Structure modification

homology, analogy, isomeres, izosteres

Tomáš Goněc

Lead compounds

- biological effect

origin:

- local folk remedies
- natural products
- discovered by accident (often unexpected side effects)
- intrinsic signal molecules
 (neurotransmitters, peptide hormones)

Analogy-based drug research

aim to achieve better properties

- toxicity
- stability
- bio-availiability
- side effects
- biological half-time (elimination pathway)

Structure-activity relationships (SAR)

optimization of the structure similar structures = similar properties

pharmacophore = parts of structure necessary for biological effect

ISOMERES

proteins and macromolecules are assymetrical in nature

compound-target interaction is determined by its three-dimensional orientation

Enantiomeres

isomeres with three-dimensional arrangement
of atoms(groups) like mirror images
= chiral compounds, antipods, enantiomorphs

identic physicochemical properties
 except of ability to rotate polarized light rays
 (optical activity)

CH₃
CH₃
CH₃CH₂
$$-C$$
-H H-C-CH₂CH₃
CH₂OH HOH₂C

ENANTIOMERS

S-(+)-naproxen sodium

R-(-)-naproxen sodium

Levorphanol (anagesic)

Dextrorphan (antitussive)

R-(-)-Epinephrine

S-(+)-Epinephrine

N-Methyldopamine

Diastereoisomers

= all stereoisomeric compounds that are not enantiomers

- structures containing substituted
- double bonds
- ring systems
- more than one chiral centrum
- have different physicochemical properties

DIASTEREOISOMERS

1R, 2S-(-)-Ephedrine

1R, 2R-(-)-Pseudoephedrine

Z-triprolidine (inactive)

E-triprolidine (active)

HOMOLOGY

increasing number of methylene groups = increasing lipophilicity

low lipophilicity (hydrophilicity)
= poor membrane penetration

high lipophilicity

= poor biodistribution, accumulation in adipose tissues

Fig. 12.2 Angiotensin-convertase inhibiting potency of enalaprilat analogues.⁴

ANALOGY removal of double bounds increase flexibility

introduction or removal of ring systems changes overall size of the molecule

Benzylpenicillin (not β-lactamase resistant)

2-Phenylbenzylpenicillin (not β-lactamase resistant)

Diphenicillin (\beta-lactamase resistant)

some parts of natural compounds are not necessary for the effect and/or are responsible for side effects

ISOSTERES

isosteric groups exhibit similarities in chemical and physical properties

Classical isosteres

 atoms, ions and molecules with identical outer shells of electrons

$$--CH_{3}, --NH_{2}, --OH, --F, --Cl.$$

$$--Cl, --SH --PH_{2}$$

$$-Br, isopropyl - CH CH_{CH_{3}}$$

$$--CH_{2}, -NH -, -O -, -S -$$

$$-COCH_{2}R, -CONHR, -COOR, -COSR$$

$$--HC =, -N =$$

$$In rings: -CH = CH -, -S -$$

$$-O -, -S -, -CH_{2} -, -NH -$$

$$--CH =, -N -$$

Monovalent bioisosteres

F, H OH, NH F, OH, NH or CH₃ for H SH, OH Cl, Br, CF₃

Divalent bioisosteres:

Trivalent atoms or groups:

$$-C_{H} = , -N_{H} =$$

 $-P_{H} = , -A_{S} =$

Tetrasubstituted atoms:

$$-\overset{| \oplus}{\overset{|}_{-\mathsf{N}}} -\overset{|}{\overset{|}_{-\mathsf{N}}} -\overset{| \oplus}{\overset{|}_{-\mathsf{N}}} -\overset{| \oplus}{\overset{|}_{-\mathsf{N}}} -\overset{| \oplus}{\overset{|}_{-\mathsf{N}}} -\overset{| \oplus}{\overset{|}_{-\mathsf{N}}}$$

Ring equivalents:

Bioisosteres

- groups with similar biological activity

cimetidine

ranitidine

roxatidine

famotidine

nizatidine

Drug	Daily dose (mg)	Molecular weight (Da)	
cimetidine	800	252	
nizatidine	300	331	
ranitidine	300	314	
roxatidine	150	385 ^{a)}	
famotidine	40	337	

Table 1.1 Comparison of approximately equivalent daily doses of H2-receptor antagonists.

a) Administered as acetate hydrochloride.

simvastatin

HO O H₃C CH₃ HO CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃

pravastatin

atorvastatin

rosuvastatin

Drug	IC ₅₀ (nM)	Molecular weight (Da)
pravastatin	44.1	424
simvastatin	11.2	419
atorvastatin	8.2	559
rosuvastatin	5.4	482

 Table 1.2
 Inhibitory effects of various statins in vitro.

cisplatin

carboplatin

oxaliplatin

NH

0

benzylpenicillin

amoxicillin, R = OH

•

0

I

S

CH₃

℃H₃

OH

trandolapril Figure 1.16 Structures of ACE inhibitors.

Drug	Elimination half-life (h)	
captopril	2	
benazepril	11	
cilazapril	10	
enalapril	11	
fosinopril	12	
lisinopril	12	
perindopril	>24	
ramipril	8-14	
trandolapril	16-24	

Table 1.4 Elimination half-life values of ACE inhibitors [31].