Biochemie-6-2-metabolismus_sacharidů Glycogen - synthesis and degradation 1 Biochemie-6-2-metabolismus_sacharidů • The synthesis and degradation of glycogen occurs in most cells, the greatest extent is in the liver and muscles. • Glycogen is a supply of glucose in the cells, which is very readily available • In muscles - weight of glycogen is about 1(-2)% of muscle mass, degradation occurs during hard work or stress •In the liver: about 5 (-10)% weight of the liver after a meal, degradation occurs when glucose level in blood is decreased about 0.1% weight of the liver after 24 hours of fasting Glycogen supplies 2 Biochemie-6-2-metabolismus_sacharidů The formation of glycogen allows the preservation of a large number of glucose molecules in the cell, without creating a hyperosmotic environment 3 Biochemie-6-2-metabolismus_sacharidů Glycogen is stored in cytoplasmic granules of cells. Enzymes involved in synthesis and degradation bind to the surface of the granules. Glycogenolysis is not the opposite of synthesis. Glycogen molecules have mass Mr ~108 Localization of glycogenolysis and synthesis of glycogen Články a informace z různých oblastí lékařství: Tvorba glykogenu. [online]. 20.6.2006 [cit. 2014-07-18]. Dostupné z: http://www.biology.estranky.cz/clanky/biochemie/tvorba-glykogenu.html 4 Biochemie-6-2-metabolismus_sacharidů Types of linkages in glycogen NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 99. 5 glycosidic linkage glycosidic linkage Biochemie-6-2-metabolismus_sacharidů Glycogen synthesis (glycogenesis) 1. activation of glucose to UDP-glucose 2. transfer of activated molecules to 4-end of existing primer or glycogen chain 3. creation  -1,4 glycosidic bond 4. branching Takes place after a meal, insulin activation 6 Biochemie-6-2-metabolismus_sacharidů 1. UDP-glucose synthesis • Glucose-6-P Glucose -1-P phosphoglucomutase • Glucose-1-P + UTP UDP-glucose + PPi PP i + H2O 2Pi NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 100. 7 UDP-glucose Biochemie-6-2-metabolismus_sacharidů 2. Primer is needed for glycogen synthesis glycogen fragment specific protein, if glycogen is completely depleted (glycogenin) Auto glycosylation at serine residue 8 Biochemie-6-2-metabolismus_sacharidů • Initiation - binding of glucose to primer by  -1,4 glycosidic bond (glycogensynthase) • Elongation - formation of linear chains with -1,4 bond (glycogensynthase) • UDP-glucose + [glucose]n  [glucose]n+1 + UDP 3. Formation of  -1,4 glycosidic bonds 9 Biochemie-6-2-metabolismus_sacharidů 4. Branching (branching enzyme) 5-8 terminal glucose residues at the non-reducing end is transferred and bound by1,6 bond G-G-G-G-G G-G-G-G-G-G-G-G-G-G-G-G-G  -G-G-G-G-G-G-G-G -1,6 bond Further elongation by glykogensynthase on non-reducing ends Further branching by branching enzyme 10 Biochemie-6-2-metabolismus_sacharidů The significance of branching: • increase the solubility of glycogen • increasing the number of non-reducing ends acceleration of synthesis (and degradation) 11 Biochemie-6-2-metabolismus_sacharidů Degradation of glycogen (phosphorolyse) 1. Phosphorolytic digestion -1,4 glykosidic bonds (phosphorylase) 2. Deletion of -1,6 branching (debranching enzyme) Proceeds during starvation (liver), muscle work (muscle) or stress (liver and muscle). Compare: Hydrolysis x phosphorylolysis 12 Biochemie-6-2-metabolismus_sacharidů 1. Phosphorylase Phosphorolytic digestion -1,4 glykosidových glykosidic bonds from non-reducing ends Glycogenn + Pi glucose-1-P + glycogenn-1 digestion proceeds until phase of "limit dextrin" (typically 4 glucose units before -1,6 bond) Rob's web: Glycogeen metabolisme [online]. [cit. 2014-07-18]. Dostupné z: http://www.robkalmeijer.nl/voedingsleer/metabolisme/glycogeenmetabolisme/ n residues n – 1residues 13 Biochemie-6-2-metabolismus_sacharidů Phosphorylase effect leads to the formation of limit dextrins: Degradation of glycogen NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 103. 14 Biochemie-6-2-metabolismus_sacharidů 2. Debranching enzyme transferase activity: enzyme transferes 3 of the remaining 4 glucose bound on chain by -1,6 bond to the non-reducing end of another chain glucosidase activity: cleavage of glucose bound by -1,6 bond (Free glucose is released! No Glc-1-P) 15 Biochemie-6-2-metabolismus_sacharidů Following the effect of phosphorylase Effect of debranching enzyme NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 103. 16 Enzyme TRANSGLYCOSYLASE transferes 3 of the remaining 4 glucose bound on chain by -1,6 bond to the nonreducing end of another chain glucose-1-P Biochemie-6-2-metabolismus_sacharidů NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 103. 17 DEBRANCHING ENZYME glucosidase activity: cleavage of glucose bound by -1,6 bond (Free glucose is released! No Glc-1-P) glucose-1-P glucose-1-P Biochemie-6-2-metabolismus_sacharidů The fate of glucose-1-phosphate generated from glycogen release into the blood NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 103. 18 glucose-1-P glucose-6-P glucose-6-phosphatase All Glucose-6-P can not pass across the cytoplasmic membrane, transfer is possible only for glucose The enzyme glucose-6-phosphatase is only in the liver (kidney) - not in muscle. liver (kidney Glucose-6-P, which can be metabolized only inside the cell (glycolysis) can be obtained by cleavage of glycogen in muscle and other cells Biochemie-6-2-metabolismus_sacharidů Glucose-6-P can not pass across the cytoplasmic membrane, transfer is possible only for glucose The enzyme glucose-6-phosphatase is only in the liver (kidney) - not in muscle. The blood glucose level can be supplied only by cleavage of liver glycogen Glucose-6-P, which can be metabolized only inside the cell (glycolysis) can be obtained by cleavage of glycogen in muscle and other cells utilization of glucose-6-P 19 Biochemie-6-2-metabolismus_sacharidů Lysosomal degradation of glycogen lysosomal acidic glucosidase (pH optimum 4) - degrades 1,4 bonds from non-reducing ends - glucose is released degradation 1-3 % of cellular glycogen (viz též Pompeho choroba) 20 Biochemie-6-2-metabolismus_sacharidů Regulation of metabolism of glycogen Glycogensynthase X glycogenphosphorylase hormonal control Allosteric regulation 21 Biochemie-6-2-metabolismus_sacharidů Hormones affecting the synthesis and degradation of glycogen Hormone synthesis degradation Insulin Glucagon Adrenalin       Hormones operates through its "second messengers" 22 Biochemie-6-2-metabolismus_sacharidů Phosphorylation and dephosphorylation of proteins plays an important role in the regulation of glycogen metabolism • phosphorylation by kinases and ATP • dephosphorylation through phosphatases 23 Biochemie-6-2-metabolismus_sacharidů H2O Pi proteinfosfatase OH O-P ATP ADP proteinkinase Enzyme inactive Enzyme active H2O Pi proteinfosfatase OH O-P ATP ADP proteinkinase Enzym active Enzyme inactive Common examples of activity changes induced by phosphorylation and dephosphorylation 24 Biochemie-6-2-metabolismus_sacharidů Activation and inactivation of glycogenphosphorylase NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 105. phosphorylase b (phosphorylated form - not very active) Phosphorylase a (phosphorylated form - active) 25 Phosphorylase in the liver and muscles varies Biochemie-6-2-metabolismus_sacharidů Activation and inactivation of glykogensynthase NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 105. Glykogensynthase a (phosphorylated - active) Glykogensynthase b (phosphorylated - inactive) 26 Biochemie-6-2-metabolismus_sacharidů the effect of hormones: Liver: glucagon (cAMP), adrenaline (cAMP, Ca2+ kalmoduline) Degradation of glycogene Muscle: adrenaline (cAMP) under stress allosteric regulation AMPNo effect of glucagon!  Ca2+ during muscle contraction 27 Biochemie-6-2-metabolismus_sacharidů Activation of phosphorylase takes place in stages Proteinkinase A (inactive) cAMP Proteinkinase A (active) Phoosforylase kinase (inactive) Fosforylase kinase (active) ATP ADP P Glykogenfosforylase b (inactive) ATP ADP Glykogenfosforylase a (active) P Liver - activation of glycogenphosphorylase by glucagon and adrenaline -mediated by cAMP Glucose, ATP, Glc-6P: allosteric inhibition Glukagon (adrenaline) 28 Biochemie-6-2-metabolismus_sacharidů Liver - activation of glycogen phosphorylase by adrenaline, mediated by increase of intracellular Ca2+ Adrenaline 1  Ca2+  Ca2+-calmodulin Ca- kalmodulin dependentní fosforylasakinasa (neaktivní) Ca-calmodulin dependent fosforylasakinase (inactive) P ATP ADP Glykogenphosphoryl ase b (inactive) Glykogenphosphoryla se a (active) calmodulin Proteinfosfatase (activation  cAMP ) Adrenaline and glucagon can act synergistically 29 Biochemie-6-2-metabolismus_sacharidů Proteinkinase A (inactive) cAMP Proteinkinase A (active) Phosphoryla se kinase (inactive) phosphoryla se kinase (active) ATP ADPPGlykogenfosforylase b (inactive) ATP ADP Glykogenphosphoryla se a (active) P Adrenaline -stress Muscle - activation of glycogenphosphorylase by adrenaline, Ca2+ and AMP muscle contraction ↑ Ca2+ Glycogenphosphorylase b (active) (non-phosphorylated) AMPDecrease of energy P Proteinphosphatase (activation  cAMP ) Glycogenphosphorylase b (inactive) 30 Biochemie-6-2-metabolismus_sacharidů Glykogensynthase a (dephosphorylated, active) Glykogensynthase b (phosphorylated, inactive) Proteinfosfatase 1 (activation by insuline, allosterically glucose-6-P inactivation ↑ cAMP ) Activation and inactivation of glycogensynthase in liver ATP ADP Proteinkinase (activation by glucagon /cAMP/ or adrenaline /Ca- calmoduline/ inactivation activation Pi 31 Biochemie-6-2-metabolismus_sacharidů Check of glycogensynthase in muscle is more complex and is also regulated by glycogen content. Glycogen functions as a reverse inhibitor of synthesis 32 Biochemie-6-2-metabolismus_sacharidů Glycogenoses  Enzymes that play a role in glycogen metabolism, are often damaged in any way - it is usually a inherited deficiency of enzymes. These deficiencies manifest themselves in different ways - it depends on which particular enzyme it is and also on specific isoform (disorders may therefore be tissue specific - e.g. isoform in muscle is damaged and metabolism of glycogen in muscle will be disturbed, on the other hand isoform in liver will be fine, so glycogen metabolism in them will proceed normally). NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 108. 33 Biochemie-6-2-metabolismus_sacharidů Glycogenoses – enzymes disorders Inherited deficiency of enzymes. Since different isoenzymes can occur in various tissues, thus the disorders can be tissue specific. (F - fatal) Type Enzyme defect Organ Characteristic 0 I II III IV V VI VII Glykogensythase Glc-6-phosphatase Lysosome. α-glukosidase Branching enzyme Branching enzyme Muscle phosphorylase Liver phosphorylase phosphofruktokinase liver liver, kidneys muscles, heart liver, muscle, heart liver muscle liver muscles Hypoglycemia F Enlarged liver, kidneys. Hypoglycemia. Cells are overcrowded by glycogen The accumulation of glycogen in lysosomes F Accumulation of charact. branching polysach. Accumlation of non-branched polysacharide F High glycogen content in muscle decreased ability body exertion High glycogen content in the liver, a tendency to hypoglycaemia Same as type V 34 Biochemie-6-2-metabolismus_sacharidů Von Gierkes disease (glykogenose type I) The most common of glycogenoses Deficiency of glucose-6-phosphatase or transporter for glucose-6-P Consequences: hypoglycaemia during a short starvation lactacidemia (hyperlipidemia, hyperurikemia) Examples of glycogenoses 35 Biochemie-6-2-metabolismus_sacharidů Pompes disease (glykogenose type II) Absence of -1,4-glucosidase in lysosomes Glycogen accumulation in lysosomes Loss of function of lysosomes Damage to muscle, glycogen accumulates in the cytoplasm of muscle  muscle weakness Mainly affects the muscles of the respiratory system and heart Type I a - in infants (fatal) Type II b - in older children and adults, shortens life 36 Biochemie-6-2-metabolismus_sacharidů McArdles disease (type V) Absence of of muscle phosphorylase Glycogen stores are not available for energy production The muscle is unable to perform permanent work The muscle is easily damaged (myoglobin in the blood) 37