Compare variances by F-test \alpha=0.05

sample 1	sample 2
10,23	12,19
10,3	10,15
11,55	11,2
12,1	12,23
11,11	10,58
12,5	12,65
13,21	13,01
13,65	13,2
12	
10,98	

$$F = \frac{S_1^2}{S_2^2}$$

Equality test

At the beginning of your diploma thesis work, you had obtained replicate measurements "old". After five Test on confidence level alpha=0.05 if the new data are equal to the old ones.

new	old
5,09	5,10
5,46	5,60
4,17	4,60
4,83	5,10
4,50	5,00
4,93	5,60
4,13	4,60
4,62	5,00
5,03	5,40
4,54	4,90
5,00	5,10
5,68	5,90
5,02	5,50
4,79	5,20
	5,20
	5,40
	4,60
	5,10
	4,60

$$T = \frac{\bar{Y_1} - \bar{Y_2}}{\sqrt{s_1^2/N_1 + s_2^2/N_2}}$$

$$v = \frac{(s_1^2/N_1 + s_2^2/N_2)^2}{(s_1^2/N_1)^2/(N_1 - 1) + (s_2^2/N_2)^2/(N_2 - 1)}$$

where N_1 and N_2 are the sample sizes, $\bar{Y_1}$ and $\bar{Y_2}$ are the sample means, and s_2^2 are the sample variances.

If equal variances are assumed, then

$$T = rac{ar{Y_1} - ar{Y_2}}{s_p \sqrt{1/N_1 + 1/N_2}} \qquad s_p^2 = rac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}$$
 $v = N_1 + N_2 - 2$

=N =variance =mean e month you repeated the experiments and got "new".

http://www.itl.nist.gov/div898/handbook/eda/sectio

$$\sqrt{(N_2-1)}$$

 $ar{Y_2}$ are the sample means, and s_1^2 and

$$\frac{-1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}$$

n3/eda353.htm

Decide, if the two following data sets belong to the same population.

set1	s	et2	Grubbs
	16,38	16,84	
	16,15	15,46	
	19,1	14,41	
	12,45	18,1	
	19,28	16,99	
	20,12	15,11	
	18,85	15,1	
	18,1		
	19		
	17,77		

- 3 1.1543
- 4 1.4812
- 5 1.7150
- 6 1.8871
- 7 2.0200
- 8 2.1266
- 9 2.2150

10 2.2900

- 11 2.3547
- 12 2.4116
- 13 2.4620
- 14 2.5073

$$T = \frac{\bar{Y_1} - \bar{Y_2}}{\sqrt{s_1^2/N_1 + s_2^2/N_2}}$$

$$v = \frac{(s_1^2/N_1 + s_2^2/N_1)^2}{(s_1^2/N_1)^2/(N_1 - 1) + (s_2^2/N_1)^2}$$

where N_1 and N_2 are the sample sizes, s_2^2 are the sample variances.

If equal variances are assumed, then

$$T = \frac{\bar{Y_1} - \bar{Y_2}}{s_p \sqrt{1/N_1 + 1/N_2}} \qquad s_p^2$$

$$v = N_1 + N_2 - 2$$

There are no outliers in the data set
There is exactly one outlier in the data set
The Grubbs' test statistic is defined as:

$$G=rac{\max |Y_i-ar{Y}|}{s}$$

$$rac{ar{Y_1} - ar{Y_2}}{\sqrt{s_1^2/N_1 + s_2^2/N_2}}$$

$$rac{(s_1^2/N_1+s_2^2/N_2)^2}{(s_1^2/N_1)^2/(N_1-1)+(s_2^2/N_2)^2/(N_2-1)}$$

 $m{q}_1$ and N_2 are the sample sizes, $m{ar{Y_1}}$ and $m{ar{Y_2}}$ are the sample means, and $m{s_1^2}$ and $m{s_2^2}$ and $m{s_3^2}$ and

variances are assumed, then

$$rac{ar{Y_1} - ar{Y_2}}{ar{S_p}\sqrt{1/N_1 + 1/N_2}} \qquad s_p^2 = rac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}$$

$$N_1 + N_2 - 2$$

no outliers in the data set actly one outlier in the data set s' test statistic is defined as:

$$\frac{\max|Y_i - \bar{Y}|}{s}$$

One-sample t-test

A new analytical method for iron determination in blood was introduced. Replicates were obtained Decide, if the new method is reliable.

new method	reference method	
11,23	}	
11,31		Independent one-sample t-test
11,55	,	In testing the null hypothesis that the population mea
11,11		
11,14		$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}},$
11,45	j	$\frac{s}{\sqrt{n}}$
11,21		where s is the sample standard deviation of the same
11,65	;	where 3 is the sample standard deviation of the samp
11,95	;	
10,98	3	
	11,11 =true value	

I on a sample previously analyzed by a reference method.
an is equal to a specified value μ_0 , one uses the statistic
to the sample size. The degrees of freedom used in this test is $n-1$.

The normoglycaemia in healthy fasted subjects is considered to be 3.9-5.6 mmol / I. In diabetic pa (which is the target of therapeutic intervention), the range of 6-7 mmol / I is judged satisfactory an An effect of a drug on glycemia (glucoseemia) was tested on 16 subjects. Decide, if the drug has

	mmol/l	mmol/l
	before	after
1	7,8	3,6
2	5,8	6,0
3	6,5	6,3
4	5,5	6,0
5	4,8	5,0
6	7,7	4,0
7	4,9	7,9
8	5,1	5,3
9	6,1	3,6
10	4,5	6,8
11	5,8	6,6
12	3,6	6,3
13	6,0	7,8
14	3,8	3,8
15	6,8	5,8
16	5,9	3,6

atients, the fasting range of 4-6 mmol / I is considered to be the optimal fasting blood glucose leve d above 7 mmol / I the unsatisfactory blood glucose level an effect.

Three pharmacies recorded their sales during a week. Test, if there is a significant difference.

pharmacy A	pharmacy B	pharmacy C
55	54	47
54	50	53
58	51	49
61	51	50
52	49	46

Т	grand mean
В	between groups
	MS
	d.o.f.
W	
	d.o.f.
	u.o.i.
	within groups
	MS

$$SS_{T} = \sum_{j} \sum_{i} (x_{ij} - \bar{x})^{2}$$

$$SS_{W} = \sum_{j} SS_{j} = \sum_{j} \sum_{i} (x_{ij} - \bar{x}_{j})^{2}$$

$$SS_{B} = \sum_{j} n_{j} (\bar{x}_{j} - \bar{x})^{2}$$

$$?= \left[\square \square \right]$$

$$?/ \left[\square \square \right]$$

T

 \boldsymbol{B}

W

df	SS	MS
n - 1	$\sum_{j}\sum_{z} (x_{ij} - \bar{x})^2$	$SS_{_T}/df_{_T}$
k - 1	$\sum_{j} n_{j} (\bar{x}_{j} - \bar{x})^{2}$	SS_s/df_s
n-k	$\sum_{j}\sum_{i}(x_{ij}-\bar{x}_{j})^{2}$	SS_w/df_w