MUNI PHARM

Colloids

Prof. PharmDr. Mgr. David Vetchý, Ph.D.

1 Department of Pharmaceutical Technology, Faculty of Pharmacy, MU Brno

- important for understanding of the theory and technology of dispersed systems
- Important in dialysis, ultrafiltration...
- Some representative shapes of spherocolloids and fibrous colloids:

- flow, sedimentation, and osmotic pressure are affected by changes in the shape
- particle shape may also influence pharmacological action

Class	Particle Size*	Characteristics of System	Examples
Molecular dispersion	Less than 1 nm	Invisible in electron microscope Pass through ultrafilter and semipermeable membrane Undergo rapid diffusion	Oxygen molecules, ordinary ions, glucose
Colloidal dispersion	From 1 nm to 0.5 µm	Not resolved by ordinary microscope (detected under ultramicroscope) Visible in electron microscope Pass through filter paper Do not pass semipermeable membrane Diffuse very slowly	Colloidal silver sols, natural and synthetic polymers, cheese, butter, jelly, paint, milk, shaving cream
Coarse dispersion	Greater than 0.5 µm	Visible under microscope Do not pass through normal filter paper Do not dialyze through semipermeable membrane Do not diffuse	Grains of sand, most pharmaceutical emulsions and suspensions, red blood cells

* 1 nm (nanometer) = 10^{-9} m; 1 µm (micrometer) = 10^{-6} m.

1. Lyophilic Colloids

- Lyophilic (solvent-loving) colloids = systems containing colloidal particles that interact to an appreciable extent with the dispersion medium
- usually obtained simply by dissolving the material in the solvent
- properties due to the attraction between the dispersed phase and the dispersion medium - *solvation* (attachment)
- hydrophilic colloids the dispersion medium is water hydration
- Most lyophilic colloids: organic molecules:
 - Eg: gelatin, acacia, insulin, albumin in water,
 - rubber, and polystyrene in nonaqueous, organic solvents (in water
 lipophilic colloids depends on dispersion medium)

2. Lyophobic Colloids

- materials that have little attraction, if any, for the dispersion medium
- Iyophobic (solvent-hating) colloids their properties differ from those of the lyophilic colloids
- generally inorganic particles dispersed in water (eg. gold, silver, sulfur, arsenous sulfide, and silver iodide)
- necessary to use special methods to prepare lyophobic colloids:
 - a) dispersion methods coarse particles are reduced by eg. ultrasonic generators
 - b) condensation methods materials of subcolloidal dimensions are caused to aggregate into particles within the colloidal size range by the production of an electric arc within a liquid - metal of the electrodes is dispersed as vapor, which condenses to form colloidal particles

2. Lyophobic Colloids

- required conditions for the formation a high degree of initial supersaturation followed by the formation and growth of nuclei
- Supersaturation by change in solvent or reduction in temperature – eg. sulfur dissolved in alcohol and the concentrated solution is then poured into an excess of water

3. Association Colloids

- Association (or amphiphilic) colloids surface-active agents characterized by having two distinct regions of opposing solution affinities within the same molecule or ion
- at low concentrations the amphiphiles exist separately and are of such a size as to be subcolloidal
- as the concentration is increased aggregation occurs aggregates containing 50 or more monomers are called *micelles* (have colloidal size)
- critical micelle concentration(CMC): the concentration of monomer at which micelles form
- aggregation number of the micelle: the number of monomers that aggregate to form a micelle

3. Association Colloids

 Above the CMC, the surface tension remains essentially constant, showing that the interface is saturated by monomers and micelle formation has taken place in the bulk phase

- Amphiphiles may be:
 - Anionic
 - Cationic
 - Nonionic
 - Ampholytic (zwitterionic)

Comparison of viscosity of colloidal sols

Lyophilic

Viscosity is increased greatly by the presence of the dispersed phase;

at sufficiently high concentrations, the sol may become a gel;

viscosity and gel formation are related to solvation effects and to the shape of the molecules, which are usually highly asymmetric

Association

Viscosity increases as the concentration of the amphiphile increases, as micelles increase in number and become asymmetric

Lyophobic

Viscosity is not greatly increased by the presence of lyophobic colloidal particles, which tend to be unsolvated and symmetric

Comparison of stability of colloidal sols

Lyophilic	Association	Lyophobic
Dispersions are stable	In aqueous solutions, the	Dispersions are
generally in the	critical micelle	unstable in the
presence of electrolytes;	concentration is reduced	presence of even small
	by the addition of	concentrations of
they may be salted out	electrolytes;	electrolytes;
by high concentrations		
of very soluble	salting out may occur at	effect is due to
electrolytes;	higher salt	neutralization of the
	concentrations	charge on the particles;
effect is due primarily to		
desolvation of lyophilic		lyophilic colloids exert a
molecules		protective effect

Sensitization and Protective Colloidal Action

- the addition of a small amount of hydrophilic or hydrophobic colloid to a hydrophobic colloid of opposite charge tends to sensitize or even coagulate the particles
- the addition of large amounts of the hydrophilic colloid stabilizes the system - the hydrophile being adsorbed on the hydrophobic particles - protection by a protective colloid.
- the protective property is expressed in terms of the gold number
 - the gold number is the minimum weight in milligrams of the protective colloid (dry weight of dispersed phase) required to prevent a color change from red to violet in 10 mL of a gold sol on the addition of 1 mL of a 10% solution of sodium chloride

Optical Properties of Colloids

- The Faraday–Tyndall Effect
- = when a strong beam of light is passed through a colloidal sol, a visible cone, resulting from the scattering of light by the colloidal particles, is formed.
- particles can be observed and counted by ultramicroscope
- Light scattering
- depends on the Faraday–Tyndall effect
- widely used for determining the molecular weight, shape and size of colloids
- described in terms of the turbidity the fractional decrease in intensity due to scattering as the incident light passes through 1 cm of solution

- The motion of particles may be:
 - induced thermally Brownian movement, diffusion, osmosis
 - induced gravitationally sedimentation
 - applied externally viscosity

Brownian Motion

- the random movement of colloidal particles
- resulting from the bombardment of the particles by the molecules of the dispersion medium
- the velocity increases with decreasing particle size
- increasing the viscosity of the medium decreases and finally stops

Diffusion

- spontaneously from a region of higher concentration to one of lower concentration
- direct result of Brownian movement
- according to Fick's laws
- the *Stokes–Einstein* equation:

- where D is the diffusion coefficient,
- *R* is the molar gas constant,
- *T* is the absolute temperature,
- η is the viscosity of the solvent,
- *r* is the radius of the spherical particle,
- *N* is Avogadro's number

Diffusion

• the Stokes-Einstein equation:

- three main rules of diffusion:
 - 1. the velocity of the molecules increases with decreasing particle size
 - 2. the velocity of the molecules increases with increasing temperature
 - 3. the velocity of the molecules decreases with increasing viscosity of the medium

Osmotic Pressure

- dilute spherocolloids the *van't Hoff* equation: $\pi = c.R.T$
 - where c is molar concentration of solute
- to calculate the molecular weight of a spherocolloids in a dilute solution: $\pi = c_{q}/M.R.T$
 - where c_{g} is the grams of solute per liter of solution and M is the molecular weight
- for linear solvated lyophilic molecules:

•
$$\pi = c_{g} R.T.\left(\frac{1}{M} + B.c_{g}\right)$$

 where B is a constant for any particular solvent/solute system and depends on the degree of interaction between the solvent and the solute molecules (their asymmetry)

Sedimentation

• the velocity of sedimentation of spherical particles is given

by Stokes's law: $v = \frac{2.r^2.(\rho - \rho_0).g}{9.n_0}$

• where g is the acceleration due to gravity, ρ is density in a medium of density ρ_0 and a η_0 is viscosity

- Viscosity
 - Poiseuille's law for a liquid flowing through a capillary tube:

 $\eta = \frac{\pi . r^4 . t . \Delta P}{8 . l . V}$

 where *r* is the radius of the inside of the capillary, *t* is the time of flow, ΔP is the pressure head under which the liquid flows, *l* is the length of the capillary, and *V* is the volume of liquid flowing

Electrical Properties of Colloids

- Electrokinetic Phenomena
 - Electrophoresis
 - the movement of a charged particle through a liquid under the influence of an applied potential difference
 - Electroosmosis
 - opposite in principle to electrophoresis
 - liquid moves through a plug or a membrane across which a potential is applied
 - the solid is immobile (e.g., by forming a capillary or making the particles into a porous plug) the liquid moves relative to the charged surface

Electrical Properties of Colloids

Donnan Membrane Equilibrium

- in which R⁻ is the nondiffusible colloidal anion and the vertical line separating the various species represents the semipermeable membrane
- the volumes of solution on the two sides of the membrane are considered to be equal
- after equilibrium:
 - $[Na^+]_o$. $[Cl^-]_o = [Na^+]_i$. $[Cl^-]_i$
 - Outside: $[Na^+]_o = [Cl^-]_o$
 - Inside: $[Na^+]_i = [R^-]_i + [Cl^-]_i$

Electrical Properties of Colloids

- Donnan Membrane Equilibrium
 - after substitution:

• $[Cl^{-}]_{o}^{2} = ([R^{-}]_{i} + [Cl^{-}]_{i}) \cdot [Cl^{-}]_{i} = [Cl^{-}]_{i}^{2} \cdot \left(1 + \frac{[R^{-}]_{i}}{[Cl^{-}]_{i}}\right)$

• Donnan membrane equilibrium:

• $\frac{[Cl^-]_o}{[Cl^-]_i} = \sqrt{1 + \frac{[R^-]_i}{[Cl^-]_i}}$

- the ratio of concentrations of the diffusible anion outside and inside the membrane at equilibrium
- a negatively charged polyelectrolyte inside a semipermeable sac would influence the equilibrium concentration ratio of a diffusible anion
- it tends to drive the ion of like charge out through the membrane.

Colloid-Based Delivery Systems for Therapeutics

Typical Mean Particle Diameter	Delivery System Type	Representative Systems of Each Type	Characteristic Applications
0.5–20 μm	Microspheres, hydrogels	Alginate, gelatin, chitosan, polymeric microspheres, synthetic, biodegradable, polymeric hydrogels	Sustained release of therapeutics, scaffolds for cell delivery in tissue engineering
0.2–5 μm	Microparticles	Polystyrene, poly(lactide) microspheres	Targeted delivery of therapeutics
0.15–2 μm	Emulsions, microemulsio ns	Oil-in-water, water-in-oil, lipid emulsions, oil-in-water microemulsions	Controlled and targeted delivery of therapeutics
30–1000 nm	Liposomes	Phospholipid and polymer- based bilayer vesicles	Targeted delivery of therapeutics
3–80 nm	Micelles	Natural and synthetic surfactant micelles	Targeted delivery of therapeutics
2–100 nm	Nanoparticles	Lipid, polymer, inorganic nanoparticles	Targeted delivery of therapeutics, in vivo navigational devices