MUNI PHARM

PHARMACOLOGY OF CARDIOVASCULAR SYSTEM

Part I

Assoc. Prof. PharmDr. Peter Kollár, Ph.D. Department of Pharmacology and Toxicology Faculty of Pharmacy MU

Risk Factors of Cardiovascular Diseases

P H A R M

- Non-modifiable:
- sex (males)
- age
- genetic predisposition
- Modifiable:
- atherosclerosis
- hypertension
- nutrition (obesity)
- high plasm. conc. of total and/or LDL CHOL, increased TAG
- low conc. of HDL CHOL
- diabetes mellitus
- smoking
- lack of exercise (sedentary lifestyle)
- long term stress; and other factors

Cardiovascular Disorders

- ARRHYTHMIAS

- IHD (Ischemic Heart Disease)
- Acute forms: unstable angina pectoris (AP); myocardial infarction (MI)
- Chronic forms: asymptom. IHD; exertional AP, mixed, variant; after MI; dysrrhytmic form of IHD

- HYPERTENSION

Disturbances of cardiac rhythm

– Origin

- based on disturbances of speed, regularity, formation and conduction
- Cause
- damage to the heart muscle, caused by hypoxemia, ischemia, hypokalemia or effect of drugs
- Goal of Therapy
- restore normal rhythm, prevent arrhythmia return, reduce risk of the most serious arrhythmias (ventricular fibrillation)

Antiarrhythmics

 Inhibit membrane ion channels, receptors and autonomic functions

- Classification by Vaughan-Williams
- Arrhythmia treatment

 depends on the type and the length of its duration, severity and presence of organic heart disease

Treatment of arrhythmia

– Pharmacotherapy

AA + antithrombotics, I-ACE, and hypolipidemics

- Non-pharmacological approaches
- cardioversion, cardioverters → defibrillators, pacemakers, radiofrequency ablation
- surgical treatment

Classification of Antiarrhythmics

la) blockade of Na⁺ channels

- *quinidine* - cardioversion of atrial fibrillation

Ib) blockade of Na⁺ channels

– *lidocaine*, *mexiletine* – ventricular tachycardia

Ic) blockade of Na⁺ channels

propafenone – cardioversion of atrial fibrillation, paroxysmal supraventricular (SV) tachycardia

II) adrenergic beta-blockade

 $-\beta$ -blockers – control of ventricular response in supraventricular tachycardia

III) blockade of K⁺ channels

- *ámiodarone*, *sotalol* - supraventricular and ventricular tachycardia

IV) blockade of Ca²⁺ channels

verapamil, diltiazem – control of ventricular response in SV tachycardia

Class Ia) Antiarrhythmics

Reduce the rate of rise of cardiac action potential (AP),
 extend the duration of AP and slow repolarization

- Extend conduction in atria, in Purkinje fibers and ventricles

 Clinical use in pharmacological cardioversion of atrial fibrilation and flutter

- SE: GIT, allergic symptoms, conduction abnormalities, the risk of ventricular fibrillation

– Numerous drug interactions

Class Ib) Antiarrhythmics

- Block of Na⁺ channel, do not affect the speed of AP increase

- Shorten the AP duration and refractory period

Lidocaine, trimecaine

 Do not affect sinus node automatism, but suppress automatism of ventricular centers

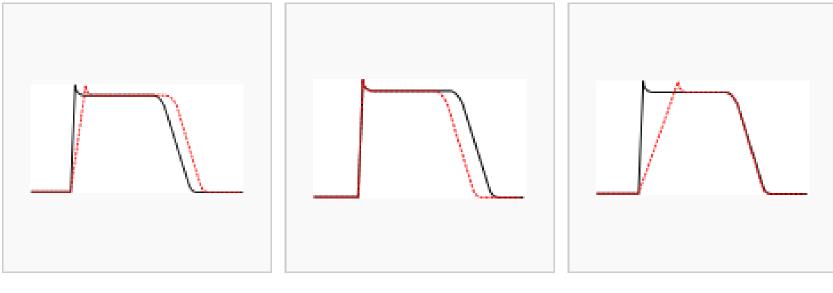
 Administered (i.v.) in the acute stages of ventricular arrhythmias, MI, and in unstable AP

Mexiletine

- High efficiency even after p.o. administration
- Dose: 3x day
- Inhibits the transport of Na⁺ and slow speed and maximum duration of AP depolarization
- -I: restricted to use in life-threatening conditions only

Class Ic) Antiarrhythmics

Blockade of Na⁺ channel, reduces the steepness of the onset of AP


- Slow conduction, only a small effect on the repolarization

Propafenone

- Reduction of heart rate and BP
- I: Paroxysmal SV arrhythmias, life-threatening ventricular arrhythmias; after MI
- Regular ECG monitoring is needed, the risk of arrhythmias
- After i.v. application: effect immediately, lasts for 4 h
- Registered on market: Rytmonorm, Propanorm, Prolekofen,
 Propafenon

Class I agents are divided into three groups (Ia, Ib and Ic) based upon their effect on the length of the action potential.^{[3][4]}

- Ia lengthens the action potential (right shift)
- Ib shortens the action potential (left shift)
- Ic does not significantly affect the action potential (no shift)

Class la

Class lb

Class Ic

Class II Antiarrhythmics

- $-\beta$ -blockers
- Prevents the action of catecholamines on the myocardium
- They reduce sympathetic stimulation, increased vagal tone and increase the fibrillation threshold
- Antiischemic effects (Reduce consumption of O_2)
- Antiatherosclerotic and antithrombotic effects
- Secondary prevention of MI and sudden death

- Extends the duration of AP, and slows repolarization
- Reduces myocardial O_2 consumption and leads to a decline in cardiac work

I: sinus and SV arrhythmia, atrial and extraventricular extrasystoles

Class III) Antiarrhythmics

- Amiodarone, bretylium
- Block K⁺ channels **extend AP** and reduces sympathetic activity
- -I: SV and ventricular tachycardia

Amiodarone

- Extremely long half-life
- TDM needed
- Most effective AA in suppressing ventricular and SV tachycardia
- Reduces arrhythmic mortality and morbidity
- -I: after acute MI, at high risk of arrhythmic death
- -SE: thyroid disorders, hepatotoxicity, arrhythmic activity
- Registered on market: Cordarone, Amiohexal, Rivodaron,

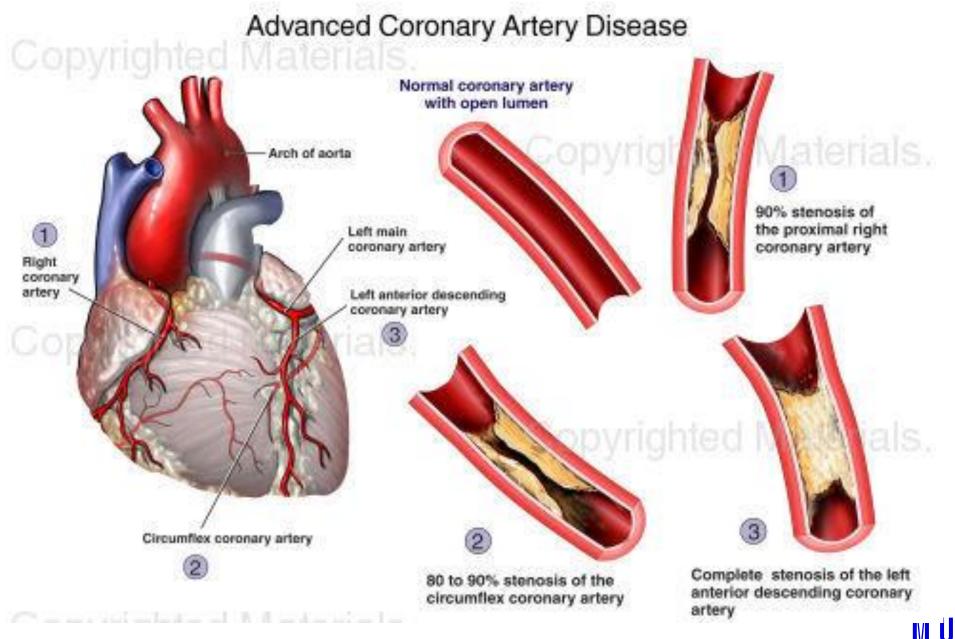
Amiokordin

MUNI Pharm

Class IV) Antiarrhythmics

- Ca²⁺ channel blockers
- Verapamil, diltiazem
- Prolong the refractory phase
- Reduce the frequency of impulses in the SA node

Adenosine


- -i.v. application
- Decreases automaticity of sinus node and slows conduction in the SA node, slow response of ventricular arrhythmia during SV arrhythmia

PHARM

– Drug of choice

ANGINA PECTORIS

- Algic form of IHD (chest pain)
- Imbalance between myocardial MTB demands and supply by O₂
- Reduction in coronary perfusion, arterial stenosis, coronary artery spasm
- Goals of pharmacotherapy: adjustment of imbalances, improve blood flow, influence of atherogenesis, inhibition of vascular thrombus occlusion

Pharmacotherapy of Angina Pectoris

- Nitrates
- $-\beta$ -blockers
- Blockers of Ca²⁺ channels

-ASA

Nitrates (Nitrodilators)

- Vasodilator effect is caused by the release of NO
- Arterial dilation, decreased venous return
- Reduces left ventricular filling and myocardial O₂ consumption decreases
- Essential symptomatic drug for AP; removes acute pain
- In prophylactic administration they reduce the frequency of attacks
- Subling. nitroglycerine: a rapid onset of action, drug of choice for acute attacks of AP

Nitrodilators

- nitroglycerin
- sodium nitroprusside

- isosorbide dinitrate
- isosorbide mononitrate
- longer onset of action and duration of action than nitroglycerin
- long-term prophylaxis and management of coronary artery disease

Sodium Organic Nitroprusside Nitrates NO RNO2 Smooth NO S-nitrosothiol GC TP CGMP Relaxation

Cardiovascular actions of nitrodilators

– Systemic vasculature

- vasodilation (venous dilation > arterial dilation)
- decreased venous pressure, and arterial pressure (small effect)

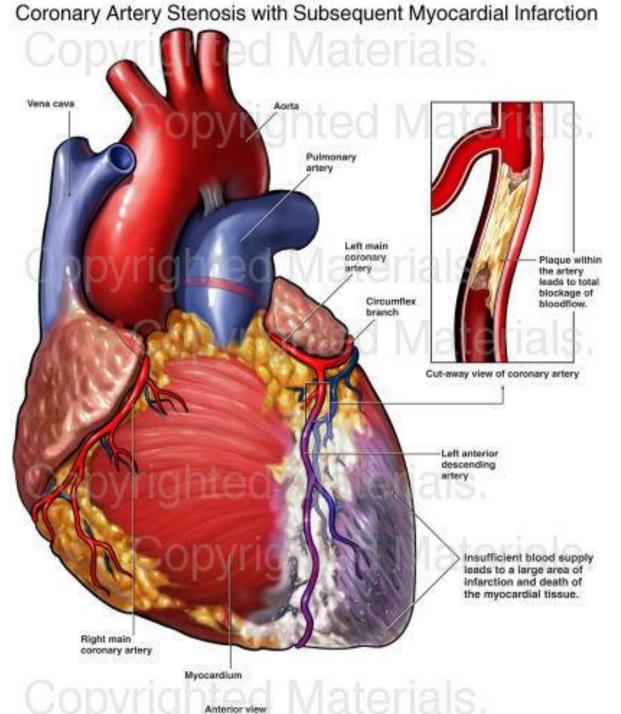
– Cardiac

- reduced preload and afterload (decreased wall stress)
- decreased oxygen demand

- Coronary

- prevents/reverses vasospasm
- vasodilation (primarily epicardial vessels)
- improves subendocardial perfusion
- increased oxygen delivery

Beta-blockers


- Slow heart rate
- Reduce peripheral vascular resistance and myocardial contractility
- Improve coronary flow and reduce myocardial O_2 demands
- Reduce the incidence of anginal attacks and CV complications

Calcium channel blockers

- Reduce Ca²⁺ in the cytoplasm of smooth muscle cells
- Diltiazem (Diacordin[®]), verapamil (Isoptin[®], Lekoptin[®]), nifedipine (Cordipin ret[®]), dihydropyridins of II. generation
- Effects:
- Vasodilation, decreased blood pressure, decreased heart rate
- Slowing of conduction in the myocardium
- Administration only in slow-releasing dosage form

MYOCARDIAL INFARCTION

- 1. Before hospitalization: mesocain, β-blockers (metipranolol)
- 2. During the transport: diazepam, morphine, pethidine, O₂
- 3. Fibrinolytic therapy: tPA tissue plasminogen activator
- 4. Anticoagulant therapy: heparin, NOAC
- 5. Antiplatelet therapy: ASA, dipyridamole, ticlopidine
- 6. Nitrates
- 7. β-blockers

PHARM

Heart Failure

- Drugs with a positive inotropic effect:
- Digitalis (cardiac) glycosides
- Diuretics
- Vasodilatators:
- I-ACE, Inhibitors of AT II

Cardiac Glycosides

Digoxin

- inhibition of the Na⁺/K⁺ ATPase, the rise of IC Ca²⁺, increases myocardial contractility, impulse formation slows
- Chronic heart failure, impaired left ventricle, atrial fibrillation
- Reduce morbidity, **do not** reduce mortality
- Small therapeutic width
- High risk of intoxication

Thank you for your attention

Copyright notice

- This material is copyrighted work created by employees of Masaryk university.
- Students are allowed to make copies for learning purposes only.
- Any unauthorised reproduction or distribution of this material or its part is against the law.

PHARW