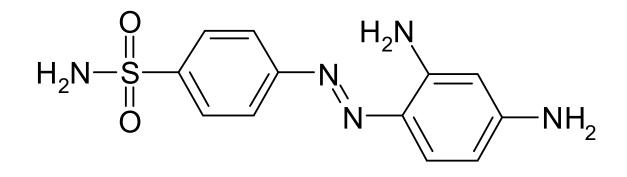
Antibacterial chemotherapeutics

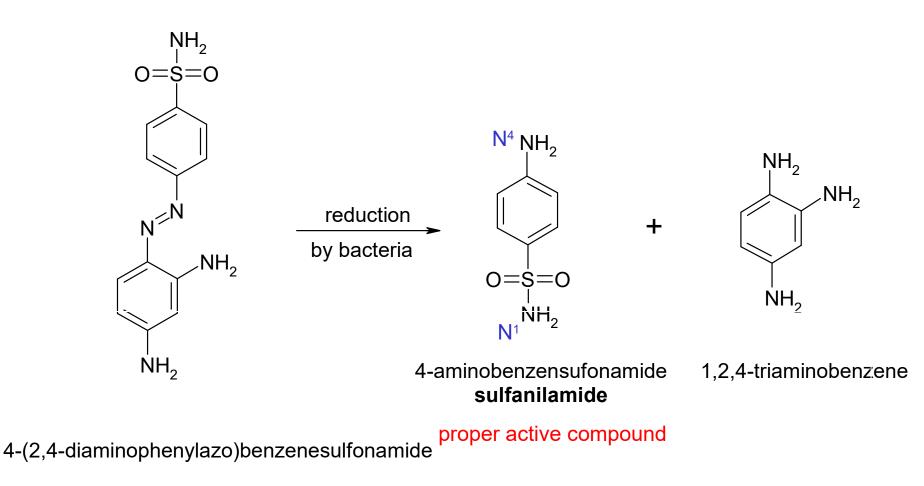

= compounds used for treatment of bacterial infections Part 1

- 1.Antibacterial sulfonamides
- 2.Nitrofuranes
- 3. Quinolones
- 4.Tetracyclins

chapters 1.-3. contain: chemotherapeutics in narrow sense,

i.e. fully synthetic compounds

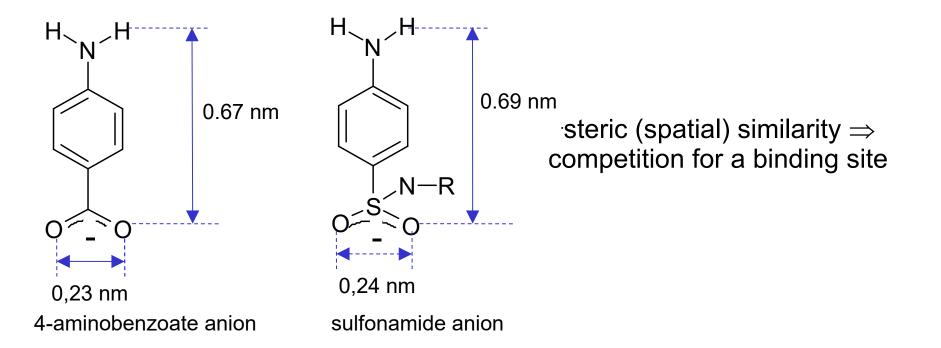
© assoc. prof. PharmDr. Oldřich Farsa, Ph.D., 2022

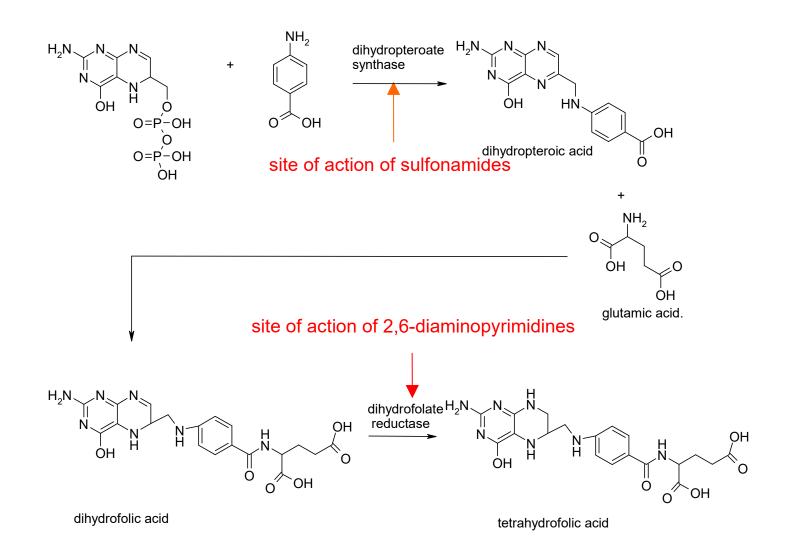


4-(2,4-diaminofenylazo)benzenesulfonamid

Prontosil rubrum

1932 Mietsch & Klarer - synthesis Gerhard Domagk - successful tests on activity against *Streptococci*


1935 Jacques & Therése Tréfoulé: sulfanilamide is the proper active compound


Prontosil rubrum

(Prontosil album)

Structure-activity relationships (SAR)

Mechanism of action Scheme of synthesis of tetrahydrofolic acid in bacteria

effect is bacteriostatic, only in combination with 2,6diaminopyrimidines (trimetoprim) bactericidal Spectrum of effect: broad, G⁺ as well as G⁻

the most of used compounds are sulfonamides substituted with a nitrogenous

heterocycle on N¹

Overwiev of structures of commonly used compounds

	R	INN name/official name	Notice	Preparation authorized in the CR
H H H		sulfadiazine Sulfadiazinum PhEur	a.u.v.	Norodine [®] 24 a.u.v. inj.
	H ₃ C N-O	sulfafurazol (syn. sulfizoxazole [USAN])		Sulfisoxazol [®] tbl.
	H ₃ C	sulfamethoxazole	in combination with trimetoprim - cotrimoxazol	Biseptol [®] , Co- trimoxazol AL [®]
	N N O CH ₃	sulfamethoxydiazi- ne (syn. sulfameter [USAN)	also leprostatic	
	N S N	sulfametrole	in combination with trimetoprim - lidaprim	

Overwiev of structures of commonly used compounds - continued

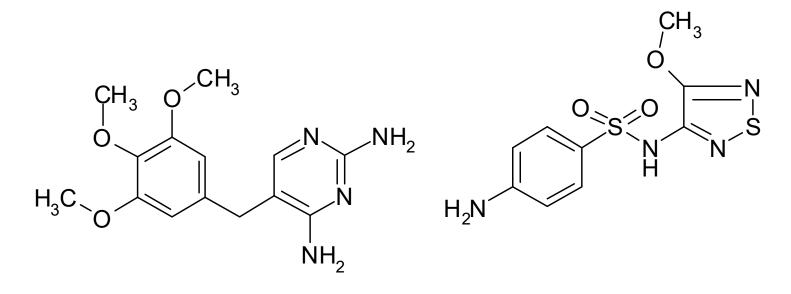
H H H H H H H H H H H H H H H H H H H	R	INN name/officia name	I Notice	Preparation authorized in the CR
	H_3C O H_3C H_3C N	sulfamoxole	in combination with trimethoprim - supristol	
	N S	sulfathiazole Sulfathiazolum PhEur		Sulfathiazol Neo [®] ung. Argosulfan [®] 2% (Ag salt)
	H ₃ C N CH ₃	sulfisomidine		Aristamid [®] gel
	H ₃ C N N CH ₃	sulfadimidine Sulfadimidinum PhEur	a.u.v. treatment of coccidiosis	Sulfadimidin Bioveta® a.u.v. plv. sol.
	$H_3C \longrightarrow N$ $H_3C \longrightarrow N$	sulfadoxine Sulfadoxinum PhEur		

Overwiev of structures of commonly used

compounds - continued

H、 _H	R	INN name/official name	Notice	Preparation authorized in the CR
Ň I	−−−N N−N	sulfamethizole Sulfamethizolum PhEur		
0=S=0	N NH ₂	sulfaguanidine Sulfaguanidinum PhEur	a.u.v.	
R ^{NH}	H ₃ C O	sulfacetamide Sulfacetamidum natricum monohydricum PhEur		

Sulfonamides Combinations

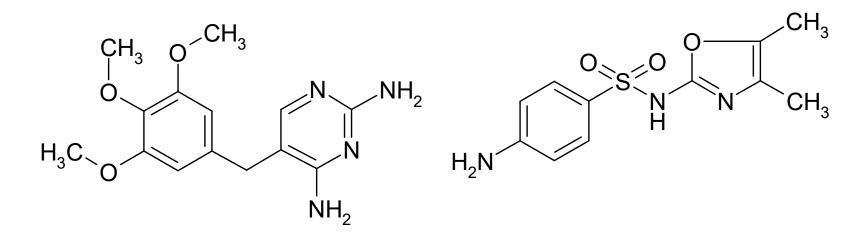


trimethoprim •originally antimalaric sulfamethoxazole

Cotrimoxazol (co-trimoxazol)

- baktericidal effect
- used since early 1970th

Sulfonamides Combinations

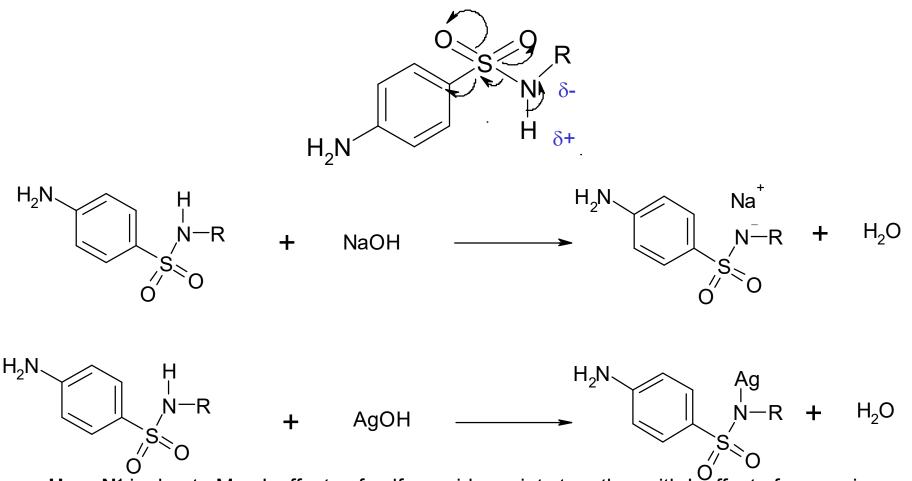


trimethoprim

sulfametrole

lidaprim

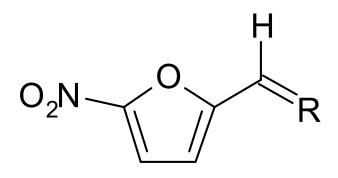
Sulfonamides Combinations



trimethoprim

sulfamoxole

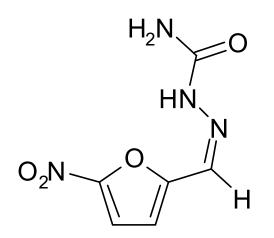
supristol

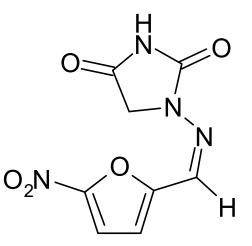

Sulfonamides Chemical properties

H on N¹ is due to M⁻ a I⁻ effects of sulfonamide moiety together with I⁻ effect of arom. ring relatively strongly **acidic** \Rightarrow forming of salts with bases; salts are used in topical preparations (eye drops, oitments)

N⁴ is very slightly basic (aniline nitrogen), some heterocycles attached to N¹ are much stronger bases \Rightarrow forming of therapeutically useful salts with strong acids (hydrochlorides, idy, mesylates etc.).

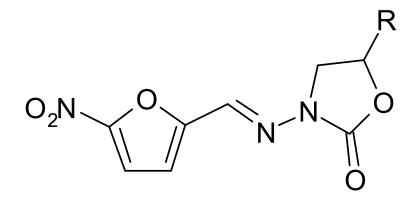
Nitrofurans


•5-nitrofurancarbaldehyde derovatives, in most Schiff bases (azomethines)
•-NO₂ moiety in position 5 is necessary for their effect


spectrum: both G⁺ and G⁻ bacteria, some protozoa (*Trichomonas vaginalis*)
infections of urinary tract, topically in infections of skin and genital tract
mode of action: related to reduction of -NO₂ moiety to -NH₂ group by bacteria; 2 hypotheses:

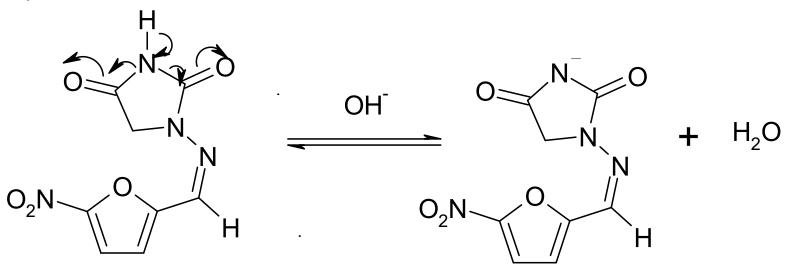
either formed amino compound reacts with bacterial DNA by electrophilic mechanism
or it is bound to ribosomes and obstruct proteosyntheis
mutagenic, contraindiacation in the 1th trimester of gravidity (relative exception:

nifuratel)


Nitrofurans

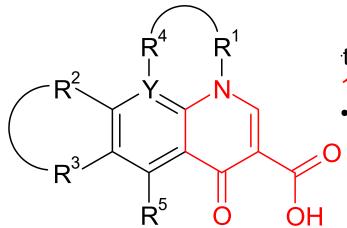
5-nitro-2-furancarbalehyde semicarbazone **nitrofural** syn. nitrofurazone [USP, BAN] 1-[(5-nitrofurfurylidene)amino]hydantoin **nitrofurantoin** Furantoin[®] Urofur[®] forte/mite a.u.v.

Nitrofurans


R = H- furazolidone

R= CH₃SCH₂ **nifuratel** Macmiror[®] tbl., Macmiror complex[®] ung., sup. vag. (+ nystatin)

Nitrofurans: physical & chemical properties


•double bonds of $-NO_2$ and azomethine -CH=N- moieties are conjugated with the π -electrons system of the furane ring \Rightarrow chromophore \Rightarrow yellow – orange crystallinic compounds •unstable at the light •other properties depend on a particular structure

Example: nitrofurantoin

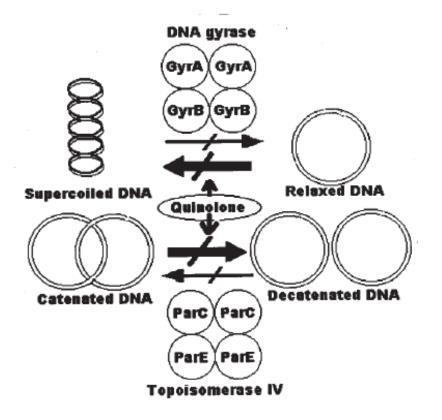
•like other hydantoines, nitrofurantoin is weakly acidic due to M^- effect of both imide carbonyls \Rightarrow forming of salts with bases; pK = 7.2

Quinolones

the fragment necessary for the effect:
1-alkyl-1,4-dihydro-4-oxopyridine-3-carboxylic acid
it must be fused to an other ring (benzene, pyridine)

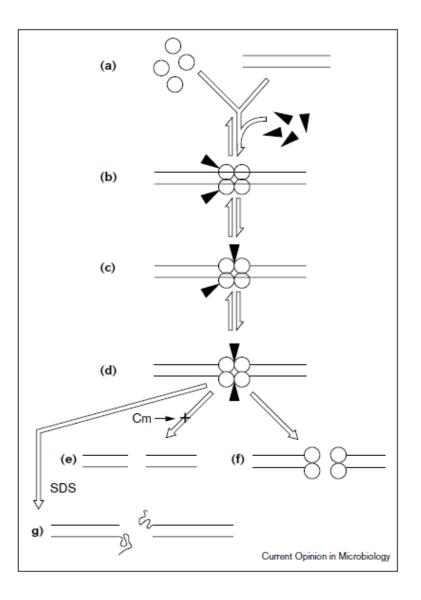
Y = -N= (1,8-naphthyridine derivatives) or **-C= (quinoline derivatives)**

R¹= alkyl, cykloalkyl, or a part of a heterocycle R1+R4

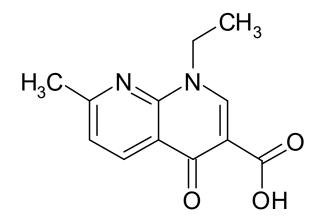

 R^2 = alkyl, saturated N-heterocycle, R^1 + R^2 can together form a heterocycle (dioxomethylene moiety)

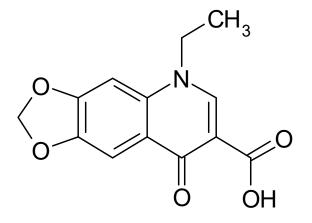
R³= -H, halogen R⁴ = -H, -F, or a part of a heterocycle R¹+ R⁴ R⁵ = -H, -NH₂

Quinolones


•mode of action: interference with the replication of bacteria by inhibition of bacterial gyrase (topoisomerase II) and topoisomerase IV; both enzymes are essential for bacterial DNA replication

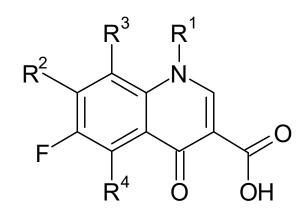
bactericidal, acts on both dividing and quiescent-state bacteria
 effect is inhibited by chloramphenicol: completely in the 1st generation, partially in fluoroquinolones




Major activities of DNA gyrase and topoisomerase IV. According to older hypotheses, quinolones simply block these activities by stabilizing a enzyme-DNA complex, which also functions as a barrier to the movement of other proteins such as DNA polymerase and RNA polymerase along the DNA. Quinolones: more recent and detailed view to mechanism of action

(a) Gyrase or topoisomerase IV (circles), DNA (parallel lines), and quinolones (triangles) form a ternary complex. (b) Quinolones bind to GyrA and ParC subunits of gyrase and topoisomerase IV, respectively. At this stage the DNA is intact. (c) One DNA strand is broken, forming a cleaved complex. Inhibition of DNA synthesis at substaturating concentrations of guinolone correlates with single-strand chromosome breaks. (d) Second DNA strand is broken. Inhibition of DNA synthesis correlates with the activity (MIC). (e) Release of doublestrand DNA breaks from cleaved complex leads to cell death. Inhibition of protein synthesis by chloramphenicol (Cm) completely blocks the lethal action of first-generation quinolone inhibitors of gyrase (nalidixic acid, oxolinic acid). (f) Release of lethal doublestranded DNA breaks via subunit dissociation. Fluoroquinolone lethality is incompletely blocked by chloramphenicol, requiring a second lethal pathway. (g) Release of double-strand DNA breaks by cell lysis in the presence of sodium dodecyl sulfate (SDS); single-strand breaks are released if cells are lysed at step (c).

Quinolones "1st generation" – treatment of urinary tract infections



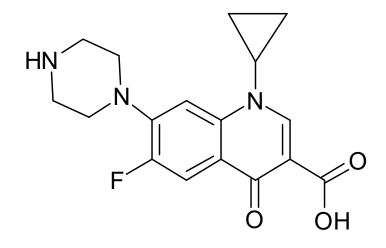
nalidixic acid •mainly G⁻

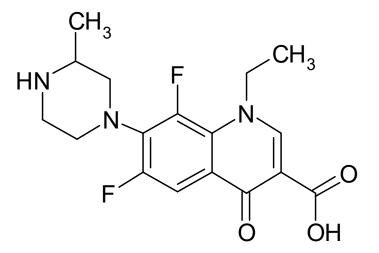
oxolinic acid Desurol[®] •mainly G⁻, *E. coli, Proteus, St. aureus*

Quinolones "2nd - 4th generation" – fluorinated derivatives

 R^1 = cycloalkyl, alkyl, sec. aminogroup, or a part of a heterocycle R^1 + R^3

R² = saturated basic heterocycle attached through nitrogen

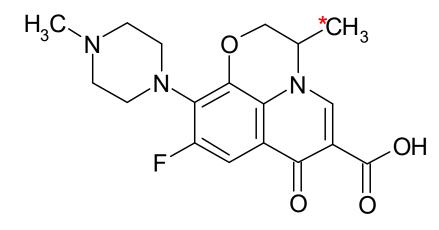

 R^3 = -H, -F, or a part of a heterocycle R^1 + R^3

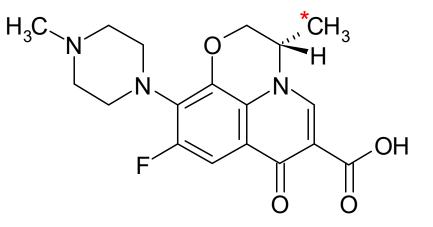

$$R^4 = -H_1, -NH_2$$

•6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acids substituted in positions 1 and 7, less frequently also 8, exceptionally 5

spectrum: broad, G⁺ i G⁻, e.g. *E. coli, Citrobacter, Klebsiella, Enterobacter, Yersinia, Serratia, Providencia, Vibrio, Pseudomonas aeruginosa, Proteus, Salmonella, Shigella, Legionela...*therapy of systhemic infections, urinary tract, eyes, GIT...

Quinolones "2nd and 3rd generation" – fluorinated derivatives Overview of used compounds

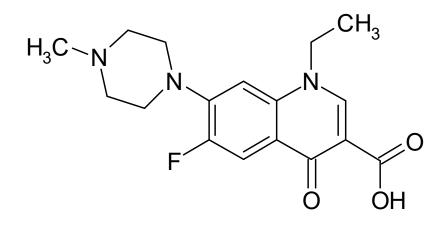

lomefloxacin Maxaquin[®] tbl. obd.


ciprofloxacin Ciphin®

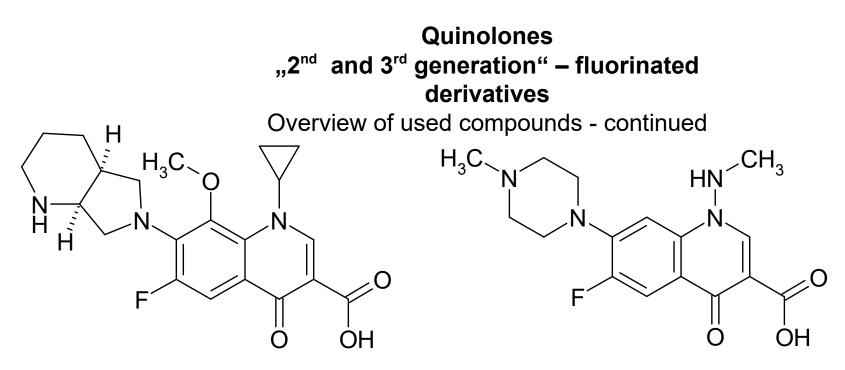
spectrum includes also some strains *M. tuberculosis*as bases or salts with acids

Quinolones "2nd and 3rd generation" – fluorinated derivatives

Overview of used compounds - continued



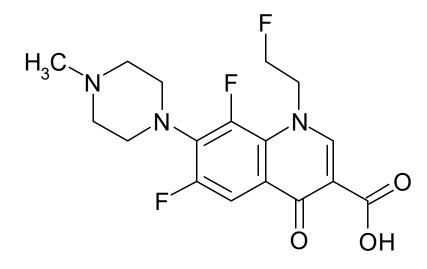
ofloxacin -racemate Ofloxin[®] tbl. levofloxacin
pure S – (-) -enantiomer
Tavanic[®] tbl. obd., inf. sol.

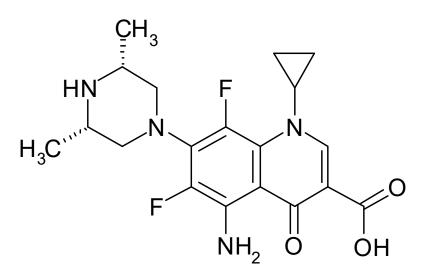

Quinolones "2nd and 3rd generation" – fluorinated derivatives

Overview of used compounds - continued

HN N CH₃ F O OH

pefloxacin Abaktal[®] tbl., inj. norfloxacin Nolicin[®] tbl. obd.


1-cyclopropyl-6-fluoro-8-methoxy-7-(octahydropyrrolo[3,4-b]pyridine-6-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid


moxifloxacin

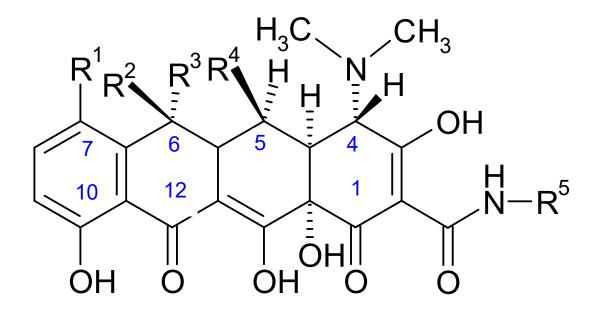
Avelox[®] tbl. obd.

amifloxacin

Quinolones "3rd and 4th generation" – fluorinated derivatives Overview of used compounds

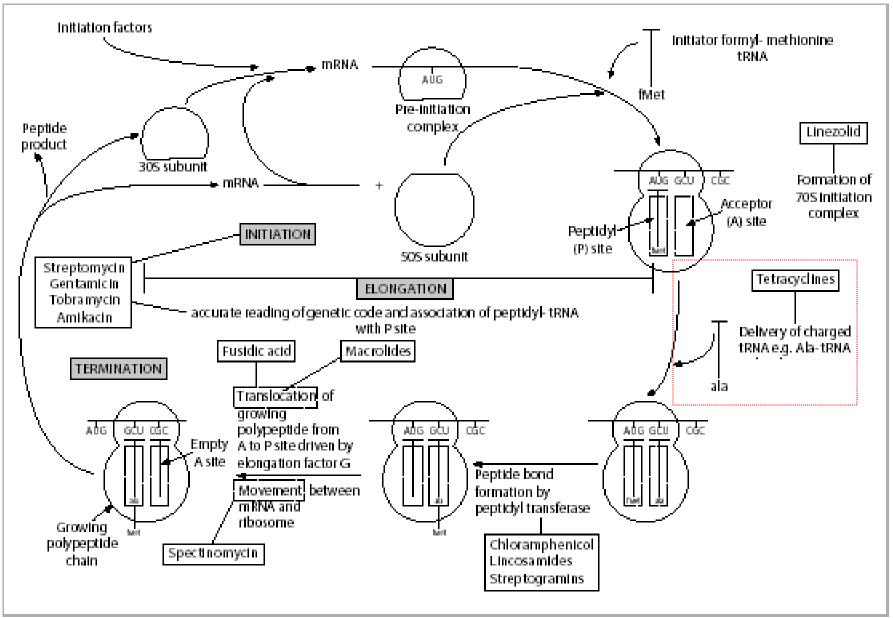
fleroxacin

3rd generation Quinodis Roche[®] tbl. obd.


sparfloxacin

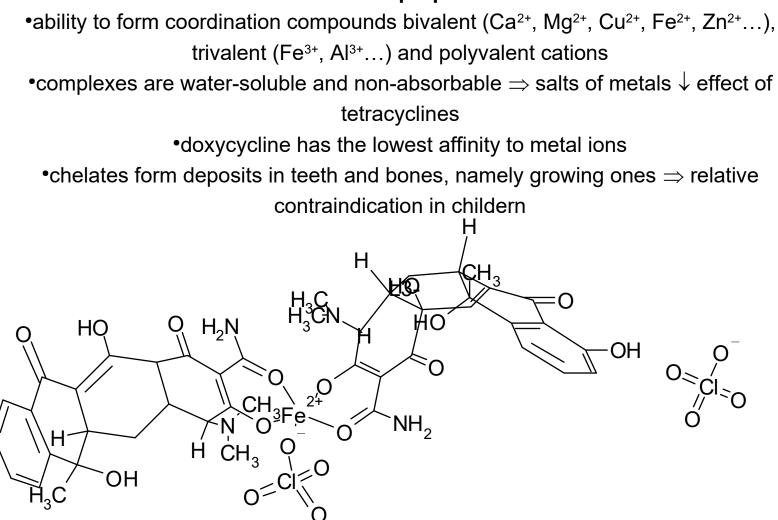
4th generation
Zagam[®] tbl. obd.
•also *Mycobacterium sp.*

•serious systemic infections


Tetracyclines

• ",true" antibiotics: initial compounds produced by microorganisms

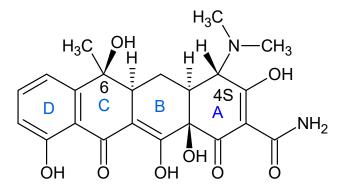
$$R^{1} = -H$$
, halogen, $-NHCH_{3}$
 $R^{2} = -OH$, $-H$
 $R^{3} = -CH_{3}$, $-H$
 $R^{4} = -H$, $-OH$
 $R^{5} = H$, heterocyclic aminoalkyl, carboxyaminoalkyl


Tetracyclines Mechanism of action

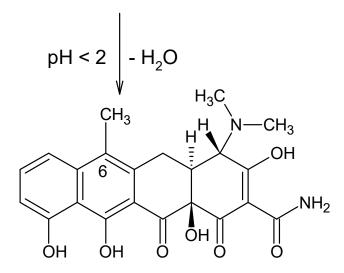
Tetracyclines Mechanism of action

 inhibition of proteosynthesis: inhibit transfer of amino acids attached to tRNA ("charged tRNA") to acceptor site of mRNA
 effect bacteriostatic (exception: rolitetracycline)

Tetracyclines Chemical properties



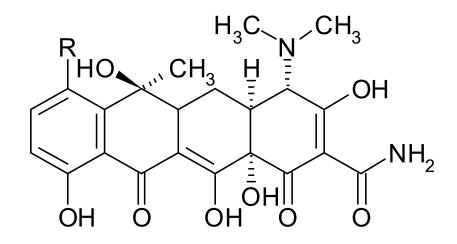
A complex of tetracycline with ferrous perchlorate


Tetracyclines Chemical properties - continued

 H_2O

pH 2 - 6

tetracycline


 $= \begin{array}{c} H_{3}C \\ H_{$

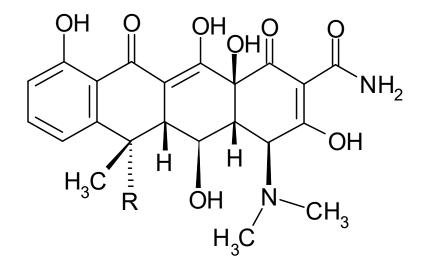
4-epitetracycline

< 10 % activity, nephrotoxic

anhydrotetracycline less active, nephrotoxic

Tetracyclines Overview of compounds

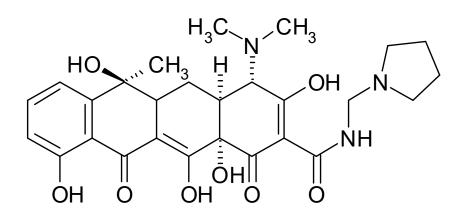
R = H tetracycline

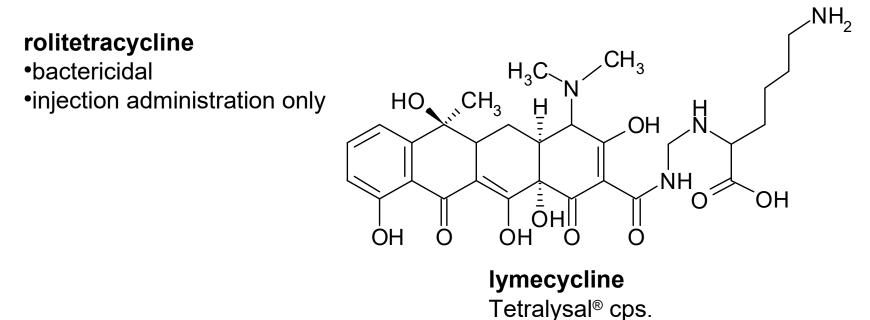

•isolated from *Streptomyces viridifaciens* Rimatet[®] cps.

R = Cl chlortetracycline

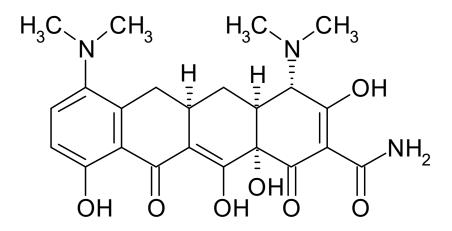
- isolated from Streptomyces aureofaciens
- also antiprotozoal activity
- •today a.u.v.
- •start material for production of other tetacyclines
- •Tetramutin Bio® a.u.v.

Tetracyclines

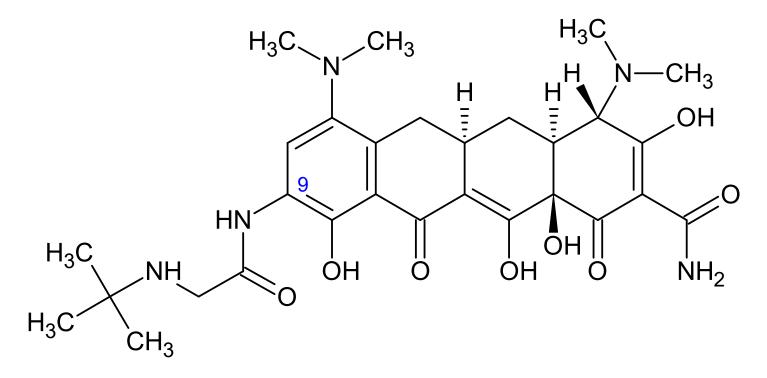

Overview of compounds - continued



R = OH **oxytetracycline** Oxytetracycline[®] cps. R = H **doxycycline** Deoxymykoin[®] tbl.


Tetracyclines

Overview of compounds - continued


Tetracyclines Overview of compounds - continued

minocycline Skid[®] tbl.

Tetracyclines

Overview of compounds: newer subgroup of **glycylcyclines**

tigecycline

•complicated infections of the skin and soft tissue (the tissue below the skin), but not foot infections in people with diabetes

infections in the abdomen

•only in hospitals

Tygacil ® inf. plv. sol.