Example: Ice Cream Sales

The local ice cream shop keeps track of how much ice cream they sell versus the temperature of that day for t Formulate a null hypothesis and verify it by Pearsons and Spearman coefficients

Temperature	Ice Cream
(°C)	Sales (\$)
14.2	215
16.4	325
11.9	185
15.2	332
18.5	406
22.1	522
19.4	412
25.1	614
23.4	544
18.1	421
22.6	445
17.2	408

he last 12 days:

$$rs = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$

n\ ^a	0.2	0.1	0.05	
4	1.000	1.000	_	
5	0.800	0.900	1.000	
6	0.657	0.829	0.886	
7	0.571	0.714	0.786	
8	0.524	0.643	0.738	
9	0.483	0.600	0.700	
10	0.455	0.564	0.648	
11	0.427	0.536	0.618	
12	0.406	0.503	0.587	
13	0.385	0.484	0.560	
14	0.367	0.464	0.538	
15	0.354	0.446	0.521	
16	0.341	0.429	0.503	
17	0.328	0.414	0.488	

$$= \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

Pearson One-Tailed Test			
r crit.	.05	.025	.01
	Tv	vo-Tailed Test	
df	.10	.05	.02
1	.988	.997	.9995
2	.900	.950	.980
3	.805	.878	.934
4	.729	.811	.882
5	.669	.754	.833
6	.622	.707	.789
7	.582	.666	.750
8	.549	.632	.716
9	.521	.602	.685
10	.497	.576	.658

0.02	0.01	n\α	0.2	0.1	0.05	0.02	0.01
		18	0.317	0.401	0.472	0.550	0.600
1.000	_	19	0.309	0.391	0.460	0.535	0.584
0.943	1.000	20	0.299	0.380	0.447	0.522	0.570
0.893	0.929	21	0.292	0.370	0.436	0.509	0.556
0.833	0.881	22	0.284	0.361	0.425	0.497	0.544
0.783	0.833	23	0.278	0.353	0.416	0.486	0.532
0.745	0.794	24	0.271	0.344	0.407	0.476	0.521
0.709	0.755	25	0.265	0.337	0.398	0.466	0.511
0.678	0.727	26	0.259	0.331	0.390	0.457	0.501
0.648	0.703	27	0.255	0.324	0.383	0.449	0.492
0.626	0.679	28	0.250	0.318	0.375	0.441	0.483
0.604	0.654	29	0.245	0.312	0.368	0.433	0.475
0.582	0.635	30	0.240	0.306	0.362	0.425	0.467
0.566	0.618		rho cr	itical valu	es for 2-tai	led test	

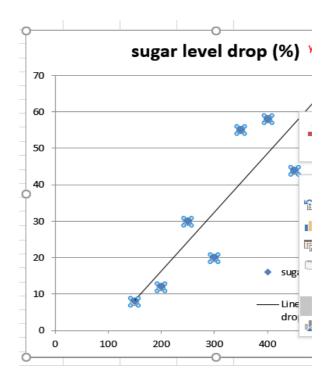
age (yrs)	price/1000 Kč
3	167
4	165
5	139
6	149
7	119
7	129
8	89
8	115
9	76
9	89

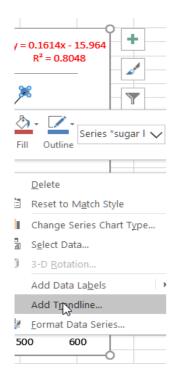
Here is a pricelist of used 10 cars Skoda Felicia Combi

- 1. pressume normal distribution of the data
- 2. construct a simple regression model how the price depends on the
- 3. evaluate quality of the model
- 4. estimate a price of a ten-year-old Felicia Combi

A new kind of insulin was developed. Its effect was tested as a drop of sugar level in blood 2 hours after the injection application.

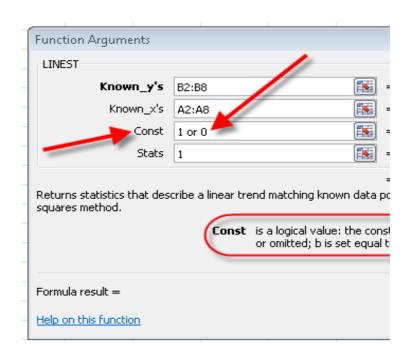
8 Randomly selected patients were dozed with different insulin amounts. Results are in the table:

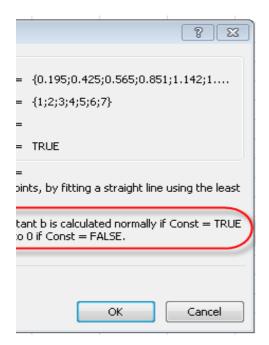

Prove a strong correlation and plot a graph of regression residua

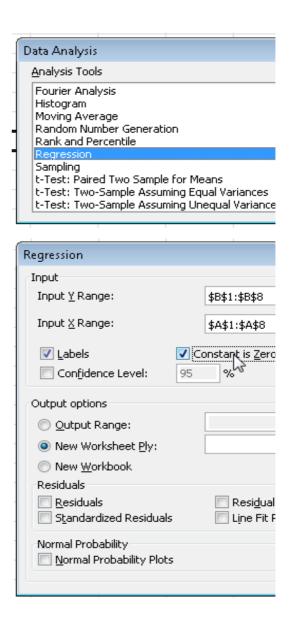

insuline amount (ug) sugar level drop (%)

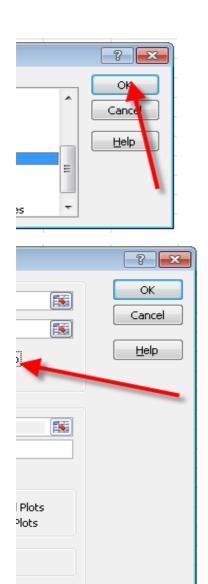
150	200	250	300	350	400
8	12	30	20	55	58

als!


450	500
44	65






concentration	signal
1	0.195
2	0.425
3	0.565
4	0.851
5	1.142
6	1.198
7	1.530

HOW TO FORCE Const a=0

