Antihypertensives

Tomáš Goněc

16. 11. 2020

Hypertension

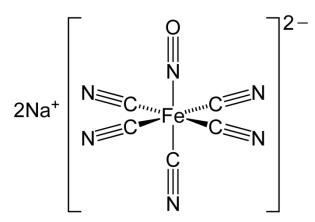
- □ chronical blood pressure >135/85 mmHg
- □ most common cardiovascular disease
- □ untreated = major risk of coronary artery disease, heart failure, stroke, renal failure
- □ long-time untreated hypertension: left ventricule hyperthropy, retinopathy, angina pectoris, lung, liver, renal failure

Hypertensive crisis

- □ acute blood pressure >180/120 mmHg
- may damage vessels, cause heart attack or stroke

Hypertension – drug therapy

- Diuretics
- □ Aldosteron receptor antagonists
- □ Renin inhibitors
- □ Angiotensin II receptor antagonists
- □ ACE inhibitors
- □ Endothelin receptor antagonists
- Vasodilators
- Betablockers
- \square α_2 adrenergic receptor antagonists
- □ Ca²⁺ channel blockers


Hypertension – drug therapy

Topics of other lectures:

- Diuretics
- Aldosteron receptor antagonists
- Betablockers
- \square α_2 adrenergic receptor antagonists

Vasodilators

 $Na_2[Fe(CN)_5NO]$

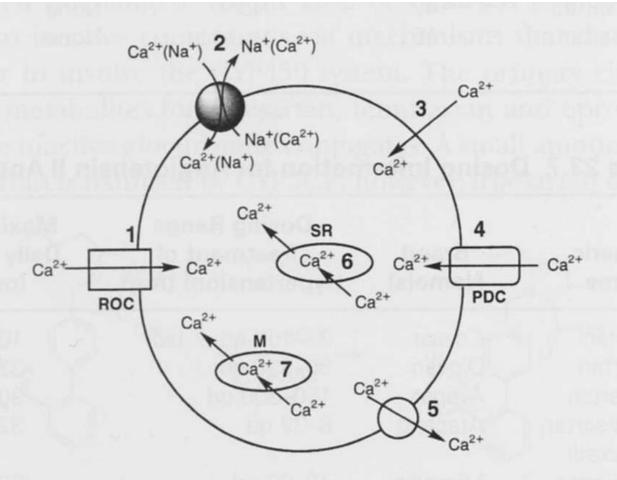
Sodium Nitroprusside

releasing NO – rapid peripheral vasodilatation short acting used in emergencies (malignant hypertension, aortic dissection)

Vasodilators

Hydralazine

short term effect
used for long time administration only in the combination
with betablockers or diuretics
treatment of hypertension in programmy


treatment of hypertension in pregnancy

Endothelin inhibitors

Bosentan

competetive antagonist of endotelin-1 endotelin-1 causes constriction of the pulmonary vessels therapy of pulmonary hypertension risk of hepatotoxicity — liver functions has to be monitored

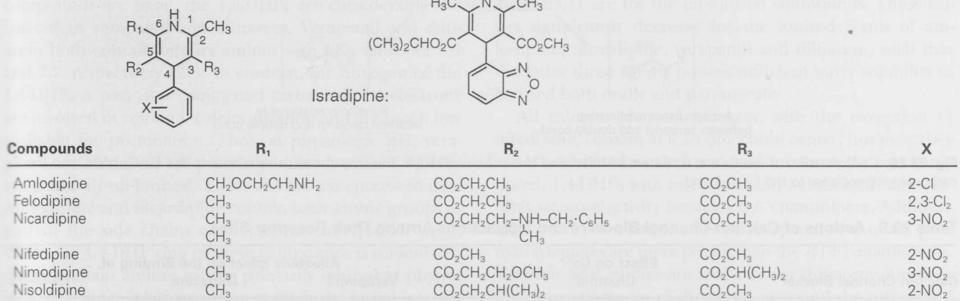

- ☐ dihydropyridines
- ☐ non-dihydropyridines

Fig. 23.20. Cellular mechanisms for the influx, efflux, and sequestering of Ca²⁺. Key: ROC = receptor-operated Ca²⁺ channels; PDC = potential-dependent Ca²⁺ channels; SR = sarcoplasmic reticulum; M = mitochondria.

dihydropyridines

General structure:

□ now marketed more than 20 derivatives

levamlodipine: pure enantiomer of amlodipine, lower occurrence of edema adverse effect

Aranidipine

Azelnidipine

both marketed in Japan

$$\begin{array}{c|c} & & & & \\ & &$$

Barnidipine

Benidipine

Cilnidipine

Clevidipine

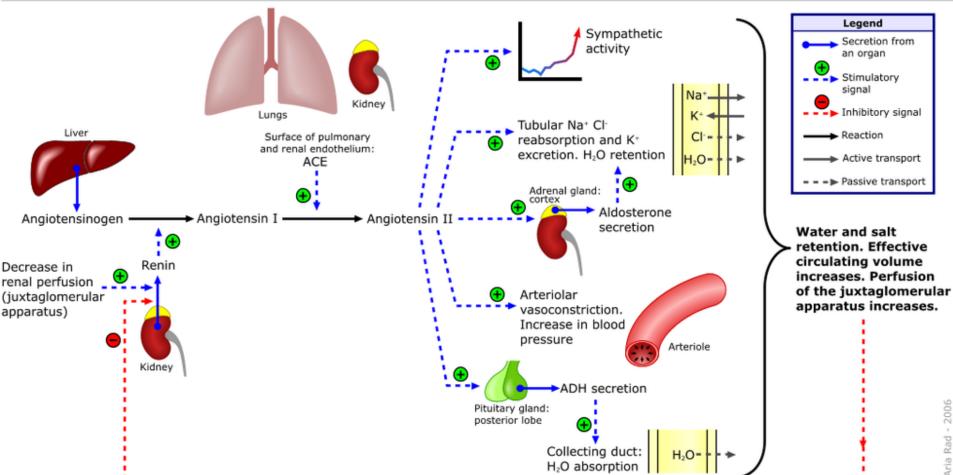
Efonidipine

marketed in Japan

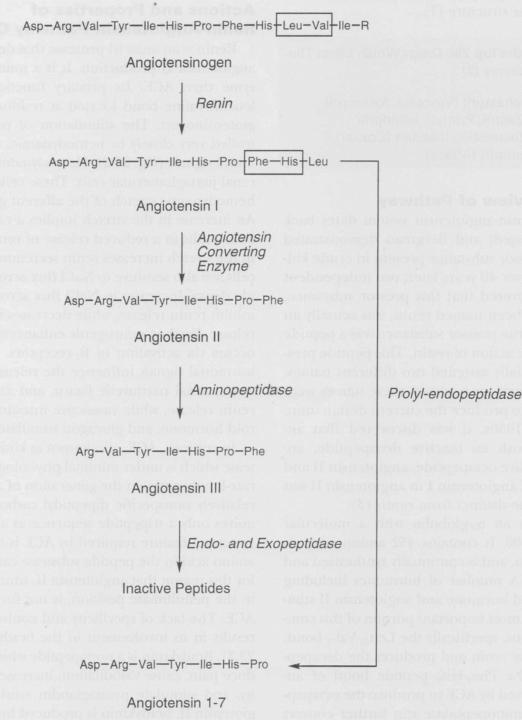
Lacidipine

Lercanidipine

Manidipine


Nilvadipine

Pranidipine


- □ non-dihydropyridines:
- **□** verapamil
- □ diltiazem

RAA system

Renin-angiotensin-aldosterone system

RAA system biochemistry

ACE inhibitors – mechanism of action

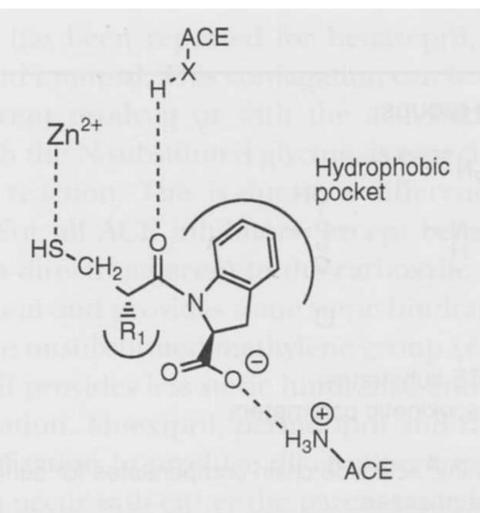


Fig. 23.10. A modified model of ACE inhibitor binding.

ACE inhibitors: general structure

ACE

General Structure:	O _V OR ₂	Benazepril O	OC ₂ H ₅	
R ₃	N,H O	HN		
Compounds	RING R ₁	R ₁	CH ₂ COOH	
Lisinopril	N CO ₂ H	(CH ₂) ₄ NH ₂	Н	(
Moexipril	OCH ₃	CH ₃	CH₂CH₃	\
Perindopril	HO ₂ C	CH₃	CH₂CH₃	CI
Quinapril	HO ₂ C H	CH ₃	CH₂CH₃	<
Ramipril	HIII)	CH ₃	CH₂CH₃	<
Spirapril	HO ₂ C S S S S	CH₃	CH₂CH₃	<
Trandolapril	HO₂C HIW	CH₃	CH₂CH₃	(

HO₂C

ACE inhibitors

Captopril – 2x a day

Zofenopril

ACE inhibitors

Imidapril

ACE inhibitors

Fosinopril

Captopril synthesis

$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{2}\text{C} = \text{C} - \text{COOH} \\ \text{H}_{2}\text{C} = \text{C} - \text{COOH} \\ \text{CH}_{3} - \text{CO} - \text{S} - \text{H}_{2}\text{C} - \text{CH} - \text{COOH} \\ \text{22.7.1} \\ \end{array}$$

Enalapril synthesis

$$CH=CH-COOC_{2}H_{5} + H_{2}N$$

$$COOCH_{2}C_{6}H_{5}$$

$$CH_{2}-CH$$

$$CH_{2}-CH$$

$$COOC_{2}H_{5}$$

$$CH_{2}-CH$$

$$COOC_{2}H_{5}$$

$$CH_{2}-CH$$

$$COOC_{2}H_{5}$$

$$CH_{2}-CH$$

$$COOC_{2}H_{5}$$

$$COOC_{2}H_{5}$$

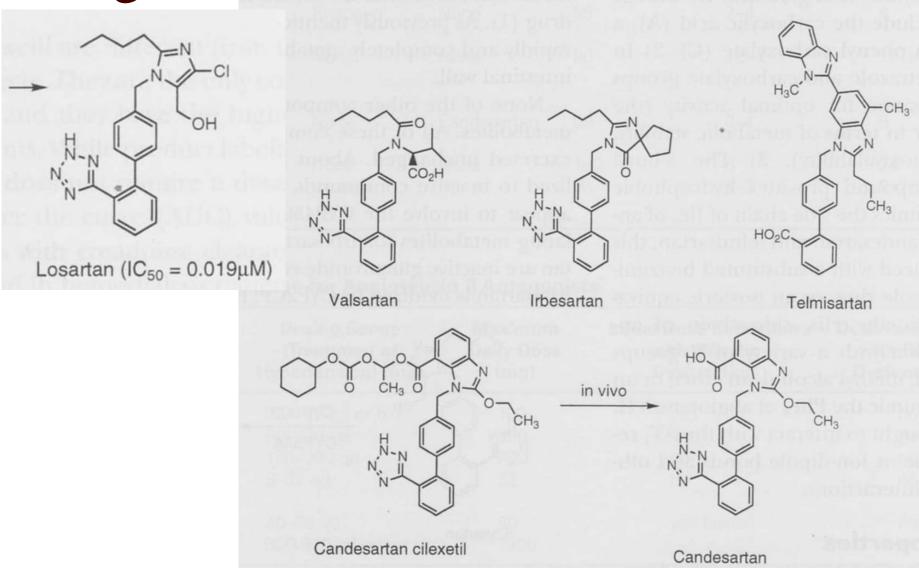
$$COOC_{2}H_{5}$$

$$COOC_{2}H_{5}$$

$$COOC_{2}H_{5}$$

Mimics Tyr₄

Mimics Tyr₄


Mimics the C-terminal carboxylic acid

Provide a better mimic of Phe₈

Add carboxylate

S-8308

Eprosartan

□ Olmesartan medoxomil

since 2002

□ Azilsartan

used as medoxomil 2011

□ Fimasartan

Since 2011 South Korea
Now + Russia, India
(FDA and EMEA
under consideration)

Renin inhibitor

used alone or in combination with Ca blockers or diuretics since 2006