MUNI PHARM

1. Isolation and purification of nucleic acids

The basic step for further work with DNA and RNA

Doc. RNDr. Jan Hošek, Ph.D. hosek@mail.muni.cz

Department of Molecular Pharmacy FaF MU

Useful links

BioTechniques

- The International journal of Life Science Methods
- <u>http://www.biotechniques.com/</u>
- Reseach Gate
 - http://www.researchgate.net/
- o BitesizeBio
 - Brainfood for biolologists
 - <u>http://bitesizebio.com/</u>
- Journal of Visualized Experiments (JoVE)
 - http://www.jove.com/

The Aim of NA isolation and purification

Is to obtain the NAs in native state from a natural material in a sufficient amount and quality for further analysis

HAKM

NAs isolation general steps

Lysis of cells and tissues releasing the internal contents of cells

several methods

PHARM

Lysis of cells and tissues

releasing internal contents of the cells

Detergents

MUNI PHARM

7

After the cell lysis

Complex mixture

DNA, RNA, lipids, proteins,

saccharides, carbohydrates and other low-molecular compounds

Next steps:

separate DNA and/or RNA from the other components

Extraction

Extraction is a purification and separation process, in which one substance passes from the mixture of compounds in liquid or solid phase to another liquid phase, i.e. solvent.

Extraction is suitable for isolation of temperature sensitive substances because it can be carried out at room temperature or under cold conditions.

Extraction of the phenol - chloroform mixtures

Separation of proteins and NA based on

light water

protein denaturation at the interphase

heavier organic phases

General steps in phenol extraction

- 1) Disruption of cell membranes
- 2) Denaturation of proteins and lipids phenol, chlorophorm
- 3) Separation of individual phases by centrifugation – organic layer (phenol), interphase (proteins and rest of the cells), water (NA)

PHARM

11

Principle of phenol extraction

http://bitesizebio.com/

MUNI

PHARM

Phenol extraction modifications

Application of acid phenol

P. Zumbo, WEILL CORNELL MEDICAL COLLEGE

pH 7.0

pH 4.5

After extraction

Strongly diluted DNA, RNA

Traces of chloroform

Traces of phenol

Next steps:

Concentration and purification of NAs

Purification of NAs by precipitation

16

Precipitation is one of the basic methods for isolation and concentration of biological macromolecules

- A certain amount of the precipitating agent (ammonium sulphate, ethanol, acetone, etc.) is added to the solution containing the desired macromolecule. Macromolecules are precipitated without denaturation
- Later they can be dissolved again and used in their natural, biologically active state

http://www.vivo.colostate.edu

PHARM

General steps in the purification of ethanol

- 1) Adding ethanol or isopropanol
- 2) Adding monovalent ions (K⁺, Na⁺...)
- 3) Sample concentration by centrifugation (sample is cooled down to -70°C)
- 4) Sediment (NAs) washing by 70% ethanol
- 5) NAs solution in water

Solubility of DNA in water

General steps in the purification of ethanol adding of NaCI + C_2H_5OH

General steps in precipitation - FINISHING

Purification of NA by chromatography

Purification of NA by chromatography

Commercial chromatography columns for NAs isolation - spin columns

Commercial chromatography columns for NAs isolation - spin columns

PHARM

24

How DNA is bound on membrane

en.wikipedia.org

MUNI

PHARM

Commercial chromatography columns for NAs isolation - example

Ş

Ş

ļ

MUNI Pharm

DNA isolation by magnetic beads

- DNA is bound on the surface of magnetic beads
- The surface of beads is coated by:
 - Ion-exchange polymer, e.g. Diethylaminoethyl (DEAE)
 - Silica

http://www.diagenode.com/

PHARM

http://www.fsijournal.org/

Magnetic beads - protocol

MUNI Pharm

http://blog.labplanet.com/

Plasmid isolation by alkaline denaturation

One of the method for separation of plasmid molecules from the chromosomal DNA in bacterial cells extracts

It uses different sensitivity of DNA strands for denaturation in high alkaline pH solutions according to conformation of the strands and their state

For plasmid isolation can also be used the commercial "spin column" processes

Plasmid isolation by alkaline denaturation the principle of the method

Characterisation of isolated DNA

Characterisation of NAs by spectrophotometry

Characterization of NAs by spectrophotometry

Characterization of NAs by spectrophotometry

PHARM

35

Optical density corresponds to concentration

Low concentration of DNA

High concentration of DNA

Purity of DNA

39

Purity of DNA

PHARM

Congratulation, you have just learnt one of the most important steps in the molecular biology

Isolation of nucleic acids

MUNI Pharm