
Medicinal Chemistry II

Course timetable

Academic Year: 2011/2012 Semester: ZS Course: 3150/FAFB2

Name: Medicinal Chemistry II

Key: Lecture Tutorial Seminar

Antibacterial chemotherapeutics

- = compounds used for treatment of bacterial infections Part 1
- 1. Antibacterial sulfonamides
- 2. Nitrofuranes
- 3. Quinolones
- 4.Tetracyclins
- chapters 1.-3. contain.: chemotherapeutics in "narrower word meaning", i.e. fully synthetic compounds

4-(2,4-diaminofenylazo)benzenesulfonamid

Prontosil rubrum

1932 Mietsch & Klarer - synthesis

Gerhard Domagk - successful tests on activity against Streptococci

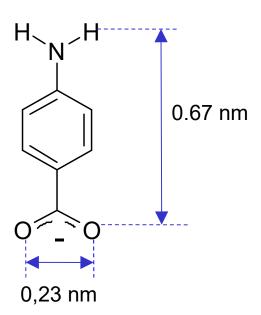
1935 Jacques & Therése Tréfoulé: sulfanilamide is the proper active compound

$$\begin{array}{c} NH_2 \\ O=S=O \\ NH_2 \\ NH_3 \\ NH_3 \\ NH_4 \\ NH_5 \\ NH_5 \\ NH_5 \\ NH_6 \\ N$$

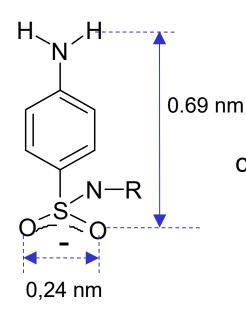
4-aminobenzensufonamide sulfanilamide

proper active compound

1,2,4-triaminobenzene


4-(2,4-diaminophenylazo)benzenesulfonamide

Prontosil rubrum


 NH_2

(Prontosil album)

Structure-activity relationships (SAR)

4-aminobenzoate anion

sulfonamide anion

n ·steric (spatial) similarity ⇒ competition for a binding site

Mechanism of action Scheme of synthesis of tetrahydrofolic acid in bacteria

•effect is **bacteriostatic**, only in combination with 2,6-diaminopyrimidines (trimetoprim) **bactericidal**Spectrum of effect:

broad, G+ as well as G-

the most of used compounds are sulfonamides substituted with a nitrogenous heterocycle on N¹

Overwiev of structures of commonly used compounds

	R	INN name/official name	Notice	Preparation authorized in the CR
H _N /H	N	sulfadiazine Sulfadiazinum PhEur	a.u.v.	Norodine® 24 a.u.v. inj.
	CH ₃	sulfafurazol		Sulfisoxazol® tbl.
	H ₃ C N-O	(syn. sulfizoxazole [USAN])		
0=\$=0 NH	H ₃ C O-N	sulfamethoxazole	in combination with trimetoprim - cotrimoxazol	Biseptol [®] , Co- trimoxazol AL [®]
K	N CH ₃	sulfamethoxydiazi- ne (syn. sulfameter [USAN)	also leprostatic	
	O-CH ₃	sulfametrole	in combination with trimetoprim - lidaprim	

Overwiev of structures of commonly used compounds - continued

H_	N H
0= R^	 S=0 NH
K	

R	INN name/officia name	l Notice	Preparation authorized in the CR
H_3C N H_3C	sulfamoxole	in combination with trimethoprim - supristol	
N S	sulfathiazole Sulfathiazolum PhEur		Sulfathiazol Neo® ung. Argosulfan®2% (Ag salt)
H ₃ C N N CH ₃	sulfisomidine		Aristamid® gel
H ₃ C N N N CH ₃	sulfadimidine Sulfadimidinum PhEur	a.u.v. treatment of coccidiosis	Sulfadimidin Bioveta® a.u.v. plv. sol.
H ₃ C O N N	sulfadoxine Sulfadoxinum PhEur		-

Overwiev of structures of commonly used compounds - continued

H_	у Н
0=9	S=0
R_	Ή

R	INN name/official name	Notice	Preparation authorized in the CR
S CH_3 $N-N$	sulfamethizole Sulfamethizolum PhEur		
N NH_2	sulfaguanidine Sulfaguanidinum PhEur	a.u.v.	
H ₃ C O	sulfacetamide Sulfacetamidum natricum monohydricum PhEur		

Sulfonamides Combinations

trimethoprim

sulfamethoxazole

originally antimalaric

Cotrimoxazol (co-trimoxazol)

- baktericidal effect
- used since early 1970th

Sulfonamides Combinations

trimethoprim

sulfametrole

lidaprim

Sulfonamides Combinations

trimethoprim

sulfamoxole

supristol

Sulfonamides Chemical properties

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$$

$$H_2N$$
 $N-R$
 $N-R$

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2O
 H_2O
 H_2O

- **H on N**¹ is due to M⁻ a I⁻ effects of sulfonamide moiety together with I⁻ effect of arom. ring relatively strongly **acidic** \Rightarrow forming of salts with bases; salts are used in topical preparations (eye drops, oitments)
- \cdot N⁴ is **very slightly basic** (aniline nitrogen), some **heterocycles** attached to N¹ are much **stronger bases** \Rightarrow forming of therapeutically useful salts with strong acids (hydrochlorides, idy, mesylates etc.).

Nitrofurans

$$O_2N$$

- •5-nitrofurancarbaldehyde derovatives, in most Schiff bases (azomethines)
- •-NO₂ moiety in position 5 is necessary for their effect
- •spectrum: both G⁺ and G⁻ bacteria, some protozoa (*Trichomonas vaginalis*)
- •infections of urinary tract, topically in infections of skin and genital tract
- •mode of action: related to reduction of -NO₂ moiety to –NH₂ group by bacteria; 2 hypotheses:
- •either formed amino compound reacts with bacterial DNA by electrophilic mechanism
- •or it is bound to ribosomes and obstruct proteosyntheis
- •mutagenic, contraindiacation in the 1th trimester of gravidity (relative exception: nifuratel)

Nitrofurans

$$O_2N$$
 O
 H

5-nitro-2-furancarbalehyde semicarbazone **nitrofural** syn. nitrofurazone [USP, BAN]

1-[(5-nitrofurfurylidene)amino]hydantoin **nitrofurantoin** Furantoin®

Urofur® forte/mite a.u.v.

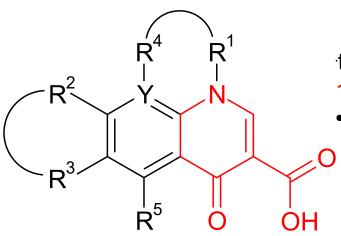
Nitrofurans

$$O_2N$$
 O N O O O

R = H- furazolidone

R= CH₃SCH₂-**nifuratel**Macmiror® tbl., Macmiror complex®
ung., sup. vag. (+ nystatin)

Nitrofurans: physical & chemical properties


- •double bonds of -NO $_2$ and azomethine -CH=N- moieties are conjugated with the π -electrons system of the furane ring \Rightarrow chromophore \Rightarrow yellow orange crystallinic compounds
- unstable at the light
- •other properties depend on a particular structure

Example: nitrofurantoin

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_4N
 O_4N

•like other hydantoines, nitrofurantoin is weakly acidic due to M^- effect of both imide carbonyls \Rightarrow forming of salts with bases; pK₂ = 7.2

Quinolones

the fragment necessary for the effect:

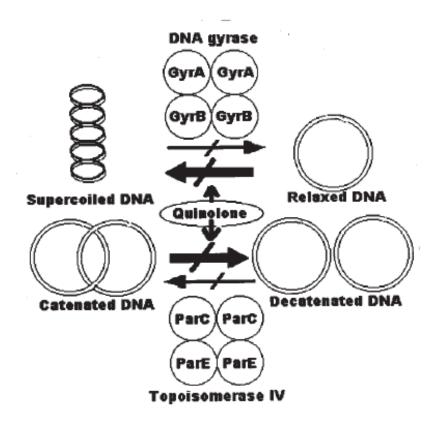
1-alkyl-1,4-dihydro-4-oxopyridine-3-carboxylic acid

•it must be fused to an other ring (benzene, pyridine)

Y = -N= (1,8-naphthyridine derivatives) or **-C= (quinoline derivatives)**

R¹= alkyl, cykloalkyl, or a part of a heterocycle R1+R4

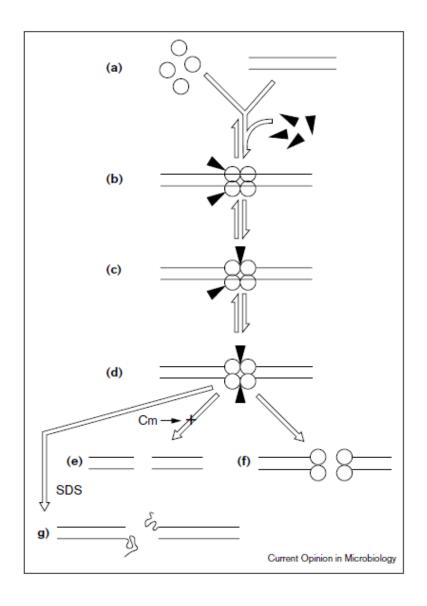
R²= alkyl, saturated N-heterocycle, R¹ + R² can together form a heterocycle (dioxomethylene moiety)


R³= -H, halogen

 R^4 = -H, -F, or a part of a heterocycle R^1 + R^4

 $R^5 = -H, -NH_2$

Quinolones


- •mode of action: interference with the replication of bacteria by inhibition of bacterial gyrase (topoisomerase II) and topoisomerase IV; both enzymes are essential for bacterial DNA replication
- •bactericidal, acts on both dividing and quiescent-state bacteria
- •effect is inhibited by chloramphenicol: completely in the 1st generation, partially in fluoroquinolones

Major activities of DNA gyrase and topoisomerase IV. According to older hypotheses, quinolones simply block these activities by stabilizing a enzyme-DNA complex, which also functions as a barrier to the movement of other proteins such as DNA polymerase and RNA polymerase along the DNA.

Quinolones: more recent and detailed view to mechanism of action

(a) Gyrase or topoisomerase IV (circles), DNA (parallel lines), and quinolones (triangles) form a ternary complex. (b) Quinolones bind to GyrA and ParC subunits of gyrase and topoisomerase IV, respectively. At this stage the DNA is intact. (c) One DNA strand is broken, forming a cleaved complex. Inhibition of DNA synthesis at substaturating concentrations of quinolone correlates with single-strand chromosome breaks. (d) Second DNA strand is broken. Inhibition of DNA synthesis correlates with the activity (MIC). (e) Release of doublestrand DNA breaks from cleaved complex leads to cell death. Inhibition of protein synthesis by chloramphenicol (Cm) completely blocks the lethal action of first-generation quinolone inhibitors of gyrase (nalidixic acid, oxolinic acid). (f) Release of lethal doublestranded DNA breaks via subunit dissociation. Fluoroquinolone lethality is incompletely blocked by chloramphenicol, requiring a second lethal pathway. (g) Release of double-strand DNA breaks by cell lysis in the presence of sodium dodecyl sulfate (SDS); single-strand breaks are released if cells are lysed at step (c).

Quinolones "1st generation" – treatment of urinary tract infections

nalidixic acid •mainly G- oxolinic acid

Desurol®

•mainly G⁻, E. coli, Proteus, St. aureus

Quinolones "2nd - 4th generation" – fluorinated derivatives

$$R^2$$
 R^3
 R^1
 R^2
 R^4
 R^4

 R^1 = cycloalkyl, alkyl, sec. aminogroup, or a part of a heterocycle R^1+R^3

R² = saturated basic heterocycle attached through nitrogen

 R^3 = -H, -F, or a part of a heterocycle R^1 + R^3

 $R^4 = -H, -NH_2$

- •6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acids substituted in positions 1 and 7, less frequently also 8, exceptionally 5
- •spectrum: broad, G⁺ i G⁻, e.g. *E. coli, Citrobacter, Klebsiella, Enterobacter, Yersinia, Serratia, Providencia, Vibrio, Pseudomonas aeruginosa, Proteus, Salmonella, Shigella, Legionela...*
- •therapy of systhemic infections, urinary tract, eyes, GIT...

Quinolones

"2nd and 3rd generation" – fluorinated derivatives

Overview of used compounds

ciprofloxacin

Ciphin[®]

lomefloxacin

Maxaquin® tbl. obd.

- •spectrum includes also some strains *M. tuberculosis*
- •as bases or salts with acids

Quinolones "2nd and 3rd generation" – fluorinated derivatives

Overview of used compounds - continued

ofloxacin

-racemate Ofloxin® tbl.

levofloxacin

- pure S - (-) -enantiomer Tavanic[®] tbl. obd., inf. sol.

Quinolones "2nd and 3rd generation" – fluorinated derivatives

Overview of used compounds - continued

pefloxacin Abaktal® tbl., inj.

norfloxacin Nolicin® tbl. obd.

Quinolones "2nd and 3rd generation" – fluorinated derivatives

Overview of used compounds - continued

1-cyclopropyl-6-fluoro-8-methoxy-7-(octahydropyrrolo[3,4-b]pyridine-6-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid

moxifloxacin

Avelox® tbl. obd.

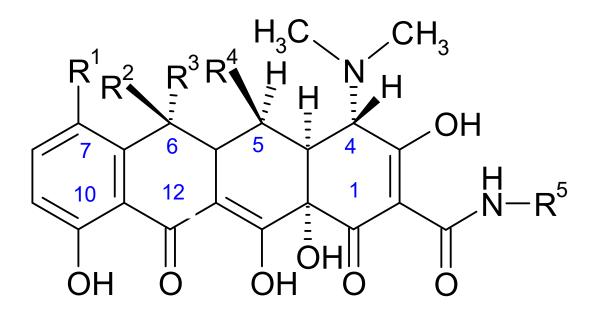
amifloxacin

Quinolones

"3rd and 4th generation" – fluorinated derivatives

Overview of used compounds

fleroxacin


3rd generation Quinodis Roche® tbl. obd.

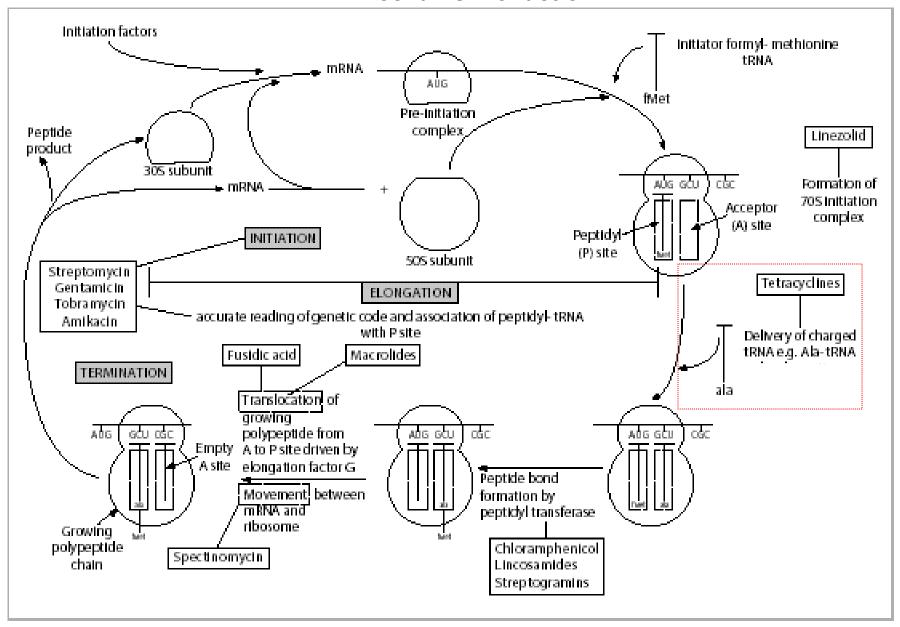
sparfloxacin

4th generation Zagam[®] tbl. obd.

- •also Mycobacterium sp.
- •serious systemic infections

•"true" antibiotics: initial compounds produced by microorganisms

 R^1 = -H, halogen, -NHCH₃


 $R^2 = -OH, -H$

 $R^3 = -CH_3, -H$

 $R^4 = -H, -OH$

R⁵ = H, heterocyclic aminoalkyl, carboxyaminoalkyl

Tetracyclines Mechanism of action

Tetracyclines Mechanism of action

 inhibition of proteosynthesis: inhibit transfer of amino acids attached to tRNA ("charged tRNA") to acceptor site of mRNA
 effect bacteriostatic (exception: rolitetracycline)

Tetracyclines Chemical properties

•ability to form coordination compounds bivalent (Ca²⁺, Mg²⁺, Cu²⁺, Fe²⁺, Zn²⁺...), trivalent (Fe³⁺, Al³⁺...) and polyvalent cations

•complexes are water-soluble and non-absorbable ⇒ salts of metals ↓ effect of tetracyclines

doxycycline has the lowest affinity to metal ions

•chelates form deposits in teeth and bones, namely growing ones ⇒ relative contraindication in childern

A complex of tetracycline with ferrous perchlorate

Tetracyclines Chemical properties - continued

tetracycline

4-epitetracycline

< 10 % activity, nephrotoxic

anhydrotetracycline

less active, nephrotoxic

Overview of compounds

R = H tetracycline

•isolated from *Streptomyces viridifaciens* Rimatet® cps.

R = Cl chlortetracycline

- isolated from Streptomyces aureofaciens
- also antiprotozoal activity
- •today a.u.v.
- •start material for production of other tetacyclines
- •Tetramutin Bio® a.u.v.

Overview of compounds - continued

R = OH **oxytetracycline**Oxytetracycline® cps.
R = H **doxycycline**Deoxymykoin® tbl.

Overview of compounds - continued

rolitetracycline

- •bactericidal
- injection administration only

lymecycline

Tetralysal® cps.

Overview of compounds - continued

minocycline

Skid® tbl.

Overview of compounds: newer subgroup of glycylcyclines

tigecycline

- •complicated infections of the skin and soft tissue (the tissue below the skin), but not foot infections in people with diabetes
- infections in the abdomen
- only in hospitals

Tygacil ® inf. plv. sol.