

Erasmus+ BIP: Supporting curriculum through integrated STEAM Education practices

Robotics in STEAM Education: A Hands-On Journey with Graph Theory Challenges

Teresa Fernández Blanco Antía Fernández López Cristina Lois Prados

PID2021-122326OB-100

HOW DO KIDS SEE THE FUTURE?

HOW DO "ADULTS" SEE THE FUTURE?

https://youtu.be/G2emilxcHm8

WHAT TECHNOLOGIES HAVE THESE MOVIES PREDICTED?

WHAT TECHNOLOGIES HAVE THESE **MOVIES PREDICTED?**

Hologram

Fingerprint reader Robot + mechanical arm

Android

Exoskeleton

Holographic screen

3D Printing

AI

Rocket

Al Android

Cyber-pregnancy

VR

WHICH IS OUR ROLE AS TEACHERS IN THE FUTURE OF SOCIETY AND TECHNOLOGICAL DEVELOPMENT?

CAN WE IGNORE AS TEACHERS THE TECHNOLOGICAL INCLUSION IN CLASSROOM?

CHALLENGE PRESENTATION

Is it possible nowadays to program an **intelligent home delivery car**?

In the following pictures we can see the city of Brno and an street map of an small part of it We can find an **area full of restaurants** besides **an urban area**

CHALLENGE PRESENTAION

Is it possible nowadays to program an **intelligent home delivery car**?

Do you have any idea about **how to model this situation**?

Urban area

Restaurants zone

• WHICH CONTENTS ARE WE WORKING?

• WHICH OTHER PORPOSALS COULD BE MADE WITH THESE RESOURCES?

INTELLIGENT FOOD DELIVERY CAR (Model formulation)

Is it possible nowadays to program an **intelligent home delivery car**?

Do you have any idea about how to model this situation?

Urban area

Restaurants zone

INTELLIGENT FOOD DELIVERY CAR (Model formulation)

Is it possible nowadays to program an **intelligent home delivery car**?

Do you have any idea about how to model this situation?

Urban area

Restaurants zone

INTELLIGENT FOOD DELIVERY CAR (Model formulation)

Is it possible nowadays to program an **intelligent home delivery car**?

Do you have any idea about how to model this situation?

6

F

Е

10

J

Problem of the Königsberg's bridges

Is it possible to pass throw all the bridges without crossing anyone two times?

Requirement: The path must start and end at the same point.

Kaliningrado, previously Königsberg

Problem of the Königsberg's bridges

Is it possible to pass throw all the bridges without crossing anyone two times?

Requirement: The path must start and end at the same point.

Kaliningrado, previously Königsberg

Euler (1736)

Can you find a Hamiltonian path? Is it the shortest one?

A Hamiltonian path passes throw each vertex exactly once and returns to the departure node

Can you find a Hamiltonian path? Is it the shortest one?

A Hamiltonian path passes throw each vertex exactly once and returns to the departure node

Traveling salesman problem

Given a list of cities (nodes) and the distances (edges) between them, what is the **shortest** possible **path that visits each city (node) exactly once and returns to the departure city**?

Famous because of the contrast between its simple formulation and the difficulty of finding and exact algorithm to solve it

Can you find a "Hamiltonian path"?

Can you find a "Hamiltonian path"?

Can you find a "Hamiltonian path"? Why?

Which is the maximum number of restaurants (nodes) that you can visit without repeating anyone (starting and finishing the route at the blue triangle)?

INTRODUCTION TO GRAPH THEORY Traveling salesman problem (Algorithms)

An **algorithm** is as a **sequence of instructions** that can be used to solve a problem If it provides an **optimal solution** (the most profitable), we say that the **algorithm is exact** If it is **almost optimal** and we control the margin of error, the **algorithm is approximated** If it produces a solution and we don't know how far is from the optimal one, it is **heuristic**

INTRODUCTION TO GRAPH THEORY Traveling salesman problem (Algorithms)

An **algorithm** is as a **sequence of instructions** that can be used to solve a problem If it provides an **optimal solution** (the most profitable), we say that the **algorithm is exact** If it is **almost optimal** and we control the margin of error, the **algorithm is approximated** If it produces a solution and we don't know how far is from the optimal one, it is **heuristic**

ANT'S COLONY OPTIMIZATION ALGORITHM

Coding Adventure: Ant and Slime Simulations (from 9' 8" to 10' 8")

How can you generate a RANDOM "Hamiltonian path"?

How can you generate a RANDOM "Hamiltonian path"?

Random letters generator

Registration of the Hamiltonian path

Urban area

Do you think that we have already found the optimal solution?

What is the probability of succeding with such an small number of iterations?

RANDOM "Hamiltonian path"?

Random letters generator

Registration of the Hamiltonian path

INTELLIGENT FOOD DELIVERY CAR (Coding)

DECISIONS

- How to follow the road
- When there is a crossing, how to know which direction to follow
- How to make stops at food/delivery stations

ROLES

-

- Line-follow team (2 members)
- Programmers (2 members)
 - Enviroment responsable (1 memmber)

TPACK

DIDACTICAL SUITABILITY

ΜΚΤ

SAMR model

REDEFINITION TRANSFORMATION Technology allows us to create new learning activities, previously inconceivable MODIFICATION Technology allows learning activities to be significantly redesigned AUGMENTATION Technology acts as a direct replacement tool, with IMPROVEMENT functional improvement SUBSTITUTION The technology acts as a direct replacement tool, without functional changes

FINAL QUESTIONNARIE BIP

Acknowledgments. Project PID2021-122326OB-100 financed by MCIN/AEI/10.13039/501100011033

