find outliers by the method of inner fences

measurement	Pb concentration
No.	[ng/ml]
1	37.9
2	22.8
3	13.4
4	31.6
5	50.8
6	20.2
7	13.0
8	26.7
9	76.1
10	22.0

find outliers by Grubbs test

Dh	con	COL	ntra	atio	n
Гυ	COL	וככו	IUI C	าเบ	П

	Pb concentration	
	[ng/ml]	measurement No.
	37.9	1
$C = \bar{Y} - Y_{\min}$	22.8	2
$G = \frac{I - I_{\min}}{I}$	13.4	3
s	31.6	4
$C - Y_{\text{max}} - \bar{Y}$	50.8	5
$G = {s}$	20.2	6
	13.0	7
	26.7	8
	76.1	9
	22.0	10

n gcrit α=0.05

- 3 1.1543
- 4 1.4812
- 5 1.7150
- 6 1.8871
- 7 2.0200
- 8 2.1266
- 9 2.2150
- 10 2.2900
- 11 2.3547
- 12 2.4116
- 13 2.4620
- 14 2.5073

Glucose concentration (mmol/L) was repeatedly determined.

4.79

Find the 95%-confidence interval for the population mean according to Student!

5.09 5.46 4.17 4.83	$\left\langle \overline{x} - t_{(\alpha, n^{-1})} * \frac{s}{\sqrt{n}} ; \overline{x} + t_{(\alpha, n^{-1})} * \frac{s}{\sqrt{n}} \right\rangle$
4.50 4.93 4.13 4.62	
5.03 4.54	
5.00 5.68	
5.02	