Stoichiometry and related calculations

Basic constants

Avogadro's Number $N_A = 6.022 \, 14 \times 10^{23}$ represents the number of atoms, molecules, or ions in one mole.

Atomic Mass Constant 1 amu = $\frac{m({}^{12}C)}{12}$ = 1.660 538 × 10⁻²⁷ kg

- **Relative Atomic Mass** the unified atomic mass unit or dalton (symbol: Da) is the standard unit that is used for indicating mass on an atomic or molecular scale (atomic mass). One unified atomic mass unit is approximately the mass of one nucleon (either a single proton or neutron) and is numerically equivalent to 1 g/mol. It is defined by the means of Atomic Mass Constant – A_r (Li) = $\frac{m(\text{Li})}{\text{amu}}$
- **Molar volume** $V_m = 22.41383 \text{ dm}^3 \cdot \text{mol}^{-1}$ the volume, occupied by a 1 mol of any gas at the Standard Temperature and Pressure (273.15 K and 101.325 kPa)

Basic formulas

$$m = n \cdot M_r$$
 $n = \frac{m}{M_r}$ $m = \rho \cdot V$ $V = \frac{m}{\rho}$ $V_{gas} = n \cdot V_m$ $n = \frac{V_{gas}}{V_m}$

where: *m* is mass; M_r is relative molecular weight; *n* is the mass of the substance (mol); *V* is the volume of a liquid; ρ is relative density (usually in $g \cdot cm^{-3}$); V_{gas} is volume of a gas; V_m is molar volume (dm³ · mol⁻¹)

Elemental analysis

Example 1. Calculate molar and mass ratio of elements in ammonia

Ammonia – NH_3 – Molar ratio of nitrogen and hydrogen in the molecule is 1:3. Based on this and the relative atomic masses we can calculate the mass ratio of particular elements. ($A_r(N) = 14.0067$; $A_r(H) = 1.008$)

The mass ratio can be calculated as $A_r(N) : 3 \times A_r(H) = 14.01 : 3.0237$. We usually calculate mass composition of a compound in mass percents.

$$w\%(element) = \frac{A_r(element) \times n}{M_r(compound)} \times 100$$
 where *n* is a molar coefficient

In case of the ammonia it is:

$$w\%N = \frac{14.01}{17.04} \times 100 = 82.25\%$$
 $w\%H = \frac{1.0079 \times 3}{17.04} \times 100 = 17.75\%$

Ammonia contains 82.25 % of nitrogen and 17.75 % of hydrogen.

2

Example 2. We have a compound, which contains potassium, aluminium, sulfur, oxygen and hydrogen. The composition of the compound is showed below.

Κ	8.2418 %	
Al	5.6877 %	
S	13.5190 %	
0	67.4530~%	
Η	5.0993 %	
$A_r(\mathbf{K}$) = 39.10; <i>A</i>	$A_r(Al) = 26.98; A_r(S) = 32.065; A_r(O) = 16.00; A_r(H) = 1.008$
Calcu	ılate its stoi	chiometric formula.

We need calculate molar ratio of particular elements For this purpose, we can assume, that we have 100 g of a compound.

$$n = \frac{m}{A_r} \qquad n(K) = \frac{8.2418}{39.098} = 0.2107985 \text{ mol}$$
$$n(Al) = \frac{5.6877}{26.982} = 0.210796 \text{ mol} \qquad n(S) = \frac{13.519}{32.065} = 0.421612 \text{ mol}$$
$$n(O) = \frac{67.453}{15.9994} = 4.21597 \text{ mol} \qquad n(H) = \frac{5.0993}{1.0079} = 5.05933 \text{ mol}$$

As the next step divide all obtained amounts of substances by the lowest number. We obtain:

 K
 1.0

 Al
 1.0

 S
 2.0

 O
 20.0

 H
 24.0

The stoichiometric formula of the compound is KAlS₂O₂₀H₂₄

Example 3. We have a compound, which contains carbon, hydrogen and bromine. The composition of the compound is showed below.

C 29.9509 % H 3.6306 % Br 66.4185 % $A_r(C) = 12.01; A_r(H) = 1.008; A_r(Br) = 79.904$ Calculate its stoichiometric formula.

According the procedure, described previously we obtain the molar ratios of the particular elements

C 3.000

H 4.333

Br 1.000

In this case we have to multiply the coefficients by three to obtain the whole numbers. The stoichiometric formula of the compound is $C_9H_{13}Br_3$

Chemical equation based calculations

There is chemical reaction of compounds A and B, compounds C and D arise a A + b B \longrightarrow c C + d D,

the letters a, b, c, and d represents molar coefficients of particular compounds in the chemical equation. Based on the equation is possible to calculate masses of all particular compounds in the reaction using general formulas

 $m(\mathbf{A}) = a \cdot n \cdot M_r(\mathbf{A}), \quad m(\mathbf{B}) = b \cdot n \cdot M_r(\mathbf{B}), \quad m(\mathbf{C}) = c \cdot n \cdot M_r(\mathbf{C}), \quad m(\mathbf{D}) = d \cdot n \cdot M_r(\mathbf{D})$

where n is amount of substance of one equivalent in the particular preparation. To be able to calculate the masses is necessary to know mass of at least one compound.

Exercises

- 1. Calculate number of atoms, which contains 1 mg of pure silver. $A_r(Ag) = 107.87$
- 2. The atom of an element has mass of 3.2395×10^{-25} kg. Calculate its relative atomic mass A_r . What is the name of the element?
- 3. Calculate relative atomic mass of a gas, if 25 litres of the gas weights 31.258 g at standard conditions.
- 4. Calculate content of vanadium and oxygen (in mass %) in the vanadium(V) oxide. $A_r(V) = 50.94; A_r(O) = 15.9994$
- 5. Calculate content of all particular elements as mass percents in the compound, which molecular formula is $C_{23}H_{29}N_3O_4$. For the result use four decimal places. $A_r(C) = 12.01; A_r(H) = 1.008; A_r(N) = 14.0067; A_r(O) = 15.9994$
- 6. Determine stoichiometric formula of an oxide, which contains 72.3591 % of iron and 27.6409 % of oxygen.
 A_r(Fe) = 55.845; A_r(O) = 15.9994
- Determine stoichiometric formula of a compound, which contains 11.9847 % of aluminium, 2.6866 % of hydrogen, 63.9635 % of oxygen and 21.3653 % of sulphur. *A_r*(Al) = 26.98; *A_r*(H) = 1.008; *A_r*(O) = 15.9994, *A_r*(S) = 32.065
- 8. In an analysator, 21 mg of an organic compound was burned and 30.75 mg of CO_2 and 12.60 mg of H₂O arise. Determine stoichiometric and summary formula of the compound of $M_r = 60$. $A_r(H) = 1.008$; $A_r(C) = 12.01$; $A_r(O) = 15.9994$
- 9. Calculate content of the iron (in mass %) in FeCO₃. Calculate mass of iron, which can be obtained from 1000 kg of the compound with 10 % of impurities. A_r (Fe) = 55.845; M_r (FeCO₃) = 115.86

- Calculate amount of water, which can be evaporated from 250 g of sodium carbonate decahydrate. *M_r*(Na₂CO₃·10 H₂O) = 286.141; *M_r*(Na₂CO₃) = 105.99
- 11. A hydrate of iron(II) chloride was dried to constant mass. The starting mass of the hydrate was 25 g, the final mass was 15.9385 g. Determine composition of this hydrate. M_r (FeCl₂) = 126.751; M_r (H₂O) = 18.016
- 12. In 15 g of an oxide of nitrogen was found 5.52811 g of nitrogen. Determine stoichiometric formula of the oxide and write the name of this compound. $A_r(N) = 14.0067; A_r(O) = 15.9994$
- 13. Calculate mass of calcium oxide and volume of carbon dioxide (at the standard conditions), which can be obtained by thermal decomposition of 900 kg of pure calcium carbonate.

 $M_r(CaCO_3) = 100.09; M_r(CaO) = 56.08; M_r(CO_2) = 44.01$ CaCO₃ \longrightarrow CaO + CO₂

- 14. Zinc reacts with a diluted sulfuric acid and gives zinc(II) sulfate and hydrogen. Zn + H₂SO₄ → ZnSO₄ + H₂ Calculate mass of Zinc(II) sulfate heptahydrate, which arises from 20 g of the zinc. Calculate volume of hydrogen (at the standard conditions), arising by this reaction. A_r(Zn) = 65.38; M_r(H₂SO₄) = 98.08; M_r(ZnSO₄ · 7 H₂O) = 287.55
- 15. Based on the previous reaction calculate volume of 10% sulfuric acid, needed for reaction with 130 g of the zinc. Relative density of the 10% solution of $H_2SO_4 \rho = 1.066 \text{ g} \cdot \text{cm}^{-3}$
- 16. Iodine can be prepared by the reaction of potassium iodide with potassium chlorate and sulfuric acid. Calculate masses of potassium iodide, potassium chlorate and volume of 15% sulfuric acid solution (ρ = 1.11 g ⋅ cm⁻³) needed for preparation of 25 g of iodine. Assume 75% yield of the process.
 6 KI + KClO₃ + 3 H₂SO₄ → KCl + 3 I₂ + 3 K₂SO₄ + 3 H₂O

 $M_r(\text{KI}) = 166.00; M_r(\text{KClO}_3) = 122.55; M_r(\text{H}_2\text{SO}_4) = 98.08; A_r(\text{I}) = 126.904$

- 17. By reaction of gaseous chlorine with aqueous solution of potassium hydroxide arise potassium chloride and potassium chlorate. Calculate mass of the 10% solution of KOH, needed for reaction with 10 L of chlorine (at standard conditions). Calculate mass of both salts, arising by this reaction.
 3 Cl₂ + 6 KOH → 5 KCl + KClO₃ + 3 H₂O
 - $M_r(\text{Cl}_2) = 70.90; M_r(\text{KOH}) = 56.11; M_r(\text{KCl}) = 74.55; M_r(\text{KClO}_3) = 122.55$
- 18. Based on the previous reaction calculate volume of chlorine (at the standard conditions), which can react with 500 g of 15% solution of KOH. $M_r(\text{KOH}) = 56.11$

Results

- 1. 9.27×10^{-6} mol; 5.583×10^{18} atoms of Ag
- 2. $A_r = 195.092$; platinum
- 3. 28.02 is relative molecular mass (N_2) 14.0098, nitrogen
- 4. $M_r(V_2O_5) = 181.877$; 56.01588 % of vanadium; 43.9841 % of oxygen
- 5. $M_r(C_{23}H_{29}N_3O_4) = 411.4797$; 67.13089 % of carbon; 7.10412 % of hydrogen; 10.21195 % of nitrogen; 15.55304 % of oxygen
- 6. Fe₃O₄
- 7. Al₂H₁₂O₁₈S₃
- 8. $C_2H_4O_2$
- 9. 48.2004 % of iron; 433.804 kg of iron
- 10. 157.397 g of water
- 11. $FeCl_2 \cdot 4H_2O$
- 12. N_2O_3 ; dinitrogen trioxide
- 13. 504.27 kg of CaO; 201.51 m³ of CO_2
- 14. 87.963 g of $ZnSO_4 \cdot 7 H_2O$; 6.855 L of H_2
- 15. 1829.45 mL of 10% H₂SO₄
- 16. 43.603 g of KI; 5.365 g of KClO₃; 77.36 mL of 15% H₂SO₄
- 17. 500.76 g of 10% KOH; 55.44 g of KCl; 18.23 g of KClO $_3$
- 18. 14.98 L of Cl₂