Compare variances by F-test valpha=0.05

sample 1	sample 2
10,23	12,19
10,3	10,15
11,55	11,2
12,1	12,23
11,11	10,58
12,5	12,65
13,21	13,01
13,65	13,2
12	
10,98	

$$F = \frac{S_1^2}{S_2^2}$$

Equality test

At the beginning of your diploma thesis work, you had obtained replicate measurements "old". After five Test on confidence level alpha=0.05 if the new data are equal to the old ones.

new	old
5,09	5,10
5,46	5,60
4,17	4,60
4,83	5,10
4,50	5,00
4,93	5,60
4,13	4,60
4,62	5,00
5,03	5,40
4,54	4,90
5,00	5,10
5,68	5,90
5,02	5,50
4,79	5,20
	5,20
	5,40
	4,60
	5,10
	4,60

$T=rac{ar{Y_1}-ar{Y_2}}{\sqrt{s_1^2/N_1+s_2^2/N_2}}$
$v = \frac{(s_1^2/N_1 + s_2^2/N_2)^2}{(s_1^2/N_1)^2/(N_1 - 1) + (s_2^2/N_2)^2/(N_2 - 1)}$
where N_1 and N_2 are the sample sizes, \overline{Y}_1 and \overline{Y}_2 are the sample means, and s_2^2 are the sample variances.

If equal variances are assumed, then

$$T = \frac{\bar{Y}_1 - \bar{Y}_2}{s_p \sqrt{1/N_1 + 1/N_2}} \qquad s_p^2 = \frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}$$
$$v = N_1 + N_2 - 2$$

=N =variance =mean ; month you repeated the experiments and got "new".

http://www.itl.nist.gov/div898/handbook/eda/sectio

$$(N_2 - 1)$$

 $ar{Y_2}$ are the sample means, and s_1^2 and

$$\frac{-1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}$$

n3/eda353.htm

Decide, if the two following data sets belong to the same population.

set1	set2	
	12,45	14,41
	16,38	15,10
	17,77	15,11
	18,10	15,46
	18,85	16,84
	19,00	16,99
	19,10	18,10
	19,12	
	19,15	
	19,28	

Grubbs test

set1 n=10			set2
mean	17,9200		mean
stand. dev. (sample)	2,123247		stand. dev. (sample)
T1	2,5762429 T1<2,2900	NOT OK	
T10	0,6405284 T10<2,2900	ОК	T1
			T10
set1 - n=9			
mean	18,5278		
stand. dev. (sample)	0,95709		
T1	2,2440731 T1<2,2150	NOT OK	
Т9	0,785948 T10<2,2150	ОК	
set1 - n=8			
mean	18,7963		
stand. dev. (sample)	0,5527		
T1	1,8566869 T1<2,1266	ОК	
Т8	0,8751983 T10<2,1266	ОК	

12,45 and 16,38 are outliers because T10, respectively T9 values are higher than

F-test

8 7 = N #NAME? #NAME? = variance (var.s) = s^2 18,7963 16,0014 = mean H0: $s_1^2 = s_2^2$ F = #NAME? Fcrit2 = #NAME? = F.INV.RT() F < Fcrit2 >> H0 is accepted => variances are equal

H0: the means of the two samples are practically equal

		n	gcrit α=0.05	
		3	1.1543	
		4	1.4812	
		5	1.7150	
		6	1.8871	There are no outliers in the data set There is exactly one outlier in the data set
16,001429		7	2.0200	The Grubbs' test statistic is defined as:
1,3239767		8	2.1266	$G=rac{\max Y_i-ar{Y} }{s}$
,		9	2.2150	$G = \frac{1}{s}$
,,	к	10	2.2900	
1,5850516 T10<2,0200 O	K	11	2.3547	
		12	2.4116	
		13	2.4620	
		14	2.5073	

Gcrit.

t-test

$$T = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{s_1^2/N_1 + s_2^2/2}}$$

$$v = \frac{(v_1)^2}{(s_1^2/N_1)^2/(N_1)^2}$$

where N_1 and N_2 are the s_2^2 are the sample variance

If equal variances are ass

$$T = \frac{\bar{Y}_{1} - \bar{Y}_{2}}{s_{p}\sqrt{1/N_{1} + 1/2}}$$
$$v = N_{1} + N_{2} - 2$$

dof = 13 degrees of freedom $s^2p = \#NAME?$ T = #NAME? #NAME? Tcrit2 = #NAME? = t.ivn.2t() T > Tcrit2 >> H0 is rejected >> There is difference between new data and old data

>> the data not come from the same population

$$T = \frac{I_1 - I_2}{s_p \sqrt{1/N_1 + 1/2}}$$
$$v = N_1 + N_2 - 2$$

$$T = \frac{Y_1 - Y_2}{\sqrt{s_1^2/N_1 + s_2^2/N_2}}$$
$$v = \frac{(s_1^2/N_1 + s_2^2/N_2)^2}{(s_1^2/N_1)^2/(N_1 - 1) + (s_2^2/N_2)^2/(N_2 - 1)}$$

where N_1 and N_2 are the sample sizes, \overline{Y}_1 and \overline{Y}_2 are the sample means, and s_1^2 and s_2^2 are the sample variances.

If equal variances are assumed, then

$$T = \frac{\bar{Y}_1 - \bar{Y}_2}{s_p \sqrt{1/N_1 + 1/N_2}} \qquad s_p^2 = \frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}$$
$$v = N_1 + N_2 - 2$$

$$T = \frac{Y_1 - Y_2}{s_p \sqrt{1/N_1 + 1/N_2}} \qquad s_p^2 = \frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}$$
$$v = N_1 + N_2 - 2$$

One-sample t-test

A new analytical method for iron determination in blood was introduced. Replicates were obtained Decide, if the new method is reliable.

new reference method method	
11,23	
11,31	Independent one-sample <i>t</i> -test
11,55 $11,11$ $11,14$ $11,45$ $11,21$ $11,65$ $11,95$	In testing the null hypothesis that the population mean $t=\frac{\overline{x}-\mu_0}{\frac{s}{\sqrt{n}}},$ where s is the sample standard deviation of the samp
10,98	

11,11 =true value

I on a sample previously analyzed by a reference method.

an is equal to a specified value μ_{0} , one uses the statistic

ple and n is the sample size. The degrees of freedom used in this test is n - 1.

The normoglycaemia in healthy fasted subjects is considered to be 3.9-5.6 mmol / I. In diabetic pa (which is the target of therapeutic intervention), the range of 6-7 mmol / I is judged satisfactory an An effect of a drug on glycemia (glucoseemia) was tested on 16 subjects. Decide, if the drug has

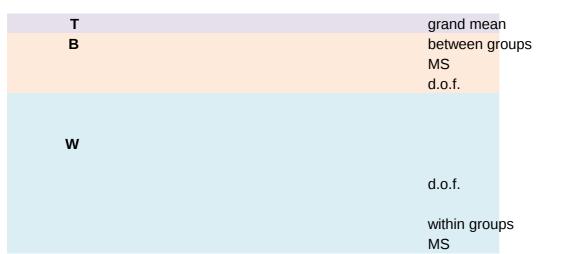
	mmol/l	mmol/l	
	before	after	
1	7,8	3,6	
2	5,8	6,0	
3	6,5	6,3	
4	5,5	6,0	
5	4,8	5,0	
6	7,7	4,0	
7	4,9	7,9	
8	5,1	5,3	
9	6,1	3,6	
10	4,5	6,8	
11	5,8	6,6	
12	3,6	6,3	
13	6,0	7,8	
14	3,8	3,8	
15	6,8	5,8	
16	5,9	3,6	

atients, the fasting range of 4-6 mmol / I is considered to be the optimal fasting blood glucose leve d above 7 mmol / I the unsatisfactory blood glucose level an effect.

I

Three pharmacies recorded their sales during a week. Test, if there is a significant difference.

pharmacy A	pharmacy B	pharmacy C
55	54	47
54	50	53
58	51	49
61	51	50
52	49	46



$$SS_T = \sum_j \sum_i (x_{ij} - \bar{x})^2$$
$$SS_W = \sum_j SS_j = \sum_j \sum_i (x_{ij} - \bar{x}_j)^2$$
$$SS_B = \sum_j n_j (\bar{x}_j - \bar{x})^2$$

?=	
_?/	
_?	

T B W

df	SS	MS
<i>n</i> – 1	$\sum_{j}\sum_{i}(x_{ij}-\bar{x})^2$	$SS_{_{T}}/df_{_{_{T}}}$
<i>k</i> – 1	$\sum_{j} n_{j} (\bar{x}_{j} - \bar{x})^{2}$	SS_{s}/df_{s}
n-k	$\sum_{j}\sum_{i}(x_{ij}-\bar{x}_j)^2$	SS_w/df_w