MUNI PHARM

Antineoplastics

Medicinal chemistry Mgr. Aleš Kroutil

Content of the lecture

- Cancer - the dissease

- Classification of antineoplastics

- Alkylating agents
- Antimetabolites
- Antibiotics
- Topoisomerase inhibitors
- Hormone-based drugs
- Kinases inhibitors
- Monoclonal antibodies
- Other groups

Cancer

- Cancer isn't only one dissease

- Different types of tissues
- Different mechanisms of origin
- Loss of control on cell growth (proliferation)
- Impossible to have one compound for all types of cancer
 - cancer is a common name for >100 tumors

Classification of antineoplastics

- Classification based on a target

- DNA
 - DNA as the molecule
 - Synthesis of DNA
- Metabolism of cancer cells
- Hormones
- Immune system

History

- Systemic chemotherapy of cancer began in the 1940s and 1950s

- Nitrogen mustards developed from war gases
- Antimetabolites based on early knowledge of DNA metabolism

Large scale random screening programs

- Natural cytotoxic products (anthracyclines, vinca alkaloids)
- Synthetic analogs based on discovery of mechanism of action Topoisomerase inhibitors
- Increasing understanding of tumor physiology
 - Tumor-activated prodrugs
 - Targeted therapies
 - Monoclonal antibodies

DNA as the target of the therapy

Modification of DNA molecule

- Alkylating agents
- Platinum complexes
- Intercalators

– DNA synthesis

- Antimetabolites
- Enzymes inhibition

Alkylating agents

 Agents than can replace hydrogen atom by an alkyl group at physiological conditions

- spontaneous or enzymatic origin of reactive carbenium ions
- alkylation reaction with DNA or other molecules
- Potentially carcinogenic and mutagenic
 - the same mechanism as anticancer activity
- Severe adverse effects
 - strong effects on bone marrow leucopenia, etc.
 - non-specific effect

Alkylating agents – nitrogen mustards

- Based on mustard gas (yperite)
 Mechanism is interstrand cross-link between DNA purine bases
 - Mechlorethamine (1949)
 - Chlorambucil (1957)
 - Therapy of leukaemias, Hodkin's disease
 - Melphalan (1964) ovarian and breast carcinoma
 - Bendamustine

Alkylating agents – nitrogen mustards

- Mechanism of alkylation

- Not specific to cancer cells

Affects all dividing cells

Alkylating agents – nitrosourea derivatives

- Active after metabolic activation
- Alkylating and carbamoylating activity
- Some derivatives active against brain cancers

MUNI Pharm

 $O \equiv N$

Alkylating agents – nitrosourea derivatives

- Streptozocine

- antibiotics, isolated from Streptomyces achromogenes
- pancreatic cancer
- Carmustine
 - high lipophilicity effective against brain tumours
- Lomustine
 - simlar to carmustine, available after oral administration
- Fotemustine
 - primarily for brain tumours therapy

Alkylating agents – aziridines, triazines

Alkylating agents - phosphamides

Active after metabolic activation

MUNI Pharm

Alkylating agents - phosphamides

- Cyclophosphamide

- good oral bioavailability
- widely used for therapy of different tumours
- leukaemias, solid tumours (breast, ovarian, testis)

- Iphosphamide

- similar therapeutic spectrum as cyclophosphamide

Coordination compounds

- organic compounds as ligands
- neutral complexes
- geometrical isomerism only cis derivatives are effective
- Platinum in oxidative state II or IV as the central atom
 - coordination number 4 in Pt(II) complexes
 - coordination number 4 in Pt(IV) complexes
- Alkylation-like mechanism of action

- Cisplatin

- First time synthesised by Peyron in 1845
- Discovery of its anticancer efficacy by serendipity
- Start of clinical evaluation in 1971
- Marketed in 1978
- Therapy of testicular cancer was the first indication
 - 80% efficacy in comparison with 5% of previous methods
- Still widely used in therapy in combination with other antineoplastics
- Severe side effects
 - nefrotoxicity
 - neurotoxicity
 - strong emetogenic effect

– Mechanism of action

- Intrastrand covalent bond to DNA purine bases
- Reactivity of "leaving ligands"

Mechanism of action

- activation - aquacomplexes - very reactive

MUNI Pharm

- Carboplatin

- Reduced toxicity, but also less effective
- Significantly less nephrotoxic
- Cross-ressistance with cisplatin
- Similar indications as cisplatin

- Oxaliplatin

- First registration in 1996
- Lack of nephrotoxicity
- Dose limitting toxicity is neurotoxity
 - Peripheral neuropathy
- Therapy of colorectal cancer in combination with 5-fluorouracil

- Orally available compounds

- Platinum in oxidative state IV
- Increased stability in GIT due to reduced reactivity
- Reduction to platinum(II) compounds in cells (activation)
- Overcomming resistance to cisplatin

picoplatin

satraplatin

Antimetabolites – folic acid

- Folic acid is needed for biosynthesis of nucleic acids Source for one-carbon fragments OH
- Methotrexate immunosuppresive agent inhibition of tetrahydroflate reductase
- Pemetrexed inhibition of more enzymes
- Raltitrexed
- Nolatrexed

22

PHARM

Antimetabolites – pyrimidine bases

- Uracile derivatives 5-halogene substitution

- fluorine, event. bromine
- iodine derivatives are antivirotics
- 5-fluorouracil

i.v. administration inhibition of RNA ant protein synthesis breast, GIT and colorectal carcinomas

- capecitabine
 - 5-fluorouracil prodrug

tegafur

Antimetabolites – pyrimidine bases

- Cytidine derivatives

- cytarabine

arabinose instead of ribose false nucleotide in DNA i.v. administration

therapy of leukaemias

- gemcitabine

bioactivation by phpsphprylation pancreatic, bronchial, breast and bladder carcinoma

- azacytidine

myelodysplastic syndrome

Intercalating agents

- Different structures
- Antibiotics ant its derivatives, synthetic compounds
- Intercalation
 - the compound inserts into DNA double helix
 - it blocks replication and transcription
- Anthracycline antibiotics

Intercalating agents

- Anthracycline antibiotics

doxorubicine

wide spectrum of cancer types cardiotoxicity, myelosupression

- epirubicine

epimere of doxorubicine reduced toxicity

- idarubicine

increased lipophilicity acute myeloid leucaemia

Intercalating agents

Synthetic compounds

- mitoxantrone acute myeloid leucaemia, breast
 - and other carcinomas
- amsacrine

poor solubility inhibition of topoisomerase

MUNI Pharm

Topoisomerase inhibitors

- Topoisomerases

- control of topological arrangement of replicated DNA
- inhibition of topoisomerase causes stable bonding of it to DNA
- Camptothecin and its analogues
- Podophylotoxine derivatives
- Some anthracyclines

29

PHARM

Topoisomerase inhibitors – camptothecins

- Camptothecin and its derivatives

- pentacyclic structure
- lactone ring is necessary for anticancer activity

– Irinotecane

- good inhibitor
- inhibes acetylcholinesterase too
- advanced colorectal carcinoma
- Topotecane
 - i.v.administration
 - metastatic ovarian carcinoma, NSCLC

MUNI Pharm

Topoisomerase inhibitors – podophylotoxins

- Podophylotoxine is unusable fot the therapy, in clinical use are semisynthetical derivatives
- Etoposide
 - p.o. administration
 - lung carcinomas, leukaemias
- Teniposide
 - parenteral administration only
 - mitosis inhibitor

Mitosis inhibitors

- Natural compounds of different structures
- Block of mitosis in M-phase
- Bonding to microtubules
- Colchicum alkaloids
- Podophylotoxins
- Vinca-alkaloids
- Taxanes
- Epothilones

Mitosis inhibitors

es

OH

OCH₃

H₃CO

- Colchicine
 - not used in therapy
- Podofylotoxin derivatives
 - glycosides
- Vinca alkaloides
 - vinblastine (CH₃) parenteral administration leukaemias, some solid tumours
 - vincristine (CHO)

acute leukaemia

- vinorelbine

lung carcinoma (NSCLC) metastatic breast carcinoma

Mitosis inhibitors – taxanes

- Taxus brevifolia
 - stabilisation of microtubules
- National Cancer institute programme
 - technological problems, toxicological problems
- Paclitaxel
 - parenteral administration, poor solubility
 - advanced uterine carcinoma
 - breast and lung carcinoma
- Docetaxel
 - better efficacy in comparison with paclitaxel
 - indications the same as paclitaxel

PHARM

Mitosis inhibitors – other structures

- Epothilones
 - taxanes-like mechanism of action
- Ixabepilone
 - advanced breast carcinma
 - hepatic carcinoma

MUNI Pharm

Other antineoplastics

– Lenalidomide

- based on thalidomide
- inhibition of cytokines
- inhibition of angiogenesis

– Photosensitizers

- Aminolevulinic acid
 Precursor of porphyrins
- Porphyrins

Kinases inhibitors

– Protein Kinases

- Key regulators of cell function
- By adding phosphate groups to substrate proteins, they direct the activity, localization and overall function of many proteins, and serve to orchestrate the activity of almost all cellular processes.

Kinases inhibitors – tyrosinekinase inhibitors

- Imatinib
 - chronic myelogenous leukaemia
 - oral administration
- Erlotinib
 - oral administration
 - advanced or metastatic lung carcinoma
- Dasatinib
 - chronic myelogenous leukaemia
 - oral administration

Kinases inhibitors – tyrosinekinase inhibitors

– Sorafenib

- multiple-kinases inhibitor
- advanced kidney carcinoma
- liver carcinoma

– Sunitinib

- inoperable gastric tumours
- advanced kidneys carcinoma
- Ibrutinib
 - Lymphoma
 - Chronic lymphocytic leukaemia

Proteasome inhibitors

- Bortezomib

- proteasomes eliminate singaling and regulating proteins
- cancer cells are more sensitive to proteasome inhibition
- therapy of advanced multiple myeloma
- Ixazomib
 - multiple myeloma (bone marrow cancer), in combination chemotherapy with lenalidomide and dexamethasone

Histonedeacetylase inhibitors

- DNA is surrouded by histones and creates nucleosomes
 - protection of DNA
- Histones are basic proteins
- Acetylation and deacetylation regulate accessibility of DNA for some enzymes
- Inhibitors of histone deacetylase are used for treatment of haematological cancers
- Vorinostat

Hormone-based drugs – estrogens, antiestrogens

Estramustin-phosphate

- alkylation mechnism
- main mechanism is hormonal
- therapy of prostate carcinoma

– Tamoxifene

- antiestrogen
- parcial agonistic activity
- estrogen-dependent breast carcinoma
- Toremifene
 - very similar indications as tamoxifene
- Fulvestrant
 - inactivator of estrogen receptors strong bonding resulted in receptor destruction
 - high lipophilicity

P H A R M

Hormone-based drugs – aromatase inhibitors

- Inhibition of estrogen synthesis
- Exemestane
 - p.o. administration
 - advanced breast carcinoma in post-menopausal patients
- Letrozol
 - good oral availability (lipophilic)
 - first-line therapy of advanced breast carcinoma
- Anastrozol
 - similar therapeutic profile as letrozol

Hormone-based drugs – gestagenes

- Mechanism of antineoplastic activity is stil not clear
- Medroxyprogesterone-acetate
- Megestrol-acetate
 - metastasis of breast carcinoma
 - advanced endometric carcinoma

Hormone-based drugs – antiandrogens

- Therapy of hormone-dependent prostate carcinoma
- Cyproterone-acetate
 - competitive antagonist
- Flutamide
 - advanced prostate carcinoma
 - p.o. administration
- Bicalutamide
 - higher afinity to androgen receptors than flutamide
 - longer half-time

Retinoids

- Mostly used in dermatology
- Bexarotene
 - advanced skin lymphoma
 - orally available

Bisphosphonates

- Therapy of bone metastasis

- Typical for breast, prostate and lung cancer
- Prevention of bone breakdown

- Mechanism of action

- Inhibition of osteoclast activity
- Induction of osteoklast apoptosis
- Ibandronic acid
 - Oral administration daily
 - i. v. bolus every 3 months
- Zoledronic acid

- Intravenous administration every 4 weeks

Bisphosphonates

Monoclonal antibodies

- Antibodies against specific antigenes, exprimed on surface of cancer cells
- INN names suffix –mab
 - Umab prepared on human cells
 - Omab prepared on mice cells
 - Amab prepared on rat cells
 - Emab prepared on hamster cells
 - Imab prepared on primates cells
 - Zumab humanized monoclonal antibody
- Bevacizumab colon carcinoma (angiogenesis)
- Rituximab breast carcinoma
- Cetuximab colon carcinoma
- Trastuzumab metastatic breast carcinoma