Aerobic metabolism
6.1) Citric Acid Cycle
6.2) Electron transport
6.3) Oxidative phosphorylation
6.4) Oxidative stress

- Aerobic oxidation of glucose- greater amounth of energy
then does fermentation

- Oxygen highly reactive

- Oxidative cell damage: enzymes, antioxidant molecules
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The Citric Acid Cycle

The citric acid cycle is the final common pathway for the oxidation
of fuel molecules: amino acids, fatty acids, & carbohydrates.

Most fuel molecules enter the cycle as acetyl coenzyme A
This cycle is the central metabolic hub of the cell

It is the gateway to aerobic metabolism for any molecule that
can be transformed into an acetyl group or dicarboxylic acid,
It is also an important source of precursors for building blocks
Also known as, Krebs Cycle, & Tricarboxylic Acid Cycle (TCA)

Chapter 17: Outline
17.1 The citric acid cycle oxidizes two-carbon units

17.2 Entry to the cycle and metabolism through it are controlled
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17.3 The cycle is a source of Bi&syfithetic precursors
— [ I N




Overview of citric acid cycle

1. The function of the cycle is the harvesting of high-energy

2.

3.

4.

electrons from carbon fuels

The cycle itself neither generates ATP nor includes O, as a
reactant

Instead, it removes electrons from acetyl CoA & uses them to
form NADH & FADH, (high-energy electron carriers)

In oxidative phosphorylation, electrons from reoxidation of
NADH & FADH, flow through a series of membrane proteins
(electron transport chain) to generate a proton gradient
These protons then flow back through ATP synthase to
generate ATP from ADP & inorganic phosphate

O, Is the final electron acceptor at the end of the electron
transport chain

The cytric acid cycle + oxidative phosphorylation provide

> 95% of energy used in jyman,aerobic cells ;




Fuel for the Citric Acid Cycle

Initiates cycle

/
’
\ 7
I O
cetyl-Col
Reactive
thiol group
e = / I
~ > ' N =
<3 - H H HCH o 0o 47 "N |adenine
) Mﬁ— et e T s (LS
A B-Mercapto- 0 J . /H .
ethylamine o
\ O OH 3
— \ / 0_},70_
2 8
/N N
7 \ adenosine di
/ \ Ac
O O

O Thioester bond

§ )J\to acetate
\/\'( \/\S CH,
B-mercapto-ethylamine

O
Acetyl coenzyme A (Acetyl CoA)




Mitochondrion
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Mitochondrion

Matrlx Oxidative decarboxilation
of pyruvate, & citric acid
cycle take place in matrix,
along with fatty acid oxidation
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Citric Acid Cycle: Overview

Input: 2-carbon units

Cz Output: 2 CO,, 1 GTP,
& 8 high-energy
electrons
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CITRIC ACID CYCLE
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Glycolysis to citric acid cycle link
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Oxidative decarboxylation

A large, highly integrated complex of three kinds of enzymes

Pyruvate + CoA + NAD* = acetyl CoA + CO, + NADH

CO,
0 ©O- CoASH +
S | + ]
C NAD* A" NADH 0_ S-Coa
é=o AN | |FA|D ¢
nyruvate dehydrogenass
éHs IL:III'I'I plex (E, + E, +Ey é‘.HS
Pyruvate Acety]l-CoA
I
TABLE 17.1 Pyruvate dehydrogenase complex AGT = =334 kJ/mol
Number Prosthetic
Enzyme Abbreviation of chains group Reaction catalyzed
Pyruvate dehydrogenase E, 24 TPP Oxidative decarboxylation
component of pyruvate
Dihydrolipoyl transacetylase E, 24 Lipoamide Transfer of the acetyl
group to CoA
Dihydrolipoyl dehydrogenase E; 12 FAD Regeneration of the
oxidized form of
lipoamide

Groups travel from one active site to another, connected by

tethers to the core of the structure

-irreversible oxidationggafipexyggroup is removed from 10

pyruvate as CO2 + AcCoA




3 enzymes
5 Coenzymes:
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Reactive
thiol group
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Fuel for the Citric Acid Cycle
Initiates cycle
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Number of lipoyl
domains varies by species.
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Citrate Cycle: step 1 (citrate formation)

Enzyme: Citrate synthase
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Conformational changes in citrate synthase
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Citrate iIsomerized to Isocitate: step 2

Enzyme: aconitase
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Aconitase: citrate binding to iron-sulfur cluster

4Fe-4S iron-sulfur cluster



|socitrate to a-ketoglutarate: step 3

Enzyme: isocitrate dehydrogenase

COO~
. NAD*  NADH + H' ‘OOC\C O H CO, ’OOC\C Py
“O0C—C—H \\/ > Q0C—C—H \ /\ > CH,
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Oxidation of IC to aKG ar]aqo&ggm;\/ln% In active site
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Succinyl CoA formation: step4

Enzyme: a-ketoglutarate dehydrogenase

E CoA—S
OOC\ 40 e /O
C C
CH, CH,
+ NAD" + CoASH— + CO, + NADH
CH, CH,
COO~ COO~
«-Ketoglutarate Succinyl CoA
2nd NADH produced 2nd CO, removed
oxidation
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Succinate formation: step5

Enzyme: succinyl CoA synthetase

CoA—S

N 2 COO0-
CH, CH,
CH, + P + GDP ——> CH, + CoA + GTP
COO~ COO~
Succinyl CoA Succinate

GTP produced

GTP + ADP = GDP + ATP (NPTase)
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Succinyl CoA synthetase
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Oxaloacetate regenared by oxidation of succinate:

Steps 6 - 8

Oxidation, hydration, and oxidation

COO™ FAD FADH, COO~

| \\\‘J/// H coo- H0 |
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| ; ‘ ___>>>_9 |
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Succinate to Fumarate: step 6

Enzyme: succinate dehydrogenase

COO~ FAD FADH,
H COO~
H—C—H
H—C—H
~00C H
COO-
Succinate Fumarate

FADH, produced
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Fumarate to Malate: step 7

Enzyme: fumarase

COO-
0 COO~ Hz0
‘\‘_) HO—C—H
H—C—H
~00C H
COO~
Fumarate Malate
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Fumurate to L-Malate

“OH
H l CO0O~
~00C [ H Hydroxyl group to one
side only of fumarate
H* double bond; hence,
Fumarate only L isomer of malate
l formed
-00C H OH
H> <’|'_'i"'COO‘

31
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Malate to Oxalate: step 8

Enzyme: malate dehydrogenase

COO™ NADY NADH + HY
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Malate 3rd NADH produced Oxaloacetate
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The citric acid cycle

0 |COO_
'
H,0 &
22 ™ (Ha
-00C—C—©OH
l CoO-
Citrate CH2  Aconitase _é_
- | H OH
O\C _C00~  synthase COoO- A5 ([: "
| Citrate T
i CH
2 - NAD+*
NADH + H* C0o COO0
Oxaloacetate Isocitrate
Malate Isocitrate
dehydrogenase NADH + H*
— dehydrogenase ydrog + COs
-00C
|coo— R
HO—|C—H J:Hz
|
(H2 CH,
coo- 6
Malate a-Ketoglutarate
, NAD*
a-Ketoglutarate . Tk
Fumarase dehydrogenase
complex
COA—S\
o NADH + H*
H,0 H COO- | + COy
CH,
| , |
-00C~ H Succinate Succinyl CoA (|3H2
Fumarate ~dehydrogenase (‘:OO synthetase COoO-
‘CHz Succinyl CoA
FADH; CH, GDP + P;
FAD COO- GTP

Succinate

33



Summary of 8 steps

TABLE 17.2 Citric acid cycle

AG®’
Prosthetic
Step Reaction Enzyme group Type* kcal mol~1 kJ mol~!
1 Acetyl CoA + oxaloacetate + H,O — Citrate synthase a Tl ~31.4
citrate + CoA + HT
2a  Citrate = cis-aconitate + H,O Aconitase Fe-5 b +2.0 184
2b  cis-Aconitate + H,O 1socitrate Aconitase Fe-S c .8 21
3 Isocitrate + NADT — Isocitrate d+e 2.0 _8.4
a-ketoglutarate + CO, + NADH  dehydrogenase
4  a-Ketoglutarate + NADT + CoA a-Ketoglutarate  Lipoic acid, d+e 5 ~30.1
succinyl CoA + CO, + NADH  dehydrogenase = FAD, TPP
complex
5  Succinyl CoA + P; + GDP = Succiny]l CoA f —08 33
succinate + GTP + CoA  synthetase
6  Succinate + FAD (enzyme-bound) == Succinate FAD, Fe-S e = 0
fumarate + FADH, (enzyme-bound)  dehydrogenase
7 Fumarate + H,O —= L-malate Fumarase B =0 -3.8
8 L-Malate + NAD" — Malate e | +29.7
oxaloacetate + NADH + H* dehydrogenase
*Reaction type: (a) condensation; (b) dehydration; (¢) hydration; (d) decarboxylation;
(e) oxidation; (f) substrate-level phosphorylation.
Proton gradient generates 2.5 ATP per NADH, & 1.5 per FADH,
9 ATP from 3 NADH + 1 FADH2. Also, 1 GTP
Thus, 1 acetate unit generates eq] uivalent of 10 ATP molecules. "

In contrast, 2 ATP per glucose mo

[Eétile it 'anaerobic glycolysis




Pyruvate to Acetyl CoA, irreversible

Glucose
Pyruvate

Pyruvate Key irreversible step
dehydrogenase In the metabolism of
l complex glucose

Acetyl CoA

|\ 35
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Regulation of pyruvate dehydrogenase

Inhibited by products,
NADH & Acetyl CoA
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Also regulated by covalent modification,
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BIOCH-9 2017 36



Control of citric acid cycle

Allosteric regulation
Regulated primarily by
_L_OATP, acetyl CoA ATP & NADH concentrations,
and NADH control points:
1_ Pyruvate dehydrogenase
Acetyl CoA isocitrate dehydrogenase &
o- ketoglutarate dehydrogenase
Bialo- \\ 2-oxo-glutarate dehydrogenase)
acetate . I
’ Citrate Inhibition by product:
citrate synthase- citrate- 2-oxo-glutarate
Malate ‘ dehydrogenase-

t Isocitrate succinyl CoA

Pyruvate

Fumarate © ATP and

: T

Succinate o-Ketoglutarate

\ <
Succinyl)\ © ATP, succinyl 2017 37
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Biosynthetic roles of the citric acid cycle

Pyruvate
Other
amino acids, \
purines, Acetyl CoA
pyrimidines \
\ Oxaloacetate ‘\
Aspartate 4 o Citrate
f "= Fatty acids,
sterols
Purines
* .
Succinyl a-Ketoglutarate ,
COA e N\ Other
Porphyrinsl Glutamate amino aC|dS
heme, chlorphyll
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Key Enzymes for regulation of CAC,
inhibitors and activators

Enzyme ATP2 | NADH? | different

Pyruvate dehydrogenase - - - acetyl-CoA (inh. prod.)

e syieese . - Cltrate (inhibition by

product)
Isocitrate dehydrogenase - - + ADP (allosteric activation)
2-OG-dehydrogenase - - sukcinyl-CoA (inh. prod.)

 allosteric inhibitor
b feedback inhibitor (inhibition by reaction product)

¢ allosteric activator

NOVAK, Jan. Biochemie I. Brno: Muni, 2009, s. 237.
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Regulation of CAC

pyruvate
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< o ATP
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—-..___-___-_-_-__*
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Succinate )
S——————>  Succinyl-CoA
NOVAK, Jan. Biochemie I. Brno: Muni, 2009, s. 238.
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acetyl~CoA

42



malate

--------

f“"

pyruvate
| Ca™
O $--===-

| 7o

43



