Spearman correlation - admission

During the admission procedure, the evaluation was performed by commissions and by a specia Based on the ranking of the ten students, decide whether both assessments are dependent.

Student	Α	B	С	D	Ε	F	G
commission grade	4	6	1	5	10	2	7
program grade	1	3	5	7	8	4	6
difference							
difference squared							

H0....correlation between the two grading =0

H1....correlation between the two grading <>0

ıl program.

Η	Ι	J
3	9	8
2	10	9

$$rs = 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n^{3} - n}$$

	<i>۱</i> /۵		0.2		0.1		0.05		0.02	
	4	1	000	1	.000		0.05		0.02	
	4		800		.900	1	.000	1	.000	
	6		657		.829		.886		.943	1
	7		571	_	.714		.786		.893	0.
	8		524		.643		.738		.833	0.
	9		483	_	.600		.700		.783	0.
	10		455	0	.564		.648		.745	0.
	11	0.	427	0	.536	0	.618	0	.709	0.
	12	0.	406	0	.503	C	.587	0	.678	0.
	13	0.	385	0	.484	0	.560	0	.648	0.
	14	0.	367	0	.464	C	.538	0	.626	0.
	15	0.	354	0	.446	C	.521	0	.604	0.
	16	0.	341	0	.429	C	.503	0	.582	0.
	17	0.	328	0	.414	C	.488	0	.566	0.
n\ ^α		0.1		0.05		0.02		0.01		n\ ^a
n\ ^α 4		0.1 1.000		0.05 1.000		0.02		0.01	_	n\ ^α 18
_						0.02 — 1.000		0.01 — 1.000	_	
4		1.000		1.000		_		_		18
4 5		1.000 0.800		1.000 0.900				_ 1.000		18 19
4 5 6		1.000 0.800 0.657		1.000 0.900 0.829		 1.000 0.886				18 19 20
4 5 6 7		1.000 0.800 0.657 0.571		1.000 0.900 0.829 0.714		 1.000 0.886 0.786		 1.000 0.943 0.893		18 19 20 21
4 5 6 7 8		1.000 0.800 0.657 0.571 0.524		1.000 0.900 0.829 0.714 0.643						18 19 20 21 22 23 24
4 5 6 7 8 9		1.000 0.800 0.657 0.571 0.524 0.483		1.000 0.900 0.829 0.714 0.643 0.600				 1.000 0.943 0.893 0.833 0.783		18 19 20 21 22 23
4 5 7 8 9 10 11 11		1.000 0.800 0.657 0.571 0.524 0.483 0.483 0.455 0.427 0.406		1.000 0.900 0.829 0.714 0.643 0.600 0.564 0.536 0.503				 1.000 0.943 0.893 0.833 0.783 0.785		18 19 20 21 22 23 24 25 26
4 5 6 7 8 9 10 11 12 13		1.000 0.800 0.657 0.571 0.524 0.483 0.455 0.455 0.427 0.406 0.385		1.000 0.900 0.829 0.714 0.643 0.600 0.564 0.536 0.503 0.484						18 19 20 21 22 23 24 25 26 26 27
4 5 7 8 9 10 11 12 13 14		1.000 0.800 0.657 0.571 0.524 0.483 0.455 0.427 0.427 0.406 0.385 0.367		1.000 0.900 0.829 0.714 0.643 0.600 0.564 0.536 0.536 0.503 0.484 0.464				- 1.000 0.943 0.893 0.833 0.783 0.783 0.745 0.709 0.678 0.648 0.626		18 19 20 21 22 23 24 25 26 27 28
4 5 6 7 8 9 10 11 12 13		1.000 0.800 0.657 0.571 0.524 0.483 0.455 0.455 0.427 0.406 0.385 0.367 0.354		1.000 0.900 0.829 0.714 0.643 0.600 0.564 0.564 0.536 0.503 0.484 0.464 0.446						19 20 21 22 23 24 25 26 27
4 5 7 8 9 10 11 12 13 14		1.000 0.800 0.657 0.571 0.524 0.483 0.455 0.427 0.427 0.406 0.385 0.367		1.000 0.900 0.829 0.714 0.643 0.600 0.564 0.536 0.536 0.503 0.484 0.464				- 1.000 0.943 0.893 0.833 0.783 0.783 0.745 0.709 0.678 0.648 0.626		18 19 20 21 22 23 24 25 26 27 27 28

0.01	n\	0.2	0.1	0.05	0.02	0.01
_	18	0.317	0.401	0.472	0.550	0.600
_	19	0.309	0.391	0.460	0.535	0.584
.000	20	0.299	0.380	0.447	0.522	0.570
.929	21	0.292	0.370	0.436	0.509	0.556
.881	22	0.284	0.361	0.425	0.497	0.544
.833	23	0.278	0.353	0.416	0.486	0.532
.794	24	0.271	0.344	0.407	0.476	0.521
.755	25	0.265	0.337	0.398	0.466	0.511
.727	26	0.259	0.331	0.390	0.457	0.501
.703	27	0.255	0.324	0.383	0.449	0.492
.679	28	0.250	0.318	0.375	0.441	0.483
.654	29	0.245	0.312	0.368	0.433	0.475
.635	30	0.240	0.306	0.362	0.425	0.467
.618		rho cr	itical valu	es for 2-tai	led test	

0.1	0.05	0.02	0.01				
0.317	0.401	0.472	0.550				
0.309	0.391	0.460	0.535				
0.299	0.380	0.447	0.522				
0.292	0.370	0.436	0.509				
0.284	0.361	0.425	0.497				
0.278	0.353	0.416	0.486				
0.271	0.344	0.407	0.476				
0.265	0.337	0.398	0.466				
0.259	0.331	0.390	0.457				
0.255	0.324	0.383	0.449				
0.250	0.318	0.375	0.441				
0.245	0.312	0.368	0.433				
0.240	0.306	0.362	0.425				
rho cri	rho critical values for 1-tailed test						

Test1	Test2
80	65
50	60
36	35
58	39
72	48
60	44
56	48
68	61

You are given test results (points) from two subjects of 8 randomly selected Determine the correlation of a linear dependence of these results by the SI

$$rs = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

d students. pearman and Pearson coefficients.

n\	0.2	0.1	0.05	0.02	0.01	n\a	0.2	0.1
4	1.000	1.000	_	_	_	18	0.317	0.401
5	0.800	0.900	1.000	1.000	_	19	0.309	0.391
6	0.657	0.829	0.886	0.943	1.000	20	0.299	0.380
7	0.571	0.714	0.786	0.893	0.929	21	0.292	0.370
8	0.524	0.643	0.738	0.833	0.881	22	0.284	0.361
9	0.483	0.600	0.700	0.783	0.833	23	0.278	0.353
10	0.455	0.564	0.648	0.745	0.794	24	0.271	0.344
11	0.427	0.536	0.618	0.709	0.755	25	0.265	0.337
12	0.406	0.503	0.587	0.678	0.727	26	0.259	0.331
13	0.385	0.484	0.560	0.648	0.703	27	0.255	0.324
14	0.367	0.464	0.538	0.626	0.679	28	0.250	0.318
15	0.354	0.446	0.521	0.604	0.654	29	0.245	0.312
16	0.341	0.429	0.503	0.582	0.635	30	0.240	0.306
17	0.328	0.414	0.488	0.566	0.618		rho cr	itical va

Pearsor	1 O I	ne-Tailed Test					
r crit.	.05	.025	.01				
Two-Tailed Test							
df	.10	.05	.02				
1	.988	.997	.9995				
2	.900	.950	.980				
3	.805	.878	.934				
4	.729	.811	.882				
5	.669	.754	.833				
6	.622	.707	.789				
7	.582	.666	.750				
8	.549	.632	.716				
9	.521	.602	.685				
10	.497	.576	.658				

0.05	0.02	0.01
0.472	0.550	0.600
0.460	0.535	0.584
0.447	0.522	0.570
0.436	0.509	0.556
0.425	0.497	0.544
0.416	0.486	0.532
0.407	0.476	0.521
0.398	0.466	0.511
0.390	0.457	0.501
0.383	0.449	0.492
0.375	0.441	0.483
0.368	0.433	0.475
0.362	0.425	0.467
s for 2-tai	iled test	

Data displays the association between the IQ of 10 adolescent in a sample with the number of hours they lister Determine the strength of the correlation between IQ and rock music using both the Pearson's correlation coef

IQ	Rock m.
99	2
120	0
98	25
102	45
123	14
105	20
85	15
110	19
117	22
90	4

rank IQ rank rock d

$$rs = 1 - \frac{6\sum_{i=1}^{n} e_{i-1}}{n^3 - i}$$

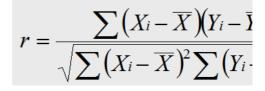
n\ ^a	0.2	0.1	0.05	0.02	0.0
4	1.000	1.000	_	_	
5	0.800	0.900	1.000	1.000	
6	0.657	0.829	0.886	0.943	1.00
7	0.571	0.714	0.786	0.893	0.92
8	0.524	0.643	0.738	0.833	0.88
9	0.483	0.600	0.700	0.783	0.83
10	0.455	0.564	0.648	0.745	0.75
11	0.427	0.536	0.618	0.709	0.75
12	0.406	0.503	0.587	0.678	0.72
13	0.385	0.484	0.560	0.648	0.70
14	0.367	0.464	0.538	0.626	0.67
15	0.354	0.446	0.521	0.604	0.65
16	0.341	0.429	0.503	0.582	0.63
17	0.328	0.414	0.488	0.566	0.61

n to rock music per month. ficient and Spearman's rank correlation. Compare the results.

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

01	n\	0.2	0.1	0.05	0.02	0.01
_	18	0.317	0.401	0.472	0.550	0.600
-	19	0.309	0.391	0.460	0.535	0.584
80	20	0.299	0.380	0.447	0.522	0.570
29	21	0.292	0.370	0.436	0.509	0.556
81	22	0.284	0.361	0.425	0.497	0.544
33	23	0.278	0.353	0.416	0.486	0.532
94	24	0.271	0.344	0.407	0.476	0.521
i5	25	0.265	0.337	0.398	0.466	0.511
27	26	0.259	0.331	0.390	0.457	0.501
13	27	0.255	0.324	0.383	0.449	0.492
79	28	0.250	0.318	0.375	0.441	0.483
54	29	0.245	0.312	0.368	0.433	0.475
5	30	0.240	0.306	0.362	0.425	0.467
18		rho cr	itical valu	es for 2-tai	led test	

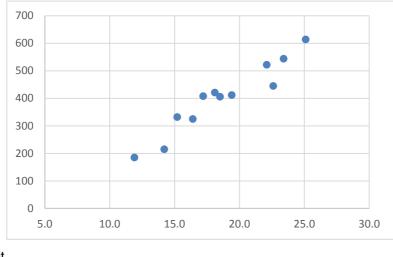
One-Tailed Test				
	.05 .025			
	Two	o-Tailed Test	_	
df	.10	.05	.02	
1	.988	.997	.9995	
2	.900	.950	.980	
3	.805	.878	.934	
4	.729	.811	.882	
5	.669	.754	.833	
6	.622	.707	.789	
7	.582	.666	.750	
8	.549	.632	.716	
9	.521	.602	.685	
10	.497	.576	.658	


Example: Ice Cream Sales

The local ice cream shop keeps track of how much ice cream they sell versus the temperature of tha Formulate a null hypothesis and verify it by Pearsons and Spearman coefficients

Temperature (°C)	Ice Cream Sales (\$)		
14.2	215		
16.4	325		
11.9	185		
15.2	332		
18.5	406		
22.1	522		
19.4	412		
25.1	614		
23.4	544		
18.1	421		
22.6	445		
17.2	408		

$$rs = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$


rank temp.	rank sales	difference
	Tallik Sales	unerence
11	11	0
9	10	-1
12	12	0
10	9	1
6	8	-2
4	3	1
5	6	-1
1	1	0
2	2	0
7	5	2
3	4	-1
8	7	1
		14
		0.915152

18.7 402.4167

			diff.x*diff.y
Differences	-4.5	-187.417	838.6896
	-2.3	-77.4167	176.1229
	-6.8	-217.417	1472.998
	-3.5	-70.4167	244.6979
	-0.2	3.583333	-0.627083
	3.4	119.5833	409.5729
	0.7	9.583333	6.947917
	6.4	211.5833	1359.423
	4.7	141.5833	668.9813
	-0.6	18.58333	-10.68542
	3.9	42.58333	167.1396
	-1.5	5.583333	-8.235417
	176.9825	174754.9	5325.025

It day for the last 12 days:

rs>crit crit(0.05)= H0 is rejected

0.587

sumsq.

rs

 $\left(\overline{Y}\right)$ $\overline{\overline{Y}}^{2}$

Pearson One-Tailed Test				
r crit.	.05	.025	.01	
	Tw	o-Tailed Test		
df	.10	.05	.02	
1	.988	.997	.9995	
2	.900	.950	.980	
3	.805	.878	.934	
4	.729	.811	.882	
5	.669	.754	.833	
6	.622	.707	.789	
7	.582	.666	.750	
8	.549	.632	.716	
9	.521	.602	.685	
10	.497	.576	.658	

r=	0.957507
d.o.f=	10
alpha=	0.05

critical(2) 0.576 H0 is rejected r>critical

0.2	0.1	0.05	0.02	0.01	n\	0.2	0.1	0.05
1.000	1.000	_		_	18	0.317	0.401	0.472
0.800	0.900	1.000	1.000	_	19	0.309	0.391	0.460
0.657	0.829	0.886	0.943	1.000	20	0.299	0.380	0.447
0.571	0.714	0.786	0.893	0.929	21	0.292	0.370	0.436
0.524	0.643	0.738	0.833	0.881	22	0.284	0.361	0.425
0.483	0.600	0.700	0.783	0.833	23	0.278	0.353	0.416
0.455	0.564	0.648	0.745	0.794	24	0.271	0.344	0.407
0.427	0.536	0.618	0.709	0.755	25	0.265	0.337	0.398
0.406	0.503	0.587	0.678	0.727	26	0.259	0.331	0.390
0.385	0.484	0.560	0.648	0.703	27	0.255	0.324	0.383
0.367	0.464	0.538	0.626	0.679	28	0.250	0.318	0.375
0.354	0.446	0.521	0.604	0.654	29	0.245	0.312	0.368
0.341	0.429	0.503	0.582	0.635	30	0.240	0.306	0.362
0.328	0.414	0.488	0.566	0.618		rho cr	itical valu	es for 2-ta

0.02	0.01
0.550	0.600
0.535	0.584
0.522	0.570
0.509	0.556
0.497	0.544
0.486	0.532
0.476	0.521
0.466	0.511
0.457	0.501
0.449	0.492
0.441	0.483
0.433	0.475
0.425	0.467
ed test	