IDENTIFICATION OF UNKNOWN DRUG

1

Qualitative elementary analysis

• in practical class, we evaluate the presence of nitrogen, sulfur, and halogens

 0.01 g of tested compound is inserted into the fusion tube and is covered with a reaction mixture (magnesium + potassium carbonate)

The space for the escape of vapors, which are created during the combustion

Lassaigne test

- hot fusion tube is put into the test tube containing distilled water (about 15 mL)
- the content of the broken fusion tube is released into the water

Lassaigne test

- the content of the test tube is filtrated
- the filtrate is divided into 3 parts

Determination of nitrogen as a cyanide

- add few drops of $FeSO_4$ and few drops of $FeCI_3$ to the 5 mL portion of the filtrate
- boil for a half minute
- acidify with dilute HCI after cooling

$$C_{org} + N_{org} \longrightarrow CN^{-}$$

$$6 CN^{-} + Fe^{2+} \longrightarrow [Fe(CN)_{6}]^{4-}$$

$$[Fe(CN)_6]^{4-} + Fe^{3+} \longrightarrow {Fe[Fe(CN)_6]}^{4-}$$

Lassaigne test

Determination of nitrogen as a cyanide

Positive reaction - presence of nitrogen

Negative reaction - nitrogen was not present

Determination of nitrogen as a cyanide

 it can happen that just greenish solution is created, then filtrate this solution through dense filtration paper and Prussian blue is caught on it

Determination of sulfur as sulfide

add few drops of lead acetate to another 5 mL portion of the filtrate

$$S_{org} \longrightarrow S^{2-}$$

 $S^{2-} + Pb^{2+} \longrightarrow PbS$

Black precipitate

Determination of halogens as halides

- acidify another 5 mL portion with dilute nitric acid
- add silver nitrate

Differentiation of halides

Color of the precipitate and its solubility in ammonia

- add dilute ammonia to the precipitate
- easily soluble precipitate => Cl⁻
- precipitate soluble with difficulties => Br-
- insoluble precipitate => I⁻

 $AgCI + 2 NH_3 \longrightarrow [Ag(NH_3)_2]^+ + CI^-$

Before addition of ammonia

After addition of ammonia

Differentiation of halides

Transformation to the elementary halogen

- add dilute sulfuric acid to 5 mL portion of Lassaigne filtrate, then add 1 mL of chloroform and 0.5 mL chloramine
- the lower layer is **colorless** => chlorine or fluorine
- the lower layer is yellow to brown => bromine
- the lower layer is violet => iodine

MUNI PHARM ATTENTION!

- if you found nitrogen or sulfur, you COULD NOT use the filtrate from Lassaigne fusion for evaluation of halogens evidence
- for orientation, prove **Belstein test** on the copper wire, in this case

Belstein test

- heating of analyte on the copper wire
- creation of CuX₂
- the green color of the fire

• if is the Belstein test positive let's do mineralization (combustion) with **calcium oxide!**

Mineralization with calcium oxide

- mix 0.01 g of your sample with 0.01 g of CaO
- put the mixture into the fusion tube
- cover the mixture with another portion of CaO

The space for the escape of vapors, which are created during the combustion

Mineralization with calcium oxide

Mineralization with calcium oxide

- hot fusion tube is put into the test tube containing distilled water (about 15 mL)
- the content of the broken fusion tube is released into the water

Mineralization with calcium oxide

- the content of the test tube is filtrated
- the filtrate is divided into 3 parts
- continue as is described on page no. 11

MUNI PHARM Now you know which elements your sample contains and now you will continue by solubility testing

