

ANTIHYPERTENSIVE DRUGS

Assoc. Prof. PharmDr. Peter Kollár, Ph.D. Department of Pharmacology and Toxicology Faculty of Pharmacy MU

Blood pressure

- Pressure exerted by circulating blood upon the walls of blood vessels
- One of the principal vital signs
- During each heartbeat, BP varies
 between a maximum (systolic) and a
 minimum (diastolic) pressure

FADAM.

MUNT

PHARM

Hypertension

- "the Silent Killer"
- cca 70 million Americans exhibit BP above normal (2.5 million in CZ)
- Estimation: 60-80% of humans will be hypertensive by age 80
- Primary (Essential) vs. Secondary
- Morbidity and mortality due to end organ damage

- Based on repeated, reproducible measurements

Even mild HT increases the risk of end-organ damage
damage of major organs fed by the circulatory system
(heart, kidneys, brain, eyes), due to uncontrolled HT

Positive risk factors for end-organ damage

- Family history of cardiovascular disease
- Metabolic syndrome (obesity, dyslipidemis, diabetes)
- Manifestations of end-organ damage at diagnosis
- Smoking

Authoritative guidelines

- JNC (Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure
- American Society of Hypertension
- European Society of Hypertension in conjunction with

European Society of Cardiology

- World Health Organization in conjunction with International

PHARM

Society of Hypertension

Classification of hypertension

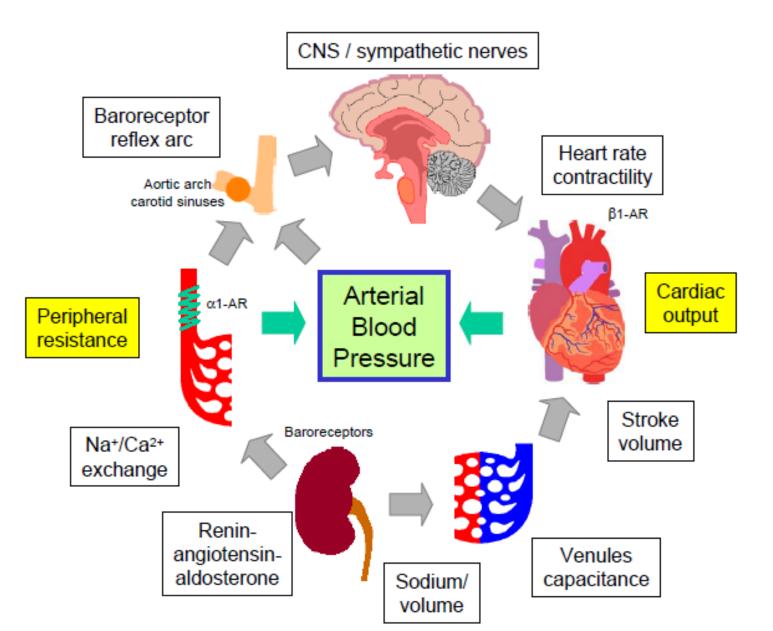
Classification	Systolic	pressure	Diastolic pressure		
Classification	mmHg	kPa	mmHg	kPa	
Normal	90–119 12–15.9		60–79	8.0–10.5	
Prehypertension	120–139	16.0–18.5	80–89	10.7–11.9	
Stage 1	140–159	18.7–21.2	90–99	12.0–13.2	
Stage 2	≥160	≥21.3	≥100	≥13.3	
Isolated systolic hypertension	≥140	≥18.7	<90	<12.0	

Chobanian AV, Bakris GL, Black HR et al.: Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42(6):1206–52

MUNI Pharm

Hypertension

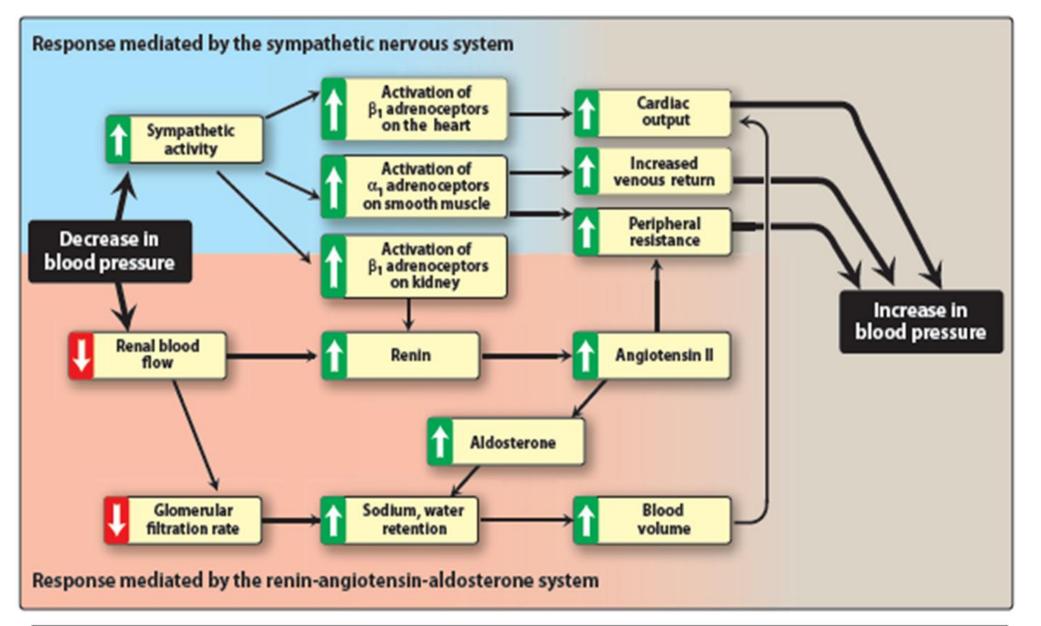
– Sustained arterial HT damages blood vessels in kidney,


heart, and brain

It leads to increased incidence of renal failure, coronary disease, cardiac failure, and stroke

Etiology


- HT is a combination of several abnormalities (i.e. ANS, baroreceptor reflexes, RAA system, kidneys)
- Genetics, psychological stress, environmental and dietary factors contribute to the development of HT
- Heritability is 30%
- Variations of genes for angiotensinogen, ACE, ß-Rp contribute to essential HT


$BP = CO \times PVR$

Regulation of blood pressure

 Baroreflexes are mediated by autonomic nerves and act in coordination with humoral mechanisms (i.e. RAA system)

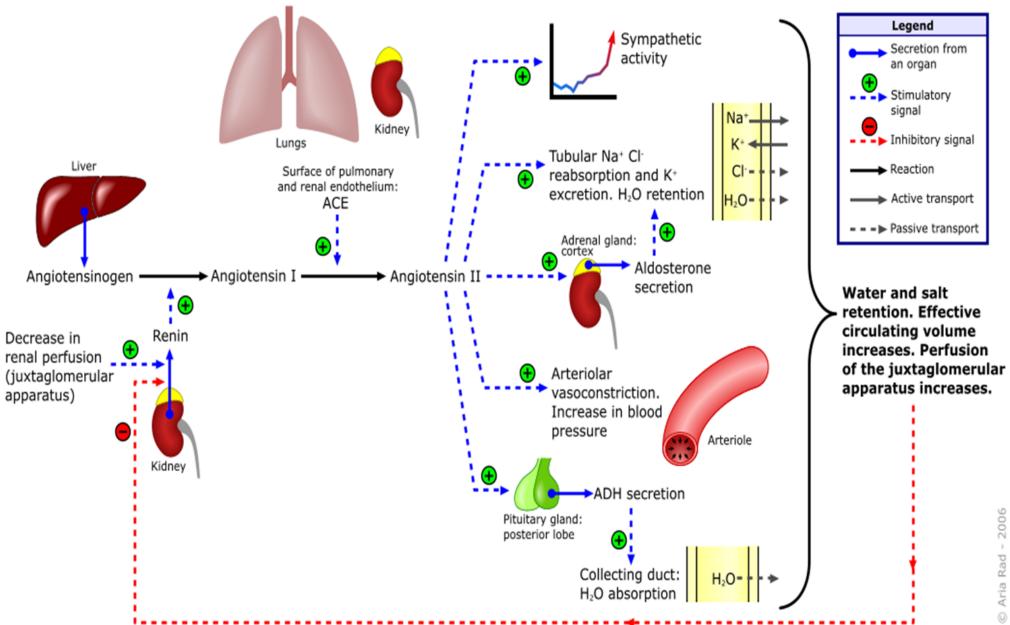


Figure 19.4

Response of the autonomic nervous system and the renin-angiotensin-aldosterone system to a decrease in blood pressure. MUNI Pharm

Renin-angiotensin-aldosterone system

MUNI Pharm

Regulation of blood pressure

- BP control is similar in hypertensive and healthy individuals

 Difference: Baroreceptors and renal volume-pressure control system appears to be "set" at a higher level of blood pressure in hypertensive patients

Types and etiology of hypertension

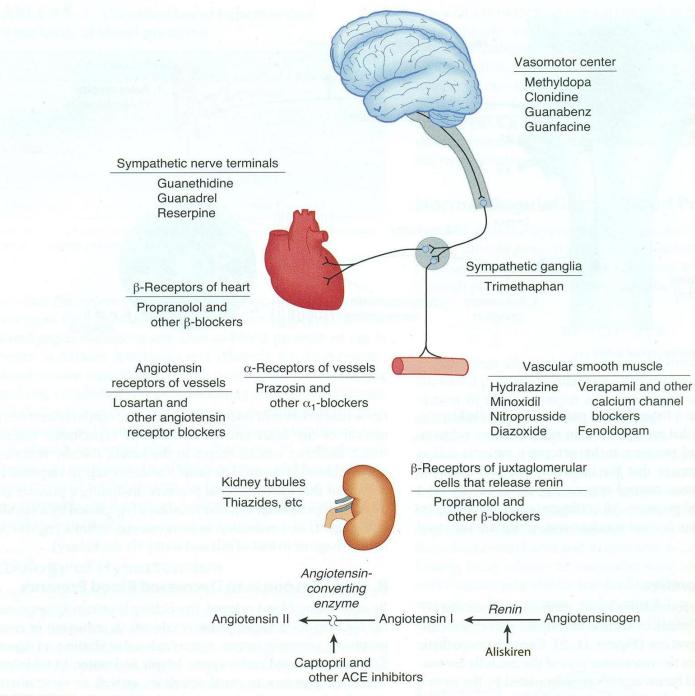
- White coat HT

- Secondary HT: due to specific organ pathology

- renal artery stenosis
- pheochromocytoma
- aortic coarctation
- adrenal tumor
- Essential HT
 - cause NOT known

Treatment of hypertension

- **Primary HT** is treated with drugs that:
- reduce blood volume (which reduces central venous pressure and cardiac output)
- 2) reduce systemic vascular resistance
- 3) reduce cardiac output by depressing heart rate and stroke volume
- Secondary HT is best treated by controlling or removing the underlying disease or pathology (although AHD may still be required)


Strategies to lower blood pressure

Diuretics: deplete Na⁺ and reduce blood volume (+ other mechanisms)

- Sympathoplegic drugs: reduce PVR, inhibit cardiac function

– Vasodilators: relax vascular smooth muscle

Drugs that block angiotensin function and/or production: reduce
 PVR and blood volume

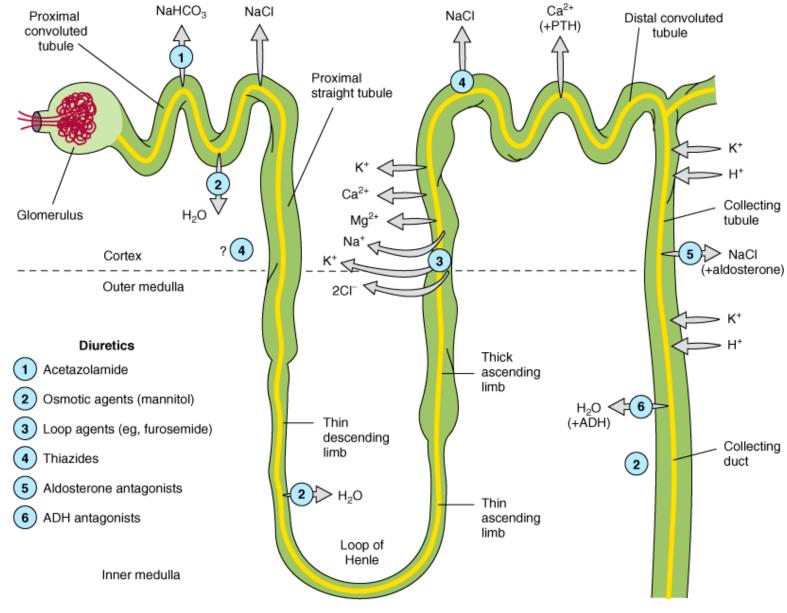
MUNI PHARM

FIGURE 11–3 Sites of action of the major classes of antihypertensive drugs.

Classes of Antihypertensive Drugs

- Diuretics
- thiazide diuretics
- loop diuretics
- K⁺ sparing diuretics
- Vasodilators
- direct acting arterial dilators
- Ca²⁺ channel blockers
- α_1 -blockers
- angiotensin converting enzyme inhibitors (ACE-I)
- angiotensin receptor blockers (ARBs)
- renin inhibitors

- Cardioinhibitory Drugs
- β-blockers
- Ca²⁺ channel blockers
- Centrally-acting adrenergic drugs


PHARM

- α_2 -agonists
- I₂-agonists

Diuretics

- First-line drugs for HT. Relatively safe and effective. Suitable for older adults
- Lower BP by depleting body Na⁺ stores
- Effects take 2 stages:
 - reduction of total blood volume and therefore cardiac output; initially causes increase of PVR
- 2) when CO returns to normal level (6-8 weeks), PVR declines

Diuretics Sites of Action

MUNI

PHARM

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 11th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Thiazides

- **MoA**:
- act in the distal tubule to decrease Na⁺ reabsorption (inhibit Na⁺/Cl⁻ symport)
- As a result of decreased Na⁺ and Cl⁻ reabsorption,
 - hyperosmolar diuresis follows
- Delivery of more Na⁺ to the distal tubule results in K⁺ loss by an exchange mechanism

Thiazides

- Hydrochlorothiazide

MUNI

PHARM

- Chlorthalidone
- Chlorothiazide
- Indapamide
- Metipamide

Loop diuretics

- **MoA**:
- act primarily at the ascending limb of the loop of Henle
- Effectiveness is related to their site of action because reabsorption of about 30 - 40% of filtered Na⁺ and Cl⁻ load occurs at the ascending loop

MUNI Pharm

Loop diuretics

- Furosemide
- Torasemide
- Ethacrynic acid

Potassium sparing diuretics

- Enhance the natriuretic effects of other diuretics
- Counteract the K⁺-depleting effect of these diuretics

Potassium sparing diuretics

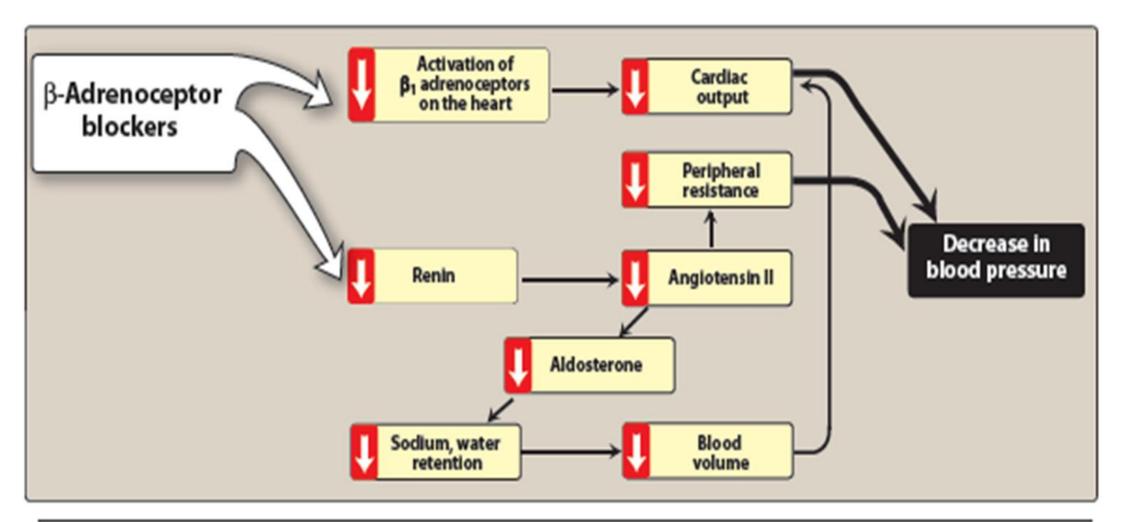
- Amiloride
- Spironolactone
- Triamterene

Diuretics

_ SE:

 Depletion of K⁺ (except K⁺sparing diuretics), leading to hypokalemia

P H A R M


- Increase uric acid conc. and precipitate (gout)
- Increase serum lipid conc.
- Impair glucose utilization
- NOT suitable for treatment of HT in patients with

hyperlipidemia or DM

β-blockers

– MoA:

- Reduce cardiac output
- Inhibit renin release and AT-II and aldosterone production, and lower peripheral resistance
- Decrease adrenergic outflow from CNS
- Decrease BP by decreasing myocardial contractility (neg. inotropism) and decreasing HR (neg. chronotropism)

Figure 19.9 Actions of β -adrenoceptor blocking agents.

Lippincott's Pharmacology

MUNI Pharm

Classes of β-blockers

- Non-selective β_1/β_2 :
- propranolol, nadolol
- with ISA: pindolol (ISA), penbutolol (ISA), labetalol (ISA), carteolol (ISA)
- carvedilol (+ α_1 -blocker)
- Cardioselective (β_1 -selective):
- atenolol, betaxolol, bisoprolol, metoprolol, acebutolol (ISA)

PHARM

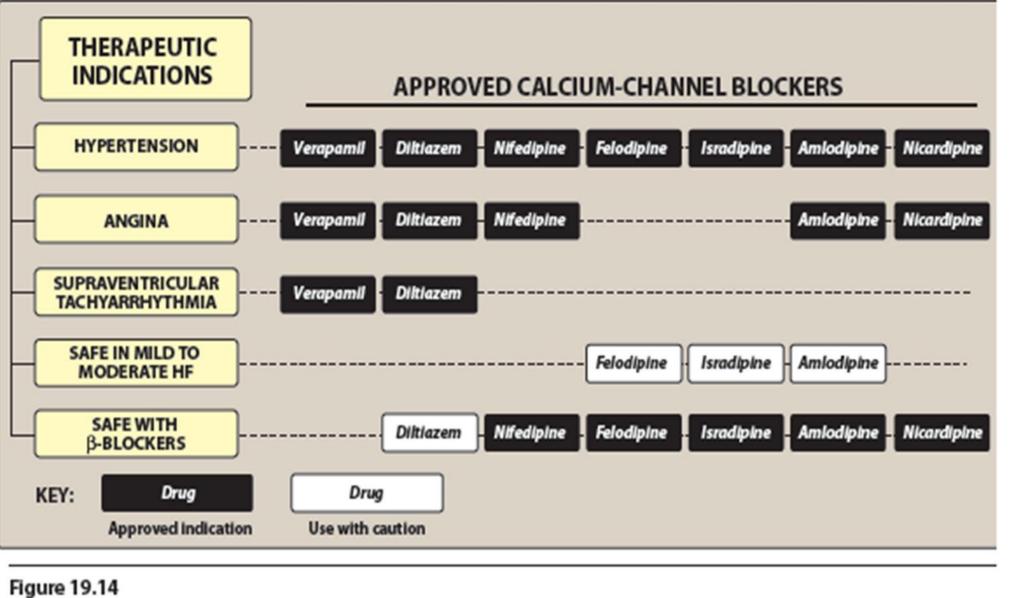
	Clinical Uses			s		
Class/Drug	HTN	Angina	Arrhy	МІ	CHF	Comments
Non-selective β_1/β_2						
carteolol	х					ISA; long acting; also used for glaucoma
carvedilol	х				Х	α-blocking activity
labetalol	х	Х				ISA; α-blocking activity
nadolol	х	Х	Х	х		long acting
penbutolol	х	Х				ISA
pindolol	х	Х				ISA; MSA
propranolol	х	Х	Х	х		MSA; prototypical beta-blocker
sotalol			Х			several other significant mechanisms
timolol	х	Х	Х	х		primarily used for glaucoma
β ₁ -selective						
acebutolol	х	Х	х			ISA
atenolol	х	х	х	х		
betaxolol	х	х	х			MSA
bisoprolol	х	х	х			
esmolol	х		х			ultra short acting; intra or postoperative HTN
metoprolol	х	х	х	х	Х	MSA
nebivolol	х					relatively selective in most patients; vasodilating (NO release)

MUNI Pharm

Abbreviations: HTN, hypertension; Arrhy, arrhythmias; MI, myocardial infarction; CHF, congestive heart failure; ISA,

Side effects of β-blockers

Bradycardia, bronchospasm, masking of hypoglycemia, sedation

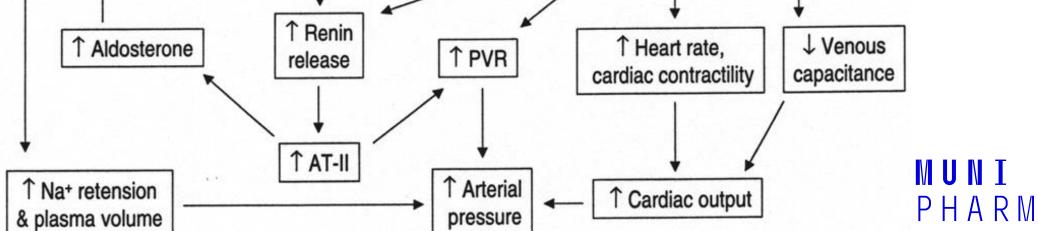

- GLU intolerance may develop or be worsened
- Increased blood TG levels and decreased levels of HDL-chol
- Rebound HT following sudden discontinuation of β -blockade

NOT suitable for patients with: DM, AB, COPD,

hyperlipidemia, bradycardia

Ca²⁺ channel blockers

- MoA:
- block voltage-gated L-type Ca2+ channels in cardiac muscle & blood vessels
- Dihydropyridines: nifedipine, amlodipine, felodipine, isradipine, nicardipine, lacidipine, nitrendipine, nimodipine (CNS)
- -I: mild to moderate HT, angina pectoris, limb ischemia
- SE: flushing, headache, excessive hypotension, edema, reflex tachycardia



Some therapeutic applications of calcium-channel blockers. HF = heart failure.

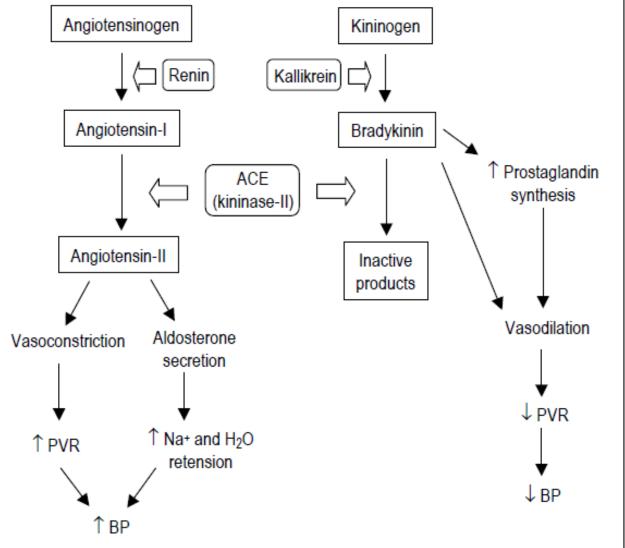
Direct vasodilators

- **MoA**:
- relax smooth muscle of arterioles (and sometimes veins),
 - thereby reduce systemic vascular resistance
- Hydralazine
- Minoxidil
- Sodium nitroprusside
- Diazoxide
- -SE: tachycardia, palpitation, AP

Compensatory responses of direct vasodilators VASODILATING DRUGS ↓ PVR Baroreceptor Sympathetic nervous ↓ Arterial ↓ Natriuresis system outflow pressure ↑ Renin

α_1 -blockers

– prazosin, terazosin, doxazosin, metazosin


– MoA:

- competitive antagonists for α_1 -AR \rightarrow relaxation of both arterial and venous smooth muscles and thereby reduces PVR
- -I: mild to moderate HT, could be used also in BPH
- **SE:** 1st dose syncope and reflex tachycardia, postural hypotension and often retention of salt and H₂O

Common adverse effects of α_1 - blockers

ACE inhibitors and angiotensin II receptor antagonists

muni Pharm

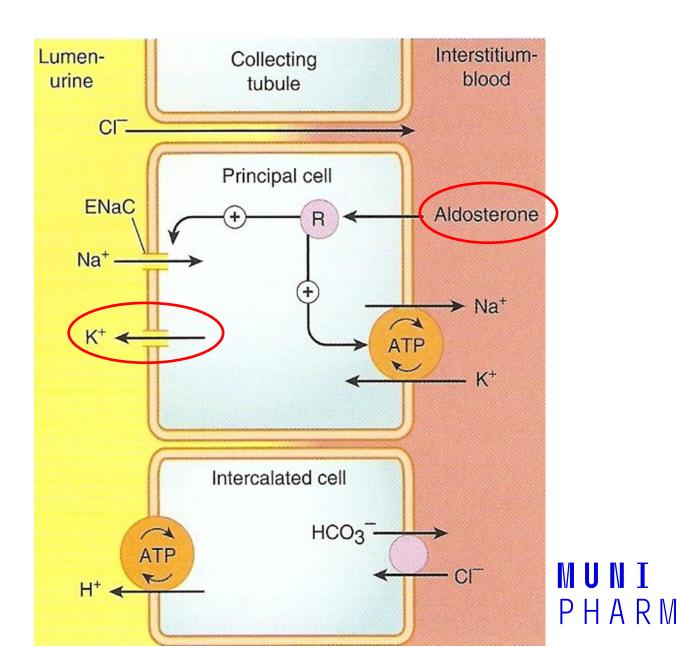
ACE inhibitors and angiotensin II receptor antagonists

– ACE inhibitors:

captopril, enalapril, ramipril, perindopril, lisinopril, benazepril, fosinopril, etc.

- Angiotensin II antagonists on AT1 receptor:

losartan, valsartan, candesartan, irbesartan, telmisartan,


eprosartan, zolasartan

ACE inhibitors and angiotensin II receptor antagonists

- Side effects and toxicity:
- In hypovolemic patients, severe hypotension may occur after initial doses
- Fetotoxic (teratogenic) and should not be used in pregnant women
- Other adverse effects: angioedema (rare), dry cough (ACE-I), rashes, proteinuria, hyperkalemia

Hyperkalemia

Decrease in aldosterone
 results in K⁺ retention

Renin inhibitors

– aliskiren (Rasilez[®], Riprazo[®], Sprimeo[®])

– MoA:

 direct renin inhibitor decreases renin plasma activity by 50-70%

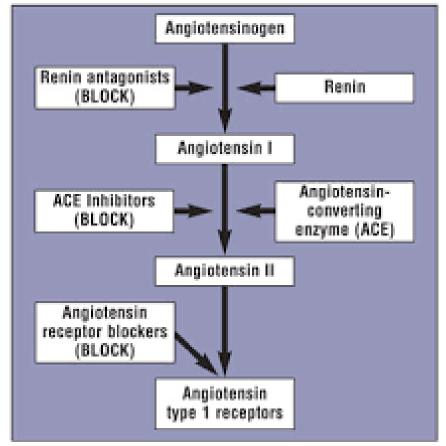
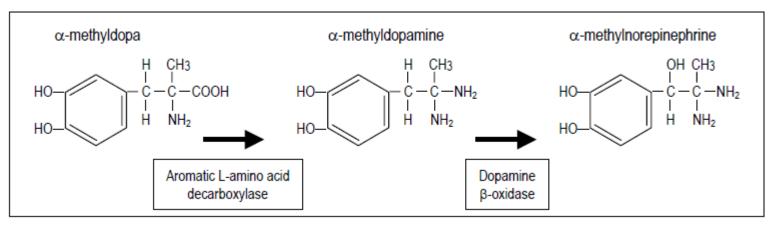


Figure 1. Renin-angiotensin system and medications that affect it.

Aliskiren in therapy

- Administration: 1 daily dose of 150-300mg
- -I: monotherapy or combination with RAA inhibitors
 - (aditive effect by 20-30%) in HT patients
- -SE: diarrhea, up to 300mg no serious SE


Centrally-acting adrenergic drugs

- I₂-agonists MoA: imidazoline I₁-receptor agonist in the CNS
 rilmenidine (medulla oblongata), decrease sympathetic activity,
 moxonidine improve INS resistance and GLU tolerance
- α₂-agonists
 MoA: α₂-agonistic activity contributes to its BP clonidine
 lowering effect due to negative feedback at the
 α-methyldopa
 presynaptic neurons

PHARM

a-methyldopa = prodrug

- -SE: Sedation, rebound phenomena and mental depression (clonidine), lactation and autoimmune reaction (α -MD)
- I: α -MD is drug of choice for HT in pregnancy

Thank you for your attention

Copyright notice

- This material is copyrighted work created by employees of Masaryk university.
- Students are allowed to make copies for learning purposes only.
- Any unauthorised reproduction or distribution of this material or its part is against the law.

PHARW