Radioactivity Ionizing radiation

Radioactivity

• Characteristic quality of unstable core of atoms, during which the core decays, forming new core and emitting ionizing radiation

Ionizing radiation

- Radiation, which directly or indirectly ionizes atoms of matter
- Particles : alpha, electrons, positrons, neutrons, protons, mesons
- Photon: gamma, X-rays

Radioactivity

• 1903 Henri Becquerel (1896)

• 1903 Marie Curie-Skłodowski

• 1935 Irène a Frédéric Joliot-Curie

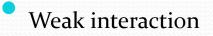
Radioactivity

- Law of conservation of matter and energy
- Law of conservation of electric charge
- Law of conservation of nucleons
- Law of conservation of momentum

Radioactivity – Ionizing Radiation

- Alpha α
- Beta β
- Gamma y

alpha radiation


- Particles of helium ₂He⁴ (so called helions)
- After the helion is emitted, core loses 2 neutrons and 2 protons
- A new atom core is created, and in the periodic table it is moved two spots to the left

•
$$_{86}Rn^{222} \longrightarrow _{84}Po^{218} + _{2}He^{4}$$

beta radiation

- Formed by of electrons or positrons
- Two types β^+ and β^-
- β⁺ decay- unstable nucleus with abundance of protons, proton is transformed to neutron, positron and electron neutrino

•
$$_{12}Mg^{23}$$
 \longrightarrow $_{11}Na^{23}+e^{+}+v_{e}$

beta radiation

 β⁻ decay - unstable nucleus with abundance of neutrons; neutron is transformed to proton, electron and a electron neutrino

•
$$_6 C^{14} \longrightarrow _7 N^{14} + e^- + v_e$$

Weak interaction

gamma radiation

- No nucleus transformation
- Electro-magnetic radiation
- Nucleus emits abundant energy
- Usually accompanies other types of radiation

Natural radioactivity

- Spontaneously transforming nuclei, which can be found in nature
- Heavy elements
- Decay chains
 - Uranium ²³⁸U ²⁰⁶Pb 4n+2
 - Actinium ²³⁵U ²⁰⁷Pb 4n+3
 - Thorium ²³²Th ²⁰⁸Pb
 - Neptunium ²⁴¹Pu ²⁰⁹Bi 4n+1

4n

Natural radioactivity

- Elements with lighter atoms
 - Created by interaction of cosmic radiation on nitrogen
 - Light elements
 - Tritium
 - Carbon ¹⁴C
 - Proton radiation

Artificial radioactivity

- External intervention is needed
 - Particle bombardment
 - Protons
 - Deuterons
 - Alpha particles
 - Electrons (accelerators)
 - Chain reaction

Law of radioactive transformation

 $N_{(t)} = N_o \cdot e^{-\lambda t}$

 $N_{(t)...}$ quantity of not yet transformed nucleuses $N_{o...}$ quantity of nucleuses at the time o λ ...transformation constant t....time

$$\ln \frac{N_t}{N_0} = -\lambda t$$

Activity

- Activity (A)
- Quantity of radioactive transformations in time
- Unit Bq (becquerel; s⁻¹)

Transformation half-life

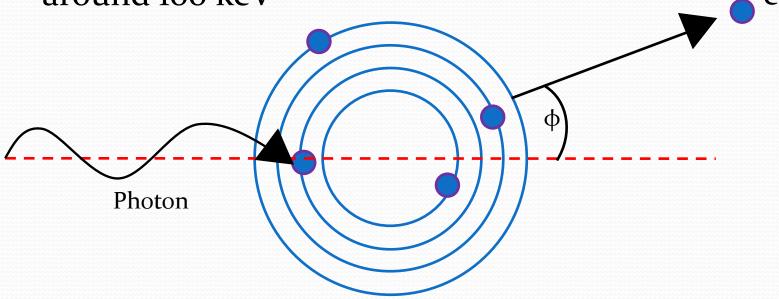
- Characteristic physical quantity
- Time, during which precisely one half of the observed cores decay
- Tf
- Transformation half-life can be seconds or even years long

Half-lives

- Transformation half-life Tf
- Biological half-life Tb time, during which precisely one half of the observed cores is excluded from an organism
- Efective half-time Tef time, during which the activity of radionuclide is decreased precisely by one due to the effect of the transformation and the exclusion
- 1/Tef = 1/Tf + 1/Tb

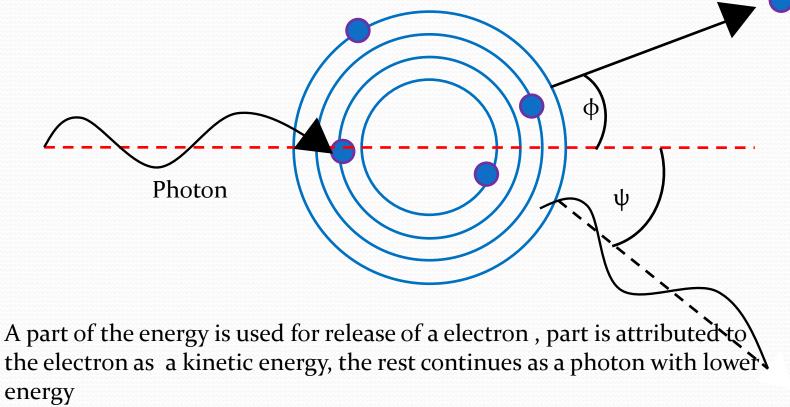
Interaction of radiation with matter

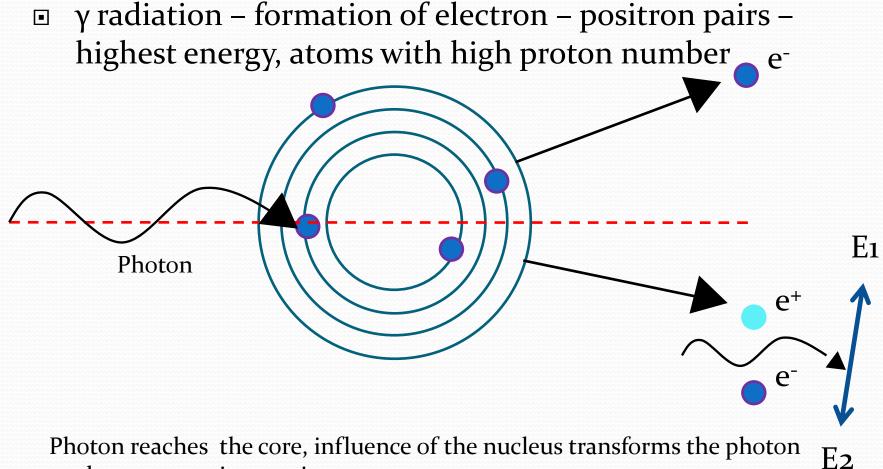
- Creation of secondary radiation (lower energy)
- Creation of free radicals
- Creation of heat
- Gradual energy loss of primary radiation particles (linear energy transfer)


Interaction of ionizing radiation with matter

- Interactions with electron cloud
- Interaction with nucleus

- α , β radiation
 - Partial absorbtion of the radiation by matter
 - Electron excitation
 - With higher energy = ionization
- α excitation, ionization
- β excitation, ionization, electron scattering, braking radiation


- γ radiation interacts indirectly
 - Fotoelectric effect
 - Compton effect
 - Creation of electron positron pairs


 γ radiation – fotoelectric effect– energetic values around 100 keV

A part of the energy is used for release of a electron and the rest is attributed to the electron as a kinetic energy

 γ radiation – Compton effect – higher energy 0,5 to 5 MeV

to electron – positron pair

Interaction with nucleus

- Collision with target nucleus transmutation new element, can be stable
- α particles synthetic reactions; natural alpha particles may react only with nuclei of light atoms
- Neutron radiation less energy required, neutrons do not have to overcame potential barrier
 - Indirect ionization ((n, γ) new isotope is formed)

Interaction with nucleus

- Proton radiation ((p,n), (p,d), (p, γ) or deuterons ((d,p) (d,n))
- γ radiation photo nuclear reaction; affected nucleus loses nucleons (n, 2n, p, α) energy of the radiation must be high enough to knock out a particle

Biological effects of ionizing radiation

Biological effects of ionizing radiation

- Phases
 - Physical
 - Physically chemical
 - Chemical
 - Biological

• 1) Direct effect

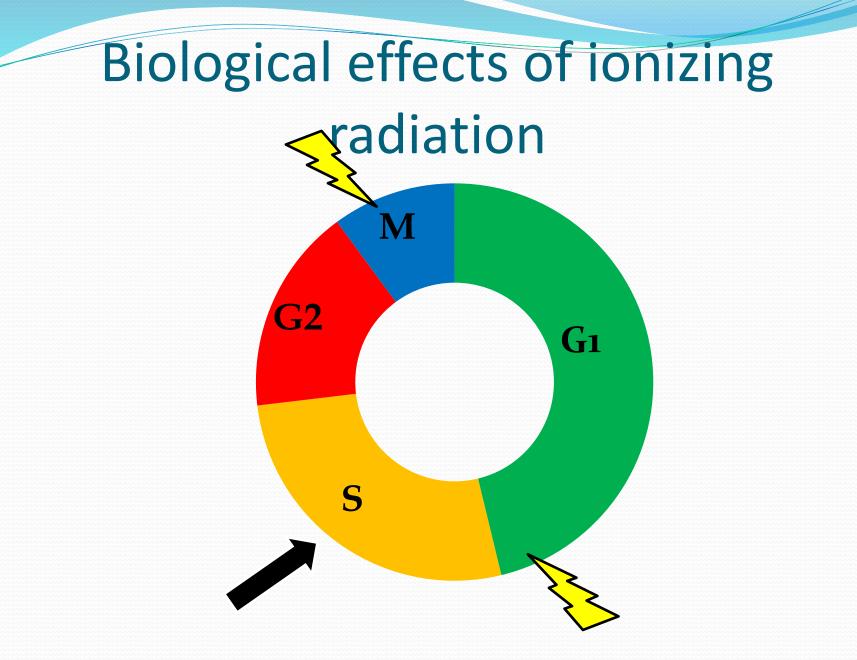
- Direct cell absorption
- Damaged or changed function
- Tissue with low water content

- 2) Indirect effect (radical theory)
 - Radiation splits electron pairs (creation of radicals)
 - Water radiolysis

```
excitation (*) H_2O \rightarrow H_2O^* \rightarrow H^{\cdot} + \cdot OH most toxic
ionization H_2O \rightarrow H_2O^+ + e^-
H_2O^+ \rightarrow H^+ + \cdot OH
e^- + H_2O \rightarrow H_2O^- \rightarrow H^{\cdot} + OH^-
e^- + O_2 \rightarrow O_2^{\cdot}
```

• 2) Indirect effect (radical theory)

Radical reactions $H \cdot + H_2 O \rightarrow H_2 + \cdot OH$ $H \cdot + H \cdot \rightarrow H_2$ $OH + \cdot OH \rightarrow H_2 O_2 \rightarrow H_2 O + O$ $H \cdot + O_2 \rightarrow HO_2 \cdot$ $H \cdot + HO_2 \cdot \rightarrow H_2 O_2$


- 2) Indirect effect (radical theory)
 - Creation of reactive molecules H₂, H₂O_{2...}
 - Cells with high oxygen uptake are the most sensitive

Biological effects of ionizing radiation

- Of biggest concern is **damage to DNA**
- Damage of organism on several levels:
 - Molecular level
 - Molecular changes, lowering or loss of function
 - Subcellular level
 - Disruption of metabolical pathways
 - Cell level
 - Reduction of cell population
- => changes of the whole system

Biological effects of ionizing radiation

- Proliferating cells can experience these degrees of ionizing radiation damage:
- Temporary stoppage of proliferation
- Loss of proliferation
- Cell death

Damage by Ionizing radiation

- Stochastic effects no threshold
 - Somatic effects (irradiated individual)
 - Hereditary (progeny)
 - Mutation
 - Probability of adverse effect is a linear function of dose (tumors)

Damage by Ionizing radiation

- Deterministic effects
 - Threshold
 - Acute radiation syndrom

Therapy of acute radiation syndrome

- Decontamination
- Iodine
- Contamination of GIT laxatives
- Nausea and vomiting = more than 1,5 Gy
- Supporting therapy:
 - Antiemetics
 - Antibiotics
 - Infusions, blood cells
- Causal
 - Recovery of haematogenesis- cytokines, stem cells transplantation

Dosimetry

Dosimetry

- Exposure X charge, which is gained by 1 kg of absorbing material (air) during passage of ionizing radiation (C.kg⁻¹)
- Exposure speed exposure in time (C.kg⁻¹·s⁻¹)
- Absorbed dose energy absorbed by 1kg of material; unit G – Gray (J.kg⁻¹)

$$D = \frac{E}{m}$$

Dosimetry

- Equivalent dose (H)
 - Represents effect on health

<u>Gamma, x-ray, electron</u>	Q = 1
Neutron	Q = 10
<u>Alpha radiation</u>	Q = 20

- H = D.Q.
 - Q = quality factor desribing the biological effect of the radiation
- unit sievert (Sv)

Not detectable by human senses

- Detectors
 - Ionization
 - Excitation
 - Effects on photographic emulsion

Ionization detectors

- Based on ionization of gas in measuring chamber => gas becomes conductive, electric current can be then measured by electrodes
- Ionization chamber
 - Static measurement of radiation (exposition)
 - Impulse measurement of radiating particles
- Geiger –Muller tube

Scintilation detectors

- Some materials can excite their atoms in presence of ionizing radiation, followed by deexcitation => emitting photons – flashes (scintilation) NaI(Tl)
- Emitted photon falls on photomultiplier = increasing the signal

• Scintigraphs, gammacameras

Photographic detection methods

- Ionizing radiation causes blackening of photographic emulsion with intensity directly proportional to dosage
- Personal film dosimeter

Protection against ionizing radiation

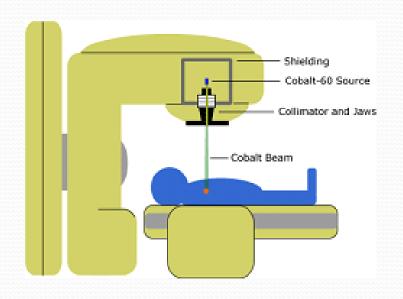
- Protection by time
- Protection by distance
- Protection by shading– lowers radiation exponentially

- Protection against contamination
 - Contamination external x internal
- Limits (workers vs standard population)

- Open emitters (radioactive drugs)
 - Free molecules for administration to human organism
 - Metabolic pathways
- For example: ¹³¹I, ⁹⁹Te
 - examination of thyroid
 - Selective uptake
- 99m TcO₄ replaces 131 I, clean γ radiator with low energy, short half-life = better safety
- ^{99m}Tc-DMSA (DimercaptoSuccinic Acid)
 ^{99m}Tc-pentetreotid examination of thyroid
- ¹⁸F cholin: prostate PET/CT imaging
- ¹⁸F deoxyglucose (DFG): glucose metabolism PET/CT imaging
- XOFIGO[®] ²²³Ra dichloride prostate carcinoma metastasis in bones
- ¹¹¹In-Cl: antibodies tagging
- ¹¹¹In-pentetreotid : GIT tumors, feocytochroma, ganglioneuroma

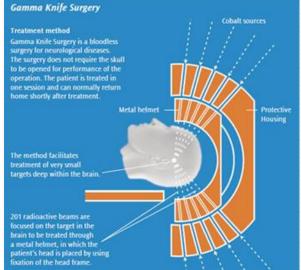
Encased emitters

- Radionuclides are encased in metal casing
- Needles for application to tumours
- Casings for insertion to body cavities
- Insertion to organs (brachyotherapy)
- Teletherapy (= irradiation from distance)
- ⁹⁰Sr, ⁶⁰Co, ¹³⁷Cs


Radiotherapy

- Selection of appropriate radiation device
 - Localization, dimension, radiosensitivity
- Tumor x healthy tissue
- Calculation of correct dose
- Radiation field

Cobalt (⁶⁰Co) and cesium(¹³⁷Cs) irradiators


depth radioteletherapy

- Gamma knife Lars Leksell 1951
 - Radiosurgery
 - Source of radiation: ⁶⁰Co
 - Gamma knife contains hundreds of radiation sources, rays meet in a focus => restricted lesion

- Betatron electron accelerator
 - Acceleration in magnetic field
- Linear accelerator– electron accelerators
 - Acceleration in electric field
- Usage
 - Accelerated particles themselves
 - Capturing of the radiation on wolfram tablet- creation of hard gamma radiation

Proton therapy

- Cyclotrons proton accelerators
- Acceleration by ever changing electric field
- Spiral trajectory (influenced by magnetic field
- Proton therapy is less damaging to healthy tissue

Contraindication

- Disintegration of tumour
- Terminal conditions
- Cachexia
- Anemia

X-ray

- 1895 Wilhelm Conrad Röntgen
- Similar character as gamma radiation
- Can have similar energy or wavelenghts
- Gamma is from nucleus
- X-ray is energy coming from changes in electron cloud

X-Ray

- Characteristic X-ray
 - Fast electrons hit a metal electrode => handing over energy to electron in metal atom => excitation, ionization => return to former energetic level = emitting the characteristic X-Rays
- Braking (deceleration) X-Ray
 - Electrons passing by a target (atom) are slowed down, their trajectory changes, abundant energy is emitted in form of braking X-Ray

Usage

- Skiascopy
- Skiagraphy
- Computing tomography (CT)