

ANTIBACTERIAL DRUGS ANTITUBERCULOSIS DRUGS ANTILEPROSY DRUGS

Assoc. Prof. Peter Kollár, Ph.D. Dept. of Pharmacology and Toxicology Faculty of Pharmacy MU

Classes of ATB

1. Beta-lactam ATB

- Penicillins
- Cephalosporins
- Monobactams
- Carbapenems
- 2. Aminoglycosides
- **3.** Tetracyclines
- 4. Amphenicols
- 5. Macrolides

- 6.Lincosamides
- 7.Ansamycins
- 8.Peptides
 - Polypeptides
 - Glycopeptides
- 6.Sulfonamides
- 7.Pyrimidines
- 8.Quinolones

9.AntiTBC, antiLPR MUNI PHARM

AMINOGLYKOSIDES

- Classic (streptomycin, kanamycin, neomycin)
- Modern (gentamicin, netilmicin, tobramycin, amikacin, isepamicin)
- Impact on G-, weak on G+
- Unsuitable for anaerob. inf. (O_2 is necessary for AG uptake) or IC bacteria
- Toxicity: oto-, nephro-, neuro- (mainly in elderly patinets, increased during loop diuretics administration)
- Problem: quickly and widely generated resistance

Mechanism of action

 Irreversible bond on 16S ribosomal RNA, and arrest of initiatory complex (30S-mRNA-tRNA)

 Slowdown of already initiated proteosynthesis, and induction of mRNA "*misreading*"

Bactericidal effect

Microbe Library

American Society for Microbiology

www.microbelibrary.org

TETRACYCLINES

- Basic (I. generation) tetracycline, oxytetracykline

- Acts on both G+ and G-, mycoplasma, chlamydia, rickettsiae
- IC penetration
- Good absorption from GIT
- Resistance is often and crossed
- Low toxicity

Mechanism of action

- Bond on 30S subunit of bacterial ribosomes
- Blocks the access of aminoacyl-tRNA to the mRNAribosome complex

Side effects

- GIT disorders: can be decreased by concurrent use of non-milk food
- Effect on calcifying tissues: Deposits in bones and teeth
- CI in pregnancy, and in children before 8 years !!!
- Hepatotoxicity
- Photosensitivity
- Vestibular problems: (eg. vertigo, nausea, vomiting) after minocyclin
- Superinfection: candida (vagina) or resist. staphylococcus (gut)

AMPHENICOLS

- ChloramphenicolTiamphenicol
- Bacteriostatic
- Broad-spectrum (also on *H. influenzae*)
- Good penetration into CNS and abscesses
- Indication: meningitis, MRSA

History: typhus and paratyphus, severe pneumonia, anaerobic or abdominal infections

Side effects of CHF

- Haematotoxicity

- 1. Myelosuppression dependent on dose and duration of administration time
- 2. Aplastic anemia irreversible, immunotoxic mechanism
- Gray syndrom

– Neurotoxicity

Apply not longer than 14 days, and with interval longer than half a year ! (incl. local DF)

MACROLIDES

Basic (erythromycin, spiramycin)
Modified (claritromycin, azitromycin, roxitromycin)

- Spectrum: mainly on G+, neisseria, leptospirosis, mycoplasma, chlamydia, helicobacter, legionella, toxoplasma
- Good tolerance (Ery-motilin!), low tox., good penetration into the tissues and cells
- Bacteriostatic effect

Mechanism of action

- Reversible bond on ribosome
- Affect proteosynthesis inhibition of translocation

Microbe Library, American Society for Microbiology, www.microbelibrary.org

MUNI Pharm

Resistance in MAC class

- Huge increase in last decade (up to 20%)

Reasons:

- Non-rational application
- Minimal and non-significant side effects
- The increasing popularity in doctors and patients (even in vet.med.)

Less-sensitive strains:

- Streptococcus pyogenes
- Streptococcus pneumoniae
- Staphylococcus aureus ...

LINCOSAMIDES

clindamycin, lincomycin

- MofA: bond on 50S subunit \rightarrow inhibition of peptidyl transferase activity
- Bacteriostatic mainly on: G+, anaerobes
- Drugs-of-choice in Staphylococcus infections with PNC allergy
- Resistance often crossed with MAC
- Excellent penetration into tissues (bones)
- Low tox., but risk of pseudomembranose colitis

ANSAMYCINS

rifampicin, rifampin, rifabutin

- MofA: bond on DNA-dependent RNA polymerase, and inhibition of initiation of mRNA synthesis
- Bactericidal effect on: G+, G-, but mainly mycobacteria, chlamydia, rickettsiae, legionella
- Low toxicity, good absorption after p.o.
- rifampicin = induction of CYP450
- rifabutin = effective even in mycobacteria resistant on rifampicin

PEPTIDES

Polypeptides
bacitracin
polymyxins:
polymyxin B
colistin

- Glycopeptides
- vankomycin
- teikoplanin

- Bactericidal, different spectrum of activity
- Non-absorble from GIT
- Strong toxicity
- Rezerve ATB

Polypeptides

bacitracin

- Narrow-spectrum: G+ (S. pyogenes)
- Strong nephrotoxicity
- Local application in comb. with neomycin

polymyxins – polymyxin B, colistin

- Narrow-spectrum: G- (not neisseriae)
- colistin (*P. aeruginosa*) p.o. desinfection of GIT
- Strong neuro- a nephrotoxicity

Glycopeptides

 MofA: Inhibition of phospholipid and peptidoglycan polymers synthesis in cell wall

vancomycin

- Severe infection G+ (staphyloc., enteroc.)
- Synergy with AG used in enteroc. endocardit
- Strong nephro- and ototoxicity

teikoplanin

- Lower toxicity
- Long t_½ 50 h

Vancomycin: Mechanisms of action and resistance

MUNI Pharm

SULFONAMIDES

- PABA analogues (para-aminobenzoic acid)
- Primary bacteriostatic
- Broad-spectrum (G+, G-, toxoplasma)
- Low toxicity
- Side effects: GIT, skin allergic reactions (Stevens-Johns sy., Lyell sy.)
- Renal complication (crystaluria)
- Frequent resistance

PYRIMIDINES

trimetoprim

- Broad-spectrum (G+, G-, H. influenzae, E. coli, Proteus ...)

PHARM

- Good absorption after p.o.
- Resistance is often and quick
- Only in combination with SA

pyrimethamin

- Antimalaric agent, toxoplasmosis, leishmaniosis
- Always in combination (+ sulfadiazin)

Combination of sulfamethoxazol + trimetoprim

- = **Cotrimoxazol** (in ratio 1:5)
- More effective than single compounds
- Lower doses needed decrease the SE incidency, and resistance development
- Side effects: dermatologic (often in elderly), GIT, haematologic
- Main Indication: respiratory and urologic infections

Mechanism of action

QUINOLONES

– I. generation:

nalidixic acid, oxolinic acid (nonF QUIN) norfloxacin (F QUIN)

– II. generation:

ofloxacin, ciprofloxacin, levofloxacin, pefloxacin, fleroxacin, lomefloxacin, nadifloxacin, rufloxacin, delafloxacin, prulifloxacin

PHARM

– III. generation:

prulifloxacin, moxifloxacin, gemifloxacin, sparfloxacin, pazufloxacin

– IV. generation:

trovafloxacin, alatrofloxacin

Mechanism of action

Inhibition of DNA synthesis by the bond on A subunit of DNA gyrase

(topoisomerase II), and interfere with topoisomerase IV

Intensive bactericidal effect, mainly on G-

(G+ and anaerobes are less sensitive)

Basic characteristics

- Post-antibiotic effect: lasts 1 2 h, elongates with higher concentration
- Low toxicity, but broad-spectrum of SE
- Administration by i.v. or p.o. route

Generation	Drug Names	Spectrum
I.	nalidixic acid oxolinic acid, norfloxacin	G- but no effect on Pseudomonades
II.	levofloxacin ciprofloxacin prulifloxacin ofloxacin	G- (incl. Pseudomonades), some G+ (<i>S. aureus</i>) and some atypical bacteria
III.	sparfloxacin prulifloxacin moxifloxacin gemifloxacin	Same as II. gen., moreover wider G+ and atypical bacteria
IV.	trovafloxacin alatrofloxacin	Same as III. gen., moreover broad coverage of anaerobes

Negatives of Fluoro QUIN use

<u>Interactions</u>:

- \downarrow absorption: Al³⁺, Mg²⁺ and Ca²⁺ antacids
- CYP450 inhibitory \rightarrow potential interaction

= may increase levels of warfarin (INR real changes are rare, but better monitor)

- <u>Side effects</u>:
 - GIT: nausea, vomiting
 - CNS: headache, dizziness, confusion, insomnia, delirium, hallucinations, seizures (rare)
 - CVS: arrhytmias (rare)
 - Musculosceletal systém: myalgia, paraesthesia, joint swelling, weakness
 - Phototoxicity
 - Hypoglycemia

ANTITUBERCULOTICS, ANTILEPROTICS

- Causative agent: Mycobacterium tuberculosis

– antiTBC:

 line = rifampicin, isoniazid, ethambutol, streptomycin, pyrazinamide
line = PAS, capreomycin, cycloserin, ethionamid, F QUIN, MAC

- Causative agent: Mycobacterium leprae
- antiLEP:
 - rifampicin
 - dapson

MUNT

PHARM

Mechanism of action

Characteristics of the treatment

- Treatment before sensitivity detection
- Slow growth of microbes \rightarrow long-term application (6 12 months)
- antiTBC drugs of 2. line:
 - either not effective than 1 series
 - or are more toxic
 - or effective against atypical strains

Often resistance \rightarrow treatment always in combination, synergy, affects both

IC and EC forms of bacteria

- No of multiresistant strains is increasing

Thank you for your attention

Copyright notice

- This material is copyrighted work created by employees of Masaryk university.
- Students are allowed to make copies for learning purposes only.
- Any unauthorised reproduction or distribution of this material or its part is against the law.

PHARM