Polysaccharides Compounds supporting disintegration of tablets

starch

•mixture of amylose and amylopectine [9005-25-8]

•PhEur: Maydis amylum, Oryzae amylum, Solani amylum, Tritici amylum

•USPNF: Corn starch, Potato starch, Tapioca starch, Wheat starch

^{(1→4)-}α-D-glucopyranan

•trituration diluent, tablet granulate binder, tablet disintegrant

© Oldřich Farsa 2024

Polysaccharides Compounds supporting tablet disintegration and stabilizers of aggregate properties of coarsely dispersed systems hydroxypropylstarch [113894-92-1, 9049-76-7], E1440

•a compound stabilizing suspensions and emulsions by increasing viscosity; capsule binder; disintegrant

Constitutive excipients and stabilizers of aggregate properties of coarsely dispersed systems Celullulose and its ethers

R = H cellulose = $(1 \rightarrow 4)$ - β -D-glucopyranan; microcrystalline - n ≈ 220 – binder and tbl. disintegrant (Avicel [®]); amorphous n ≈ 500

R = CH_3 (27 – 32 %) or **H** methylcellulose $50 \le n \le 1000$, viscosity enhancer – emulsion and suspension stabilizer, tbl. binder and disintegrant (Methocel[®], E461)

 $R = CH_{2}CH_{3} ethylcellulose compound for hydrophobic coating of tbl., binder and filler of tbl., viscosity$ enhancer (Aquacoat [®], E462) $<math display="block">R = (CH_{2}CH_{2}O)_{m}H \text{ or }H \qquad hydroxyethylcellulose compound for coating of tbl., binder and filler of tbl.,$ viscosity enhancer (Cellosize HEC [®], Tylose PHA[®]) $<math display="block">R = (CH_{2}CH_{2}O)_{m}H \text{ or }CH_{3} \text{ or }H \qquad hydroxyethylmethylcellulose compound for coating of tbl., binder$ and filler of tbl., viscosity enhancer, suspension stabilizer (Tylopur MH [®], Tylose MB[®]) $<math display="block">R = (CH_{2}CH(CH_{3})O)_{m}H \text{ or }H \qquad hydroxypropylcellulose, hyprolose: compound for coating of tbl., binder$ and filler of tbl., viscosity enhancer, suspension stabilizer (Klucel [®], Nisso HPC[®]) $<math display="block">R = (CH_{2}CH(CH_{3})O)_{m}H \text{ or }CH_{3} \text{ or }H \qquad hypromellose = hydroxypropylmethylcellulose - coating and film$ forming substance, release rate controlling polymer, viscosity enhancer, suspension stabilizer (BenecelMHPC[®], E464)

Cellulose ethers continued

carboxymethylcellulose R = -CH₂**COOH** or **-H**, carmelose, most often Na⁺ or Ca²⁺ salt:

Carmellosum natricum and *calcicum PhEur* - binder and disintegrant of tbl. and cps., viscosity enhancer, suspension stabilizer, coating substance (E466, Tylose CB[®] - Na⁺ salt, Nymcel ZSC[®] - Ca²⁺ salt)

croscarmellose – crosslinking with carboxymethyl fragments linked by ester and ether bonds

Synthesis of saccharide ethers

 $R^2 = -H, -CH_3, 0 \le m < \infty$

Cellulose esters

R = -NO₂ or -H cellulose nitrate 4% solution in Et₂O = Collodium = Collodion = Pyroxylin; film-forming a gel-forming substance, wound sealant (*Sol. Novikov*) **R** = -OCCH₃ or -H celullose acetate = Cellulosi acetas PhEur compound for coating of tbl. and prolongation of drug release from them, diluent for tbl. and cps. **R** = -OCCH₃ or OH Celacefate = cellulose acetate phthalate, *Cellacefatum PhEur:* 30.0 – 36.0 % hydrogenphthalate groups, 21.5 – 26 % acetate groups film-forming compound for coating of tbl., matrix binder **R** = -OCCH₃ or -OC(CH₂)₂CH₃ or -H celaburate = cellulose acetate butyrate, *Cellaburatum PhEur:* 2.0 – 30.0 % acetyls, 16.0 – 53.0 % butyryls; hydrophobic contact lens material (Cabufocon A, [9004-36-8])

Cyclic oligosaccharides Cyclodextrins and their derivatives

•cyclic glucose oligomers with 5 – 8 units: cyclo- α -(1 \rightarrow 4)-D-oligoglucopyranosides

betadex

alfadex = α -cyclodextrin = cycklo- α -(1 \rightarrow 4)-D-hexaglukopyranoside •parenteral DP, complexes only molecules of low M_r

betadex = β -cyclodextrin = cyclo- α -(1 \rightarrow 4)-D-heptaglukopyranoside

•*Betadexum* PhEur (the only one listed in the pharmacopoeia); solubilizer – complexing agent, masking of unpleasant taste, reducing of local irritation (mucosa, eye), enhancer of permeation of a drug through mucosa etc.

•nephrotoxic - not applicable for parenteral products

gamadex = γ -cyclodextrin = cycklo- α -(1 \rightarrow 4)-D-octaglucopyranoside

β -cyclodextrin ethers **Dimethyl-\beta-cyclodextrin**

•selectively methylated in positions 2 and 6 of each anhydroglucose unit

•similar usage as betadex

β -cyclodextrin ethers continued

 $\begin{array}{l} \mathsf{R} = -(\mathsf{CH}_2\mathsf{CH}_2\mathsf{O})_n\mathsf{H} \ \textbf{2-hydroxyethyl-}\beta-cyclodextrin \\ \bullet \mathsf{R} = -(\mathsf{CH}_2\mathsf{CH}(\mathsf{CH}_3)\mathsf{O})_n\mathsf{H} \ \textbf{2-hydroxypropyl-}\beta-cyclodextrin \\ \bullet \mathsf{more suitable for parent. applications than betadex: not nephrotoxic \\ \bullet Hydroxypropylbetadexum PhEur: molar substitution MS; \quad 0.40 \\ \leq \mathsf{MS} \leq 1.50 \text{ is a number of } 2\text{-hydroxypropyl units per 1} \end{array}$

(anhydro)glucose unit, determined by ¹H-NMR

Molar substitution of hydroxypropylbetadex in accordance with PhEur (article No. 1804)

•in D_2O

•MS is calculated from the ratio between the signal from the 3 protons of the methyl group that is part of the hydroxypropyl group and the signal from the proton attached to the C_1 carbon (glycosidic proton) of the anhydroglucose units.

A practical example of molar substitution of hydroxypropylbetadex Kleptose HPB, batch No. E0266, EZC400R 400 MHz, D₂O

MS = 1.83/3 = 0.62 corresponds with the pharmacopoeia

A practical example of molar substitution of hydroxypropylbetadex Kleptose HP, batch No. E0010, EZC400R 400 MHz, D₂O

Substituted oligo- and polymers of glucose of ether type in PhEur and characterization of their molar substitution

Compound	Expression of molar substitution
Hydroxypropylbetadex	from ratio of areas in ¹ H-NMR spectrum
Carmelose (carboxymethylcellulose)	-
Carmelose sodium salt	by means of content of Na: 6.5 – 10.8 %
Carmelose calcium salt	-
Low substituted carmelose sodium salt	by means of content of Na: 2,0 – 4,0 %
Methylcellulose	content of methoxy groups $26.0 - 33.0 \%$ - determination as $CH_{_3}I$ by means of GC
Ethylcellulose	content of ethoxy groups $44.0 - 51.0 \%$ - determination as $CH_{3}CH_{2}I$ by means of GC
Hyprolose (hydroxypropylcellulose)	-
Hypromelose (hydroxypropylmethylcellulose)	content of both methoxy- and 2-hydroxypropoxy groups defined for each type of substitution, determination as CH ₃ I and ICH ₂ CH(I)CH ₃ by means of GC
Carboxymethylstarch A, B, C	by means of content of Na: A 2.8 – 4.2 %; B 2.0 – 3.4 %; C 2.8 – 5.0 %
Hydroxypropylstarch	0.7 - 5.0 % hydroxypropyl groups; partial hydrolysis by DCI / D ₂ O directly in NMR tube, measurement of
	¹ H-NMR, comparison of areas of dublet of methyl of 2-hydroxypropyl group and internal standard 3- trimethylsilylpropan-1-sulfonic acid

Substituted oligo- and polymers of glucose of ester type in PhEur and characterization of their molar substitution

Compound	Expression of molar substitution
Cellulose acetate	Content of acetyl groups 29.0 – 44.8%: splitting off $CH_{3}CO$ groups with NaOH, titration of unreacted NaOH with $H_{2}SO_{4}$
Celaburate (cellulose acetate butyrate)	2.0 – 30.0 % acetyl groups and 16.0 – 53.0 % butyryl groups; determination of acetic and butanoic acids by HPLC after hydrolysis
Celacefate (cellulose acetate phthalate)	30.0 - 36.0 % phthaloyl groups and $21.5 - 26.0$ % acetate groups; determination of hydrogenphthalate groups by a direct titration with NaOH; acetate groups: splitting off CH ₃ CO groups with NaOH, titration of unreacted NaOH with H ₂ SO ₄