Robotics in STEM EDU in Czech Curriculum

Mgr. Karel Picka, Ph.D.

Department of Technical and Information Education Faculty of Education Masaryk University

There was big change in ICT education i our country in last couple of years

□ After years of stagnation, the national informatics/ICT curriculum (compulsory for all elemtary schools) has changed

- shift from simple user skills to algorithmic thinking, programming, robotics...
- □ in development since 2018, mandatory for all elementary schools from **4.9. 2023**
- However, some schools have been implementing changes for a year or two

There was big change in ICT education i our country in last couple of years

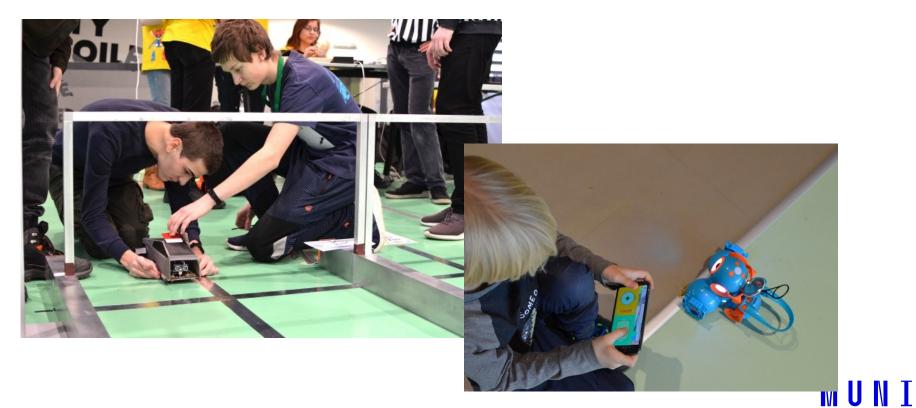
Informatics as a subject in primary schools has also gained more hours in the hourly allocation

Instead of one hour per week, pupils will now encounter 2 to 3 hours per week (depending on whether it is the lower or higher level of elemtary school*)

MUNT

*Lower: 6 – 10 years of age, Higher: 11 – 15 years of age

What was drop out of the curriculum?


Lower Elementary

- **Computer basics** (concepts, hardware, OS, file formats, multimedia, troubleshooting and maintenance, safety and prevention)
- Information retrieval and communication (information flow, communication methods, information retrieval)
- □ Information processing and application (word processing, graphical editor)

Higher elementary

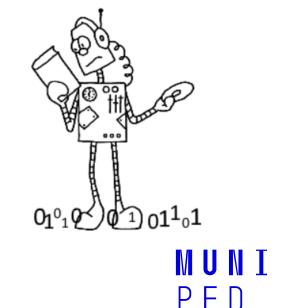
- Information retrieval and communication (ict developments, information verification and value, internet)
- Information processing and use (graphics, spreadsheets, presentations, law and intellectual property)

So, what's new?

PED

5 zápatí prezentace

New curriculum


■New sections of curriculum:

□ 1) DATA, INFORMATION AND (data) MODELLING

2) ALGORITHMISATION AND PROGRAMMING

□ 3) INFORMATION SYSTEMS

□4) DIGITAL TECHNOLOGIES

New curriculum

□ All of these categories are taught at different levels of difficulty across the lower and upper primary levels

For example:

2) ALGORITHMISATION AND PROGRAMMING

□ At the lower elementary level, pupils will meet the very basics of programming in Scratch, step robots (Bee-bot, Vex), etc.

At the upper elementary level, pupils will encounter more demanding programming in Scratch, but also, for example, the development of programmable robots or microcontrollers such as Ozobot, Micro:bit or Arduino

7 zápatí prezentace

New Textbooks for Primary/Secondary Schools

https://imysleni.cz/ucebnice

8

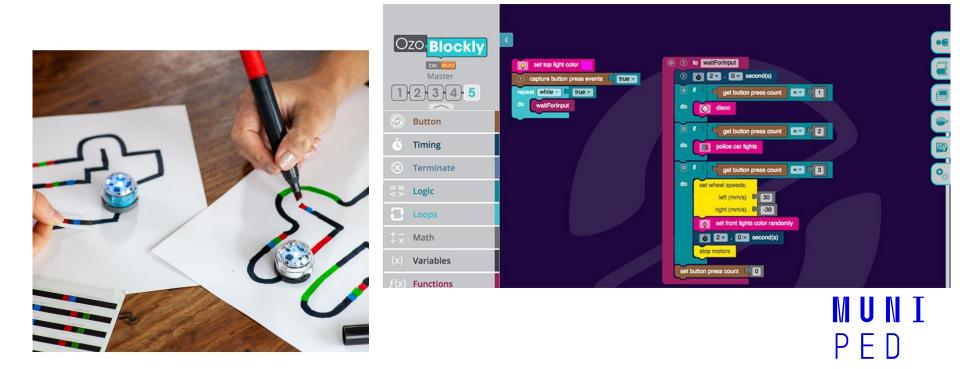
MUNI PED

What can our students encounter?

Lower Elementary Examples of robotics

Bee bot/Blue bot

Step robot
Very easy to handle for younger kids
No need for computer or tablet/smartphone
Can help teach basic algoritmisation even for very young kids
Lot of materials



ΡF

Ozobot

 Can be programmed on paper or via computer/tal
 Can read codes made by colour markers on paper
 Can be programed by visual programming language based on Blockly

□ Programmable via several tablet/phone apps

Uses block programming but also its own interesting visual programming language

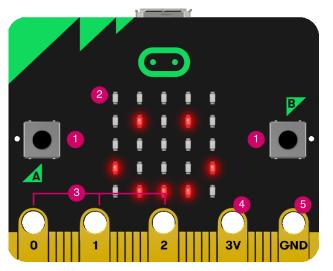
LEGO WeDo has established itself for lower primary schools

□ Today, it is being replaced by other programmable Lego, but an official textbook accredited by the Ministry of Education has been created for the popular WeDo in past two or so years

What can our students encounter?

Upper Elementary Examples of robotics

□ Same as above, but with more focus on programming with higher levels of visual coding and not so much on the paper with markers



Micro:bit

small single-board computer for programming and electronics education

□ includes various sensors, such as an accelerometer, magnetometer, and LED display

Programmable: Micro:bit can be programmed in various programming languages, including Blockly, JavaScript, and Python, making it versatile for use in education at different levels.

LEGO Mindstorms

educational robotics platform that combines hardware, such as programmable bricks and sensors, with a user-friendly programming environment (mostly visual block based)

Mindstorms allows students to engage in hands-on learning, teaching them programming, engineering, and problem-solving skills while building and coding their own robots.

MUNT

Arduino

open-source microcontroller platform that introduces students to the world of electronics and programming
"More challanging" then Micro:bit
Can be use as a good vessel to transfer from visual programming languages to text based (C, C++, MicroPython, Java,...)
Can connect to various hardware and be used to virtually any project the teacher or student can handle

And much more...

Thanks for your attention!

Mgr. Karel Picka, Ph.D. Assistant Professor

MUNI Ped

Masaryk University | Faculty of Education Department of Technical and Information Education A: Poříčí 31 | Brno E: picka@ped.muni.cz

> MUNI PED