NATURAL MEDICAMENTS DERIVED FROM ACETIC ACID POLYKETIDES Large group of structurally very different compounds Initial compound is acetylcoenzyme A, which is formatted by • activation of acetic acid (with help of coenzyme A and ATP) CH3–COOH + HS–CoA + ATP → CH3CO~CoA + AMP + diphosphate • oxidative decarboxylation of pyruvic acid Pyruvic acid is in living organisms formed by decomposition of sugars via reaction chain of glycolysis. Aerobic conditions → acetylcoenzyme A CH3–CO–COOH + HS – CoA + NAD → CH3–CO~S–CoA + CO2 + NADH2 Anaerobic conditions → reduction – lactic acid (in muscles and during milk fermentation) decarboxylation (alcohol fermentation) TWO FUNCTIONAL PROPERTIES OF ACETYLCOENZYME A Via activation of α-hydrogen atoms of acetyl methyl group (enzymatic deprotonation) acquire carbon atom anionic character. Extraordinary electrophillic character of carbonyl group of thioester provides site for nucleophilic attack; at polyketides it is anionic C atom (carbanion) of deprotonated ester. CH3 CO SCoA -H+ ..C CO SCoA - CH3 CO SCoA H CH2 CO SCoAB CH2CO SCoA + CoA SH CH3 CO FORMATION OF β-POLYCARBONYL SUBSTANCES CH3 SCoA O CH2 SCoA O O O H CH3 O C H2 SCoA SCoA O CO2 C H2 SCoA OO CH3 CH2 SCoA O O O H C H2 SCoA OO CH3 n CO2 CH3 COCH2 CO SCoA CH3 CO SCoA CH3 COCH2 COCH2 CO SCoA + CoA-SH Nucleophilic attack at carbonyl, simultaneous loss of CO2 Claisen reaction Acetoacetyl-CoA Malonyl-CoA Repeated Claisen reaction Poly-β-ketoester POLYKETO SUBSTANCES ARE VERY REACTIVE (ethylene group located between two carbonyl groups) O OH O CH3 O C5 alkylation or hydroxylation of methylene group O O O O O O coupling via oxidative reaction of enols including cyclisations leading to a pannel of structurally very different compounds CH2 CO CH2 CH2 CH2CHOH reduction of of ketogroup to an alcohol RCOCH2COOH RCOCH3 RCOCH2COOH RCOCH2CO SCoA -CO2 decarboxylation leading to formation of compounds with odd number of carbon atoms activation of COOH group via formation of thioester DIVISIONS OF ACETOGENINS ALIPHATIC • Satturated fatty acids • Unsattuated fatty acids • Polyacetylene substances • Prostaglandins CYCLIC • Phenols and their derivatives • Anthraquinones • Tetracyclines • Griseofulvine • Lichen acids • Phloroglucinol derivatives • Macrolides ALIPHATIC ACETOGENINES SATURATED FATTY ACIDS CH3 CO SCOA COOH CH2 CO SCoA RCH2 CO SCoA CHCH2 CO SCoA OH RCH2 RCH2 CH CHCO SCoA RCH2 CH2 CH2 CO SCoA RCH2 CH2 CH2 COOHn RCH2 CO CH2 CO-SCoA CO2 ATP biotine, enzyme x x malonylcoenzyme A ROLE OF BIOTINE DURING CARBOXYLATION OF ACETYLCOENZYME A NNH S COOH O COOH NHNH S COOH O CH3CO SCoA CH2CO SCoA COOH + malonyl-CoA biotineN-carboxylic acid of biotine SYNTHESIS OF FATTY ACIDS protein acyl carrier – fatty acids synthase CH3CO SCoA CH2COHOOC SCoA CH2COHOOC SE RCH2CO SE RCH2 COCH2 CO SE ESH CO2 NAD NADH RCH2 CH OH CH2 CO SE RCH2CH CHCO SE RCH2 CH2 CH2CO SE FADFADH CoASH RCH2CH2CH2CO SCoA ESH (2) enzyme containing SH group = ESH (3) + + + (4) (5) intering raection (6) + final product (free acid, glyceride etc.) CO2 ATP biotine - enzyme (1) (3) SUBSTITUTION OF ACETYLCOENZYME A FOR DIFFERENT ACYL-CoA (CoA esters of propionic acid, isobutyric, isovaleric etc.) CH3COOH CH3 (CH2 CH2 )7 COOH CH3 CH2 COOH CH3 CH2 (CH2 CH2 )7 COOH CH3 CH2 CH(CH3 )COOH CH3 CH2 CH(CH3 )(CH2 CH2 )6 COOH CHCOOH CH3 CH3 CH(CH2 CH2 )7 COOH CH3 CH3 Initial reactant as acetyl-CoA Produced acid Number of C atoms 16 17 17 18 THE MOST COMMON SATTURATED FATTY ACIDS C6 CH3 (CH2 )4 COOH C8 CH3 (CH2 )6 COOH C10 CH3 (CH2 )8 COOH C12 CH3(CH2)10COOH C14 CH3 (CH2 )12 COOH C16 CH3 (CH2 )14 COOH C18 CH3 (CH2 )16 COOH C20 CH3(CH2)18COOH n-hexanoic (capronic acid) n-octanoic (caprylic acid) n-decanoic (caprinic acid) n-dodecanoic (lauric acid) n-tetradecanoic (myristic acid) n-hexadecanoic (palmitic acid) n-octadecanoid (stearic acid) n-eicosanoic (arachidonic acid) UNSATURATED FATTY ACIDS CH3 (CH2 )14 COOH CH3 (CH2 )16 COOH CH3 (CH2 )7 CH CH(CH2 )7 COOH CH3 (CH2 )4 CH CHCH2 CH CH(CH2 )7 COOH CH3 CH2 CH CHCH2CH CHCH2CH CH(CH2)7COOH acetate+ malonate c c c c cc palmitic acid stearic acid oleic acid linoleic acid linolenic acid -2H -2H -2H Formation of unsaturated fatty acids via direct dehydrogenation ( 9) ( 6) ( 3) UNSATURATED FATTY ACIDS CH3 (CH2 )7 CH2 C H OH CH2 CO SCoA CH3 (CH2 )7 CH CHCH2 CO SCoA -H2O + 3 x C2 units oleic acid Formation of unsaturated fatty acids via hydroxyacids c THE MOST COMMON UNSATURATED FATTY ACIDS C18 CH3 (CH2 )7 CH=CH(CH2 )7 COOH C18 CH3 (CH2 )4 CH=CHCH2 CH=CH(CH2 )7 COOH C18 CH3 CH2 CH=CHCH2 CH=CHCH2 CH=CH(CH2 )7 COOH C18 CH3 (CH2 )5 (CHOH)CH2 CH=CH(CH2 )7 COOH C22 CH3 (CH2 )7 CH=CH(CH2 )11 COOH cis-9-octadecenoic acid oleic acid cis,cis-9,12-octadecadienic acid linoleic acid cis,cis,cis-9,12,15-octadecatrienic acid linolenic acid 12-hydroxy-cis-9-octadecenoic ricinoleic acid cis-13-docosenoic erucic acid CH3 (CH2 )7 CH CH(CH2 )7 COOH CH3 (CH2 )5 CH OH CH2 C H CH(CH2 )7 COOH CH3 S CH2 CH2 C H NH3 + COO C H C H CH3(CH2)7 (CH2)7COOH CH2 C CCH3 (CH2 )7 (CH2 )7 COOH CH2 SCoA OCH2 H C CCH3 (CH2 )7 (CH2 )6 COOH CH2 oleic acid ricinoleic acid methionine dihydrosterculic acid sterculic acid malvic acid UNSATURATED FATTY ACIDS MALVACEAE, STERKULIACEAE α-oxidace UNSATURATED CYCLIC ACIDS – HYDNOCARPACEAE (CH2)10COOH (CH2 )12 COOH (C12 H22 )COOH hydnocarpic acid chaulmoogric acid gorlic acid COSCoA malonyl-CoA Esters with glycerol OP OH OH OP O OH COR1 R1 COSCoA R2COSCoA OP O R2COO COR1 OH O R2COO COR1 OH2 O O R2COO COR1 COR3 R3 COSCoA O O R2COO COR1 P O OH OR3 O O CH3COO (CH2)15CH3 P O OH OCH2CH2N(CH3)3 CH2 CH2 N(CH3 )3 CH2CH2NH3 CH2CHCOOH NH2 OH OH OH OH OH PAF Desaturation of stearic acid CO SR CO SR CO SR CO SR CO SR CO SR CO SR CO SR CO SR CO SR CO SR CO SR CO SR Stearic acid 18:0 Desaturation via direction to terminal methyl Plants Fungi Oleic acid 18:1 (9c) Linoleic acid 18:2 (9c, 12c) α-linolenic acid 18:3 (9c, 12c, 15c) Desaturation via direction to carboxyl 18:2 (9c, 6c) γ-linolenic acid 18:3 (6c, 9c, 12c) Stearidonic acid 18:4 (6c, 9c, 12c, 15c) Eicosatetraenic acid 20:4 (8c, 11c, 14c, 17c)Dihomo-γ-linolenic acid 20:3 (8c, 11c, 14c) Eicosapentaenic acid 20:5 (5c, 8c, 11c, 14c, 17c) Docosapentaenic acid 22:5 (7c, 10c, 13c, 16c, 19c)Docosahexaenic acid 22:6 (4c, 7c, 10c, 13c, 16c, 19c) R acyl carrier protein/SCoA Zvíře Animals Animals +C2 (malonát) +C2 (via malonate) +C2 (via malonate) Prostaglandines of the 1st class Prostaglandines of the 2nd class Prostaglandines of the 3rd class Arachidonic acid 20:4 (5c, 8c, 11c, 14c) Essential fatty acids Omega-3 mastné kyseliny Oenothera biennis Borago officinalis Fishes cod-liver oil Enzyme of deasaturation Disorders: age, diabetes, alcoholism, stress, inhibition by high intake of trans acids Mother milk, black currant Plants Fungi POLYACETYLENIC SUBSTANCES, POLYINES ASTERACEAE, DAUCACEAE, ARALIACEAE CH3(CH2)4 C54 C55 CH2CH CH (CH2)7COOH C)3 CH CH CH2OH C)3 CH CH COOCH3 C)4 CH CH CH CH2CH3 (C CH3 (C CH3 (C C)3 CH CHCH3 (C CH CH (CH2)2CH2OH oleic acid linolenic acid crepeninic acid c dehydromatricarianol dehydromatricaria-ester t t Polyines possess toxicological importance Dahlia sp. (Asteraceae) Occurrence: Cicuta virosa, Cowbane or Northern Water Hemlock, Apiaceae Aethusa cynapium - Fool's Cicely or Poison Parsley (Apiaceae) POLYACETYLENIC SUBSTANCES, POLYINES ANTIBIOTICS C C C C H C C H C H C H CH C CH CH2 COOH CH C C C CH C CH CH OH CH2 CH2 COOH Nocardia acidophyllus (Actinomycetes) produces MYCOMYCIN side product = nemotinic acid POLYACETYLENIC SUBSTANCES, POLYINES ASTERACEAE O CH2 CC CO C C C C CH3 carlina oxide capillin (fungistatic) Carlina acaulis [root] - stemless carline thistle r. Artemisia - wormwood PROSTAGLANDINS 11 9 CO2 H O O O O COOH 9 11 OH O OH CO2H 11 9 CO2H O O O O COOH O OH O O O COOH OH OH OH  8,11,14-eicosatrienic acid cyclic endoperoxide thromboxane B2 prostacycline PGE1 LINOLENIC ACID COX PGG2 Prostaglandins O R1 R2 O R1 R2 O R1 R2 OH R1 R2 O O R1 R2 OH OH R1 R2 OH COOH COOH COOH OH OH OH R1 O OH O O R1 O O R2 R2 O COOH OH PGA PGB PGC PGD PGE PGF PGG PGH PGI R1 R2 1st class 2nd class 3rd class Acetate cyclization – formation of simple phenols O SCoA O SCoA COOH 7 6 5 4 3 2 1 SEnz O O O O 5 4 3 6 7 C 2 1 SEnz OO O O H + 4 3 2 5 C 6 1 SEnz 7 O OO O SEnz OO O OH H SEnzO O O O SEnz OO O O O O O OH OOH OH OH OH O OH + 3 x Acetyl-CoA Malonyl-CoA poly-β-ketoacid Aldol condensation Claisen reaction Dehydrogenation Re-formation of carbonyl made favourable by formation favourable by release from enzyme of conjugated system Enolization Enolizace favourable via formation of favourable via formation aromatic system of aromatic system Hydrolysis Orsellinic acid Phloroacetophenone Polyketide synthasa Polyketide cyclase meta-OH CYCLIC ACETOGENINS PHENOLS AND THEIR DERIVATIVES R CO 7 CH2 6 CO 5 CH2 4 CO 3 CH2 2 CO 1 O R´ C7 CH2 6 C 5 CH2 4 C3 CH2 2 O O R O C 1 O O R´ C1 CH2 2 C 3 CH2 4 C5 CH2 6 O O OR´ O C 7 O R C OR OHOH OH COOR´ OHR OH COOR´ OHR OHR OH OHCH3 OH COOH aldol condenzation (2 7) reduction at C5 C-acylation (1 6) acylphloroglucinolresorcinol carboxylic acid - CO2 resorcinol orsellinic acid intramolecular intramolecular 6-methylsalycilic acid CH3 COOH O O O O O O O SEnz OO O O COSEnz OHOH OH OH COSEnz OH OH OH O O 7 x 2 x aldol condenzation Enolization Lactone formation Alternariol OHOH COOH OHOH COOH OHOH O O OH COOH Orsellinic acid Lecanoric acid Utilization of terminal carboxyl Utilization of terminal carboxyl Carboxyl termination CYCLIC ACETOGENINS DERIVATIVES OF PYRONES AND NAPHTOQUINONES R CO 7 CH2CO 5 CH2CO 3 CH2CO 1 O R´ 5 1 O OCH2 COR 7 3 R O CH2COOR´ C O O O O R O CO SCoA OH OH O R O COOH EXAMPLES OF POLY-β-KETO-SUBSTANCES CYCLISATION with numerous secondary transformations O O O CH3 COOH OH OH CH3 COOH O O CH3 O O COOH MeO OMe COCH2COCH3 OMe O CH3 O O O O O COOH O O OH OH OH CH3 CH3O O O O O O O COOH CH3 OH O OOH OH COOH expected precursor x v(C2)x natural compound 4 5 7 8 endocrocine alternariol eugenone orsellinic acid ACETATE ORIGIN OF NATURAL COMPOUNDS O O OH CH3OH OH O O O CH3Cl MeO OMe OMe COOH OH COOH CH3 COOH Penicillium spp. Penicillium islandicum Rumex spp. Rhamnus spp. 3-hydroxyphtalate griseofulvine emodine . . POLY-β-KETO CHAIN STABILISATION RCOCH2COCH2COCH2COCH2CO SCoA C CH C CH2 O C OH CH CO SCoA OH RCOCH2 H R C O CH2 CH O C CH2 O K O CH C K O SCoA enzyme enzyme ANTHRAQUINONE DERIVATIVES CO SCoACH3 CH2 CO CO2 H SCoA CH3 O O O O O CO O O SCoA CH3 O H H OH OH CO2 H CH3 OHO O OH OH emodine-anthrone emodine dianthrone 1 7 . .x x xxx x xx Changes in oxidation pattern of skeleton before cyclization Decarboxylation, oxidation, methylation after cyclization C-alkylation reactions SEnz O O O O SEnz OO O O SCH3 Ad R SEnz OO O O OH COOH OH OH OH O O OH OH O O OH OH O O OH O OH O O OH CH3 SCH3 Ad R OH COOH OH SCH3 Ad R C-methylation SAM Aldol reaction Aromatization 5-methylorsellinic acid Oxidation of methyl at CH2OH Following lactonization Intermediate of phtalide type Farnesyl diphosphate Alkylation Oxidative cleavage O-methylation SAM Mycophenolic acid ANTIBIOTICS OF POLYKETIDE TYPE TETRACYCLINES – product of actinomycetes Streptomyces spp. CH2CO SCoA CONH2 CH2CO SCoA COOH CO O O O O O O O O SCoA SCoA CONH2 OH OHOHOHOH CONH2 OH OOHOOH CONH2 CH3 OH H R2 N(CH3)2 H H R1 OH 1 8 R1 R2 tetracycline H H chlorotetracycline Cl H oxytetracycline H OH oxidation, halogenation, reduction, methylation, hydroxylation malonamide-CoA malonyl-CoA 1 2 3 4 Dactylocyklines OH OH O OH O OH OH OHH O O R NMe2 CONH2 MeO OMe Anthracycline antibiotics O O OH OHOMe O OH O O NH2OH O O OH OHOMe O OH O O NH2OH OH O CoAS O O O OOOO O OEnzS Propionyl-CoA 9 x malonyl-CoA Daunorubicine Doxorubicine Streptomyces peuceticus Streptomyces coeruleorubidus ANTIBIOTICS OF POLYKETIDE TYPE GRISEOFULVINE – product of Penicillium griseofulvum and others, examples of biosynthetic application of oxidative phenolic conjugation CH3 CO SCoA CH2 CO SCoA COOH SCoA O O O O O O CH3 O OH O OH OH O OH CH3 OH O O O O O CH3 O Cl 1 6 -CoASH aldol condensation -H2O +3CH3 +Cl griseofulvine LICHEN ACIDS usnic acid OH OH OH CH3 COCH3 O O OH CH3 OH CH3 OH COCH3 COCH3 CH3 2 usnic acidsubstituted phloroglucinol oxidativní zdvojení z methioninu LICHEN ACIDS symbionts of fungi and algae, produce mainly depsides and depsidones CH3 CO SCoA OHOH OH OH CH3 CO SCoA O OH CH3 CO SCoA CH3 CO OHOH CH3 CO SCoA OHO O OH CH3 CO CH3 CO OHOH + lecanoric acid gyrophoric acid (triester) orsellinic acid orsellinic acid O-acylation orsellinic acid PHLOROGLUCINE DERIVATIVES PRESENT AT FERNS OH CH3 OH R OH CH3 O CH3 OH R OH CH2 O CH3 OH R OH CH2 + O CH3 OH R OH CH2 O CH3 OH R OH O CH3 OH R OH C H2 O CH3 OH R OH CH3 OH R OH CH2 OH CH3 OH R OH MeO (-2e, -2H+) margaspidine R=COC3H7 MACROLIDES OF ERYTHROMYCINE GROUP formed via incorporation of propionic acid in form of methylmalonylcoenzyme A RCO SCoA CH CO CH3 SCoA CO2 H RCO CH CH3 CO SCoA CH2 CH CH3 C CH3 OH CH OH CH CH3 CO CH CH3 CH2 C OH CH3 CH 5 OR CH CH3 CH 3 OR' CH 2 CH3 CO 1 O O O 1 2 3 4 5 O O OH OH OH O O N(CH3)2 OH O OH OMe + erythromycine (R=desosamine, R'=cladinose) erythromycine acyl-CoA methylmalonyl-CoA O SCoA O SCoA COOH O OH OH OH OH SEnz O O O O OH OH OH O O O OH O O OHOH O OH NMe2 O OH MeO + 6 x Carbonyls „fate“ Reduced Reduced ReducedReduced Reduced Dehydrated Reduced Non-reduced Saccharopolyspora erythrea COMPOSITE ACETOGENINS formed except of acetogenine from constituent of other biogenetic origin CoAS O O SEnz O OO O O O O OH OOHO O OH OH OHO O OH OH O O H OHO O OH OH O OH O O OHO O OH OH O O OHOOH OH O O OH HOOC O O OO O MeO O O O O O MeO O O O MeO OO O Aldol and Claisen condenzation, Aromatization, oxidation Series of reactions ensuring cyclization with formation of ketal Baeyer -Viliger oxidation Hydrolysis, Formation of furane Baeyer-Viliger oxidation ensuring ring cleavage Series of reactions ensuring rotation and formation of ether bridge, formation of xanthone Oxidative cleavage of aromatic ring, re- cyclization Baeyer -Viliger oxidation Aflatoxine G1 Aflatoxine B1 Hexanoyl-CoA Sterigmatocystin COMPOSITE ACETOGENINS formed except of acetogenine from constituent of other biogenetic origin NH2 O SCoA NH2 O O SCoA NH2 O O O O CoAS N H OH O N H O OH OH SCoA O O OO EnzS O OH HOOC OH OH CoAS O O O O SEnz O COOH OH OH OPP COOH OH OH COOH OH OH COOH OH OH H COOH OH OH COOH OH O OH OH OH O COOH OH O OH O COMPOSITE ACETOGENINS formed except of acetogenine from constituent of other biogenetic origin Hexanoyl-CoA 3 x malonyl-CoA Olivetolcarboxylic acid Aldol condensation C-alkylation Oxidation with Substituents rotation Electrophilic cyclization a a b b Nucleophilic cyclization Cannabidiolic acid Tetrahydrocannabinolic acid Cannabinolic acid Cannabinol CBN Tetrahydrocannabinol THC Cannabidiol CBD Decarboxylation Cannabigerolic acid R5 R4 OH R1 R2OR3 O R3 OH R1 R2 OH R1 R2 O R3 O OH R1 R2 H H R3 O OH R1 H H O OH R1 R2 H H H R1 R2 O OH R3 OH H H O O R2 R3 R1 OH R1 OH OH R4O OR2 R1 R3 O O OH OH OH O O OH OH OH OMe CBG-type cannabinoids CBC-type cannabinoids CBD-type cannabinoids delta9-trans-THC-type cannabionoids delta8-trans-THC-type cannabionoids CBL-type cannabinoids CBE-type cannabinoids CBN-type cannabinoids CBND-type cannabinoids CBT-type cannabinoids Brevetoxins Gymnodinium breve (Ptychodiscus brevis) So called red tide Massive death of fishes Mexican gulf, Australia, coast of North America Polycyclic ethers Lipophilic 10 and 11 rings All-trans arrangement Relatively stabile compounds (high and low pH cause decomposition) Mechanism Depolarization, opening of voltagedirected channels Na+ Uncontrolled influx Na+ into cell Change of voltage opening channels, hyperexcitability Symptoms: Often mis-changed as intoxication with ciguatoxins Tingling of face, throat, fingers Tremor, nausea, vomiting, diarrhoea, headache Mydriasis Bradycardia No death causing cases Ciguatera toxins Mixture of substances Present: 24 related compounds (ciguatoxin, maitotoxin, scaritoxin, okadaic acid) Dinoflagellate Gambierdiscus toxicus  On corral reefs Found in Pacific fishes  Tropics and subtropics Low-molecular lipid polyethers Temperature resistant Stimulation of Na+ passage through membrane Neurotoxins 4 sets of symptoms  Neurologic 7 days  Cardiovascular  Gastrointestinal 1-2 days  General 1-7 days  Nástup otravy:  10 minut to 12 hours after first contact, after požití of contamined fishes upto 36 hours  Begging of intoxication  Vomiting, diarrhoea, general weakness  Decreased sensitivity to painfull podnětům  Tingling and burning of fingers  Sense of changing of cold and heat  Further stadia  Hypotension, mydriasis, arhytmia  Convulsions, circulatory colaps, respiratory colaps, death  Possibility of symptoms persistance  Bad differential diagnostics from other NSP  First aid  Manitol – diuresis  Function control  No antidote  Curing of long-termed symtoms  Amitriptilin, gabapentin Domoic acid  Nitzchia pungens  Amnestic shellfish poisoning (ASP)  Poisoning corresponded by neurologic disorders  Hallucinations, time and space disorientation  Deterioration of short-termed memory  Symptoms of intoxication  Vomiting, stomach convulsions, diarrhoea, headaches  ASP  Cumulation of toxin in hepatopancreas, gills, so called siphone of mollusces  Mollusces resistant, meat becomes toxic  New Zealand, Canada coast, Mexico  Red tide  Tricarboxylic acid  Proline derivative  Structural similarity with excitation aminoacids (cainate, glutamate)  Mechanism of effect:  Excitation AMA  100times effective than glutamate  Ring rigidity  Bond to NMDA receptor  Affection of Ca channels, Ca influx  Stimulation of processes → neuronal damage  Loss of memory http://www.regione.emilia-romagna.it/laguna/immagine_dettaglio.asp?id_img=1002