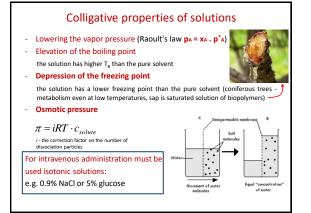
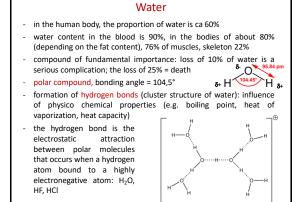
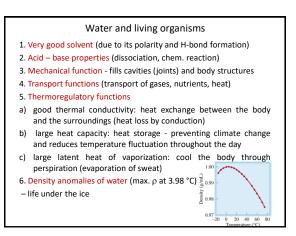

Water

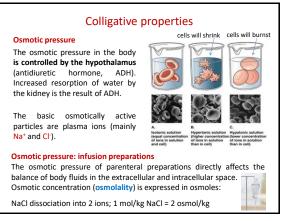
- in the human body, the proportion of water in the bodies of ca 60%

- water content in the blood is 83%, in the bodies of about 80% (depending on the fat content), 76% of muscles, skeleton 22%
- compound of fundamental importance: loss of 10% of water is a serious complication; the loss of 25% = death н
- polar compound, bonding angle = 104,5°


formation of hydrogen bonds (cluster structure of water): influence of physico chemical properties (e.g. freezing point, heat of vaporization, heat capacity)


the hydrogen bond is the electrostatic attraction between polar molecules that occurs when a hydrogen atom bound to a highly electronegative atom: H₂O, HF, HCI


Ή


22

21

Colligative properties

Oncotic pressure

Osmotic pressure, which is caused by solutions containing particles with a high molecular weight (e.g. proteins).

- Oncotic pressure contributes to maintaining a sufficient circulating blood volume.
- Decreased protein content (hypoproteinemia) in the blood plasma cause edema.
 Capillary Microcirculation
- Endothelium is permeable to ions but poorly permeable to proteins => oncotic pressure is applied instead of osmotic pressure.

26

Dissociation: Influence of pH on passage through biological membranes

- · Many drugs are weak acids or weak bases
- These compounds are more water soluble in their ionized form, and vice versa more liposoluble in their non-ionized form
- pH in the GIT determines the degree of ionization of weak acids and bases, and thus determines their solubility and absorption of drug into the body

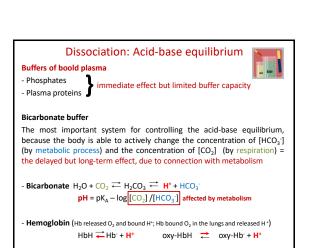
 $\mathsf{HA} \longleftrightarrow \mathsf{A}^{-} + \mathsf{H}^{+} \quad \mathsf{K}_{\mathsf{A}} = \left[\mathsf{A}^{-}\right] \left[\mathsf{H}^{+}\right] / \left[\mathsf{HA}\right]$

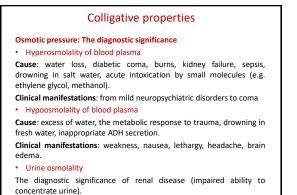
 $[H^+] = K_A [HA] / [A^-] \qquad -\log [H^+] = -\log K_A - \log [HA] / [A^-]$

pH = pK_A – log [HA] /[A⁻] Henderson-Hasselbach equation

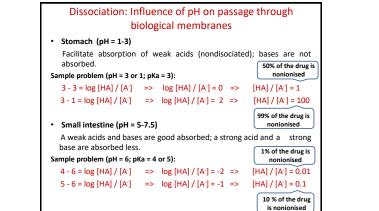
pKA-pH = log [nonionized form] / [ionized form] weak acid

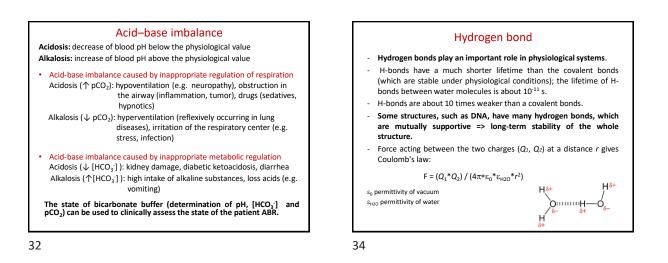
pH – pKA = log [nonionized form] / [ionized form] weak base

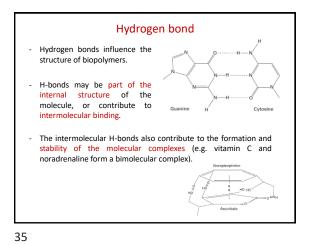

28



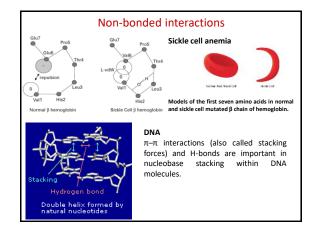
- dynamic balance between acidic and alkaline substances inside the body


- Due to metabolism pH is changed (CO₂ production) => regulation of ABR by buffers (substances capable of releasing or binding H⁺). H₂PO₄ ↔ HPO₄² ↔ H⁺ equilibrium => partial dissociation
- Precise adjustment of pH is important since pH changes influence the properties of proteins (including the activity enzymes), transport mechanisms, properties of the membrane channels etc.
- Blood plasma pH = 7.4 (7.35-7.45); pH values below 7.0 and above 7.8 are incompatible with life.
- Blood plasma proteins act as buffers, mainly due to carboxyl groups and amino groups.





27

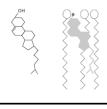


Non-bonded interactions

Non-bonded interactions The motions of the electron around any atom produce instantaneous dipoles that in turn induce the formation of other attraction dipoles in neighboring atoms. Dipole-dipole interaction: formed by the interaction of polar molecules Van der Waals forces Dipole-induced dipole interaction: formed by the interaction of polar and nonpolar molecules London dispersion force: formed by the interaction of nonpolar molecules. London interactions are caused by random fluctuations in electron density in an electron cloud, which induces dipoles in other neighboring molecules.

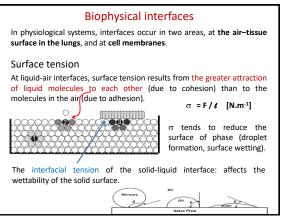
37

Hydrophobic interaction: formed by the interaction between the nonpolar parts of macromolecules in aqueous environments. The importance for the stability of the conformation of biopolymers - e.g. biological membrane, stabilizing pairs of aromatic amino acids.

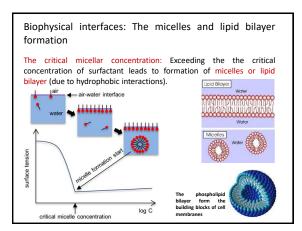

 π - π interaction: the ring structures have delocalized π -electrons produced by conjugated bond systems in the rings. When the rings are parallel to one another, π - π interactions occur between the p-orbitals. These interactions occur in supramolecular structures, like DNA (they provide substantial structural stability).

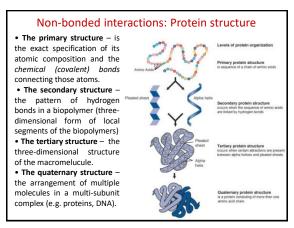
Non-bonded interactions: Cell Membrane

Non-bonded interactions between phospholipids in cell membrane (hydrophobic interaction; partially Van der Waals forces)

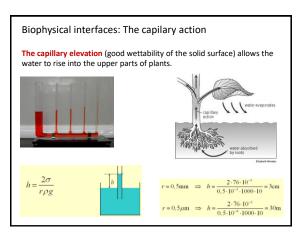


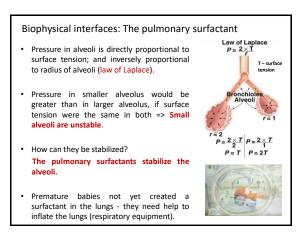
Cholesterol (stability of membranes)

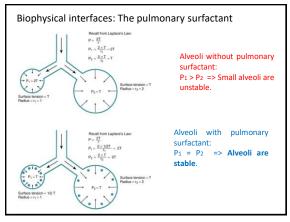


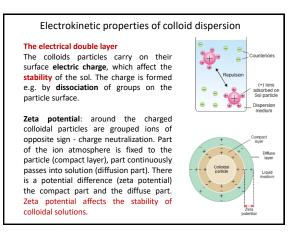

The hydroxyl group will associate with the phosphate head groups of phospholipids. The steroid rings and hydrocarbon chain will associate with the fatty acid tails of phospholipids with the same London attraction forces that hold the fatty acids together. The presence of cholesterol in our membranes = protection of membranes from rubure.

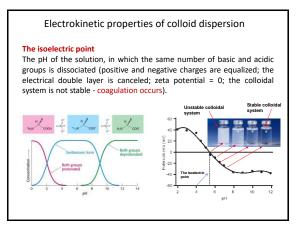
40




43




41



Dispersion					
Dispersed phase / Continuous medium	Coarse dispersion (1 µm to 1 mm)	Colloid dispersion (1 nm to 1 µm)	Analytical dispersion (less than 1 nm)		
solid / liquid	blood (blood cells)	blood plasma	true solutions (electrolytes, non- electrolytes)		
liquid/ liquid	milk (fat globules in solution of proteins)	solutions of macromolecules	mixtures of miscible liquids		
The properties			-		
observability	light microscope	electron microscope	you can not observe individual particles		
osmotic effect	no	small	big		
diffusion	no	slow	fast		
sedimentation	in the gravitational field	ultracentrifuge	no		
optical properties	opaque	opalescence - due to the diffraction of light	clear		

	Disper	sion	
continuous phase. any aqueous env	ironment in the	liquid or gas) are human body (e acellular environme	.g. blood) are
lassification of disper coarse dispersion (oarticle size 1 μm	to 1 mm)	size:
colloid dispersion (particle size 1 µm	to 1 nm)	
colloid dispersion (Continuous medium	particle size 1 μm	to 1 nm) Coarse dispersion	Colloid dispersion
		,	Colloid dispersion
Continuous medium	Dispersed phase	Coarse dispersion	Colloid dispersion - aerosol
Continuous medium	Dispersed phase gas	Coarse dispersion	-
Continuous medium	Dispersed phase gas liquid	Coarse dispersion - Fog	- aerosol
Continuous medium gas	Dispersed phase gas liquid solid	Coarse dispersion - Fog dust	aerosol aerosol
Continuous medium gas	Dispersed phase gas liquid solid gas	Coarse dispersion - Fog dust foam	aerosol aerosol foam
Continuous medium gas	Dispersed phase gas liquid solid gas liquid	Coarse dispersion Fog dust foam emulsion	aerosol aerosol foam sol
Continuous medium gas liquid	Dispersed phase gas liquid solid gas liquid solid	Coarse dispersion Fog dust foam emulsion suspension	- aerosol foam sol sol

Dispersion						
Dispersed phase / Continuous medium	Coarse dispersion (1 μm to 1 mm)	Colloid dispersion (1 nm to 1 µm)	Analytical dispersion (less than 1 nm)			
solid / liquid	Oncotic pressure is a form of osmotic pressure exerted by proteins (albumin, globulins, fibrinogen) – is relatively small but significant (basic physiological parameter of blood).					
liquid/ liquid	The diffusion of small molecules and ions from the colloidal scible solution through a dialysis membrane into pure solvent. Hemodialysis – replacement of kidney function.					
The properties observability osmotic effect	Sedimentation rate of blood (erythrocytes) is basic laboratory tests - the first warning signal indicating some disease (blood sedimentation is accelerated especially in inflammations or infectious diseases).					
diffusion sedimentation	Determination of particle size (laser diffraction) and particle concentration (turbidimetry, nefelometry).					
optical properties	opaque	opalescence - due to the diffraction of light	clear			

