From cell to higher structures I

Assoc. Prof. RNDr. Milan Bartoš, Ph.D

Biology, 2024

Content of the present lecture 1) Basic concept 2) Adhesion molecules A) Integrins **B)** Kadherins **C)** Catenins **D)** Other adhesion molecules 3) Intercellular junctions **A)** Anchoring junctions **B) Occluding junctions C)** Channel-forming junctions **D) Signal-relaying junctions**

Of all the social interactions between cells in a multicellular organism, the most fundamental are those that hold the cells together

- Cells may cling to one another through direct cellcell junctions or
- They may be bound together by extracellular materials that they secrete (cell-matrix junction), but
- They must cohere if they are to form an organized multicellular structure

Equally important for the tissues are blood vessels, nerves, and other specialized cells (macrophages,...) that allow cells <u>to coordinate</u> with each other, <u>maintain</u> cells and <u>replace</u> them with new cells of the same type

The organization of cells in animal tissues and in the tissues of plants differs because of their different ways of life

The strength of plant tissues is determined by the cell walls of individual cells

The cell wall \rightarrow is the type of extracellular matrix, because of it is produced by the cell

The cell wall can vary according to the type of cell it surrounds (thin, waxy, wooden,...)

The organization of cells in animal tissues and in the tissues of plants differs because of their different ways of life

Animal tissues are also composed of cells and extracellular matrix

In connective tissues (bones, tendons,...) the extracellular matrix bears the main load

In other types of tissues (mainly epithelial), the mechanical support is mainly the cytoskeleton of the cell - the interconnectedness of the cells and therefore the interconnectedness of the cytoskeleton is important

The structure of animal tissues is much more diverse than that of plant tissues

Plant versus animal tissues

In plants, the extracellular matrix is all-important; plant tissues owe their strength to the cell walls that surround each cell

In animals, both architectural strategies are used, but to different extents in different tissues

Functions of the cell junctions

The junctions between cells create pathways for communication, allowing the cells to exchange the signals that

- coordinate their behaviour and
- regulate their pattern of gene expression

The cell attachments

Attachments to other cells and to extracellular matrix <u>control the orientation of</u> each cell's internal structure

> The making and breaking of the attachments and the modelling of the matrix <u>govern the way cells move</u> within the organism, guiding them as the body grows, develops, and repairs itself

Junction apparatus

The apparatus of cell junctions, cell adhesion mechanism, and extracellular matrix is critical for every aspect of the organization, function, and dynamics of multicellular structures

Defects in this apparatus underlie an enormous variety of diseases

Large multicellular organisms

They all consist of small objects with flimsy plasma membrane and form massive, strong and stable structures

How is this possible ?

The two strategies which depend on

 The strength of the <u>extracellular matrix</u>
 The strength of the <u>cytoskeleton</u> inside the cell and on cell-cell adhesion that tie the cytoskeleton of neighbouring cells together

Two main ways for animal cells

In connective tissue

The main-stress-bearing component is the extracellular matrix

Two main ways for animal cells

In epithelial tissue

It is the cytoskeletons of the cells themselves, linked from cell to cell by anchoring junctions

Four main junctions

- 1) Anchoring junctions
- 2) Occluding junctions
- 3) Channel-forming junctions
- 4) Signal-relaying junctions

Anchoring junction

- Include both cell-cell adhesions and cellmatrix adhesion
- Transmit stresses, and are tethered to cytoskeletal filaments inside the cell
 - The cell to cell link
 is performed by
 transmembrane
 <u>cadherin</u> proteins
- Cell to matrix via transmembrane <u>integrin</u> proteins

Occluding junction

Seal the gaps between cells in epithelia so as to make the cell sheet into an impermeable (or selectively permeable) barrier

Involve <u>claudin</u> proteins

Channel-forming junction

CHANNEL-FORMING JUNCTIONS

- Create passageways
 linking the cytoplasms of
 adjacent cells
- Composed of <u>connexin</u> or <u>innexin</u> proteins

Signal-relaying junctions

SIGNAL-RELAYING JUNCTIONS

Allow signals to be relayed from cell to cell across their plasma membranes at sites of cell-to-cell contact

 Complex structures typically involving anchorage proteins alongside proteins mediating signal transduction

Functional classification

ANCHORING JUNCTIONS

Actin filament attachment sites

- 1. cell-cell junctions (adherens junctions)
- 2. cell-matrix junctions (actin-linked cell-matrix adhesions)

Intermediate filament attachment sites

- 1. cell-cell junctions (desmosomes)
- 2. cell-matrix junctions (hemidesmosomes)

OCCLUDING JUNCTIONS

- 1. tight junctions (in vertebrates)
- 2. septate junctions (in invertebrates)

CHANNEL-FORMING JUNCTIONS

- 1. gap junctions (in animals)
- 2. plasmodesmata (in plants)

SIGNAL-RELAYING JUNCTIONS

- 1. chemical synapses (in the nervous system)
- 2. immunological synapses (in the immune system)
- 3. transmembrane ligand-receptor cell-cell signaling contacts (Delta-Notch, ephrin-Eph, etc.). Anchoring, occluding, and channel-forming junctions can all have signaling functions in addition to their structural roles

Various cell junctions in vertebrate

- The tight junction occupies the most apical position
- Adherens junction follows
- Then a special parallel row of desmosomes continues

Anchoring junctions

Transmembrane adhesion proteins

- Play the central role at each of the four types of anchoring junctions
- External linkage may be either to parts of other ceiis (cell-cell anchorage) mediated by <u>cadherins</u>
 - Or to extracellular matrix (cell-matrix anchorage) mediated by <u>integrins</u>

The internal linkage to the cytoskeleton is generally indirect, via intracellular anchor proteins

Anchoring junctions

JUNCTION	TRANSMEMBRANE ADHESION PROTEIN	EXTRACELLULAR LIGAND	INTRACELLULAR CYTOSKELETAL ATTACHMENT	INTRACELLULAR ANCHOR PROTEINS	
Cell-Cell					
adherens junction desmosome	cadherin (classical cadherin) cadherin (desmoglein,	cadherin in neighboring cell desmoglein and	actin filaments intermediate	α-catenin, β-catenin, plakoglobin (γ-catenin), p120-catenin, vinculin, α-actinin plakoglobin (γ-catenin),	
	desmocollin)	desmocollin in neighboring cell	filaments	plakophilin, desmoplakin	
Cell-Matrix					
actin-linked cell- matrix adhesion	integrin	extracellular matrix proteins	actin filaments	talin, vinculin, α-actinin, filamin, paxillin, focal adhesion kinase (FAK)	
hemidesmosome	integrin α6β4, type XVII collagen (BP180)	extracellular matrix proteins	intermediate filaments	plectin, dystonin (BP230)	

Cytoskeleton-linked transmembrane molecules fall nearly into two superfamilies corresponding to the two basic kinds of external attachments – cadherin and integrin superfamily

Cadherins

Cadherins are present in all multicellular animals and *choanoflagellates*, representatives of the group of protists from which all animals evolved

- Other eukaryotes, including fungi and plants, lack cadherins, and they are absent from bacteria and archae also
- Cadherins therefore seem to be part of the essence of what it is to be an animal

Cadherins mediate Ca²⁺ dependent cell-cell adhesion

Cadherins take their name from their dependence on Ca²⁺ ions: removing Ca²⁺ from the extracellular medium causes adhesions mediated by cadherins to come adrift

Embryonic tissues in culture disintegrate when treated with anti-cadherin antibodies

Some cadherins

NAME	MAIN LOCATION	JUNCTION ASSOCIATION	PHENOTYPE WHEN INACTIVATED IN MICE			
Classical cadherins						
E-cadherin	many epithelia	adherens junctions	death at blastocyst stage; embryos fail to undergo compaction			
N-cadherin	neurons, heart, skeletal muscle, lens, and fibroblasts	adherens junctions and chemical synapses	embryos die from heart defects			
P-cadherin	placenta, epidermis, breast epithelium	adherens junctions	abnormal mammary gland development			
VE-cadherin	endothelial cells	adherens junctions	abnormal vascular development (apoptosis of endothelial cells)			
Nonclassical cadherins						
Desmocollin Desmoglein	skin skin	desmosomes desmosomes	blistering of skin blistering skin disease due to loss of keratinocyte cell–cell adhesion			
T-cadherin	neurons, muscle, heart	none	unknown			
Cadherin 23	inner ear, other epithelia	links between stereocilia in sensory hair cells	deafness			
Fat (in <i>Drosophila</i>)	epithelia and central nervous system	signal-relaying junction (planar cell polarity)	enlarged imaginal discs and tumors; disrupted planar cell polarity			
Fat1 (in mammals)	various epithelia and central nervous system	slit diaphragm in kidney glomerulus and other cell junctions	loss of slit diaphragm; malformation of forebrain and eye			
α, β, and γ- Protocadherins	neurons	chemical synapses and nonsynaptic membranes	neuronal degeneration			
Flamingo	sensory and some other epithelia	cell–cell junctions	disrupted planar cell polarity; neural tube defects			

Compaction of an early embryo

- The cells of the early embryo at first stick together only weakly
- At about the eight-cell stage, they begin to express Ecadherin and as a result becomes strongly and closely adherent to one another
- > The outer surface of the embryo becomes smoother

The cadherin superfamily

All cells seem to express one or more proteins of the cadherin family according to the cell type

- All have extracellular portion containing multiple copies of the cadherin domain motif
- Their intracellular portions are more varied

Homophilic adhesion

Cadherins form specific homophilic attachments

C-cadherin shown here illustrating how two such molecules on opposite cells are thought to bind homophilically, end-toend

Selective cell-cell adhesion

Homophilic attachments mediate highly <u>selective</u> <u>recognition</u>, enabling cell of a similar type to stick together and to stay segregated from other types of cells

Cells from different parts of an early embryo will sort out according to their origin

Tissue forming in embryo

Some cells that are initially part of the epithelial neural tube alter their adhesive properties and disengage ...

... from the epithelium to form the neural crest

... the cells then migrate away and form a variety of cell types and tissues

Cadherin expression

Steps in embryonic development correlate with appearance and disappearance of specific cadherins

As the neural tube forms and pinches off from the overlying ectoderm, neural tube cells lose E-cadherin and acquire other cadherins, including N-cadherin

Then the neural crest cells migrate away another cadherin (cadherin 7) appears helps hold the migrating cells together and aggregate to ganglion

Sorting out

If cells expressing different cadherins are mixed together, they sort out and aggregate separately

- > different cadherins
 preferentially bind to their
 own type
- cells expressing E-cadherin sort out from cells expressing N-cadherin
- cells expressing high levels of E-cadherin sort out from cells expressing low levels

! QUALITATIVE and QUANTITATIVE expression !

Catenins link cadherins ...

... to the actin cytoskeleton

 several different proteins are included to form anchor
 general parts is β-catenin

Types of junctions

Adherent junction

Essential part for modelling shape of multicellular structures

Desmosome junction

Similar to adherent junctions, but link to intermediate filaments instead of actin

Adhesion belt

Prototypal example of adherent junctions

- Adhesion belt encircles each of the interacting cells
- Its most obvious feature is a contractile bundle of actin filaments running along the cytoplasmic surface of membrane
- Cadherins span the plasma membrane

Cadherins extracellular domains bind to cadherins on the adjacent cell, adjacent cells are tied together

Other cell-cell adhesion proteins

Integrins

For binding most extracellular matrix proteins

Selectins

Cell surface carbohydrate binding proteins (lectins) that mediate adhesion interactions in bloodstream

Immunoglobulins

Mediate Ca²⁺ independent cell-cell adhesion

Desmosomes and hemidesmosomes

General structure of desmosome

- On the cytoplasmic surface of each interacting plasma membrane is a dense plaque composed of a mixture of intracellular anchor proteins
- A bundle of keratin intermediate filaments is attached to the surface of each plaque
- Transmembrane adhesion proteins (cadherins) bind to the plaques and interact through their extracellular domains to hold the adjacent membranes altogether

Hemidesmosomes

- The connection between the cell and the extracellular matrix
- Bind to the basement membrane
- Integrin-mediated junctions
- They look like half of a desmosome

Where even hemidesmosomes are no longer enough!

Why do people get blisters?

This is a reminder that it is not enough for epithelial cells to be connected to each other, but they must also be connected to the underlying tissues

Tight junctions and the organization of epithelia

Introduction

More than 60% of the cell types in vertebrate body are epithelial

- Essentially all epithelia are anchored to other tissue on one side – the basal side, and
- Free of such attachments on their opposite side the apical side

A basal lamina lies at the interface with the underlying tissue, mediating the attachment, while the apical surface of the epithelium is generally bathed by extracellular fluid

! Epithelia are structurally polarized !

Occluding junctions

They form a seal between cells and a fence between membrane domains

Transport proteins are confined to different regions of the plasma membrane in epithelial cell of the small intestine

This segregation permits a vectorial transfer of nutrients across the epithelium from the gut lumen to the blood

Occluding junction in vertebrate

= Tight junctions

Epithelia serve as selective permeability barriers, separating the fluid that permeates the tissue from their basal side from fluid with a different chemical composition on their apical side

- This barrier function requires that the adjacent cells be sealed together by tight junctions
- So that molecules cannot leak freely across the cell sheet

Tight junctions in transcellular transport

Glc is actively transported into cell by Na⁺ driven glc symport at its apical surface

Glc diffuses out of the cell by facilitated diffusion mediated by glucose carriers in its basolateral membrane

Tight junctions in transcellular transport

Tight junctions are thought to confine transport proteins to their appropriate membrane domains by acting as diffusion barriers within the lipid bilayer of the plasma membrane

These junctions also block the backflow of glucose from the basal side of the epithelium into the gut lumen

Gap junctions and plasmodesmata - passageways from cell to cell

Types of passageways

Gap junctions in animalsPlasmodesmata in plants

Quite different formsSimilar function

Channel-forming junctions

They bridge gaps between adjacent cells so as to create direct passageways from the cytoplasm of one into that of the other

The connections allow neighbouring cells to exchange small molecules but no macromolecules

gap-junction (in animals)
 plasmodesmata (only type of inter-cell in plant)

This junction enables communications between cells **Junctions are performer by conexin and inexin**

Gap junctions (animals)

Plasma membranes of two adjacent cells connected by gap junctions

- Each lipid bilayer is shown as a pair of red sheets
- Protein assemblies called connexons, each is formed by six connexin subunits

 Connexin subunits penetrate the opposed lipid bilayer
 Two connexons join across the intracellular gap to form a continuous aqueous channel connecting the two cells

Gap junctions in electron microscope

Functions of gap junctions

Spreading action potential in tissues containing electrically excitable cells

- Synchronization the contracting of heart muscle cells as well as smooth muscle cells responsible for the peristaltic movements of the intestine
- In liver to coordinate the response of the liver cells to signals from nerve terminals that contact only a part of the cell population
- Normal development of ovarian follicles also depends on gap junction between the oocyte and the surrounding granulosa cells

Plasmodesmata (plant)

Pierce the plant cell wall and connect all cells in a plant together Each plasmodesma is lined with plasma membrane that is common to two connected cells

It usually also contains a fine tubular structure, the desmotubule, derived from smooth ER

Plasmodesma in electron microscope

The basal lamina

Tissues are not made up solely of cells

- A part of the tissue volume is formed by <u>extracellular</u> <u>space</u>
- Extracellular space is occupied by an intricate network of macromolecules constituting the <u>extracellular matrix</u>
- This matrix is composed of various proteins and polysaccharides

Basal lamina

Extracellular matrix in our bodies

- Thin, though, flexible sheet of matrix molecules which is essential underpinning of all epithelia
- Small as it is in volume, it has a critical role in the architecture of the body

Like the cadherins it seems to be one of the defining features common to all multicellular animals

Basal lamina

Cornea of a chicken embryo

Organization of basal lamina

Surround certain cells

Underlie epithelia

Are interposed between two cell sheets

Shapes and sizes of matrix macromolecules

Proteins are shown in green Glycosaminoglycan is red

Laminin

The primary organizer of the sheet structure

Large, flexible protein composed of three very long polypeptide chains (α , β , and γ) held together by disulfide bonds

EM of laminin molecules

Shadowed by platinum

Model of the molecular structure

The basal lamina is formed by specific interactions between the proteins - laminin, type IV collagen, and nidogen, and the proteoglycan perlecan

Basal lamina functions

- 1) Molecular filter (unusually thick basal lamina in the kidney glomerulus)
- 2) A selective barrier to the movement of cells
- 3) Beneath an epithelium, for example usually prevents fibroblast in the underlying connective tissue from making contact with the epithelial cells
- 4) Tissue regeneration after injury muscles, nerves, and epithelia

Integrins

Proteins that function as matrix receptors on animal cells

- Head of the integrin molecule attaches directly to extracellular protein such as fibronectin
- Intracellular tail of the integrin binds to talin, which in turn binds to filamentous actin

A set of other intracellular anchor proteins, α-actinin, filamin, and vinculin, help to reinforce the linkage