

Antineoplastics

Medicinal chemistry Mgr. Aleš Kroutil, PhD.

Content of the lecture

- Cancer the dissease
- Classification of antineoplastics
- Alkylating agents
- Antimetabolites
- Antibiotics
- Topoisomerase inhibitors
- Hormone-based drugs
- Kinases inhibitors
- Monoclonal antibodies
- Other groups

Cancer

- Cancer isn't only one dissease
 - Different types of tissues
 - Different mechanisms of origin
 - Loss of control on cell growth (proliferation)
- Impossible to have one compound for all types of cancer
 - cancer is a common name for >100 tumors

Classification of antineoplastics

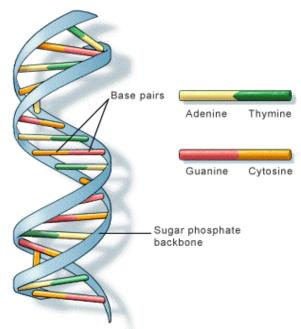
- Classification based on a target
 - DNA

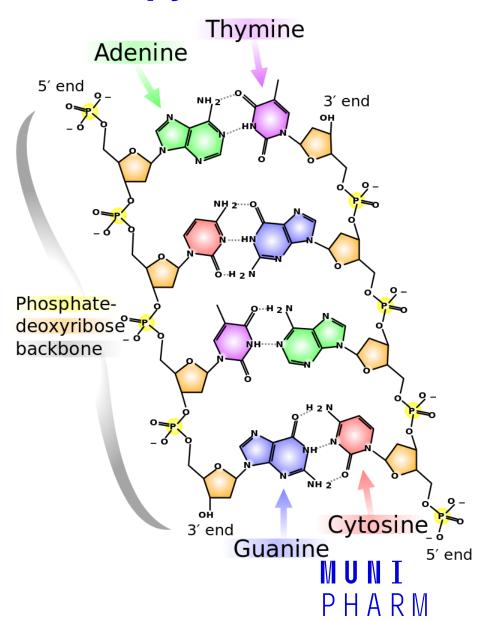
DNA as the molecule Synthesis of DNA

- Metabolism of cancer cells
- Hormones
- Immune system

History

- Systemic chemotherapy of cancer began in the 1940s and 1950s
 - Nitrogen mustards developed from war gases
 - Antimetabolites based on early knowledge of DNA metabolism
- Large scale random screening programs
 - Natural cytotoxic products (anthracyclines, vinca alkaloids)
 - Synthetic analogs based on discovery of mechanism of action Topoisomerase inhibitors
- Increasing understanding of tumor physiology
 - Tumor-activated prodrugs
 - Targeted therapies
 - Monoclonal antibodies


DNA as the target of the therapy


Modification of DNA molecule

- Alkylating agents
- Platinum complexes
- Intercalators

– DNA synthesis

- Antimetabolites
- Enzymes inhibition

Alkylating agents

- Agents than can replace hydrogen atom by an alkyl group at physiological conditions
 - spontaneous or enzymatic origin of reactive carbenium ions
 - alkylation reaction with DNA or other molecules
- Potentially carcinogenic and mutagenic
 - the same mechanism as anticancer activity
- Severe adverse effects
 - strong effects on bone marrow leucopenia, etc.
 - non-specific effect

Alkylating agents – nitrogen mustards

- Based on mustard gas (yperite)
- Mechanism is interstrand cross-link between DNA purine bases
 - Mechlorethamine (1949)
 - Chlorambucil (1957)
 Therapy of leukaemias, Hodkin's disease
 - Melphalan (1964)
 ovarian and breast carcinoma
 - Bendamustine

$$\begin{array}{c} \text{CH}_2\text{CH}_2\text{Cl} \\ \text{H}_3\text{C--N} \\ \text{CH}_2\text{CH}_2\text{Cl} \end{array}$$

$$\begin{array}{c} \text{NH}_2 \\ \text{CH}_2\text{CH}_2\text{Cl} \\ \\ \text{CH}_2\text{CH}_2\text{Cl} \end{array}$$

Alkylating agents – nitrogen mustards

— Mechanism of alkylation

- Not specific to cancer cells
- Affects all dividing cells

Alkylating agents – nitrosourea derivatives

- Active after metabolic activation
- Alkylating and carbamoylating activity
- Some derivatives active against brain cancers

Alkylating agents – nitrosourea derivatives

– Streptozocine

- antibiotics, isolated from Streptomyces achromogenes
- pancreatic cancer

Carmustine

high lipophilicity – effective against brain tumours

Lomustine

- simlar to carmustine, available after oral administration

Fotemustine

primarily for brain tumours therapy

$$\begin{array}{c|c} \text{Cl} & \overset{O}{\underset{\text{NO}}{\bigvee}} & \overset{\text{CH}_3}{\underset{\text{O}}{\bigvee}} & \text{O-CH}_2\text{CH}_3 \\ & & \text{O-CH}_2\text{CH}_3 \\ \end{array}$$

Alkylating agents – aziridines, triazines

– Mitomycines

- effective after bioactivation
- GIT and gynecological carcinomas

Dacarbazine

malignant melanoma, etc.

Procarbazine

effective in brain tumours

– Temozolomide

- very good oral bioavailability
- brain tumours

$$H_3C$$
 N
 N
 N
 CH_3

Alkylating agents - phosphamides

Active after metabolic activation

$$\begin{bmatrix}
O & M & R^1 \\
P & N & R^2 \\
N & R^3
\end{bmatrix}$$

Alkylating agents - phosphamides

Cyclophosphamide

- good oral bioavailability
- widely used for therapy of different tumours
- leukaemias, solid tumours (breast, ovarian, testis)

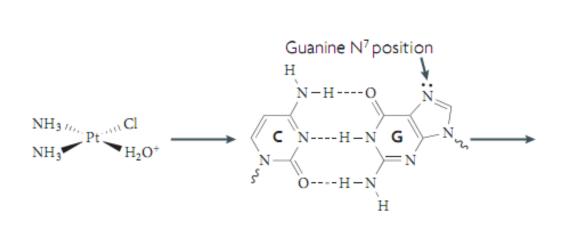
– Iphosphamide

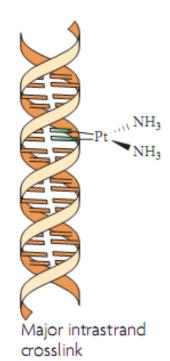
similar therapeutic spectrum as cyclophosphamide

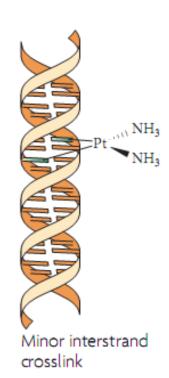
- Coordination compounds
 - organic compounds as ligands
 - neutral complexes
 - geometrical isomerism only cis derivatives are effective
- Platinum in oxidative state II or IV as the central atom
 - coordination number 4 in Pt(II) complexes
 - coordination number 4 in Pt(IV) complexes
- Alkylation-like mechanism of action

Cisplatin

- First time synthesised by Peyron in 1845
- Discovery of its anticancer efficacy by serendipity
- Start of clinical evaluation in 1971
- Marketed in 1978
- Therapy of testicular cancer was the first indication 80% efficacy in comparison with 5% of previous methods
- Still widely used in therapy in combination with other antineoplastics
- Severe side effects


nefrotoxicity neurotoxicity strong emetogenic effect


$$NH_3$$
 Cl
 Pt
 NH_3 Cl



– Mechanism of action

- Intrastrand covalent bond to DNA purine bases
- Reactivity of "leaving ligands"

PHARM

Mechanism of action

activation – aquacomplexes – very reactive

– Carboplatin

- Reduced toxicity, but also less effective
- Significantly less nephrotoxic
- Cross-ressistance with cisplatin
- Similar indications as cisplatin

– Oxaliplatin

- First registration in 1996
- Lack of nephrotoxicity
- Dose limitting toxicity is neurotoxity
 Peripheral neuropathy
- Therapy of colorectal cancer in combination with 5-fluorouracil

Orally available compounds

- Platinum in oxidative state IV
- Increased stability in GIT due to reduced reactivity
- Reduction to platinum(II) compounds in cells (activation)
- Overcomming resistance to cisplatin

$$\begin{array}{c|c}
O \\
O \\
CH_3\\
O \\
O \\
O \\
CH_3\\
O \\
CH_3\\
O \\
Satraplatin$$

$$\begin{array}{c|c}
O \\
O \\
CH_3\\
O \\
O \\
O \\
CH_3\\
O \\
CH_3\\
O \\
CH_3$$

$$\begin{array}{c}
CH_3\\
O \\
CH_3\\
O \\
O \\
CH_3
\end{array}$$

picoplatin

Antimetabolites – folic acid

- Folic acid is needed for biosynthesis of nucleic acids
- Source for one-carbon fragments
- Methotrexate immunosuppresive agent inhibition of tetrahydroflate reductase
- Pemetrexed inhibition of more enzymes
- Raltitrexed
- Nolatrexed

$$H_2$$
 H_3 H_2 H_3 H_4 H_5 H_5

COOH

nolatrexe

$$H_{2}N$$
 $H_{3}N$
 $H_{4}N$
 $H_{5}N$
 $H_{5}N$

ĊООН

22 raltitrex

Antimetabolites – purine bases

- $-R^1 = H$; $R^2 = OH vidarabine$ (antivirotics)
- $-R^1 = F$; $R^2 = OH fludarabine (leukaemia)$
- $-R^1 = CI$; $R^2 = H kladribine$ (leukaemia)
- $-R^1 = CI; R^2 = F klofarabine (leukaemia)$

Activation by phosphorylation

- Nelarabine
- Mercaptopurine

$$\begin{array}{c|c} OCH_{\S} \\ \hline N \\ H_{2}N \\ N \\ N \\ N \\ nelarabir \\ HOH_{2}C \\ OH \\ \end{array}$$

Antimetabolites – pyrimidine bases

Uracile derivatives 5-halogene substitution

- fluorine, event. bromine
- iodine derivatives are antivirotics
- 5-fluorouracil

i.v. administration inhibition of RNA ant protein synthesis breast, GIT and colorectal carcinomas

capecitabine

5-fluorouracil prodrug

Antimetabolites – pyrimidine bases

– Cytidine derivatives

cytarabine

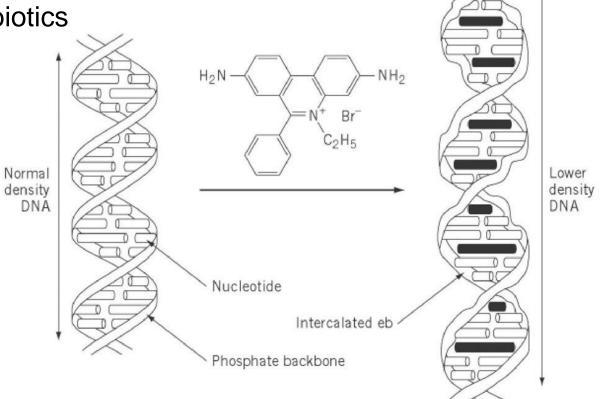
arabinose instead of ribose false nucleotide in DNA i.v. administration therapy of leukaemias

gemcitabine

bioactivation by phpsphprylation pancreatic, bronchial, breast and bladder carcinoma

azacytidine

myelodysplastic syndrome



Intercalating agents

- Different structures
- Antibiotics ant its derivatives, synthetic compounds
- Intercalation
 - the compound inserts into DNA double helix

it blocks replication and transcription

Anthracycline antibiotics

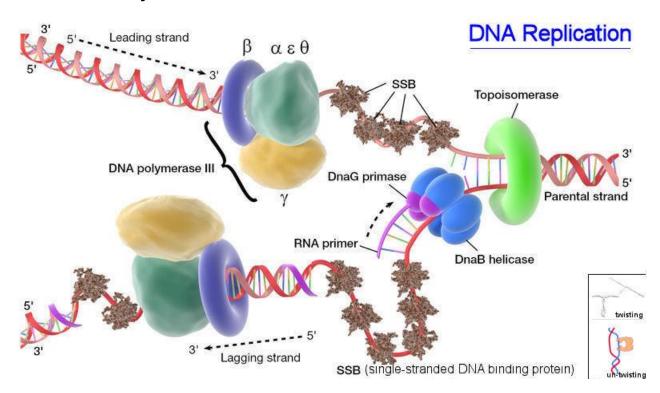
Intercalating agents

Anthracycline antibiotics

- doxorubicine
 - wide spectrum of cancer types cardiotoxicity, myelosupression
- epirubicine
 - epimere of doxorubicine reduced toxicity
- idarubicine
 - increased lipophilicity acute myeloid leucaemia

Intercalating agents

Synthetic compounds


- mitoxantrone
 - acute myeloid leucaemia, breast and other carcinomas
- amsacrine

poor solubility inhibition of topoisomerase

Topoisomerase inhibitors

- Topoisomerases
 - control of topological arrangement of replicated DNA
 - inhibition of topoisomerase causes stable bonding of it to DNA
- Camptothecin and its analogues
- Podophylotoxine derivatives
- Some anthracyclines

Topoisomerase inhibitors – camptothecins

Camptothecin and its derivatives

- pentacyclic structure
- lactone ring is necessary for anticancer activity

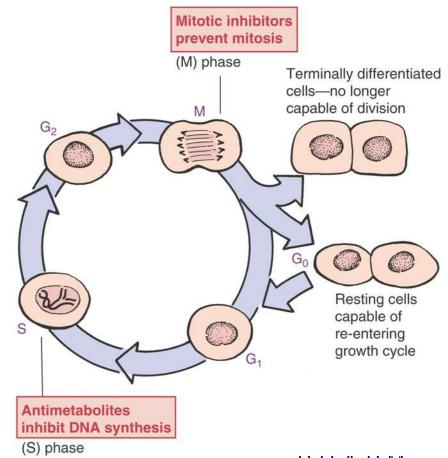
Irinotecane

- good inhibitor
- inhibes acetylcholinesterase too
- advanced colorectal carcinoma

Topotecane

- i.v.administration
- metastatic ovarian carcinoma, NSCLC

$$R^1$$
 R^2
 R^3
 R^3


Topoisomerase inhibitors – podophylotoxins

- Podophylotoxine is unusable fot the therapy, in clinical use are semisynthetical derivatives
- Etoposide
 - p.o. administration
 - lung carcinomas, leukaemias
- Teniposide
 - parenteral administration only
 - mitosis inhibitor

Mitosis inhibitors

- Natural compounds of different structures
- Block of mitosis in M-phase
- Bonding to microtubules
- Colchicum alkaloids
- Podophylotoxins
- Vinca-alkaloids
- Taxanes
- Epothilones

Mitosis inhibitors

- Colchicine
 - not used in therapy
- Podofylotoxin derivatives
 - glycosides
- Vinca alkaloides
 - vinblastine (CH₃)
 parenteral administration
 leukaemias, some solid tumours
 - vincristine (CHO) acute leukaemia
 - vinorelbine
 lung carcinoma (NSCLC)
 metastatic breast carcinoma

$$H_3CO$$
 OH
 NH - $COCH_3$
 $O-CH_3$

Mitosis inhibitors – taxanes

Taxus brevifolia

stabilisation of microtubules

National Cancer institute programme

technological problems, toxicological problems

Paclitaxel

- parenteral administration, poor solubility
- advanced uterine carcinoma
- breast and lung carcinoma

Docetaxel

- better efficacy in comparison with paclitaxel
- indications the same as paclitaxel

Mitosis inhibitors – other structures

Epothilones

taxanes-like mechanism of action

– Ixabepilone

- advanced breast carcinma
- hepatic carcinoma

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3
 H_3C
 CH_3
 CH_3

Other antineoplastics

Lenalidomide

- based on thalidomide
- inhibition of cytokines
- inhibition of angiogenesis

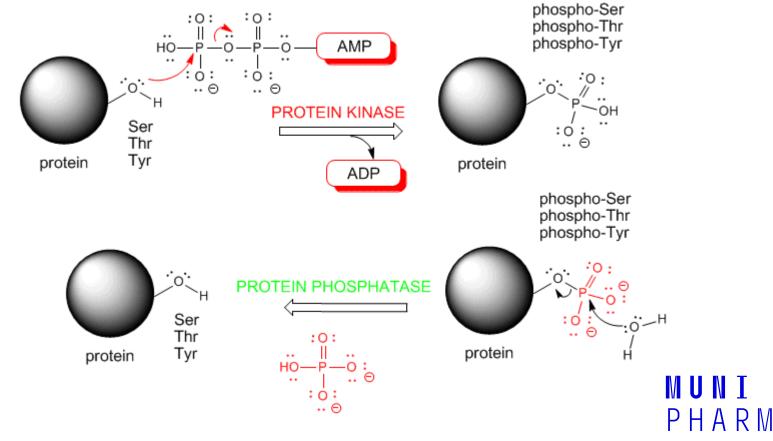
Photosensitizers

- Aminolevulinic acid
 Precursor of porphyrins
- Porphyrins

$$H_2N$$
 O
 CH_3

$$\begin{array}{c|c} & & & \\ \hline \\ NH_2 & O & O & H \\ \end{array}$$

lenalidomide



Kinases inhibitors

Protein Kinases

37

- Key regulators of cell function
- By adding phosphate groups to substrate proteins, they direct the activity, localization and overall function of many proteins, and serve to orchestrate the activity of almost all cellular processes.

Kinases inhibitors – tyrosinekinase inhibitors

Imatinib

- chronic myelogenous leukaemia
- oral administration

Erlotinib

- oral administration
- advanced or metastatic lung carcinoma

Dasatinib

- chronic myelogenous leukaemia
- oral administration

$$H_3C$$
 N
 O
 CH_3

$$\begin{array}{c|c} CH_3 \\ O\\ CI \end{array} \begin{array}{c} S\\ NH\\ N\\ CH_3 \end{array} \begin{array}{c} OH\\ N\\ CH_3 \end{array}$$

Kinases inhibitors – tyrosinekinase inhibitors

Sorafenib

- multiple-kinases inhibitor
- advanced kidney carcinoma
- liver carcinoma

Sunitinib

- inoperable gastric tumours
- advanced kidneys carcinoma

– Ibrutinib

- Lymphoma
- Chronic lymphocytic leukaemia

Proteasome inhibitors

Bortezomib

- proteasomes eliminate singaling and regulating proteins
- cancer cells are more sensitive to proteasome inhibition
- therapy of advanced multiple myeloma

– Ixazomib

 multiple myeloma (bone marrow cancer), in combination chemotherapy with lenalidomide and dexamethasone

Histonedeacetylase inhibitors

- DNA is surrouded by histones and creates nucleosomes
 - protection of DNA
- Histones are basic proteins
- Acetylation and deacetylation regulate accessibility of DNA for some enzymes
- Inhibitors of histone deacetylase are used for treatment of haematological cancers
- Vorinostat

Hormone-based drugs – estrogens, antiestrogens

Estramustin-phosphate

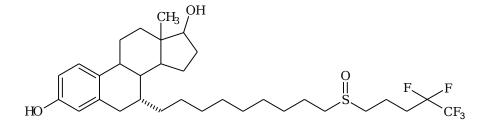
- alkylation mechnism
- main mechanism is hormonal
- therapy of prostate carcinoma

Tamoxifene

- antiestrogen
- parcial agonistic activity
- estrogen-dependent breast carcinoma

Toremifene

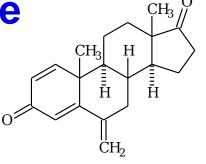
very similar indications as tamoxifene


Fulvestrant

- inactivator of estrogen receptors strong bonding resulted in receptor destruction
- high lipophilicity

 CH_3

ÒН


$$\begin{array}{c} O \longrightarrow CH_3 \\ \\ CH_3 \\ \\ tamoxifen \end{array}$$

Hormone-based drugs – aromatase inhibitors

- Inhibition of estrogen synthesis
- Exemestane
 - p.o. administration
 - advanced breast carcinoma in post-menopausal patients
- Letrozol
 - good oral availability (lipophilic)
 - first-line therapy of advanced breast carcinoma
- Anastrozol
 - similar therapeutic profile as letrozol

Hormone-based drugs – gestagenes

- Mechanism of antineoplastic activity is stil not clear
- Medroxyprogesterone-acetate
- Megestrol-acetate
 - metastasis of breast carcinoma
 - advanced endometric carcinoma

Hormone-based drugs – antiandrogens

Therapy of hormone-dependent prostate carcinoma

- Cyproterone-acetate
 - competitive antagonist
- Flutamide
 - advanced prostate carcinoma
 - p.o. administration
- Bicalutamide
 - higher afinity to androgen receptors than flutamide
 - longer half-time

 CH_3

Retinoids

- Mostly used in dermatology
- Bexarotene
 - advanced skin lymphoma
 - orally available

Bisphosphonates

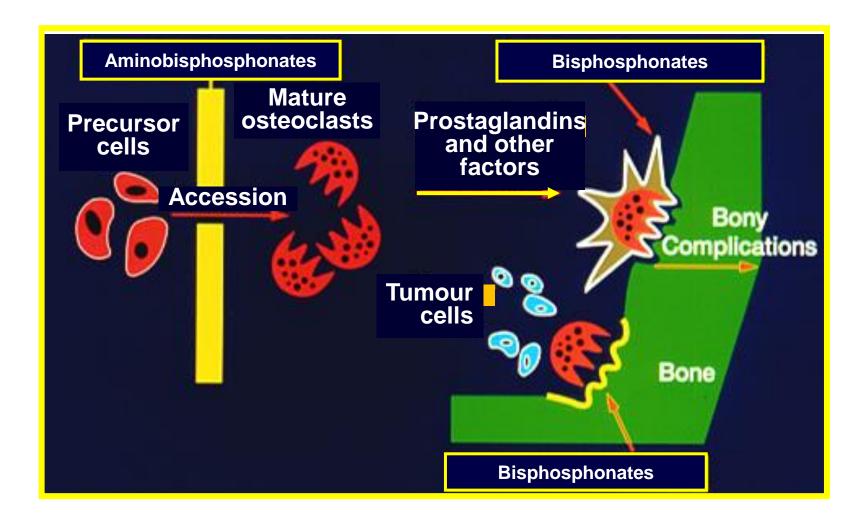
Therapy of bone metastasis

- Typical for breast, prostate and lung cancer
- Prevention of bone breakdown

– Mechanism of action

- Inhibition of osteoclast activity
- Induction of osteoklast apoptosis

Ibandronic acid


- Oral administration daily
- i. v. bolus every 3 months

Zoledronic acid

Intravenous administration every 4 weeks

Bisphosphonates

Monoclonal antibodies

- Antibodies against specific antigenes, exprimed on surface of cancer cells
- INN names suffix –mab
 - Umab prepared on human cells
 - Omab prepared on mice cells
 - Amab prepared on rat cells
 - Emab prepared on hamster cells
 - Imab prepared on primates cells
 - Zumab humanized monoclonal antibody
- Bevacizumab colon carcinoma (angiogenesis)
- Rituximab breast carcinoma
- Cetuximab colon carcinoma
- Trastuzumab metastatic breast carcinoma

