

Globin – conformation of the molecule, types of chains, interactions between the chains. Haem – structure, binding of oxygen, arrangement in oxygenated and deoxygenated state, binding to globin chain. Haemoglobin (Hb) – binding 2,3-BPG, Bohr effect, allosteric interactions, saturation curve, physiological and abnormal types of haemoglobin. Glycation of proteins.

Haemoglobin

 $M_{\rm r}({\rm tetramer}) = 64~000$

Concentration in blood: 2.15–2.65 mmol/L (tetramer)

Binding of oxygen: at totals saturation 4 mol O₂/mol Hb

Saturation of Hb with oxygen: arterial blood ~ 0.97

venous blood ~ 0.73

Average values of pO_2 :

Alveoli of the lung:

13-15 kPa

Arterial blood:

9–13 kPa

Mixed venous blood:

> 5 kPa

(Critical value for hypoxia 3.5 kPa)

- 1. Give the mass and molar concentration of Hb related to the Hb monomer.
- 2. Calculate the maximal volume of oxygen that can bind to 1 g of Hb.

(1.4 mL)

3. When isolated haem reacts with oxygen, the oxidation of Fe²⁺ to Fe³⁺ occurs. Describe the reaction of oxygen with haemoglobin. Explain the difference.

Secondary and Tertiary Structure of Globin Chain

Structure of Haem

- 4. Characterize the secondary and tertiary structure of globin chain.
- 5. Characterize the structure of haem and its bindings to the globin chain.

Binding of Oxygen to Haem

Electronic configuration of Fe²⁺ (complete)

High spin state (the number of coordination 5)

3d

Low spin state (the number of coordination 6)

3d

Porphyrin plane

- What change in haem structure is triggered by binding of oxygen? 6.
- 7. What change in deoxyHb subunit conformation results from it?

Quaternary Structure of Haemoglobin

 $2 H_2O + 2 CO_2 \longrightarrow 2 H_2CO_3$

- 8. Describe the main types of non-covalent interactions between haemoglobin subunits in oxygenated and deoxygenated state.
- 9. Give the formula of 2,3-bisfosfoglycerate and mark its binding in the T-form of Hb.
- 10. What is the principle of the Bohr effect?
- 11. Explain, why is the affinity of Hb to oxygen decreased in the presence of 2,3-BPG.

Dissociation of Haemoglobin

HHb
$$Hb^{-} + H^{+}$$
 $pK_{A} \sim 7.8$ $HbO_{2}^{-} + H^{+}$ $pK_{A} \sim 6.2$

- 12. Which of the two forms of haemoglobin (Hb or HbO₂) is stronger acid?
- 13. Which of the amino acids is responsible for acid base properties of haem at physiological pH?

Saturation of Haemoglobin by Oxygen

Saturation curve of haemoglobin

- 14. Mark areas corresponding to the pO_2 in alveoli of lungs and mixed venous blood in the graph What is the saturation of Hb in % at these pressures?
- 15. Complete the saturation curve for myoglobin into the graph. Explain the differences in character of the both curves. Which of the both proteins binds oxygen more tightly?
- 16. The binding of oxygen to haemoglobin has cooperative character. Explain it.
- 17. On the saturation curve for Hb mark changes resulting from:
 - a) lowering of the pH
- c) decrease of 2,3-BPG concentration
- b) decrease of pCO_2
- d) increase of temperature

Types of Human Haemoglobin

Туре	Structi	Proportion of the total Hb in adults
HbAo	$\alpha_2 \beta_2$	(partly HbA-Glc)
HbA		~ 97 %
HbA ₁	$\alpha_2 \; \beta_2$	(glycation on terminal –NH ₂ group of β-globin)
HbA_2	$\alpha_2 \delta_2$	~ 2.5 %
HbF	$\alpha_2\gamma_2$	~ 0.5 %

18. Compare the affinities of Hb and HbF to oxygen. What is the cause of this difference? What is its significance?

Derivatives of Haemoglobin

- 19. Name the derivatives of haemoglobin formed after: a) binding of O2; CO2 and CO; b) oxidation.
- 20. What are the most common causes of CO poisoning? How can be this poisoning detected? What is the first aid in this case?
- 21. Explain what methaemoglobinemia is and what may cause this disturbance.

Glycation of Haemoglobin

Principle of non-enzymatic glycation

22. Which factors will affect the amount of glycated haemoglobin?

Glycated Haemoglobin

HbA₁ glycation on terminal $-NH_2$ (Val) group of β-chains **4–6** % of the total HbA

HbA-Glc glycation in other sites of Hb: e.g. terminal -NH₂ group of α-globin or at ε-NH₂ (Lys) of α, β-globin

Inherited Abnormalities of Haemoglobin Synthesis

Examples:

HbS
$$\alpha_2 \beta_2^{6 Glu \rightarrow Val}$$

$$\textbf{HbC} \qquad \alpha_2 \; \beta_2 \stackrel{6 \; Glu \; \rightarrow \; Lys}{}$$

HbM
$$\alpha_2 \beta_2$$
 "His \rightarrow Tyr $\alpha_2 \beta_2^{67}$

- 23. What is the molecular principle of sickle cell anaemia?
- 24. What is the cause of sickle shape of erythrocytes?