Q-test TEST FOR OUTLIERS (non-parametric)

Q

	ug/l	sorted
1	14.27	
2	13.43	
3	14.25	
4	14.83	
5	14.64	
6	14.09	
7	15.19	
8	12.93	
9	13.94	
10	11.20	
	alpha=	
	range=	
	Qcrit=	

H0					
----	--	--	--	--	--

N	Q _{orit} (CL:90%)	Q _{orit} (CL:95%)	Q _{orit} (CL:99%)
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

Confidence interval

for MEDIAN (non-parametric distributions)

Find 95%-confidence interval of medians for both samples A and B:

species A species B 16 34 32 36

52	50
37	38
39	45
40	50
41	54
42	56
50	59
82	69
	91

n	j			
$n \leq 5$: no confidence inte				
6	1			
7	1			
8	1			
9	2			
10	2			
11	2			
12	3			
13	3			
14	3			
15	4			
16	4			
17	5			
18	5			
19	5			
20	6			
	-			

k	p			
erval possible.				
6	0.969			
7	0.984			
7	0.961			
8	0.961			
9	0.979			
10	0.988			
10	0.961			
11	0.978			
11	0.965			
12	0.965			
12	0.951			
13	0.951			
14	0.969			
15	0.981			
15	0.959			

Wilcoxon signed-rank test FOR PAIRS (DEPENDENT SAMPLES)

A new drug for blood pressure correction was tested on 9 patients. The pressure was measured before and after application. Decide, if there is an effect of the drug!

$$W = min (W^+; W^-)$$

after	84	75	88	91	85	65	71
before	97	72	93	110	95	78	69

differences

abs

rank

·)

90	75
115	75

alpha=0.05				
n	one-tailed	double-tailed		
6	2	0		
7	3	2		
8	5	3		
9	8	5		
10	10	8		
11	13	10		
12	17	13		
13	21	17		
14	25	21		
15	30	25		
16	35	30		
17	41	35		
18	47	40		
19	53	46		
20	60	52		
21	67	59		
22	75	66		
23	83	73		
24	91	81		
25	100	89		

Mann-Whitney U-test

There were selected 11 fields of similar quality. On 5 randomly selected fields a new fertilizer was tested. Yields of wheat obtained in August were: 5.1, 6.7, 5.6, 6.3, 5.9 t/ha and 4.5, 5.4, 4.8, 4.4, 5.3, 5.0 t/ha, r Find, if the fertilizer has an effect.

fertilizer	no fertil.
5.1	4.5
6.7	5.4
5.6	4.8
6.3	4.4
5.9	5.3

5.0

 $U = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1$

n1\ ⁿ²	2
2	
3	
4	
5	0
6	0
7	0
8	1
9	1
10	1
11	1
12	2
13	2
14	2
15	3
16	3
17	3
18	4
19	4
20	4

d, the rest was kept without the fertilizer. esp.

3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		0	0	0	1	1	1	1	2	2	2	3	3	3	4	4	4
	0	1	2	2	3	3	4	5	5	6	7	7	8	9	9	10	11
0	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17	18
1	2	4	5	6	8	9	11	12	13	15	16	18	19	20	22	23	25
2	3	5	7	8	10	12	14	16	17	19	21	23	25	26	28	30	32
2	4	6	8	11	13	15	17	19	21	24	26	28	30	33	35	37	39
3	5	8	10	13	15	18	20	23	26	28	31	33	36	39	41	44	47
3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54
4	7	11	14	17	20	24	27	31	34	37	41	44	48	51	55	58	62
5	8	12	16	19	23	27	31	34	38	42	46	50	54	57	61	65	69
5	9	13	17	21	26	30	34	38	42	47	51	55	60	64	68	72	77
6	10	15	19	24	28	33	37	42	47	51	56	61	65	70	75	80	84
7	11	16	21	26	31	36	41	46	51	56	61	66	71	77	82	87	92
7	12	18	23	28	33	39	44	50	55	61	66	72	77	83	88	94	100
8	14	19	25	30	36	42	48	54	60	65	71	77	83	89	95	101	107
9	15	20	26	33	39	45	51	57	64	70	77	83	89	96	102	109	115
9	16	22	28	35	41	48	55	61	68	75	82	88	95	102	109	116	123
10	17	23	30	37	44	51	58	65	72	80	87	94	101	109	116	123	130
11	18	25	32	39	47	54	62	69	77	84	92	100	107	115	123	130	138

Kruskal-Wallis test

In 3 samples of crude oils, Ni was determined by AAS. Decide (applying Kruskal-Wallis test), if there is a significant difference among the samples.

Sample							10	(\mathbf{p}^2)
1	14.2	16.8	19.1	15.5	16	15.9	$\boldsymbol{\mu} = \boldsymbol{\mu}$	$ \mathbf{K}_1 $
2	14.5	20	18	15.4	16.1	17.7	$II = \frac{1}{n(n+1)}$	1) 1
3	18.3	20.1	17.7	17.9	19.3	16.9	n(n+1)	$n \setminus n_1$

alpha=0.05

$$H = \frac{12}{n(n+1)} \left(\frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \dots + \frac{R_k^2}{n_k} \right) - 3(n+1)$$

6	4	3	5.610
6	4	4	5.681
6	5	1	4.990
6	5	2	5.338
6	5	3	5.602
6	5	4	5.661
6	5	5	5.729
6	6	1	4.945
6	6	2	5.410
6	6	3	5.625
6	6	4	5.725
6	6	5	5.765
6	6	6	5.801
7	7	7	5.819
8	8	8	5.805

NON-PARAMETRIC

	data	sorted	Q	
1	32.56	30.10	0.35	< 0,526
2	35.14	32.56		
3	34.10	33.33		_
4	33.33	34.10		Q _{eyn} =
5	37.10	34.45		0.0
6	34.45	35.12		
7	35.12	35.14		
8	30.10	37.10	0.28	< 0,526

Q-test

alpha: 0.05	
range: 7.00	
Qcritical: 0.526	OK

x ₂ - x _N -	-x ₁ -x ₁	Q _e ;	$x_{\rm N} = \frac{{\bf X}_{\rm N}}{{\bf X}_{\rm N}}$	- x _{N-1} - x ₁
	N	Q _{orit} (CL:90%)	Q _{orit} (CL:95%)	Q _{orit} (CL:99%)
	3	0.941	0.970	0.994
	4	0.765	0.829	0.926
	5	0.642	0.710	0.821
	6	0.560	0.625	0.740
	7	0.507	0.568	0.680
	8	0.468	0.526	0.634
	9	0.437	0.493	0.598
sent	10	0.412	0.466	0.568

H0: Accepted. There is no outlier present

Confidence interval estimation

	data	sorted
1	32.56	30.10
2	35.14	32.56
3	34.10	33.33
4	33.33	34.10
5	37.10	34.45
6	34.45	35.12
7	35.12	35.14
8	30.10	37.10

count: 8 95% CI = <30,10;35,14>

n	j	k	p			
$n \leq$	$n \leq 5$: no confidence interval possible.					
6	1	6	0.969			
7	1	7	0.984			
8	1	7	0.961			
9	2	8	0.961			
10	2	9	0.979			
11	2	10	0.988			
12	3	10	0.961			
13	3	11	0.978			
14	3	11	0.965			
15	4	12	0.965			
16	4	12	0.951			
17	5	13	0.951			
18	5	14	0.969			
19	5	15	0.981			
20	6	15	0.959			

Conclusion: In my opinion in this case is better Student's CI because it is more acuracy than CI estimatic

PARAMETRIC					_	_
	data	sorted	G		n	g cri
1	32.56	30.10	1.8745	< 2,1266		α=(
2	35.14	32.56			3	1.1
3	34.10	33.33			4	1.4
4	33.33	34.10				47
5	37.10	34.45			5	1.7
6	34.45	35.12			6	1.8
7	35.12	35.14			7	20
8	30.10	37.10	1.5008	< 2,1266	8	2.1
					9	2.2
Grubbs test					10	2.2
mea	in: 33.9875				11	22
stand. dev. (sample	e): 2.0739					2.5
Gcritica	al: 2.1266	OK			12	2.4
					13	2.4
F	I0: Accepted.	There is no ou	itlier presen	nt	14	2.5

Student's confident interval

	data	sorted
1	32.56	30.10
2	35.14	32.56
3	34.10	33.33
4	33.33	34.10
5	37.10	34.45
6	34.45	35.12
7	35.12	35.14
8	30.10	37.10

```
count = 8 <u>https://www.youtube.com/watch?v.</u>

mean = 33.99

stand. dev. (sample) = 2.0739

v = n - 1

v = 8 - 1

v = 7

alpha/2 = 0.025

tv;alpha/2 = 2.3646

95% CI = mean +/- tv;alpha/2 * (stand. dev. (sample) / SQUARE(count))

95% CI = 33,99 +/- 1.7338

32.254

35.721

95% CI = <32,254;35,721>
```

on. Non-parametric is much more suitable when we don't know distribution data.

it 0.05	
543	
812	
150	
871	There are no outliers in the data set
200	There is exactly one outlier in the data set
266	The Grubbs' test statistic is defined as:
150	$G=rac{\max Y_i-Y }{s}$
900	
547	
116	
620	
073	

=MUD390jtgQs