set1	se	t2	set1		set2
16	5.38	16.84		16.38	16.84
19	9.15	15.46		19.15	15.46
2	l9.1	14.41		19.1	14.41
19	9.28	18.1		12.45	18.1
19	9.12	16.99		19.28	16.99
18	3.85	15.11		19.12	15.11
2	l8.1	15.1		18.85	15.1
	19			18.1	
17	7.77			19	
				17.77	

This chart isn't available in your $\boldsymbol{\nu}$ Excel.

Editing this shape or saving this v into a different file format will permanently break the chart.

OUTLIER:12.45

9 7 N=

0.9160 1.7529 VARIANCE= 18.52778 16.0014 MEAN=

HO: both variances are equal

F= 1.913621

Fcrit2= 5.599623 HO: is accepted=variances ar equal

d.o.f= 14 T= 4.44019

Tcrit2= 2.144787

T>Tcrit2 HO is reject

rersion of

vorkbook

$$T = \frac{\bar{Y_1} - \bar{Y_2}}{\sqrt{s_1^2/N_1 + s_2^2/N_2}}$$

$$v = \frac{(s_1^2/N_1 + s_2^2/N_2)^2}{(s_1^2/N_1)^2/(N_1 - 1) + (s_2^2/N_2)^2/(N_2 - 1)}$$

where N_1 and N_2 are the sample sizes, $\bar{Y_1}$ and $\bar{Y_2}$ are the sample means, and s_1^2 and s_2^2 are the sample variances.

If equal variances are assumed, then

$$T = \frac{\bar{Y_1} - \bar{Y_2}}{s_p \sqrt{1/N_1 + 1/N_2}} \qquad s_p^2 = \frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}$$

$$v = N_1 + N_2 - 2$$

1.274689

ted