length in inches 2.54 conversion (cm) count 0.4 average 0.33 max 1.37 min 0.68 modus 0.61 median 0.06 variance (population) 1.76 variance (sample) 0.75 stand. dev. (population) 1.91 stand. dev. (sample) 0.72 0.79 1.28 0.9 percentile 0.6 0.5 percentile 0.14 0.1 percentile 0.02 1.2 1.37 0.27 1.27 1.01 0.22 0.72 1.37 0.22 0.52 0.09 1.7 0.83 0.25 1.41 0.23 0.14 ##### Sheet/List 2 ##### Drivers paid in a certain town 12 penalties in a week [EUR]: 1320 1500 200 1750 820 1000 900 400 4500 3100 180 120 "Evaluate by descriptive statistics, i.e.:" "a. calculate mean, variance and standard deviation" "b. calculate upper and lower quartile, interquartile range and median;" c. draw a box-and-whisker plot d. divide the data into classes and make a histogram penalties 1320 1500 200 1750 820 ##### Sheet/List 3 ##### Gaussian function function =normsdist =NORM.S.DIST(z;cumul) function =normdist =NORM.DIST(z;x0;s;0/1) x0=0 s=1 x P(x) CDF(x) -4.0 0.000 0.000 -3.5 0.000 0.001 -3.0 0.001 0.004 -2.5 0.006 0.018 -2.0 0.023 0.054 -1.5 0.067 0.130 -1.0 0.159 0.242 -0.5 0.309 0.352 0.0 0.500 0.399 0.5 0.691 0.352 1.0 0.841 0.242 1.5 0.933 0.130 2.0 0.977 0.054 2.5 0.994 0.018 3.0 0.999 0.004 3.5 1.000 0.001 4.0 1.000 0.000 ##### Sheet/List 4 ##### "From a table you obtained by rolling a 6-sided die find out, if the die is fair (N=36)." Use chi-2 test with the usual significance level. # observed expected chi2 1 12 6 6 2 5 6 0.17 3 9 6 1.5 4 2 6 2.67 5 7 6 0.17 6 1 6 4.17 36 36 14.67 .=calculated value alpha= 0.05 H0 = The die is fair d.f. = 5 H1 = The die is false. critical value = 11.07 "Conclusion: The calculated value 14,67 is higher than the critical value 11,07." "Therefore, the null hypothesis that the die is fair can be rejected." freq. class rel. freq. 12 1 0.333333333 5 2 0.138888889 9 3 0.25 2 4 0.055555556 7 5 0.194444444 1 6 0.027777778 ##### Sheet/List 5 ##### normality gnumeric Fagus sylvatica ##### Sheet/List 6 ##### find outlier with the method of inner fences! No. concentration of Pb [ng/ml] 1 37.9 2 22.8 3 13.4 4 31.6 5 50.8 6 20.2 7 9.5 8 26.7 9 76.1 10 22.0 ##### Sheet/List 7 ##### find an outlier by Grubbs´ test # experiment concentration of Pb [ng/ml] 1 37.9 2 22.8 3 13.4 4 31.6 5 50.8 6 20.2 7 9.5 8 26.7 9 76.1 10 22.0