to the height of the pendulum bob. Do not set g = L = 1
in this exercise.)

Exercise: Add some lines to your program to compute and print the total energy
of the pendulum at both the beginning and the end of the simulation. For the
purpose of this computation you should continue to take L, g, and m all to equal 1
(in natural units). Write the results below, and explain why something must be
wrong.

Exercise: Run the simulation again with a smaller value of dt. (Be sure to adjust
your rate function and graphing interval accordingly.) How do the results change?
Is this what you would expect?

The preceding exercises illustrate a common problem with numerical calcula-
tions: small truncation errors can add up over time to produce large inaccuracies.
When a quantity such as the total energy is supposed to be exactly conserved,
you should always monitor this quantity for any significant drift that might come
from compounded truncation errors. While using a smaller time step can provide a
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brute-force solution to this problem, it’s usually better to switch to a more accurate
algorithm (if possible).

Exercise: Modify your Pendulum1 program to use the Euler-Richardson algorithm
instead of the Euler algorithm. For a time step of 0.01 and a total running time of
50 time units, how much does the total energy drift?

At this point, please make a copy of your Pendulum1 program and call it
Pendulum2. The remaining changes that you’ll make to Pendulum1 will not be
needed for your subsequent work, so this will save you from having to undo those
changes later.

Large-angle motion

Now that you’ve minimized your program’s numerical inaccuracies, let’s examine
how the motion varies when the amplitude is changed.

Although you can read the approximate period of the pendulum from your
graph, it’s much more accurate to have the program calculate and print the period.
Here’s one way to do this: Introduce a variable called lastTheta, and set it equal
to theta just before each time theta is updated. After updating theta, check
whether theta is positive and lastTheta is negative. If so, the pendulum has just
crossed θ = 0 while moving from left to right. In this case, do an interpolation to
compute the time when the crossing occurred (like when you computed the time
the projectile landed in the previous project) and remember this time in another
variable. The time between one such crossing and the next equals the period of the
pendulum.

Exercise: In your Pendulum1 program, comment-out the code to calculate and
display the pendulum’s initial and final energy (by placing a # character in front of
each line). Then implement the algorithm just described for determining the period
of the pendulum. Check to make sure it works. Also modify your simulation loop
so it stops right after calculating and printing the period.

Exercise: Modify your Pendulum1 program to run the simulation successively for
amplitudes 10◦, 20◦, and so on up to 170◦, printing out a table with the amplitude
(in degrees) in the first column and the period in the second column. To do this,
you’ll want to embed your entire simulation loop inside a larger while loop that
loops over the amplitude values, reinitializing the pendulum each time through. Be
sure to adjust the indentation appropriately, and be careful converting angles from
degrees to radians and then back again. If you would like to reinitialize the graph
of θ vs. t for each new amplitude, you can do this by calling the delete() function
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of your gdots object. Another useful trick is to put a tab character, "\t", between
the amplitude and period in your print output. Check that everything works, so
you get a table as intended in the print area.

Of course a graph of period vs. amplitude would be better than a mere table of
numbers. You could easily produce such a graph right in the GlowScript window,
by adding just a few lines to your code. Often, however, for graphing final results
we use a different software environment than what we used for the simulation itself.
In this case, it is convenient to use an ordinary spreadsheet program.

Exercise: Copy your table of amplitudes and periods into a spreadsheet (Excel,
Google Sheets, etc.), then make a scatter plot of period (vertically) vs. amplitude
(horizontally), and label it appropriately. Arrange the graph so it fits on a single
printed page with your data table, then print this page and attach it to your lab
report.

Your Pendulum1 program is now finished, so please make sure the code is well
organized and adequately commented.

Friction and driving forces

Now let’s add some further complications: Friction to slow the pendulum down,
and a periodic external torque that continually adds energy to the system.

A simple way to add friction is to subtract a term proportional to ω from the
right-hand side of equation 3.4 for the angular acceleration:

α = − g
L

sin θ − c ω. (3.5)

A linear resistive force (or torque) of this form is called damping, and the coefficient
c is called the damping constant.

Exercise: In your Pendulum2 program, remove the code that calculates and dis-
plays the initial and final energies (since we no longer expect energy to be conserved).
Then add a damping term to the lines that compute alpha and alphaMid. Run
the program for various values of the damping constant, ranging up to about 2.0.
Describe the results briefly.

Damping removes energy from the pendulum, so the motion dies out. But we can
keep the motion going by continually applying an external torque to the pendulum.
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A simple yet interesting way to do this is to add a term to equation 3.5 that is
sinusoidal in time:

α = − g
L

sin θ − c ω +A sin(ft). (3.6)

This additional term is called a driving term. Physically, it would represent a
smooth, back-and-forth twisting force, presumably applied at the pivot, that is
unaffected by the pendulum’s position and speed. The constants A and f represent
the amplitude and angular frequency of the driving torque.

Because the Euler-Richardson algorithm requires two calculations of α (one at
the beginning of the time interval and one at the middle), and because the formula
for α is getting rather complex, it’s a good idea to move this calculation into a
separate function. Let’s call the function torque, which is the same as angular
acceleration in our system of units. This function should accept three parameters—
θ, ω, and t—and return the value of the torque. Assuming that the constants damp,
driveAmp, and driveFreq have already been defined, the torque function can be
defined as follows:

def torque(theta, omega, t):

return -sin(theta) - damp*omega + driveAmp*sin(driveFreq*t)

I should emphasize that the variables theta, omega, and t in this function definition
(called formal parameters) are logically independent of the variables of the same
names in the rest of your program; here we could just as well call them Larry, Moe,
and Curly (at least as far as the computer is concerned). When you call the torque

function from elsewhere in your program you can pass it any values you like for
these three variables, and it will return the appropriate torque.

Exercise: Add this function definition to your program, and use it appropriately
each time your program computes the angular acceleration. (Be sure to pass the
correct values to your torque function for the mid-point calculation!) Test your
program with the damping constant equal to 0.5, the drive amplitude equal to
0.5, and the drive frequency equal to 2/3. You should find that after an initial
“transient” behavior, the motion becomes periodic. What is the approximate period
of the motion, and what is the significance of this value?
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Chaos!

Exercise: Now increase the drive amplitude to 1.2, and run the program again (for
about 100 time units). Describe the behavior briefly.

When the drive amplitude is sufficiently large, the pendulum can swing over the
top of the pivot and the motion becomes much more complex. In some cases, such
as the one you just saw, the motion never settles down to become periodic. Because
the motion seems so unpredictable, the word “chaos” often comes to mind.

Chaos is actually a technical term in dynamics, used to describe behavior that is
unpredictable in practice because even a tiny change in the initial condition results
in an exponentially increasing change in the motion. A good way to test for chaotic
behavior is to run a simulation twice, with two slightly different initial conditions,
and monitor the difference in the motion as a function of time.

Exercise: Make a copy of your Pendulum2 program and call it Pendulum3, for later
use. Then modify Pendulum2 to simulate the motion of two damped, driven pen-
dulums simultaneously. Use two sets of variables for the two separate pendulums,
and simulate both motions using a single while loop in your code. Call the new
variables theta2, omega2, and so on. I’ll refer to the angle of the original pendulum
as θ1, but you may leave it as simply theta in your code. In the 3D graphics space,
put the second pendulum in front of the first, suspended from the same pivot. On
your graph, plot both θ1 and θ2 vs. time, using two different colors (it’s a nice touch
to use the same colors for the pendulums in the 3D graphics space that you use on
the graph). Start one pendulum at θ = 0 and the other at θ = 0.001 (radians), with
ω = 0 initially for both, and run for about 200 units of time. Use the same damping
and driving constants as in the two previous exercises, and describe the results for
both values of the driving amplitude. Print the more interesting of the two graphs,
and attach it to your lab report. (To print a graph, first make a screen capture of
just the graph, then open it in a suitable graphics program and print it from there.
Consult with your instructor if you are unsure of how to do this.)
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Exercise: To better see how the motions of the two pendulums relate to each other,
modify your Pendulum2 program to produce a second graph, plotting ln |θ2 − θ1|
vs. t. The VPython function for the natural logarithm is log(). Run your program
using the same constants as before, including both values (0.5 and 1.2) of the drive
amplitude. This time it should suffice to run for about 80 units of time. Print the
log-difference plot for both cases, and discuss the results in some detail. Why do
both plots have several downward-pointing spikes?

The roughly exponential behavior of θ2− θ1 as a function of time is a feature of
many dynamical systems. We can write this behavior as

θ2 − θ1 ≈ (constant)× eλt, (3.7)

where λ is called a Lyapunov exponent. When λ is positive the system is chaotic:
even the smallest difference in initial conditions will grow over time until the two
systems have radically different behavior. Since we can never know the initial con-
ditions of a real physical system with infinite accuracy, it is effectively impossible
to predict the behavior of a chaotic system over long time periods. Although our
damped and driven pendulum is a somewhat contrived system, chaotic behavior is
also quite common in the real world.

Exercise: Estimate the Lyapunov exponent of the pendulum system for each of
the values of the constants used in the previous exercise. (Hint: Use a ruler to
draw a reasonable straight line to fit your logarithmic graphs of θ2 − θ1, ignoring
the downward-pointing spikes.)

Your Pendulum2 program is now finished, so check everything over and be sure
that the code is well organized and adequately commented.
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When is the motion chaotic?

So far you have explored the motion of the damped and driven pendulum for only
two sets of damping and driving parameters—one that produces chaotic behavior
and one that doesn’t. Your final task will be to map out in more detail which
conditions produce chaos.

In principle you could vary the damping constant, the driving frequency, and
the driving amplitude—but thoroughly exploring that three-parameter space would
take a long time. Instead, you will keep the damping constant and the driving
frequency fixed at the same values as before, and vary only the driving amplitude.

Exercise: In your Pendulum3 program (which simulates only a single damped and
driven pendulum), change the simulation loop to run indefinitely, but add a GUI
button to pause and resume the simulation. Then add a slider to adjust the driving
amplitude to any value between 0 and 2.0, in increments of 0.01. Be sure to create
a numerical readout for the slider. Test these controls to make sure they work.

Exercise: Change the graph in Pendulum3 to plot ω vertically vs. θ horizontally,
instead of θ vs. t. This new graph is called a phase space plot. Use the xmin and
xmax parameters of the graph function to set the horizontal scale on the graph to
run from −π to +π, and then, in your simulation loop, insert some if statements
to shift θ by 2π whenever necessary to keep it within the range of the graph. (This
doesn’t affect the physics, because changing an angle by 2π doesn’t really change it.)
Set the size parameter of the gdots object to 1, and adjust the plotting interval
to compromise between a more complete plot and a reasonable execution speed.
Finally, add another GUI button to the program that clears all dots from the plot,
by calling the delete function of your gdots object. Again, test everything to make
sure it works.

Exercise: Spend some time running your simulation and systematically exploring
what happens as the drive amplitude increases from 0 to 2. For some settings the
motion will settle into a repeating pattern (once any “transient” behavior has died
out), while for others it will be chaotic, never exactly repeating itself. Print a few
of the more interesting phase space plots (combining them onto a single page if you
know a way to do that), being sure to label them with the drive amplitude settings.
Describe the motion in words for each of these cases. Also, in the space below, make
a list of the drive amplitude values for which the motion is and isn’t chaotic.

This exercise completes Project 3. Be sure to attach all the printouts to this lab
report, and to submit your code by email (or by emailing a link).
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Project 4: Orbits

In this project you will simulate the motion of planets orbiting the sun.
The only important force in this situation is gravity. According to Newton, the

gravitational force between two objects is always attractive, with magnitude

|~Fg| =
Gm1m2

r2
12

, (4.1)

where m1 and m2 are the masses of the two objects and r12 is the distance between
them. The associated potential energy, for later reference, is

Ug = −Gm1m2

r12
. (4.2)

This formula takes some getting used to, because it is always negative. The impor-
tant thing, though, is that as two objects get farther apart their potential energy
increases (becomes less negative).

We’ll start with a single planet orbiting the sun. Because the sun is so much
more massive than any planet, it’s a reasonable approximation to neglect the sun’s
motion. Then we can put the sun at the origin of our coordinate system, and the
formula for its force on the planet will simplify.

Exercise: Use equation 4.1 and an appropriate diagram to find the x and y compo-
nents of the sun’s gravitational force on a planet, in terms of the planet’s coordinates
x and y. Have your instructor check these formulas before you go on to write any
code.

35
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Units

Rather than using SI units, it’s usually a good idea to choose units that are natural
for the problem being solved. In the case of planets orbiting the sun, a natural unit
of distance is the astronomical unit (AU), defined as the average distance between
the earth and the sun (about 150 million kilometers). A natural unit of time is the
year (3× 107 seconds), and a natural unit of mass is the sun’s mass (2× 1030 kg).

Exercise: What is earth’s orbital speed in these natural units (assuming its orbit
to be circular)? (In this exercise and the next, do not start with SI units and then
convert; there’s a much easier method.)

Exercise: Find the value of G in these natural units, by applying Newton’s laws
to earth’s orbit. (You’ll need to recall or look up the formula for the acceleration of
an object moving in a circle at constant speed.)

Exercise: Suppose that a planet is in a circular orbit of radius r. Find a formula
for its speed in terms of r, using natural units to simplify your answer.
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A one-planet simulation

Exercise: Write a VPython simulation program called Orbit1, for a single planet
orbiting the sun in the xy plane. Represent the planet as a small sphere in the 3D
simulation space, with a larger sphere at the origin to represent the sun. (Choose
the radii of these spheres for easy visibility—not based on the objects’ sizes in the
actual solar system!) Have the planet leave a trail to mark its orbital path. Also
create two thin cylinders to represent the x and y axes, making each of them a few
AU long. In this project you will always need to view the orbits directly from the
perpendicular (z) direction, so set scene.userspin = False to disable rotating
the view, and set scene.fov = 0.01 to give a very narrow “field of view” (0.01
radians), as if you are viewing the scene from very far away through a telescope.
Set the background color to white, since you’ll be printing some of your orbital
images. To simulate the planet’s motion use the Euler algorithm for now, with a
time step of 0.01 (in years). Start the planet at x = 1.5, y = 0, and an initial vx
and vy that should give a circular orbit. Describe the result of your simulation for
a running time of ten years. Try the simulation again with a time step of 0.001
(adjusting the rate parameter and the trail’s interval accordingly), and discuss
the implications of your results.

Exercise: Add a totalE function to your program, which computes and returns
the planet’s total (kinetic plus potential) energy per unit mass. Use equation 4.2 for
the potential energy. Your function doesn’t need to have any parameters, because
x, y, vx, and vy are all global variables. Add code both before and after your
simulation loop to call the totalE function and print out the result, labeled with
appropriate text. Write down the results for a couple of different values of dt, and
comment briefly.
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Exercise: By now you should be anxious to replace the Euler algorithm in your
simulation with something more accurate. Try the Euler-Richardson algorithm next
(but comment-out your Euler algorithm code, rather than deleting it, so it will still
be visible), and write down the results (initial and final energy) for the same initial
conditions and dt values as before. Comment briefly. (You should find that the
Euler-Richardson algorithm is many times more accurate than the Euler algorithm.)

The Verlet algorithm

The Euler-Richardson algorithm is so much better than the Euler algorithm that
you may be tempted to settle for it. However, in situations such as this where the
force depends only on the positions of the particles (not on their velocities), there
is another algorithm that usually does significantly better still, and is no harder to
code.

You may have already noticed, while coding the Euler-Richardson algorithm,
that there’s no actual need to know the velocity at the interval’s midpoint when
this velocity won’t be needed to calculate the force. In this case, you could instead
combine this velocity calculation with the calculation of the updated position. So,
for the x components, the equations

vx,mid = vx,initial + 1
2ax,initialdt and xfinal = xinitial + vx,middt (4.3)

can simply be combined into the single formula

xfinal = xinitial + vx,initialdt+ 1
2ax,initial(dt)

2. (4.4)

You should recognize this formula from introductory physics: It is the exact formula
for the motion of an object whose acceleration is constant. We’ll continue to use
it (for small dt) even when the acceleration isn’t constant, as we’ve already been
doing, in effect, with the Euler-Richardson algorithm.

Our improvement on the Euler-Richardson algorithm will be in the calculation
of the updated velocity. Once we’ve updated the position using equation 4.4, we
can use this updated position to calculate the acceleration at the end of the time
interval (so long as the force depends only on the position, not on the velocity). We
can then estimate the average acceleration as the average of the initial and final
accelerations, and use this average to update the velocity:

vx,final = vx,initial + ax,averagedt ≈ vx,initial +
(ax,initial + ax,final

2

)
dt. (4.5)
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This estimate of the average acceleration is more symmetrical, and hence more
accurate in most situations, than the Euler-Richardson method of calculating ax
from an estimated value of xmid. The combination of equations 4.4 and 4.5 is
known as the Verlet algorithm, or alternatively as the second Taylor approximation
(STA). For two-dimensional motion, of course, each step would entail updating the
y components as well as the x components.

The slick way to implement the Verlet algorithm is to break equation 4.5 into
two parts, separated by the calculation of the new acceleration, as follows:

0. Before the loop begins, calculate the initial acceleration.

1. Update the position using equation 4.4.

2. Update the velocity half-way, adding 1
2axdt.

3. Update the acceleration, calculating it from the new position.

4. Finish updating the velocity, again adding 1
2axdt.

5. Repeat steps 1 through 4 in each loop iteration.

Notice that this procedure requires only one evaluation of the acceleration for each
time interval. In the next project, where execution speed will be an issue, this will
be another significant advantage over the Euler-Richardson algorithm.

Exercise: Comment-out the Euler-Richardson code in your Orbit1 program, then
implement the Verlet algorithm. Since the acceleration needs to be calculated once
outside the loop and once inside it, move this code into a separate function and
call it from both places. (The function needn’t have any parameters, or return any
value; just make ax and ay global variables.) Test your program for the same initial
conditions, running time, and values of dt that you used in the previous exercise,
and compare the accuracy to which the two algorithms conserve energy, writing
your results below. Be sure to display enough decimal places in the energy values
to allow you to see the change!
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Kepler’s laws

In the early 1600s, Johannes Kepler was the first to discover simple mathematical
laws to accurately describe the observed motions of the planets. Nowadays we
number Kepler’s important discoveries 1, 2, and 3; I like to throw in a 0th law
that may have gone without saying in Kepler’s time, but isn’t at all obvious from a
modern perspective:

0. Planetary orbits are closed paths; each planet returns to the same point after
one full orbit.

1. The shape of each orbit is an ellipse, with the sun at one focus of the ellipse.

2. The planets move faster when they are closer to the sun, in such a way that a
line drawn from the sun to any planet sweeps out equal areas in equal times.

3. The outer planets move slower than the inner ones, in such a way that the
cube of the length of the ellipse’s semimajor axis is proportional to the square
of the period of the orbit.

Later, in 1687, Isaac Newton published a book showing how all of Kepler’s laws (and
much more) can be deduced from his more fundamental laws of motion and gravity.
Even today, however, a rigorous deduction of Kepler’s laws from Newton’s laws
requires some sophisticated and lengthy calculations. On the other hand, you now
have a computer program that simulates planetary motion according to Newton’s
laws. Let’s check, then, whether the resulting motion obeys Kepler’s laws.

Exercise: (Kepler’s 0th Law.) If you haven’t already, try out some other initial
conditions for your simulated planet. A good way to start is to make the initial
values of x, y, and vx the same as for earth, and vary the value of vy from slightly
lower than earth’s speed to slightly higher. Describe the results in the space below.
Does your simulated planet obey Kepler’s zeroth law? How small a value of dt must
you use to obtain consistent results?
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Exercise: (Kepler’s 1st Law.) An ellipse is defined as the set of all points for which
the sum of the distances to the two foci is a constant. According to Kepler’s first
law, one focus of the ellipse should be at the sun, which is at the origin of your
coordinate system. For the initial conditions suggested in the previous exercise, the
other focus should be symmetrically located exactly 1 AU from the left end of the
ellipse. (The second focus may lie either left or right of the first.) Adjust your
initial conditions to obtain a reasonably elongated orbit, and zoom in or out until
the orbit fills most of the scene. Print this image, making sure it fills most of a page,
and label the two foci on the printout. Then pick at least three dissimilar points
along the orbit and for each, use a ruler to measure the sum of the distances to the
two foci. Show your measurements and calculations on the printout, and discuss
(on the printout) whether Kepler’s first law seems to hold for your orbit.

Exercise: (Kepler’s 2nd Law.) Modify the interval setting of your moving planet
so that only two or three dozen trail points appear around the orbit. Use the same
dt and initial conditions as in the previous exercise. Run the simulation for just a
single orbit and again print the resulting image, making sure it fills most of a page.
Then pick three dissimilar intervals along the orbit, identical in duration, and for
each, use a ruler to determine the approximate area swept out by an imaginary
line from the sun to the planet. Show your measurements and calculations on the
printout, and discuss (on the printout) whether Kepler’s second law seems to hold
for your orbit.

Exercise: (Kepler’s 3rd Law.) The semimajor axis of an ellipse is defined as half
of its widest width. As long as you use an initial vx of zero, this width should be
along the x axis of your image. You can then test Kepler’s third law as follows.
Add code to your program to determine when the planet crosses the x axis, and for
each crossing, to print out (to the screen) the value of x and the time. From these
data, you can calculate (by hand is fine) both the semimajor axis and the period of
the orbit. Run the simulation for three dissimilar orbits, recording the data below.
Then for each orbit, calculate the cube of the semimajor axis and the square of the
period. Discuss whether your results are consistent with Kepler’s third law.
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Elongated orbits and variable time steps

By now you may have noticed that the closer your simulated planet gets to the
sun, the smaller you need to make dt to reduce truncation errors to an acceptable
level. For highly elongated orbits this is awkward, because the small value of dt is
needed only near one end of the orbit, while a much larger value of dt would suffice
elsewhere.

Fortunately, there’s no law that says we have to use the same value of dt through-
out the simulation. Instead, we can use what is called adaptive step size control to
continually adjust dt as appropriate. Nearly all of the “professional quality” algo-
rithms for numerically solving differential equations employ some sort of adaptive
step size control. Most of these algorithms are quite complex and sophisticated—not
worth our time in a first course on computer simulations. In your Orbit1 program,
however, there is a very simple way to add adaptive step size control.

Think about it: We want dt to be small when the planet is close to the sun
(where its acceleration is large and rapidly changing) but large when the planet is
farther away (where its acceleration is small and slowly changing). A natural way
to accomplish this would be to make dt proportional to r, or to some positive power
of r. Equivalently, we could make dt proportional to some negative power of the
acceleration, |~a|, which is proportional to 1/r2:

dt ∝ |~a|−n ∝ r2n. (4.6)

Let’s work with |~a|, since this will make it easier to generalize our approach to
multi-planet simulations in the next section. The optimum power of |~a| is not easy
to guess, but I’ve done a bit of pencil-and-paper analysis that seems to indicate that
n = 1 is a good choice. In practice, this choice seems to work just fine.

Exercise: Modify your Orbit1 program to set dt equal to a constant (call it
tolerance) times |~a|−1. This should be done at the beginning of each loop iteration.
To select a good value of tolerance, either do a quick calculation or just try some
values and see what works. Explain how you chose your value of tolerance in the
space below.

Exercise: Use your Orbit1 program to model the orbit of Halley’s comet, which
is 0.58 AU from the sun at its closest approach and has a period of 76 years. What
is its maximum orbital speed in AU/year? How far from the sun is the orbit’s most
distant point? What did you have to do to determine these quantities?
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Your Orbit1 program is now finished, so please make sure the code is well
organized, easy to read, and adequately commented.

A two-planet simulation

Don’t let this get you down, but all the results of your Orbit1 program were already
known to Newton more than 300 years ago. The real advantage of a computer
simulation over pencil-and-paper methods comes at the next stage, when we want
to model a system that is more complex than a single particle subject to an inverse-
square force. For instance, you could easily explore what happens when the force law
is modified, either in some hypothetical universe or in the real solar system due to the
sun’s nonspherical shape or the effects of general relativity. An even more difficult
problem, though, is to predict the motion of three or more mutually gravitating
objects. With the exception of a few unrealistically symmetrical configurations,
there are no analytic formulas for the motions of such systems.

Your next task will be to write a new computer program (Orbit2) to model
the behavior of two planets orbiting the sun, including the effects of their mutual
gravitational attraction. Because these effects are often small, you’ll need to run the
simulation for a relatively long time—long enough to observe dozens or hundreds
of orbits.

Exercise: Make a copy of your Orbit1 simulation and call it Orbit2. In Orbit2,
remove the commented-out code for the Euler and Euler-Richardson algorithms, as
well as the code that prints the initial and final energies (but keep the function that
calculates the energy). You may also remove the cylinders that represent the x and
y axes. In anticipation of adding a second planet, change the planet’s variable names
to x1, y1, vx1, and so on. Set the simulation loop to run indefinitely, but introduce
a boolean running variable and a “Start/stop” button that you can use to pause
and resume the simulation. Change the planet’s initial position and velocity to
simulate earth’s orbit (for now). Spend some time adjusting the graphics settings,
including the size of the planet and its trail (which you could leave as “points” or
change to “curve”), and the trail interval and animation rate. You want to be able
to simulate dozens of orbits quickly, and to discern small changes from one orbit to
the next.

Exercise: Add wtext objects to Orbit2 to display the elapsed time and the sys-
tem’s total energy in the space below the graphics scene. Update these readouts
during each simulation loop iteration, and use the string format function to round
each of them to an appropriate number of decimal places.

Exercise: Now add a second planet to your simulation, orbiting like the first under
the influence of the sun’s gravitational pull. Don’t worry yet about including the
gravitational force between the two planets. For simplicity, please assume that the
second planet also orbits in the xy plane, and start it out in a circular orbit of some
reasonable size. In the line that calculates dt, use the larger of the two planets’
accelerations. (Use the max function.) Draw the two planets and their trails in
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different colors. Be sure to update your energy function to include the second
planet’s energy.

Exercise: Finally, modify your simulation code to include the gravitational force
between the two planets. Up until now the masses of the planets have been irrele-
vant, but at this point you’ll have to introduce variables to represent the masses (in
units of the sun’s mass). To calculate the force, it’s helpful to first calculate the x
and y separations between the two planets, storing these in temporary variables. Be
very careful to check that you’re using the correct formula for the force. Also mod-
ify your energy calculation to incorporate the planets’ masses and the inter-planet
potential energy. To test your program, start the planets in orbits that would be
circular if they did not interact, with radii of 1 and 1.5 (about right for earth and
Mars). First set both masses equal to 10−6, and verify that the orbits remain es-
sentially circular. Then set both masses equal to 0.02 (about 20 times the mass of
Jupiter), and describe what happens. Is the total energy reasonably constant?

Your Orbit2 program is now finished! It can be used to explore a great variety
of scenarios; feel free to experiment. The following exercise should give you a good
start.

Exercise: Set the masses of your two planets to 0.001 and 10−8 (1e-8 in Python
syntax), to simulate Jupiter and an asteroid. Start both in orbits that would be
circular if they did not interact with each other, with Jupiter at 5.2 AU from the
sun and the asteroid at 3.0 AU. Run the program for a few hundred simulated years
and describe the resulting orbits. Then repeat the simulation with the asteroid at
3.1 AU, 3.2 AU, and so on up to 4.0 AU (adjusting the asteroid’s speed to keep its
orbit circular if Jupiter weren’t there), and describe the results. For what sizes of
the asteroid’s orbit does the influence of Jupiter appear to be the greatest? Can you
explain why? Print out two representative images, labeling each with the asteroid’s
initial orbit size. Observations of the actual asteroid belt show that there are gaps
in it, where very few asteroids are found. At what distances from the sun would
you expect to find gaps? (Continue your answer on the following page.)
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Exercise: You’ve now used three different algorithms for predicting the motions of
particles according to Newton’s second law: Euler, Euler-Richardson, and Verlet.
Briefly list the advantages and disadvantages of each, stating when it’s best to use
one rather than another.

Question: Which part of this project did you find most difficult? Any other
comments on how it went?

Congratulations! You are finished with this project. Please turn in your code
by email or by emailing a public link, as usual.
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Project 5: Molecular Dynamics

If a computer can model three mutually interacting objects (like the sun and two
planets), why not model more than three? As you’ll soon see, there is little ad-
ditional difficulty in coding a simulation of arbitrarily many interacting particles.
Furthermore, today’s personal computers are fast enough to simulate the motions
of hundreds of particles “while you wait,” and to animate this motion at reasonable
frame rates while the calculations are being performed.

The main difficulty in designing a many-particle simulation is not in the simu-
lation itself but rather in deciding what we want to learn from it. Predicting the
individual trajectories of a hundred particles is usually impractical because these
trajectories are chaotic. Even if we could make such predictions, the sheer amount
of data would leave us bewildered. Instead, we’ll want to focus on higher-level
patterns and statistical data.

In this project we’ll also shift our attention from the very large to the very
small—from planets to molecules. The main goal will be to learn how some of the
familiar properties of matter arise from motions at the molecular scale.

Molecular forces

Under ordinary circumstances, molecules are electrically neutral. This implies that
the forces between them are negligible when they’re far apart. However, when two
molecules approach each other, the distortion of their electron clouds usually pro-
duces a weak attractive force. When they get too close, the force becomes strongly
repulsive (see Figure 5.1). For all but the simplest molecules, these forces also de-
pend on the molecules’ shapes and orientations. In this project we’ll ignore such
complications and just simulate the behavior of spherically symmetric molecules
such as noble gas atoms.

Even for the simplest molecules, there is no simple, exact formula for the in-
termolecular force. Fortunately, we don’t really need an exact formula; any ap-

Figure 5.1: When two molecules are near each other, there is a weak attractive force between
them. When they get too close, the force becomes strongly repulsive.

47
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proximate formula with the right general behavior will give us useful results. The
formula that is most commonly used to model the interaction between noble gas
atoms is the Lennard-Jones potential,

U(r) = 4ε

[(r0

r

)12
−
(r0

r

)6]
. (5.1)

This is a formula for the potential energy, U(r), in terms of the distance r between
the centers of the two interacting molecules. The constants r0 and ε represent the
approximate molecular diameter and the overall strength of the interaction. The
numerical values of these constants will depend on the specific type of molecule;
the table below gives some values obtained by fitting the Lennard-Jones model to
experimental data for noble gases at low densities.

r0 (Å) ε (eV)

helium 2.65 0.00057
neon 2.76 0.00315
argon 3.44 0.0105

Figure 5.2 shows a graph of the Lennard-Jones potential. When r � r0, the
energy is negative and approaches zero in proportion to 1/r6. This is the correct
behavior of the so-called van der Waals force, and can be derived from quantum
theory. When r < r0 the energy becomes positive, rising very rapidly to give a
strong repulsive force as r decreases. John Lennard-Jones suggested using a power
law to model this repulsive behavior, and nowadays we normally take the power

Figure 5.2: The Lennard-Jones potential energy function (equation 5.1).
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to be −12 for computational convenience. We’ll stick with this choice because no
simple improvement to it would give significantly more accurate results.

Exercise: Find the value of r (in terms of r0) at which the Lennard-Jones function
reaches its minimum, and show that its value at that point is −ε.

Exercise: Consider two molecules, located at (x1, y1) and (x2, y2), interacting
via the Lennard-Jones force. Find formulas for the x and y components of the
force acting on each molecule, in terms of their coordinates and their separation
distance r. (Hint: First calculate the r component of the force, which is given by
the general formula Fr = −dU/dr. Then draw a picture showing the force vectors
clearly, and be careful with minus signs.)
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Units

Once again we can make our lives easier by choosing units that are natural to the
system being modeled. For a collection of identical molecules interacting via the
Lennard-Jones force, a natural system of units would set r0, ε, and the molecular
mass (m) all equal to 1. These three constants then become our units of distance,
energy, and mass. Units for other mechanical quantities such as time and velocity
are implicitly defined in terms of these.

Exercise: What combination of the constants r0, ε, and m has units of time?
(Please show your work.)

Exercise: If we are modeling argon atoms using natural units, what is the duration
of one natural unit of time, expressed in seconds? (Use the values of r0 and ε from
the table above. Note that the r0 values are given in Ångström units (Å), where
1 Å = 10−10 m, while the ε values are given in electron-volts (eV), where 1 eV =
1.60× 10−19 J.)

Exercise: Suppose that an argon atom has a speed of 1, expressed in natural units.
What is its speed in meters per second?

Another quantity that we’ll eventually want to determine for our collection of
molecules is temperature. To define a natural unit of temperature we can set Boltz-
mann’s constant kB (which is essentially a conversion factor between molecular
energy and temperature) equal to 1. In conventional units,

kB = 1.38× 10−23 J/K = 8.62× 10−5 eV/K. (5.2)

I’ll explain later how to actually determine the temperature of a system from the
speeds of the particles.
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Exercise: Suppose that a collection of argon atoms has a temperature of 1 in
natural units. What is its temperature in kelvin? (For a rough comparison, the
boiling point of argon at atmospheric pressure is 87 K.)

Exercise: Repeat the previous exercise for helium, and discuss the result briefly.

Lists

To simulate the motion of just two noble gas atoms, you could simply modify your
Orbit2 program to use the Lennard-Jones force law instead of Newton’s law of
gravity. Recall that in that program you used the variables x1, y1, vx1, and so
on for the first planet, and x2, y2, vx2, and so on for the second planet. As you
can imagine, this approach becomes awkward if you add more planets (or atoms).
Fortunately, Python (like nearly all programming languages) provides a convenient
mechanism for working with a collection of related variables: a list (also sometimes
called an array), which you refer to by a single variable name such as x or vx.

The elements of a Python list are numbered from 0 up to some maximum value.
To access a particular element, you put that element’s number in square brackets
after the name of the list:

x[14] = 4.2

fib[2] = fib[0] + fib[1]

The number in brackets is called an index. Because the index of a list’s first element
is zero, the index of the last element is always one less than the size of the list. For
example, if x is a list of 100 numbers, then you access those numbers by typing
x[0], x[1], and so on up to x[99]. (This convention is common to Python and
all the C-derived languages, including Java and JavaScript. But there are other
languages, such as Fortran and Mathematica, in which list indices start at 1 rather
than 0.)

This bracket-index notation would be no improvement at all if the quantity in
brackets always had to be a literal number. But it doesn’t: You’re allowed to put
any integer-valued variable, or any integer-valued expression, inside the brackets.
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So, for instance, if x is a list of 100 elements, you could add up all the elements
with this while loop:

sum = 0

i = 0

while i < 100:

sum += x[i]

i += 1

Notice that the condition on the loop is a strict <, not <=, because x[100] doesn’t
exist.

Although there’s nothing wrong with the preceding while loop, Python (like
most programming languages) provides a more compact way of executing a block
of code a fixed number of times: a for loop. To add up the elements of the x list
with a for loop, you would type the following:

sum = 0

for i in range(100):

sum += x[i]

This code also uses Python’s range function, which in this case effectively produces
a list of the integers 0 through 99 (not including 100!). Both the range function
and the for loop can be used in other ways, and are a bit difficult to explain in
general, but for looping over the elements of a list, this example is all you need to
know. (If you’ve used for loops in other languages, you may need to revise some
of your expectations about how you can and cannot use a for loop in Python. I
prefer to use for to loop over list elements, and in other situations where an integer
variable is used to count some pre-determined number of iterations; for any other
looping situation I use while.)

And how do you create a Python list in the first place? If the list is sufficiently
short, you can create it by providing literal values, in brackets, separated by commas:

daysInMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

Often, though, we want to initialize a list in a more automated way, and awkwardly,
the best method in that case depends on what Python environment you’re using.
The most robust method, I think, is to first create an empty list and then write a
loop to add elements to it using the list’s append function:

x = []

for i in range(100):

x.append(0)

In this example I’ve given every list element an initial value of 0, but you could pass
any other initial value (possibly depending on i) to the append function.
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The program design

You’re nearly ready to start writing a molecular dynamics simulation program. But
there are several decisions to make before you can actually start coding, and to save
time I’ve made some of these decisions for you.

First decision: You’ll simulate a collection of noble gas atoms in two dimensions,
not three. A 3D simulation would be only a tiny bit harder to code in VPython, and
you can certainly try it later if you like, but in 3D it’s hard to see what’s happening,
because the atoms in front tend to block your view of the ones behind. Fortunately,
there’s plenty to be learned from a 2D molecular dynamics simulation.

Second decision: The atoms will live in a square “box” whose walls are located at
the edges of the graphics scene. So you should set scene.width and scene.height

to be the same; you can decide exactly how many pixels they should be, depending
on your screen size. The x and y coordinates inside the box will each run from 0
up to a maximum value that we’ll call w (for width), measured in natural units as
defined above (multiples of r0). You’ll set w = 20 initially, but plan on changing
the value later. Then you should set scene.center to be at the middle of the box,
and set scene.range to put the edges at 0 and w. Set scene.fov to a small value
like 0.01, to eliminate distortion as in the previous project. Disable auto-scaling,
zooming, and rotation.

Third decision: Use the variable name N for the total number of atoms; use x,
y, vx, vy, ax, and ay for the lists that will hold the atoms’ positions, velocities, and
accelerations; and use a list called ball for the sphere objects that will represent
the atoms in the graphics scene. Set N = 100 for now, but write your code to work
for any reasonable value of N.

Exercise: Create a new Web VPython program called MD, and put code in it to
implement the design decisions described above. Use a for loop to initialize all the
velocities and accelerations to zero, to initialize the positions to a common location
near the middle of the box, and to initialize each element of the ball list to a sphere

at the corresponding position, with diameter 1.0, in your favorite color. Run the
program and check that you see a single sphere at the correct position, with the
correct size. (You’ll see only one sphere, because they’re all at the same position.)

Exercise: Modify your initialization code to place all the atoms at different posi-
tions inside the box, so none of the spheres that represent them overlap. The easiest
way to do this is to arrange them in regular rows, placing each atom next to the
previous one but starting a new row whenever the old row is full. I suggest that
you place them pretty close together, rather than trying to spread them uniformly
over the entire box. You’ll need a couple of variables to keep track of the x and
y locations where the next atom goes (or where the last one went). Spend some
time on this task, trying out your ideas to see if they work, but if you and your lab
partner can’t come up with a working algorithm within 15 minutes or so, be sure
to ask someone else for a hint. Once you get your code working for N = 100 and
w = 20, change these values a few times and make sure it still works—but don’t
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worry about what happens when the box is too small to comfortably hold all the
atoms.

Coding the simulation

Now you can start adding code to put the atoms into motion.

Exercise: Create an infinite while loop for your main simulation loop. Include
a rate function with a parameter of 1000 or more, so the loop will run as fast as
possible. During each iteration this loop should call a function called singleStep

about 10 times; this is the number of calculation steps per animation frame (and
you can fine-tune it later). After all 10 calls to singleStep, update the positions of
all the ball objects using the current values of x and y. In the singleStep function
itself, put in some temporary code that merely changes x[0] and y[0] by a tiny
amount. Test your program to verify that the first atom-sphere moves as expected.

Exercise: Now remove the temporary code from singleStep and replace it with
code to implement the Verlet algorithm: First update all the positions and update
the velocities half-way, then call a separate function (call it computeAccelerations)
to compute all the new accelerations, and finally update the velocities the re-
maining half-way. Use a fixed time step of 0.02 in natural units. Create the
computeAccelerations function, but for now, just put some temporary code in
it that sets ax[0] and ay[0] to some tiny nonzero values. Again, test your pro-
gram to make sure it behaves as expected.

The computeAccelerations function must have two parts: one to calculate
the accelerations from collisions with the walls of the box, and one to calculate the
accelerations from collisions between atoms. The collisions with the walls are poten-
tially trickier, especially if we want infinitely stiff walls that produce instantaneous
changes in velocity. Instead, it’s easier to make the walls “soft,” so the force they
apply increases gradually as the edge of an atom moves farther into the wall. A
linear “spring” force works well; here is a code fragment that implements such a
force for the vertical walls:

for i in range(N):

if x[i] < 0.5:

ax[i] = wallStiffness * (0.5 - x[i])

elif x[i] > (w - 0.5):

ax[i] = wallStiffness * (w - 0.5 - x[i])

else:

ax[i] = 0.0

The Python word elif is short for “else if”; I hope this example of its use is self-
explanatory. Here wallStiffness is the “spring constant,” for which a value of 50
in natural units works pretty well. Notice that since m = 1, the force on a molecule
is the same as its acceleration.
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Question: Why does the if statement in this code test whether x[i] is less than
0.5, rather than testing whether x[i] is less than 0?

Exercise: Insert this code, and similar code to handle collisions with the horizontal
walls, into your computeAccelerations function. To test your code, give atom 0
a nonzero velocity along some diagonal direction. You should then see this atom
bounce around inside the box.

Exercise: Now add the code to handle collisions between atoms. You’ll need a
double loop over all pairs of atoms:

for i in range(N):

for j in range(i):

# compute forces between atoms i and j

# and add on to the accelerations of both

To compute the force components, use the formulas you worked out at the beginning
of this project. Be careful with minus signs. Then run your code and enjoy the
show!

Question: Why does the inner loop (over j) run only from 0 up to i-1, instead of
all the way up to N-1?

Optimizing performance

Ninety percent of the time, you shouldn’t worry about writing code that will run as
fast as possible. It’s much more important to make your code simple and easy for
a human to read and understand. Your time is more valuable than the computer’s!

However, your singleStep and computeAccelerations functions fall in the
other ten percent. These functions contain loops that execute the same code thou-
sands upon thousands of times. Any effort that you spend speeding up the code
inside these loops will be rewarded in proportion.

Exercise: A typical atom in this simulation might have a speed of 1 in natural
units. How many units of time will it take this atom to cross from one side of
the box to the other (assuming no collisions along the way)? How many calls to
singleStep are required for such a one-way trip? During this same time, how
many times will the code within each of the loops in singleStep be executed? How
many times will the code within the double loop in computeAccelerations be
executed? How many times will your code change the position of a sphere graphics
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object? (Please assume that N = 100, w = 20, and there are 10 calculation steps
per animation frame—even if you’ve changed these variables in your program. Show
your calculations and answers clearly in the space below.)

Here, then, are some tips for optimizing the performance of your MD simulation:

• Don’t spend time trying to optimize performance until after you’re sure that
your program is working correctly.

• Never worry about optimizing code that isn’t executed at least thousands of
times per second.

• Addition, subtraction, multiplication, and division are fast, but exponenti-
ation (**) and function calls (such as sqrt) are slow. Therefore, when you
compute the Lennard-Jones force, avoid all uses of exponentiation and of func-
tion calls. Since only even powers of r appear in the force, you can work with
r2 (or better, 1/r2) instead of r. To square or cube a number, just multi-
ply it by itself. Cube 1/r2 to get 1/r6, then square that to get 1/r12. Use
intermediate variables where necessary to avoid repeating calculations.

• To speed up the force calculations even more, don’t bother to compute the
force between two atoms when they’re farther than (say) 3 units apart. (Be
sure to test whether they’re too far apart in a way that avoids calculating a
square root.)

• The singleStep function makes repeated use of the combinations dt/2 and
dt2/2, where dt is the time step. So compute these quantities once and for all
in your program’s initialization section, storing them in global variables.

• A brute-force way to speed up the simulation is to increase dt. Naturally, this
will also increase the truncation error. Don’t try this until later, when you’ll
have a way of checking whether energy is approximately conserved.
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• Graphics can often be a performance bottleneck. In VPython there is overhead
associated with changing any of the attributes of a sphere (or any other
graphics object). That’s why I’ve told you to use the separate variables x

and y for the physics calculations, updating the ball.pos values only once
per animation frame. On the other hand, you still want the animation to be
reasonably smooth if possible, and typically this requires at least 20 or 30
animation frames per second. Try adjusting the number of calculation steps
per animation frame, and see what value seems to give the best results.

• If you want to monitor performance quantitatively, VPython provides a clock

function that returns the current time in seconds. Call it twice and subtract
the values to determine how much time passed in between calls. (Measuring
the performance in this way is optional for this project.)

• Make sure you’re running your code from a well-optimized browser. As of
this writing, both Chrome and Firefox are quite speedy, while Safari, Internet
Explorer, and Edge are significantly slower.

Exercise: Spend some time optimizing the performance of your program, and
describe the effects in the space below. Which changes seem to make the most
difference? After optimizing, how large can you make N and still get reasonably
smooth animation?

GUI controls

Your program still lacks two important features: It doesn’t let you control the
simulation in any way while it is running, and it doesn’t give you any quantitative
data to describe what’s going on. You could add all sorts of features of both types.
Feel free to go beyond what the following instructions require!

Exercise: Add a button to pause and resume the simulation, as in some of your
earlier projects. Test it to make sure it works.

Exercise: Add a pair of buttons to add and remove energy to/from the system.
A good way to do this is to multiply or divide all the velocities by 1.1. Again, test
these buttons to make sure they work.
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Question: Describe what happens when you continually remove energy from the
system. How do the atoms arrange themselves? (Sketch a typical arrangement.)

Question: Describe what happens when you continually add energy to the system.

Exercise: Play with your program some more, perhaps trying different numbers
of atoms, changing the width of the box, and using the buttons to add and remove
energy. Describe at least one other interesting phenomenon that the simulated
atoms exhibit.

Data output

What kind of data should you collect from this simulation? Energy is always a good
place to start.

Exercise: Add wtext objects to your program to display the kinetic energy, po-
tential energy, and total energy. Update these displayed values from your main
simulation loop, once for each animation frame. To compute the kinetic energy,
write a separate function that adds up the kinetic energies of all the atoms and
returns the sum. To compute the potential energy, it’s easiest to add a few lines
of code to your computeAccelerations function, using a global variable to store
the result so you can access it from your main loop. Be sure to include both the
Lennard-Jones intermolecular potential energy and the “spring” potential energy
associated with interactions with the walls (1

2kx
2, where k is the spring constant

and x is the amount of compression). To be absolutely precise, you should add a
small constant to the Lennard-Jones energy to compensate for the fact that you’re
setting the force to zero beyond a certain cutoff distance. After you insert all this
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code, check that the energy values are reasonable. About how much does the total
energy fluctuate? (Because the energy can be positive or negative, please describe
the fluctuation as an absolute amount, not as a percentage.) What about the kinetic
and potential energies? What happens if you increase the value of dt to 0.025?

Another variable of interest is the temperature of the system. For a collection
of N classical particles, the equipartition theorem tells us that each energy term
that is quadratic in a coordinate or velocity (that is, each “degree of freedom”)
has an average energy of 1

2kBT , where kB is Boltzmann’s constant and T is the
temperature. In two dimensions each molecule has only two translational degrees of
freedom (vx and vy), so the average kinetic energy per molecule should be 2 · 1

2kBT .
Thus, in natural units where kB = 1, the temperature is precisely equal to the
average kinetic energy per molecule.

In a macroscopic system with something like 1023 particles, the average kinetic
energy per molecule wouldn’t fluctuate measurably over time. In your much smaller
system, the kinetic energy fluctuates quite a bit. To get a good value of the temper-
ature, therefore, you need to average not only over all the molecules but also over
a fairly long time period. This requires just a little more computation.

Exercise: Add code to your program to compute and display the average tempera-
ture of the system. You’ll need a variable to accumulate the sum of the temperatures
computed at many different times, and another variable to count how many values
have been added into this sum so far. Increment these variables in your main loop
(once per animation frame), then divide to get the average, and display this value
using another wtext object. You’ll need to reset both of these variables whenever
energy is added to or removed from the system. Also add a button that manually
resets the variables. Test your code and check that the results are reasonable.

In a similar way, you can also compute and display the average pressure of the
system. In two dimensions, pressure is defined as force per unit length.

Exercise: Add code to your computeAccelerations function to compute the total
outward force exerted on the walls of the box, and hence the instantaneous pressure
of the system. Store the result in a global variable, and use that variable in your
main simulation loop to compute and display the average pressure over time, just as
you did for the temperature. To check that your results are reasonable, recall that
in the limit of low density (where the distance between molecules is large compared
to their sizes), the pressure is given by the ideal gas law: P = NkBT/V . (In two
dimensions, V is actually an area.) Set N and w so the density of your system is
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reasonably low, add energy until the molecules are behaving like a gas, and compare
the pressure of your system to the prediction of the ideal gas law. Show your data
and calculations below.

Exercise: Add one more button to your program, to print the temperature, pres-
sure, and total energy values (to the screen, separated by tabs) when it is pressed.
This will allow you to record data for later analysis. Check that it works.

Congratulations! Your molecular dynamics simulation program is finished. Now
would be a good time to clean up the code and add more comments if necessary.
Then get ready to use your program for a systematic numerical “experiment.” You’ll
be studying a system of a fixed number of atoms, in a fixed volume, over a wide
range of temperatures. The number of atoms should be at least 200, but feel free
to use more if your computer is fast enough. The volume should be large enough
to give the atoms plenty of space: at least 10 units of volume per atom. Before
you start to take data, fine-tune your program and check that everything is working
correctly.

Exercise: Setting N to at least 200 and the volume to at least 10 units per atom,
use your simulation to determine the energy and pressure as functions of temper-
ature over a wide range of temperatures, from about 0.0001 to 1.0, with enough
intermediate points to produce smooth graphs. Before recording each data point,
be sure to let the system equilibrate long enough to give reasonably stable values of
the temperature and pressure. Also please make some notes to describe the system’s
appearance at various temperatures. Copy your program’s output into a spread-
sheet and use the spreadsheet to plot graphs of E vs. T and P vs. T . Print the data
and graphs and attach them to your lab report. Discuss these graphs in as much
detail as you can, correlating them to your written notes. How does the pressure
compare to the prediction of the ideal gas law? How does the system’s heat capac-
ity behave in the various temperature regions, and how does this behavior relate to
what you learned about heat capacities in introductory physics? (Feel free to write
your answers on the graphs themselves, highlighting the interesting features.)
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Many physical systems, such as the molecules modeled in the previous project, are so
chaotic that the motions might as well be random. But in that case, why should we
even bother to calculate the actual trajectories? For many purposes we can get away
with substituting fictitious “random” behavior for the actual behavior of a system.
Randomness is also an intrinsic property of quantum mechanical measurements, for
instance, of the time when a nucleus decays.

In this project you will write several short computer programs that use computer-
generated “random” numbers to model simple physical systems. Programs that use
random numbers to choose among various possible outcomes are called Monte Carlo
simulations, after the famous European gambling resort.

In this project you will also leave GlowScript/Web VPython behind, and learn to
work in a more traditional Python environment. There is no need for 3D graphics,
or to draw the modeled systems in physical space at all. Nor will you need to
animate the modeled processes, in order to watch them play out in time. Instead
you will accumulate data in lists and then plot the data, all at once, using static
graphs.

A traditional Python environment

The traditional way to use Python is not through a web browser but through a
set of software tools that you install on your local machine. These tools include
the Python interpreter itself, a variety of add-on packages, and software for editing,
launching, and debugging your programs. The possible combinations of these tools
are practically unlimited, and developers are constantly adding to these possibilities,
creating new ways to adapt Python to new uses. Python’s adaptability is both a
blessing and a curse. On one hand, it accounts for much of Python’s popularity
among scientists. On the other hand, it makes it difficult to communicate with
someone whose Python environment is different from your own, and it can make
the initial installation and setup process rather daunting.

To mitigate these difficulties, I recommend that you take advantage of a free
product called the Anaconda Python distribution, which makes many of the most
widely used scientific Python tools available through a single download-install pro-
cess. You may already be using a computer with the Anaconda distribution in-
stalled. To install it on your own computer, point your browser to https://www.

anaconda.com/download/ and follow the instructions. Choose the Python version
3 installer (currently version 3.9). Once the installation process is complete, test it
out by opening the Anaconda Prompt application (on Windows) or the Terminal
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application (on MacOS) and typing python. You should see a message confirming
that you are using Python version 3 as configured by Anaconda. Type exit() to
get out of the Python interpreter and back to the system-level prompt.

To create your Python programs you will also need a text editing application. A
good programmer’s text editor for Windows is Notepad++, which you can download
from https://notepad-plus-plus.org/. A good programmer’s text editor for
MacOS is BBEdit, which you can download from https://www.barebones.com/

products/bbedit/. Many other editing applications will work equally well, so if
you already have a favorite programmer’s text editor, just use that.

Next you’ll want to create a folder on your hard drive to hold your Python
programs. After doing that, launch your text editor and use it to create a Python
program containing the single line of code print("Hello, world!"). Save this
program in your newly created folder under the name Hello.py. Then go back
to your command-line window (Anaconda Prompt or Terminal) and use the cd

command (“change directory”) to navigate to your folder (for example, on Windows,
type something like cd \Users\username\Desktop). Then type python Hello.py

to launch your program, and check that you see the printed greeting.

(There are many things that can go wrong during the process that I’ve just de-
scribed, but it’s hard to describe every possible problem—let alone their solutions—
here in print. If you encounter difficulties, just ask your instructor or some other
expert for help.)

Now that you’re no longer working in the cloud, you’ll also need a way to back
up your programs. I recommend a simple USB stick, but you could also manually
copy your programs to a cloud storage site, or just email them to yourself. Be sure
to back up your work at the end of every coding session!

A traditional Python program

Now that you have some traditional Python infrastructure, let’s talk about how
your programs will differ from the Web VPython programs you’ve been creating.

A trivial difference is that you won’t include the line Web VPython 3.2 at the
top of each program. Instead, just start right off with the usual comments that give
the program name, your name, the date, and what the program does.

The next lines of your program will import whatever Python packages it needs.
In a traditional Python environment you can’t do much at all without packages. In
this project you’ll need three packages:

• math for common math functions like sqrt and exp;

• random for Python’s pseudo-random number generator; and

• matplotlib.pyplot to produce professional-quality graphics.

(Some Python packages are more properly called modules, but I’ll call them all
packages for simplicity.)

https://notepad-plus-plus.org/
https://www.barebones.com/products/bbedit/
https://www.barebones.com/products/bbedit/
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Adding to the confusion, Python provides multiple ways to import a package.
Here are four different ways to import some or all of the math package:

import math # all math functions via "math." prefix

import math as m # all math functions via "m." prefix

from math import * # all math functions with no prefix

from math import sqrt, exp # only certain math functions

In the first case you would say math.sqrt(x) to take the square root of x, while in
the second case you would say m.sqrt(x). In the third and fourth cases you would
just say sqrt(x), as in Web VPython. Although that might seem easiest, it can be
dangerous to import too many functions in this way because their names can start
conflicting with your own functions, and/or with each other.

Here’s the package-importing code that I recommend for the programs you’ll
write in this project:

from math import sqrt, exp, factorial

from random import random

import matplotlib.pyplot as plt

The first line should take care of the math functions you need. I’ll explain the other
two when you’re ready to use them, below.

Once you’ve imported the packages you need, much of your code will look the
same as in Web VPython. But you will not be using any VPython features: no
boxes, spheres, or cylinders; no vectors; and no rate functions to control the speed
of animation loops. (If you ever want to use VPython features from a traditional
Python environment, there is a VPython package that provides these features. It’s
not part of the Anaconda distribution, so you would need to install it as a separate
step. Unfortunately, I’ve found it pretty awkward to use. Fortunately, it is not
needed for this project.)

You’ll also need to adapt to some restrictions that are present in true Python
but not in Web VPython—due to the fact that Web VPython is actually a thin
Python veneer on top of JavaScript:

• Standard Python won’t automatically convert numbers to strings when you
try to combine them with the + symbol, as in print("x = " + x).

• Standard Python doesn’t allow the ! symbol in place of not, as in running

= !running.

• Standard Python won’t let you add an element to a list by simply giving it
an initial value, as in x[1] = 0 (if x[1] doesn’t already exist).

• Standard Python won’t let you use an expression as a list index if that ex-
pression might not evaluate to an integer, as in x[i/2]. But you can say
x[int(i/2)].
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• Standard Python requires that a function definition appear above any code
that calls the function.

With these constraints in mind, let’s now get on with the project.

Computer-generated “random” numbers

The random package provides a function called simply random(), which returns a
“random” real number between 0 and 1 each time it is called. Before using these
numbers in physics simulations, it’s a good idea to get some feel for what they’re
like.

Exercise: Write a short Python program called RandomTest.py that prints (to
the screen) the values of 20 successive numbers returned by random(). Run your
program from the Anaconda Prompt or Terminal window as before. Do the numbers
appear random to you? How can you tell?

Question: If you run your RandomTest program a second time, do you get the
same sequence of numbers, or a different sequence?

Often you’ll want random numbers that span a range other than 0 to 1; a
common need is to choose a random integer within a certain range. Although the
random package provides a separate function for this purpose, it’s often easier to
just multiply the result of random() by n and round down using int(), to obtain
a random integer between 0 and n − 1, inclusive. (The random() function never
returns exactly 1, so when you multiply by n and round down, you’ll never get n.)

Exercise: Add code to your RandomTest program (without deleting the code that’s
already there) to obtain and print the values of 50 random integers (digits) in the
range 0 to 9 inclusive. Count the number of times each digit occurs, and write the
results of your counts below.



Project 6: Random Processes 65

Another common need is to generate random points in some region of space, in
two or more dimensions. To try this out in two dimensions, you can plot the points
using the following code:

plt.plot(x, y, marker="o", markersize=2, color="red",

linestyle="None")

plt.show()

(I’m assuming that you’ve already said import matplotlib.pyplot as plt.) Here
x and y are lists of the points to plot, which you must build in advance; the
matplotlib package is intended for static graphs, not for graphs that you build
up, point by point, as a simulation progresses. By default it will connect the points
with straight line segments, but in the code above I’ve overridden this behavior and
instead told it to use red circles with a width of two printers’ points.

Exercise: Add code to your RandomTest program (without deleting the code that’s
already there) to generate 1000 random real-number (x, y) pairs, with each random
coordinate ranging from 0 to 10, and display them using the graphics code given
above. (Do not round the coordinates to integer values.) Temporarily try omitting
the linestyle="None" option, and try changing the size and color of the mark-
ers. Also try replacing the marker shape code (o) with some of the following:
s v ^ D x +. (To see some of the shapes you’ll need to increase the size.)

Besides the plotting options that you just explored, matplotlib provides a host
of separate functions for adjusting the overall appearance of a graph. Here are
several to try:

plt.axis("scaled")

plt.xlim(0,10)

plt.ylim(0,10)

plt.xticks(range(11))

plt.yticks(range(11))

plt.grid()

plt.title("1000 random points")

plt.xlabel("x")

plt.ylabel("y")

The first of these options forces the scales of the x and y axes to be the same. The
next two lines remove the default buffer region around the edges. The rest, I hope,
are reasonably self-explanatory. To see a complete list of matplotlib functions
and options, you can look at the documentation at https://matplotlib.org/

api/pyplot_summary.html. Just try not to be too horrified by the complexity, or
by the way that whoever wrote the documentation assumes that you’re already an
expert. Poorly written documentation is disturbingly common for Python packages.

Exercise: Insert all of the code lines shown above, between the calls to plt.plot

and plt.show. When you are happy with the appearance of the graph, use the

https://matplotlib.org/api/pyplot_summary.html
https://matplotlib.org/api/pyplot_summary.html
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interactive controls to save it, then open the saved image in another application
and print it. How many points, on average, do you expect to appear in each of
the 100 grid squares of your graph? What are the approximate maximum and
minimum numbers of points that actually appear within the squares? (Please circle
the corresponding squares on your printout.)

Now that you’ve gotten a feel for what the random() function does, here’s the
bad news: The numbers that it returns are not actually random. In fact, each of
these numbers is computed from the previous one in a completely deterministic way.
(The computer’s clock is used to get the sequence started, so you get a different
sequence each time you run the program. If you ever want to get the same sequence
every time, you can do so using the random.seed function.) But the function used
to generate each number from the last is chaotic, so that even a tiny change in
the input produces a substantial change in the output. The function also has the
property that over the long term, it generates numbers that are distributed evenly
throughout the interval from 0 to 1. But the function is not guaranteed to return
numbers that are sufficiently random for all purposes. In particular, despite the
appearance of your plot, this function is not guaranteed to generate evenly dis-
tributed points in higher-dimensional spaces. In recognition of these imperfections,
computer-generated “random” numbers are often called pseudo-random numbers.

In this course we’ll ignore this potential pitfall and assume that the numbers
returned by Math.random are sufficiently random for our purposes. For research-
quality work, however, you should always make sure your pseudo-random number
generator is adequate for the task at hand. For an excellent discussion of this prob-
lem and several examples of much better generators (coded in C++), I recommend
the book Numerical Recipes by Press, et al.

Expansion of a gas

Consider the situation shown in Figure 6.1: A box is divided into two sections of
equal size, separated by a partition. On one side of the partition is a gas of n
molecules; on the other side is a vacuum. We then puncture the partition and allow
the molecules to pass from one side to the other. What happens to the number of
molecules on each side as time passes?

To answer this question we could write a full-blown molecular dynamics simula-
tion. Or we could just recognize that for our purposes the motions will be essentially
random, and say that each of the n molecules has an equal probability of switching
sides during any short time interval.

Exercise: Write a program called TwoBoxes.py to simulate the behavior of this
system. Use the variables n for the total number of molecules and nLeft for the
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Figure 6.1: All the molecules start on the left side of the partition. What happens when
we puncture the partition and let the molecules travel back and forth?

number that are currently on the left side of the box. In each step of “time,” choose
a molecule at random (by generating a suitable random number) and move it to the
other side of the box (by increasing or decreasing nLeft by 1). To determine which
side your randomly chosen molecule is on, you can simply assume that the first
nLeft molecules are on the left and the rest are on the right; then there is no need
to create any lists to represent the molecules. The output of your program should
be a plot of nLeft vs. “time.” This means that you’ll need to build lists of the
values to plot; you might call them tList and nLeftList. Adjust the appearance
of the plot appropriately, being sure give it a suitable title and labels on both axes.
Turn in a printout of this plot for n = 1000.

Question: Why did I put the word “time” in quotes? Can you use this simulation
to determine the amount of time (in seconds) before about half the molecules will
be on each side of the box?

Notice from your simulation that even after roughly half the molecules are on
each side of the box, the number on the left side fluctuates significantly. It’s inter-
esting to study these fluctuations in a little more detail.

Exercise: To study fluctuations around equilibrium, modify your simulation to
start with exactly half of the molecules on each side. Run the simulation for n equal
to 10, 100, and 1000, and in each case, estimate (from the graph) the typical amount
by which nLeft fluctuates away from n/2. Write down these estimated numbers
and discuss them briefly. (There is no need to print these graphs.)
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Exercise: Comment-out the plotting code in your TwoBoxes program, and modify
it to instead create a histogram plot, with nLeft on the horizontal axis and the
number of times that that value of nLeft occurs on the vertical axis. To store
the histogram you’ll need a list whose index runs over all possible values of nLeft.
You can create this list, and initialize all its values to zero, with a statement like
hist = [0] * (n+1). After each step of the simulation, add 1 to the appropriate
element of this list. It’s customary to display the histogram as a bar graph; you
can do this by using the plt.bar function instead of plt.plot. Be sure to give the
plot a title and to label both axes. Run your simulation for n equal to 10, 100, and
1000, and briefly describe the appearance of the histogram plots. (Don’t print any
of these plots yet.)

If you’ve studied a little probability theory, you may have already realized that
over the long term, the probabilities of the various possible nLeft values should be
given by the binomial distribution:

Probability =
1

2n
n!

(nleft!)(n−nleft)!
=

1

2n
n!

(nleft!)(nright!)
. (6.1)

For a sufficiently long run, therefore, the values in your histogram should be ap-
proximately equal to this formula times the number of steps in the simulation.

Exercise: Add a function definition to your program to compute and return the
value of the binomial distribution, as a function of n and nLeft. Use Python’s
built-in factorial function, which is part of the math package. Test your binomial
function in a couple of simple cases, and write the results below.

Exercise: Now use your binomial distribution function to plot the “theoreti-
cal” (long-term average) distribution of nLeft values on your histogram plot. Use
plt.plot for the theoretical distribution, drawing it as a continuous line (no mark-
ers), in a color that contrasts with the histogram bars. To add a legend to the
graph, insert

label="Monte Carlo results"

as a parameter in the plt.bar function call, and insert a similar parameter into
the plt.plot function call. Then, before calling plt.show, insert the function
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call plt.legend(). Run the simulation for n = 10 and 100, with enough “time”
steps to produce reasonably good agreement between the actual and theoretical
distributions. Print the plot for n = 100.

Random walks

Next let us consider the erratic motion of a single microscopic particle. The particle
could be a gas molecule, a dust grain suspended in a fluid, or a conduction electron
in a copper wire. In all these cases the particle collides frequently with neighboring
particles and therefore moves back and forth in a way that appears mostly or entirely
random. Such motion is referred to as a random walk.

The simplest example of a random walk is in one dimension, with steps all the
same size, each step equally likely to be one way or the other. This example is
mathematically similar to the previous simulation of a gas in two boxes.

Exercise: Write a new Python program called RandomWalk.py to model a random
walk in the x direction. During each time step the particle should move one unit of
distance, with a 50-50 chance of moving in the positive or negative direction. Start
the particle at x = 0. Plot a graph of the particle’s position as a function of time for
some fixed number of steps, then repeat the simulation several (20 or more) times
over, plotting all the results on the same graph. (You can do this by simply making
multiple calls to plt.plot, all before calling plt.show.) Describe the results in the
space below, and turn in a printed graph from a typical run of the program. As you
increase the number of steps in the walk, what happens to the typical net distance
traveled?

Exercise: To quantify your answer to the previous question, modify your program
to calculate the root-mean-square (rms) net distance traveled by all of your random
walkers. This is the square root of the average of the squares of the final positions.
After calculating this quantity, simply print it to the screen. Run your program for
several different values of the number of steps in the walk, and record the results
below. Can you guess an approximate formula for the rms displacement as a function
of the number of steps?
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Question: Why not simply compute the average net displacement of the random
walkers, rather than the rms displacement?

Nuclear decay

A classic example of random behavior is nuclear decay. Each radioactive isotope
has a certain intrinsic probability of decaying per unit time. As far as we can tell,
the time when any particular nucleus decays is truly random.

Exercise: Write a new Python program called Decay.py to model the decay of
a collection of n radioactive nuclei of the same isotope. Let the probability of
each nucleus decaying per unit time be 0.001. During each time step, for each
remaining nucleus, generate a random number to determine whether that nucleus
decays. Once you have calculated how many nuclei decay during a given time step,
subtract that number from n and then repeat. Run the simulation long enough for
at least 90% of the nuclei to decay. The output of the program should be a graph
of n vs. time, labeled as usual. Run your program with n initially equal to 100, and
keep a printout of the graph. Repeat for n = 10, 000.

Exercise: Use one of your graphs to determine the approximate half-life of this
isotope, that is, the average time for half of the nuclei to decay. Mark this value on
the graph and write the result below.

Question: When n = 10, 000, how many nuclei do you expect to decay (on average)
during the very first time interval of this simulation? Explain.

Exercise: Write a new simulation program (call it DecayDist.py) to answer the
previous question in more detail. The program should simulate only the very first
time interval of the decay of 10,000 nuclei, where each nucleus has a probability to
decay of 0.001. However, the program should repeat this one-time-interval “exper-
iment” a hundred or more times, and plot a histogram of the results, so you can
see in detail how the actual number of decays tends to fluctuate around the average
expected number.

After a sufficiently large number of trials, the histogram plotted by this program
should take on a well-defined shape. And as you might guess, there is a fairly simple
formula for this shape. If the average expected number of decays is λ, then the
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probability of actually getting k decays is given by the Poisson distribution:

Probability =
1

k!
λk e−λ. (6.2)

Exercise: Using pencil and paper, in the space below, sum the Poisson distribution
over all possible k values, and interpret the result. To carry out the sum, you’ll need
to know the so-called Taylor series for the function ex, so look that up if necessary.

Exercise: Add a function to your DecayDist program to compute and return the
value of the Poisson distribution for any values of k and λ, passed to the function as
parameters. (The name lambda has a special meaning in Python, so you’ll have to
use a different variable name.) Using this function, plot the “theoretical” shape of
your histogram on the same graph as the actual histogram, using a legend to label
the plot as before. Once everything works, print the graph and turn it in with your
lab report.

Congratulations! The computer programs for this project are now complete.
Be sure to check that all of your code is clearly written and adequately com-
mented. Turn in all five programs (RandomTest, TwoBoxes, RandomWalk, Decay,
and DecayDist) as attachments to an email message to your instructor. Then turn
in this lab report with the printed graphs attached at the end, in order.
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Project 7: Final Project

I hope that by now you are anxious to move beyond “canned” projects and apply
what you have learned in this course to something more creative. This final project
is your chance to do just that: You will design and carry out a project of your choice
in computing applied to science. Your project should satisfy the following criteria:

• It should be comparable in size and difficulty to any one of the other scientific
projects you’ve done in this course (Projects 2 through 6).

• It should entail writing at least 150 lines of original computer code. This
could be a single new program, or several shorter programs, or a significant
enhancement to one or more of the programs you’ve already written.

• It should explore a scientific question. This could be another topic in the
physics of motion, forces, and energy, or a topic from some other branch of
physics (electricity, light, quantum physics), or a topic from some other field
in the natural sciences (biology, ecology, epidemiology, geology, atmospheric
science, etc.). Topics from other disciplines (engineering, economics, sociology,
etc.) might also be ok, but only with your instructor’s approval.

• The project’s main goal(s) should be something that you could not feasibly
accomplish without a computer. That is, the project should use computa-
tion in a substantive way. Coming up with a question whose answer requires
some computation but not too much computation can sometimes be surpris-
ingly difficult, so give this issue some careful thought and consult with your
instructor as needed.

• You should put significant effort into analysis and interpretation—not merely
into the computer code. A magnificent piece of code is not by itself an ac-
ceptable project.

• The “deliverables” will be one or more original computer programs, a type-
written paper fully describing the project, and a brief presentation of the
project to the class (described in more detail below).

• You will carry out your final project individually, not with a lab partner.

Although there are unlimited possibilities for projects that meet all these criteria,
there are also many possible pitfalls: ideas for projects that meet most of the criteria,
but critically fail to meet one or more of them. So please read through the list
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again, and make sure you understand all the criteria, before you set your heart on
a particular project idea. All project topics must be approved by your instructor
before you invest any significant time working on them.

You may be able to come up with a great final project topic merely by thinking
creatively. Alternatively, feel free to consult textbooks (such as those listed at the
end of the Preface to this manual) and other sources for ideas.

The use of animated graphics is not a requirement for the project, though it’s
almost always best to present your results in a visual way.

Although you should use the Python language for your coding if possible, you
may use other computing languages or environments if you have a good reason to,
provided that you obtain your instructor’s permission in advance.

Presentation

Please prepare a 5- to 10-minute presentation (depending on the available time) of
the highlights of your project, for the benefit of your classmates. Plan to use your
classroom’s projection system to present the visual components of your project—
either running your simulation(s) live, or showing a few PowerPoint slides, or both.
(There won’t be time to write anything on the board.)

Because of the severe time constraint, your presentation will not be able to
cover everything you did. So think about which parts of your work will be most
interesting to your audience, and focus on those. Visual presentations are usually
more effective than long passages of text or code.

Whether you are using someone else’s computer or your own, it is critical that
you test the equipment in advance to make sure there will not be technical difficulties
with the computer and projection system.

All students are expected to attend all presentations, and to act respectfully
toward each speaker. Questions are encouraged to the extent that time permits. If
you are not used to public speaking that’s just fine; no points will be deducted for
being nervous during your presentation!

Paper

Your paper should be a more complete description of your project. The idea here
is to describe your project in enough detail that a classmate, reading your paper,
could understand what you’ve done and reproduce it without too much difficulty.

I suggest dividing the paper into three main parts:

1. An introduction, in which you explain the goals and motivations of your
project. What question(s) did you try to answer, or what problem(s) did
you try to solve? Why is this project interesting? What scientific background
do you need to explain to the reader?

2. A description of how you carried out the project. Where did you begin? What
were the main obstacles, and how did you overcome them? This will probably
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be the longest part of your paper, but try to hold your reader’s interest by
focusing on the most important issues that arose, rather than methodically
describing everything, step by step. You may or may not find it appropriate
to include some short code fragments, but try to avoid presenting lengthy
amounts of code.

3. Your results. Try to present these as visually as you can, with plenty of
illustrations. Short tables of numerical results are also sometimes appropriate.
Then use words to call attention to the important parts, adding as much
interpretation and insight as you can.

Besides these three main sections, most papers will also include some concluding
remarks at the end (but don’t merely repeat what you’ve already said), and a list
of the references that you used.

There is no mandatory format for citing references, but try to be consistent
and be sure to include the author’s name, title, publisher, and date, unless some
of this information is not available to you. For online references, also include the
exact URL. If you used only a small part of a lengthy reference, please include
enough specifics (chapter, section, page, etc.) to direct the reader to the part that
you actually used.

But merely citing references at the end of your paper is not enough. Your paper
should also be clear at every stage about what sources you used for each piece of
important information, how you used those sources, and what creative elements you
provided yourself. If you obtained any actual code from an outside source you must
say so, and explain fully how you incorporated it into your work.

Sometimes it may be impractical to present all the theory behind your project
in a self-contained way. In that case you’ll need to summarize what you can and
refer the reader to a reference that provides the details.

Again, you should pretend that you’re writing for a classmate. There’s no need
to review material that everyone in this class has learned earlier, but you should
not assume that the reader knows anything about your specific project. Explain
things at the same level of detail that you would want to see if you were reading a
classmate’s paper about a project unfamiliar to you.

Use your best English, with correct spelling, grammar, and punctuation, orga-
nized into good sentences and paragraphs. Please write in whatever tone seems
natural to you, and avoid excessive formality; it’s fine to write in first person. If
you need help with your writing, it is your responsibility to obtain that help in a
timely manner.

There is no rigid rule for the length of your paper, but if you’re finding that
it is less than about eight double-spaced pages (including illustrations), then you
probably haven’t explained your work in enough detail. If it is longer than 12 pages,
then you may be including too much detail (or making illustrations unnecessarily
large).
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