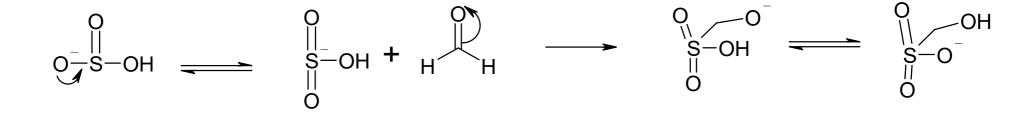
## Antioxidants

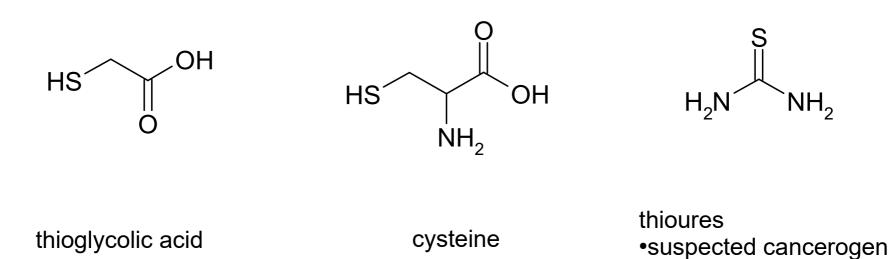
- = compounds avoiding oxidation changes of drugs or other PE
- for activity must be dissolved  $\Rightarrow$  classified into water soluble and fat soluble
- •compounds easily oxidizable, and/or catching or scavenging free radicals with longer halflife
- •oxidizing agents:  $O_2$ ,  $O_3$ , •OH, •OOH and other reactive oxygen (and nitrogen) species [RO(N)S]

•heavy metal cations are oxidation catalyzers ( $Fe^{2+/3+}$ ,  $Cu^{2+}...$ )  $\Rightarrow$  chelating agents act as synergists of antioxidants

Aqueous phase antioxidants

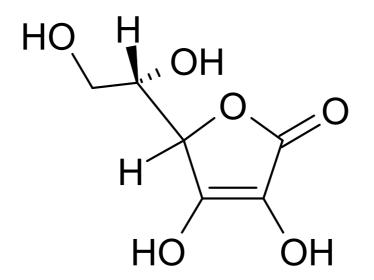

Inorganic salts

Na<sub>2</sub>SO<sub>3</sub>, K<sub>2</sub>SO<sub>3</sub> - pH of solution approx. 9 NaHSO<sub>3</sub>, KHSO<sub>3</sub>, Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub>, K<sub>2</sub>S<sub>2</sub>O<sub>5</sub> – solution pH approx. 4 • chem. and physiol. not completely indifferent •unpleasant taste and smell  $\Rightarrow$  unsuitable for p.o. drug forms

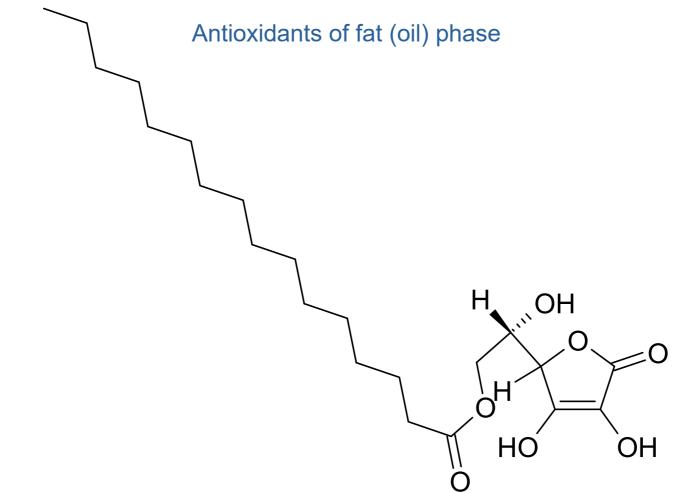

Organic sulfur compounds

sodium hydoxymethanesulfinate = "sodium formaldehydesulfoxylate"

 $HOCH_{2}SO^{-}Na^{+}Rongalit \ \mathbb{B}$ , Leptacit  $\mathbb{B}$ 




Aqueous phase antioxidants Organic sulfur compounds

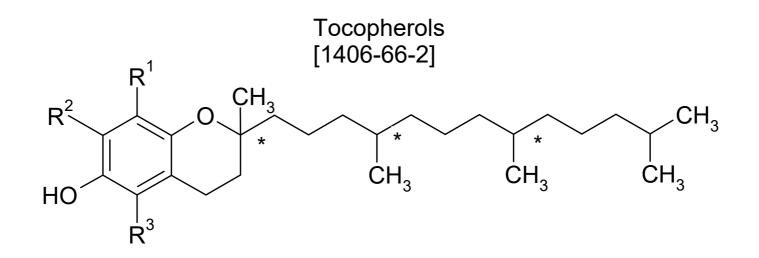



•for unpleasant organoleptic properties unsuitable for p.o. and topic preparations -0.15%

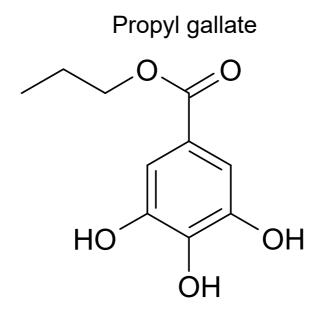
Ascorbic acid



L-ascorbic acid = 2,3-didehydro-L-*threo*-hexono-1,4-lactone •antioxidant of aquaeous phase of liquid preparations and drugs • acts prooxidatively with heavy metal cations including Zn<sup>2+</sup>




**ascorbyl palmitate =** 6-palmitoyl-L-ascorbic acid = 3-oxo-L-gulofuranolacton-6-palmitate = *Ascorbylis palmitas* PhEur = E304, [137-66-6]


• stabilization of oils in p.o. drug forms and food, stabilization of drugs sensitive to O<sub>2</sub>

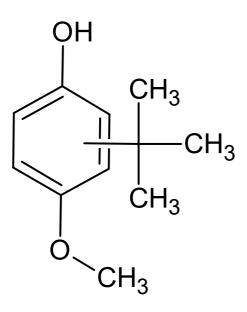
combination with tocopherols is synergic

 $\log P_{o/w} = 1.9$ 



**α-tocopherol** R<sup>1</sup> = R<sup>2</sup> = R<sup>3</sup> = CH<sub>3</sub> vitamin E, lowest activity as the antioxidant, log P<sub>o/w</sub> = 12.18 **β-tocopherol** R<sup>1</sup> = R<sup>3</sup> = CH<sub>3</sub>, R<sup>2</sup> = H the most resistant against heat and alcalies, log P<sub>o/w</sub> = 11.63 **γ-tocopherol** R<sup>1</sup> = R<sup>2</sup> = CH<sub>3</sub>, R<sup>3</sup> = H, log P<sub>o/w</sub> = 11.63 **δ-tocopherol** R<sup>1</sup> = CH<sub>3</sub>, R<sup>2</sup> = R<sup>3</sup> = H, log P<sub>o/w</sub> = 11.08 •production: extraction of plant oils •slowly oxidized with air O<sub>2</sub>, quickly in presence Fe<sup>3+</sup>, Ag<sup>+</sup>

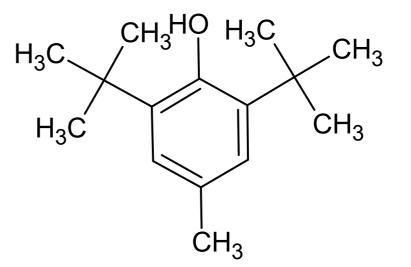



## Propyl gallate [NF]

propyl 3,4,5-trihydroxybenzoate

•antioxidant for foods, fats, oils, ethers, emulsions, waxes, and transformer oils •preservation of lard *Adeps suilus stabilisatus PhBs* 4

•rel. hydrophilic: log  $P_{olv}$  = 1.8 or 0.95; remains in the water phase of emulsions


•forms colored chelates with heavy metal ions



## **Butylated hydroxyanisole (BHA)**

[25013-16-5]
•mixture of 2- and 3-*tert*-butyl-4-methoxyphenols
PhEur + PhB: *Butylhydroxyanisolum*BP + USPNF: Butylated hydroxyanisole
•antibact. activity

•log 
$$P_{o/w} = 3.5$$



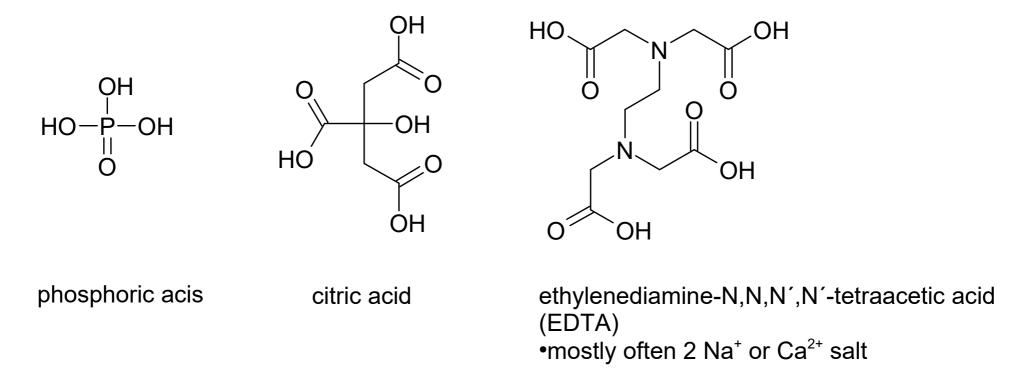
## butylhydroxytoluen (BHT)

[128-37-0]

2,6-di*tert*-butyl-4-methylphenol

PhEur + PhB: *Butylhydroxytoluenum* 

BP + USPNF: Butylated hydroxytoluene


•also rubbers 0.5 - 1 %

•weak antiviral activity (Herpes)

•used as antioxidants in foods, cosmetics, and pharmaceuticals•effective concentrations:

- 0.001 0.02 % in oils and fats
- 0.1 %in essential oils

Compounds acting synergistically with antioxidants – chelating agents



•chelated cations are inactive as oxidation catalyzers