Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

Autoclave

Sterilization

- Sterilization
- Sterilization in pharmaceutical praxis
- Aseptic preparation
- Disinfection

 destruction/removal of all microorganisms: bakteria (including spores), protozoa, viruses, fungi, prions

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microoroanisms

- Sterilization
- Sterilization in pharmaceutical praxis
- Aseptic preparation
- Disinfection

 decrease the amount of microbes 3000 – 6000000 (acceptable level)

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microoraanisms

- Sterilization
- Sterilization in pharmaceutical praxis
- Aseptic preparation
- Disinfection

 approach, when during drug preparation microorganism contamination is prevented

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization an disinfection Sterilization by bacterial filters Heat resistance of microoroanisms

- Sterilization
- Sterilization in pharmaceutical praxis
- Aseptic preparation
- Disinfection

- destruction of living pathogenic microorganisms (but no spores are destroyed)
- protective (preventive)
- disinfection in the epidemy center
- cleaning disinfection sterilization

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microaceance

- Oliver Wendell Holmes 1843
- Ignác Filip Semmelweis 1844
- Louis Pasteur 1860
- ► Joseph Lister 1867

essay about possibility of transmitting puerperal sepsis

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microoraanisms

- Oliver Wendell Holmes 1843
- Ignác Filip Semmelweis 1844
- Louis Pasteur 1860
- Joseph Lister 1867

- high mortality on puerperal sepsis (about 15%)
- worst in hospitals, lower in home deliveries assisted by midwives
- relation between autopsy room and nursing mothers (cadaverous poisoning)
- introduced disinfection (chlorinated lime)
- disagreed with colleagues, his ideas (washing hadns) were ridiculed and rejected, left for Pest, died in mental hospitel soon after admission

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microgrammers

- Oliver Wendell Holmes 1843
- Ignác Filip Semmelweis 1844
- Louis Pasteur 1860
- Joseph Lister 1867

- chemist, microbiologist
- fermentation, vaccination (rabies), pasteurization and other discoveries
- germ theory of disease

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization an disinfection Sterilization by bacterial filters Heat resistance of

- Oliver Wendell Holmes 1843
- Ignác Filip Semmelweis 1844
- Louis Pasteur 1860
- Joseph Lister 1867

- surgery under carbol shower
- prevented suppuration of surgical wounds
- great appretiation (baron, founder of modern surgery)

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of

Ignác Semmelweiss

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Destroy all microorganism (if possible)
- Never destroy the stuff which is being sterilized
- Economic acceptance
- Time schedule acceptable
- Sterilized items is necessary to protect against another colonization

 depends of resistance, initial amount, material structure...

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization an disinfection Sterilization by bacterial filters Heat resistance of microoroanisms

- Destroy all microorganism (if possible)
- Never destroy the stuff which is being sterilized
- Economic acceptance
- Time schedule acceptable
- Sterilized items is necessary to protect against another colonization

- heat of the flame on the platinum loop
- sterilization of drugs

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization an disinfection Sterilization by bacterial filters Heat resistance of microoroanisms

- Destroy all microorganism (if possible)
- Never destroy the stuff which is being sterilized
- Economic acceptance
- Time schedule acceptable
- Sterilized items is necessary to protect against another colonization

- common, widely used methods
- industrial production

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization an disinfection Sterilization by bacterial filters Heat resistance of microoroanisms

- Destroy all microorganism (if possible)
- Never destroy the stuff which is being sterilized
- Economic acceptance
- Time schedule acceptable
- Sterilized items is necessary to protect against another colonization

- Iaboratory, production
- heat: heating, effective time, cooling

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization an disinfection Sterilization by bacterial filters Heat resistance of

- Destroy all microorganism (if possible)
- Never destroy the stuff which is being sterilized
- Economic acceptance
- Time schedule acceptable
- Sterilized items is necessary to protect against another colonization

- intact envelopes
- time

Sterilization

Sterilization

Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization an disinfection Sterilization by bacterial filters Heat resistance of microoroanisms

Disinfection

- Disinfection
- Factors that influence the degree of killing

- a process that eliminates a defined scope of microrganisms, except most spores, viruses and prions
- the purpose: prevent transmission of certain microorganisms with objects, hands or skin and prevent spreading the infection
- physical or chemical methods
- most disinfectants are chemical agents applied to inanimate objects

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization ar disinfection Sterilization by bacterial filters Heat resistance of microsconsection

Disinfection

- Disinfection
- Factors that influence the degree of killing

- types of organisms
- number of organisms
- concentration of disinfecting agent
- presence of organic material (e.g., serum, blood)
- nature (composition) of surface to be disinfected
- contact time
- temperature
- ► pH
- biofilms
- compatibility of disinfectants

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Bardiation sterilization

Chemical sterilization and disinfection Sterilization by bacterial

filters

Heat resistance of microorganisms

Resistance of microorganisms

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

Materials and their purpose

- Critical materials
- Semicritical materials
- Non critical materials

- will enter tissues or blood system
- will produce infection if contaminated
- require sterilization

Sterilization

Sterilization Disinfection

Sterilization by heat Radiation sterilization Chemical sterilization ar disinfection Sterilization by bacterial filters Heat resistance of

microorganisms Autoclave

Materials and their purpose

- Critical materials
- Semicritical materials
- Non critical materials

- will have contact with mucos membranes
- require high-level disinfection agents

Sterilization

Sterilization Disinfection

Sterilization by heat Radiation sterilization Chemical sterilization ar disinfection Sterilization by bacterial filters Heat resistance of

microorganisms

Materials and their purpose

- Critical materials
- Semicritical materials
- Non critical materials

- will have contact with intact skin
- require intermediate-level to low-level disinfection

Sterilization

Sterilization Disinfection

Progress of sterilization Sterilization by heat Radiation sterilization ar disinfection Sterilization by bacterial filters Heat resistance of microoraanisms

- Dying of mikroorganisms is exponential
- D-value (DRT)
- Z-value
- F-value
- L-value

- slowly at first, then faster, finally slow again
- the amount of microbes entering the process is necessary to limit as much as possible

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Dying of mikroorganisms is exponential
- D-value (DRT)
- Z-value
- F-value
- L-value

decimal reduction time: time, during which the amount of microorganism decreses to 1/10
<u>heating time</u> log N₀-N

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Dying of mikroorganisms is exponential
- D-value (DRT)
- Z-value
- F-value
- L-value

 increase of temperature necessary to increase the D-value 10×

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization an disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Dying of mikroorganisms is exponential
- D-value (DRT)
- Z-value
- F-value
- L-value

 time in minutes necessary to kill all the microbes under defined conditions

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Dying of mikroorganisms is exponential
- D-value (DRT)
- Z-value
- F-value
- L-value

lethality factor (1/F), heat efficiency under defined conditions compared with the temperature 121°C Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization an disinfection Sterilization by bacterial filters Heat resistance of microorganisms

D-value, DRT

log of Survivors 8 1 Log Cycle = a 10 times reduction filters In Microorganisms 7 ÷. 6 5 Log of Survivors 4 log of Survivors 3 2 1 0 1 2 3 4 5 6 7 8 h D -X – Axis Minutes

Sterilization

Sterilization Disinfection Progress of starilization Sterilization yeat Radiation sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Defined for various sterilized items
- Physical methods
- Chemical methods
- Plasma

drug production specifications

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Defined for various sterilized items
- Physical methods
- Chemical methods
- Plasma

- heat
- radiation (gamma rays, UV)
- bacterial filters

Sterilization Disinfection Progress of sterilization Sterilization by beat Radiation sterilization an disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Defined for various sterilized items
- Physical methods
- Chemical methods
- Plasma

baktericid gasses and vapours

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization and disinfection Sterilization by bacterial filters Heat meistance of microorganisms

- Defined for various sterilized items
- Physical methods
- Chemical methods
- Plasma

 vapourizes sterilizing agent in vacuum; plasma is then generated by microwave generator

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization an disinfection Sterilization by bacterial filters Heat resistance of microorganisms

Sterilization by heat

- Wet heat
- Dry heat

- boiling in water 100°C 30 minut, 3× in 24 hours
- boiling in water under pressure 300 kPa/134°C for 30 minutes
- heating in running steam 100°C for 45 minutes, 3× in 24 hours
- heating in running steam páře (pressure/temperature):
 - 110°C/150 kPa for 40 minutes
 - 115°C/170 kPa for 30 minutes
 - 120°C/200 kPa for 20 minutes
 - 134°C/300 kPa for 10 minutes
- microwave heating
- tyndalization: repeated heating to low temperature with 24 hours intervals

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

Sterilization by heat

- Wet heat
- Dry heat

- annealing, heating to yellow heat (platinum loop)
- circulating hot air, 160°C for 60 minutes
- mineral oil 160°C for 30 minut

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization an disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Advantages
- Ionizing irradiation
- UV irradiation
- Checking

- normal temperature
- can run continuously
- sterilized items can be in wrappings

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat **Radiation sterilization** Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microoranairsms

- Advantages
- Ionizing irradiation
- UV irradiation
- Checking

- gama rays, 25 kG
- accelerated electrones

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat **Radiation sterilization** Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microoroanisms

- Advantages
- Ionizing irradiation
- UV irradiation
- Checking

- sterilization of the air
- sterilization of some surfaces (work boxes)

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization an disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Advantages
- Ionizing irradiation
- UV irradiation
- Checking

- dozimeters
- bioindicators

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of

microorganisms Autoclave

Chemical sterilization

- Etylenoxid
- Formaldehyd
- Persteril

- complicated process, special device
- plasts, some drugs

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection

Sterilization by bacterial filters

Heat resistance of microorganisms

Chemical sterilization

- Etylenoxid
- Formaldehyd
- Persteril

- traditional method
- affects the surface only, easy to remove
- simultaneous wet conditions are necessary
- temperature over 80°C

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection

Sterilization by bacterial filters

Heat resistance of microorganisms

Chemical sterilization

- Etylenoxid
- Formaldehyd
- Persteril

- aggressive against metals
- unstable
- steam (20 minutes in defined concentration)
- solution 30 30 minut in concentration 0.2 0.4 %

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial

Heat resistance of microorganisms

Chemical disinfection

- Disinfecting agents
- Mechanism

- alcohols (alcohol 70%)
- aldehydes (formaldehyd)
- halogens (chlorine)
- phenols (added to soaps etc.)
- surfactants (detergents, tensides)
- heavy metals (silver nitrate 1 % eyedrop)
- dyes (crystal violet, brilant green... superfically on wounds)
- gases (ethylene oxide, oxidants, eg. hydrogen peroxide)

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection

Sterilization by bacterial filters

Heat resistance of microorganisms

Chemical disinfection

- Disinfecting agents
- Mechanism

- reaction with components of the cytoplasmic membrane (surfactant compounds, alcohols)
- denaturation of cellular proteins (alcohols, phenols, aldehydes, oxidants)
- reaction with the thiol (-SH) groups of enzymes (heavy metals)
- damage of RNA and DNA (aldehydes, oxidants, dyes)

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection

Sterilization by bacterial filters

Heat resistance of microorganisms

Sterilization by dry running air

- Sterilized items
- Time of sterilization
- Bioindicators

- glass, metal, machine parts
- sterilizd items must be dry and clean
- must not touch each other
- the air must run

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and

disinfection Sterilization by bacterial filters

Heat resistance of microorganisms

Sterilization by dry running air

- Sterilized items
- Time of sterilization
- Bioindicators

- 160°C 60 minutes, 170°C 30 minutes, 180°C 20 minutes
- + time of heating
- + time of cooling

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection

Sterilization by bacterial filters

Heat resistance of microorganisms

Sterilization by dry running air

- Sterilized items
- Time of sterilization
- Bioindicators

Bacillus subtilis

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection

Sterilization by bacterial filters

Heat resistance of microorganisms

Sterilization by bacterial filters

Bacterial filter

- pores 0.22 μ m or smaller
- must not release its parts to the filtrated substance

Sterilization

Sterilization Disinfection

Sterilization by heat Radiation sterilization Chemical sterilization a disinfection

Sterilization by bacterial filters

Heat resistance of microorganisms

Heat resistance of microorganisms

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

class	temperature	time	microorganism	
I.	62°C	30 minutes	mycobacteria, brucella, streptococcus, polyomavirus	
II.	80°C	30 minutes	most vegetative bacterial forms, yeasts, fungi, most viruses	
III.	100°C	5 – 30 minutes	hepatitis B virus, spores of fungi	A
IV.	105°C	5 minutes	anthrax — spores	
V.	121°C	8 – 12 minutes	b. thermophillus — spores, spores of clostridia	
VI.	134°C	6 hours	highly resistant spores	

- Device for sterilizing by hot steam
- Method
- Check-up

efficient sterilization method

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Device for sterilizing by hot steam
- Method
- Check-up

- steam (water heating or steam from other source)
- air removal (evacuation)
- heating
- temperature equalization
- sterilization
- cooling
- letting the air back again

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

- Device for sterilizing by hot steam
- Method
- Check-up

- heat monitors
- bioindicators

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms

Sterilization

Sterilization Disinfection Progress of sterilization Sterilization by heat Radiation sterilization Chemical sterilization and disinfection Sterilization by bacterial filters Heat resistance of microorganisms