OHALO II

Location: Sea of Galilee/Tiberias -212 m below sea level

Early Epipaleolithic = Kebaran

14C dates ca. 23,000 cal. BP Excavated by Dani Nadel (1989-1990)

Extraordinary organic preservation

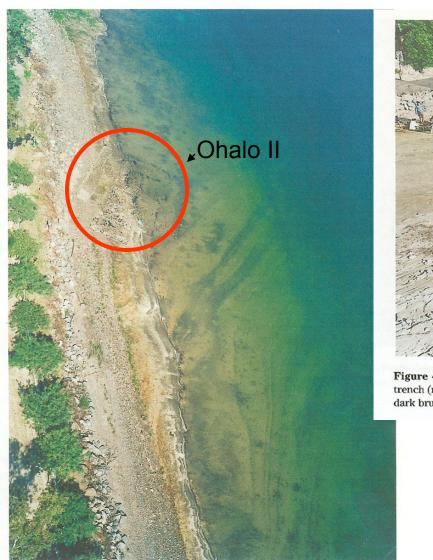
Brush huts

Plant remains and wood

Skeleton

Dani Nadel, Barcelona 2012

Israeli women last week in the Sea of Galilee, whose water level has dropped almost 20 feet since 1998. Behind them is a pole for tying up boats.


Tiberias Journal

Israel Waits for Sea of Galilee's Low Tide to Turn

By SERGE SCHMEMANN

lake. It is Israel's only sizable body

those turned out to be less severe

Figure 3. Air photograph of the Ohalo II area. Dark NNE trending bands under the water at the site area manifest depressed areas formed by folded tint colored sediment. The dark color of the bands was produced due to filling of the depressed areas by basaltic pebbles of the Sea of the Galilee shore. To the east of the site, traces of the fault that formed an underwater scarp parallel to the shore are seen. The prehistoric site is covered by plastic sheets and stones (rectangle in center of photo) for protection.

Figure 4b. A close-up view of the tilted strata to the east of the Ohalo II site (looking northwest). A trench (no. 79) through the archaeological layers is seen in the center, and the burnt remains of a round dark brush hut are seen to the left.

Photos from Belitzky and Nadel *Geoarchaeology* 17/5/453-464 (2002)

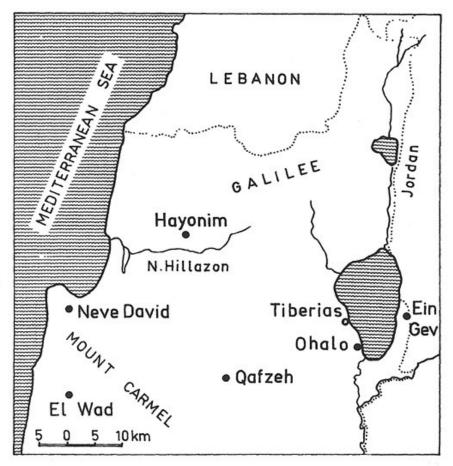


Fig. 1. Major Upper Palaeolithic and Kebaran sites with human remains in northern Israel.

TABLE I Radiocarbon Dates for Charcoal Samples from Ohalo II

Sample	Prov	renance	Date B.P.		
Pta-5375	C88b	212.16-18	19,400 ± 220		
Pta-5386	D89a	212.06-14	19,600 ± 400		
Pta-5387	C85a	212.15-19	20,100 ± 440		
OxA-2564	AB87a	212.12	18,680 ± 180		
OxA-2565	C87d	212.20-25	19,310 ± 190		
OxA-2566	C87d	212.25-30	19,110 ± 390		
RT-1244	C89a	212.15-20	18,360 ± 230		
RT-1246	AB87	surface	15,550 ± 130		
RT-1248	B85c	212.15-16	19,800 ± 360		
RT-1250	B89b	212.15-20	19,250 ± 460		
RT-1251	B85b	212.12-14	19,000 ± 190		
RT-1252	B89b	212.13-15	18,900 ± 400		
RT-1297	E86b	212.38-43	17,500 ± 200		
RT-1342	B88d	212.10	19,500 ± 170		
RT-1343	C85c	212.10	18,600 ± 220		
RT-1358	AB87c	212.15	18,700 ± 180		

SOURCES: Kisley, Nadel, and Carmi n.d.; Carmi and D. Segal, personal communication, 1990; R. Housley, personal communication, 1990; J. Vogel, personal communication, 1990.

Nadel and Herskovitz 1991 (Current Anthropology)

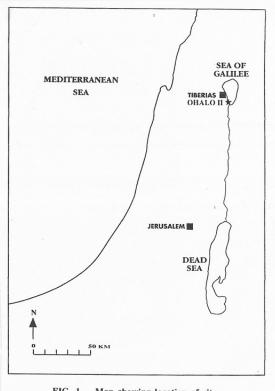


FIG. 1. - Map showing location of site.

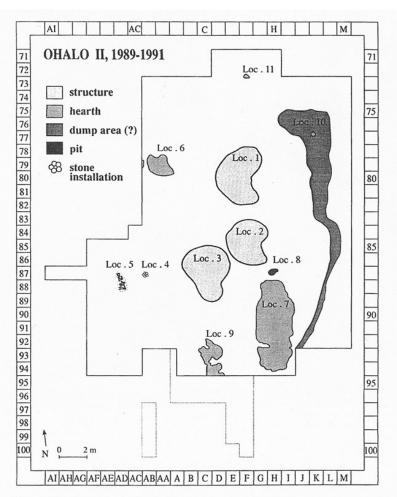
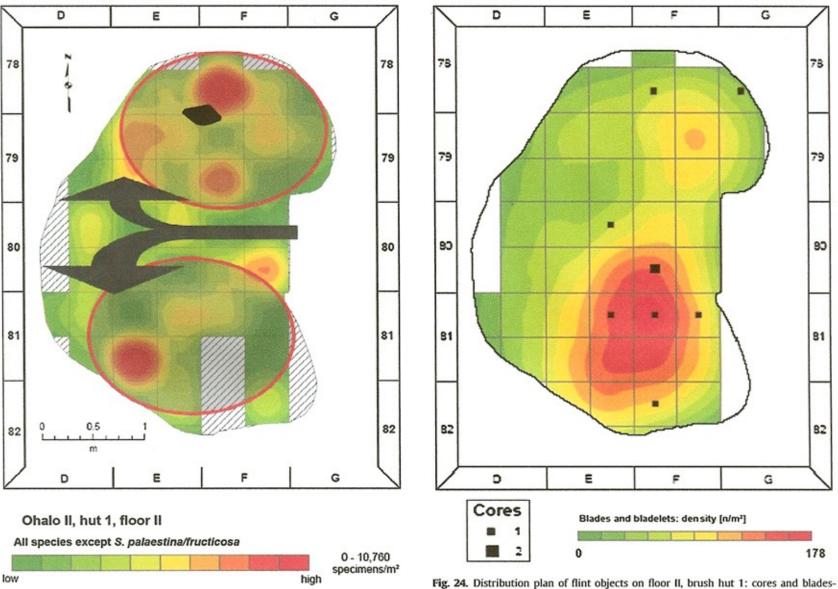
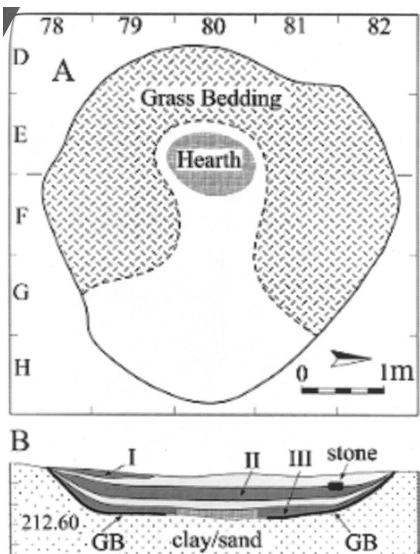


FIG. 2. – General plan of Ohalo II, central area. Loci 1-3: structures; locus 4: stone installation; locus 5: grave; loci 6, 7, 9, 11: hearths; locus 8: pit; locus 10: dump zone. Dotted line marks area of surface collection (after NADEL et al. in press).

Locus 1 is the brush hut

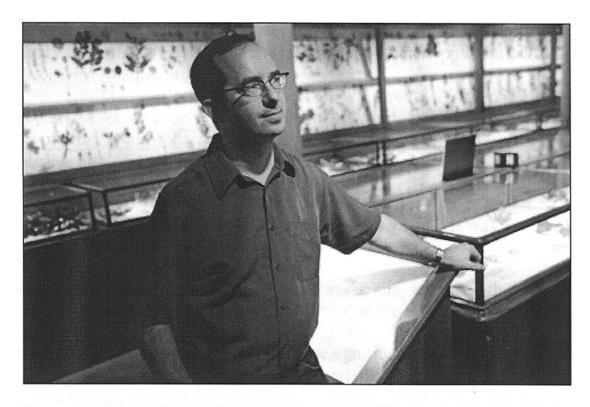

Fig. 23. Suggested use of space on floor II, as inferred from distributions of plant remains.

Fig. 24. Distribution plan of flint objects on floor II, brush hut 1: cores and bladesbladelets. Presented as densities calculated for 0.5×0.5 excavation units (Nadel et al., 2006).

Fig. 25. A reconstruction of brush hut 1 showing the location of two activity areas on the floor: flint knapping on the left and seed processing on the right. Drawing by Rachel Brown-Goodman (Nadel et al., 2006).

Harvard Postdoctoral Fellow in Anthropology Ehud Weiss says that plant remains from an ancient site will lead to changes in the understanding of agriculture's roots.

Grass seeds were principal food, along with acorns, almonds, pistachios, olives, raspberries, figs and grapes. Some wild wheat and barley.

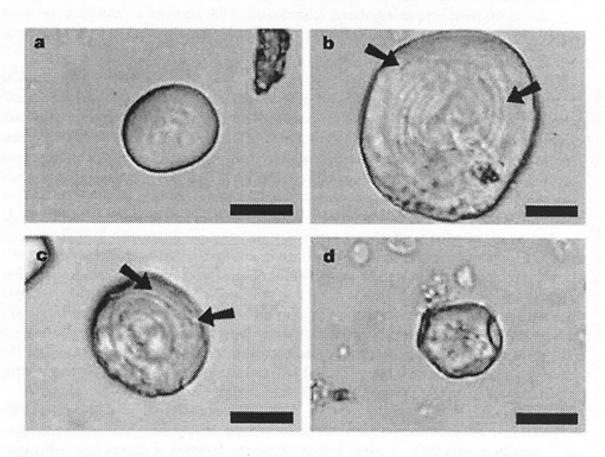
Small grass seeds require much labor to harvest and process – low return on labor.

"The first proof that the broad spectrum hypothesis applies to plants as well as to animals," according to Wilma Wetterstrom.

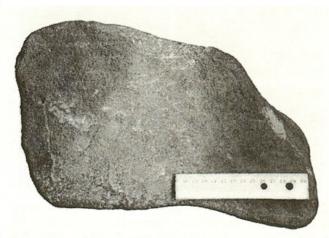
Charred edible plant remains from Ohalo II -

Plant name	Plant organ	Quantity ¹		
		a	b	
Grasses with edible grains				
Aegilops geniculataperegrina	grain	110	12	
Avena barbata Pott ex Link	grain		4	
Avena sterilis L.	grain	8		
Bromus sp.	grain	1	4	
Catabrosa aquatica (L.) Beauvois	grain	1	65	
Hordeum bulbosum L.	grain	10	12	
Hordeum glaucum Steudel	grain	6	20	
Hordeum spontaneum C. Koch	grain	588	41	
Hordeum spontaneum	rachis node		30	
Triticum dicoccoides				
(Koernicke) Aaronsohn	grain	20	1	
Triticum dicoccoides	spikelet base	1	8	
Unidentified grasses	grain	15	91	
Cincentinea Brasses	5.4111		-	
Edible wild fruits				
Amygdalus sp.	nutshell fragment	2		
Crataegus sp.	stone	12		
Nitraria schoberi L.	stone	153	13	
Olea europaea L.	stone fragment	1		
Pistacia atlantica Desfon-	nutshell fragment	ì		
cf. Pyrus syriaca Boissier	seed	1		
Quercus sp.	nut fragment	14	2	
Vitis vinifera L.	pip	2	-	
Ziziphus spina-christi	PP	-		
(L.) Desfontaines	stone fragment	2		
Other edible wild plants				
Atriplex sect. Rosea	fruit			
Chenopodiaceae	embryo	1		
Erodium sp.	seed			
Lens sp.	seed	1		
Malva sp.	seed			
Scirpus littoralis Schrader	nutlet			
Suaeda sp.	seed		21	
Vicieae	seed	1		
Other wild plants				
Arundo/Phragmites	culm fragment	1		
Chara spp.	nucule		80	
Galium sect. Kolgyda	fruit	2		
Hippocrepis sp.	seed	_		
Potamogeton sp.	fruitlet		1	
Potamogeton pectinatus L.	fruitlet	28	i	
Styrax officinalis L.	stone fragment			
Umbelliferae	fruit			
Unidentified	fruit/seed	34	5	

¹plant organs retrieved by: a = 2 mm- and b = 0.5 mm-mesh.


Plants Months:	I	П	III	IV	v	VI	VII	VIII	IX	X	ΧI	XII
Edible grasses												
Aegilops spp.				+	+ ;							
Avena sterilis				+	+							
Hordeum spontaneum				+	+							
Triticum dicoccoides				+	+							
Wild fruits												
Amygdalus				. ~				+	+			
Crataegus							1.1		+	+	+	
Oleu europaea										+	+	
Pistacia atlantica								+	+	+		
Quercus										+	+	
Vitis vinifera									+	+		
Ziziphus spina-christi			,	+				+	+	+	+	+

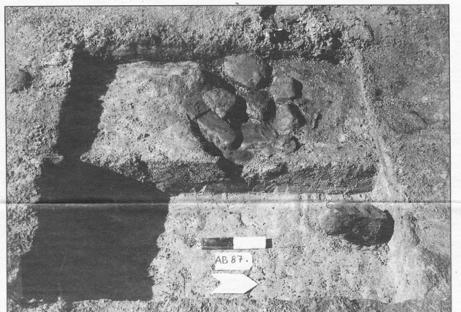
Kislev et al 1992 (*Review of Palaeobotany and Palynology*)


Baking Bread?

- Starch grains found on grinding stone in hut at Ohalo.
- Grains are of Hordeum (barley)
- Basalt stone supported on floor with pebbles
- Stone-paved, oven-like hearth
- Did they bake dough on hot stones?
- Baking increases nutritive value of grain

Starch Grains on Ohalo Stone

Figure 3 Starch grains recovered from the stone implement. **a**, Lenticular grain from the AHT taxa group. **b**, **c**, Lenticular grains with lamellae (right arrow in **b** and left arrow in **c**) from *Hordeum*. They also have surface depressions (other arrows) characteristic of the genus. **d**, Compound starch grain. Scale bars, $10 \, \mu m$.

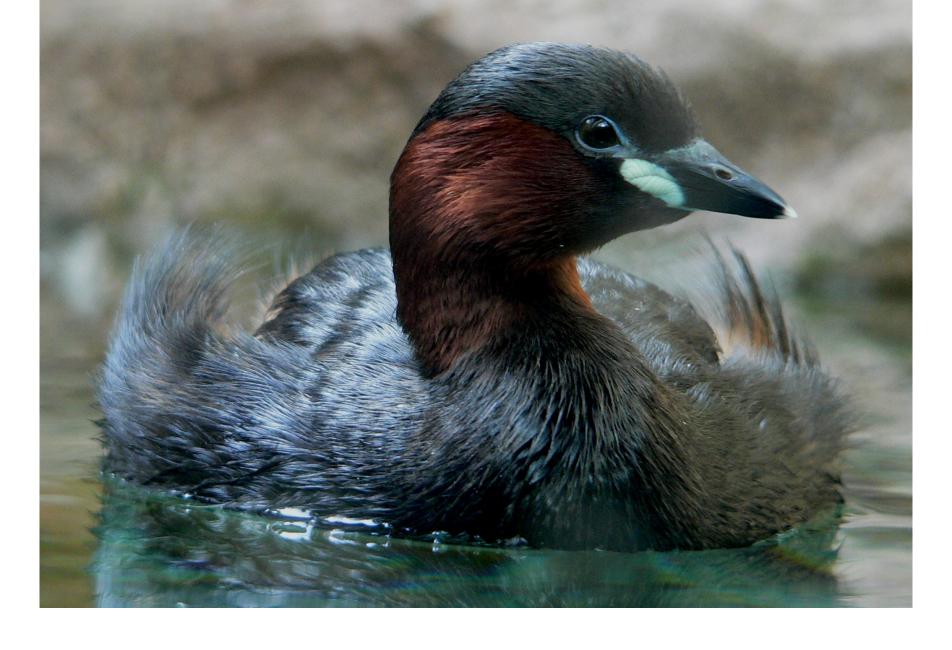

Piperno et al

Nature 2004

Figure 1 The stone implement analysed from Ohalo II.

New find in Israel shows that cereal production predates agricultural societies by millennia

Photos by Dani Nadel/Haifa University


Since no root or tuber starches were found embedded in the foot-long stone (top photo), it is believed that it was used for cereal. In the vicinity, a hearthlike oven was found (above).

Researchers find earliest known oven

Harvard Gazette 2004

Avian fauna

- Most birds are waterfowl
- Environment was lakeside/marshy
- Large birds ducks, geese, swans dominate
- 16 families, 40 genera, 68 species
- Grebes are the most abundant can be snared or netted in the water
- Autumn and spring harvesting predominate
- Most bones burned (roasted)

Tachybaptus ruficollis (little grebe)

Nesting Grounds of the Ohalo II Avifauna

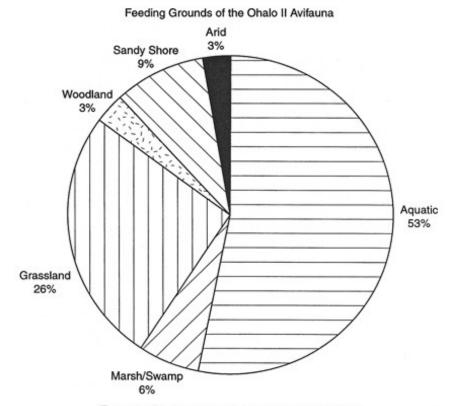


Figure 7. Feeding habitats of the Ohalo II avifauna.

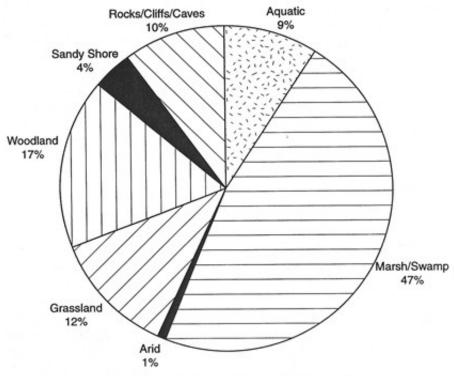
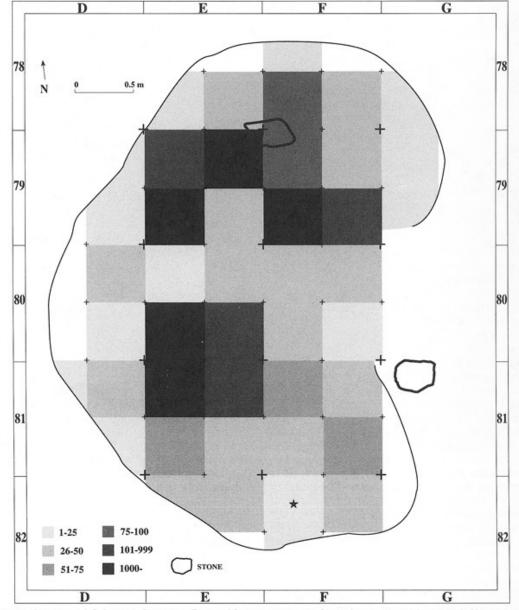



Figure 8. Nesting habitats of the Ohalo II avifauna.

Simmons and Nadel (1998) International Journal of Osteoarchaeology

Hunted Animals

- Lots of fish Lots of Cyprinidae
- Fish bones found in "piles" on floors
- Some fish were very small probably netted
- Gazella gazella most common
- Also Dama, Vulpes and Cervus elaphus

Density and
Distribution of fish
vertebrae on house
floor. May have
been kept in bags.

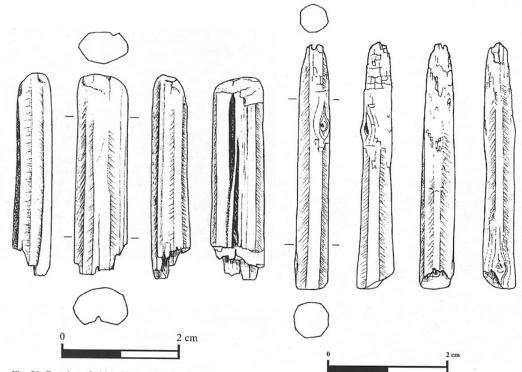
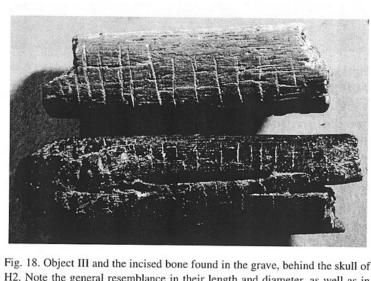
Nadel et al. Current Anthropology (1994)

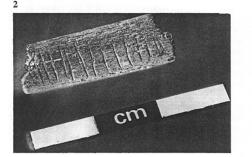
Fig 8. Distribution of fish vertebrae on floor of locus 1. Star, where fragments of twisted fibers were found.

Wooden objects

- No remains of hunting, gathering or fishing equipment such as bows, arrows, spears or hooks
- 8 wooden objects at Ohalo II.
- Pencil-shaped pieces with longitudinal shavings
- Incised bone object in grave

Wooden Objects


Fig. 21. Drawing of object V, showing four faces and sections.

H2. Note the general resemblance in their length and diameter, as well as in the length of incisions, their width, and the regular distances between them.

Fig. 19. Drawing of object IV, showing four faces.

Nadel et al, 2006 (Journal of Human **Evolution**)

Pl. II: 1. - Stone installation (locus 4): one layer of unworked stones discovered after clearing the recent sands. Scale is 20 cm. 2. - Incised worked bone fragment found near skull of H2. 3. - Details of one series of incisions.

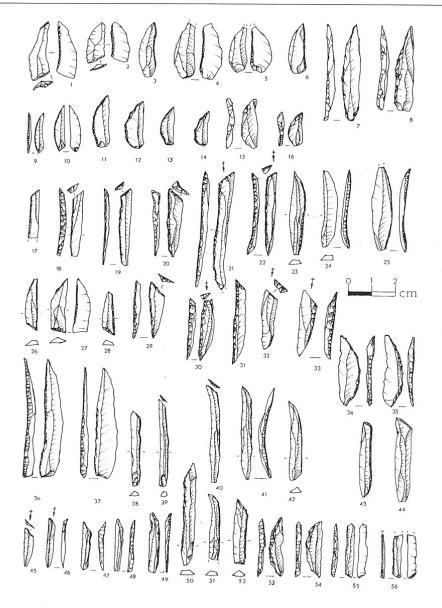
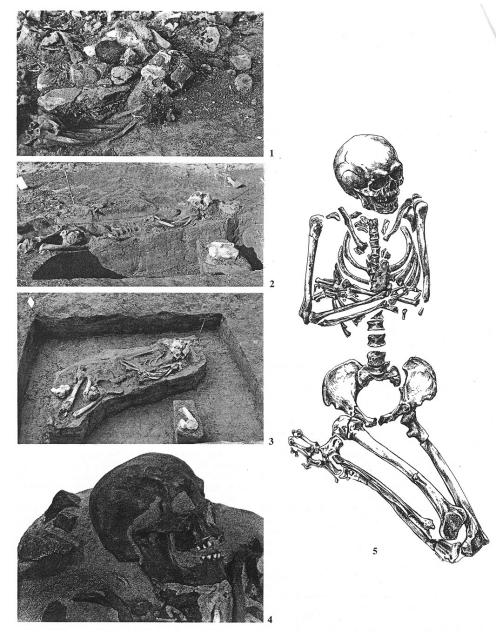
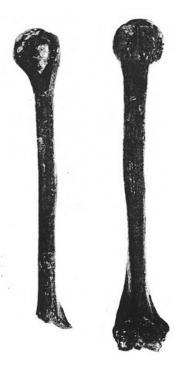




Figure 6 Microlithic forms of various Early Epipaleolithic 'Kebaran' industries: 1-2, Jiita II/2; 3-6, Kfar Darom 28; 7-8, Fazael IIIB; 9-10, Kfar Darom 26; 11-14, Kfar Darom 8; 15-16, Nahal Soreq 33Q; 17-18, 26-28, Hayonim Cb; 20-21, 29, Fazael VII; 21-22, 30-31, Jiial supeneur; 23-25, Poleg 18MII; 32-33, Givat HaEsev; 34-35, Azariq VI; 36-42, Ein Gev I; 43-44, Kharaneh IV/B; 45-49, Fazael IIIA; 50-52, Nahal Hadera V/upper; 53-56, Azariq I

Examples of Kebaran lithics from various sites

Pl. 1: 1. – Skull and ribs of H2 during excavation. 2. – Skeleton H2 and the section under it, looking west. Note the proximity to surface and the bottom half of the section that is brighter (Lisan bedrock). 3. – H2 skeleton before removal en bloc to the laboratory at the Tel-Aviv University (looking west). The displaced (freshly broken) knee was probably moved by a tractor working on the beach before recognition of the site. 4. – Three stones supporting the skull and pointing it to the east. Photo of the cast of H2, after reconstruction of the skull. 5. – Line drawing of H2 skeleton after cleaning in the laboratory.

Left and right humeri

Ohalo II Man

- Complete skeleton of man, mid-30s
- Same flexed burial position as Ein Gev female, the only other complete skeleton of the period
- Lower ribs have ossification and calcification due to chronic osteomylitus (infection as result of trauma)
- Scapula, clavicle and humerus on right side are massive and robust and show degenerative wear
- Right and left radius and ulna were "normal" size
- He suffered from two conditions: osteomylitus of the chest wall, and an adult onset of Erb-Duchenne brachial plexus palsy involving the upper left arm (Herhskovitz et al. *Journal of Osteoarchaeology* (1993).

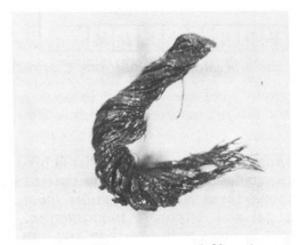


Fig. 4. Fragment of burnt twisted fiber (specimen 1) found on the floor of locus 1 (\times 50). This specimen is untreated.

Fig. 5. Scanning electron micrograph of fragment of burnt twisted fiber (specimen 2) found on the floor of locus $I \times 54$).

Fibers most likely came from species of Typha, Juncus, Cyperus, Scirpus, Sparganium and Phoenix dactylifera

Net bags, fishing or birding nets, and rope/string are likely products