11 Position Measures

The previous chapter presented measures of the movements of the eye. In this chapter, focus
is on measures of stillness of gaze in one or many positions. The position measures pertain
to where participants look, if they look at the same place, and to the properties, such as
duration of fixations and dwells at that position. We differentiate between five groups of
position measures.

Position measure group Uses Page

Basic position measures Where did the participant look? 357

Position dispersion measures How focused versus distributed is the 359
gaze data?

Position similarity measures How similar are the positions of two 370
groups of gaze data?

Position duration measures For how long did gaze stay in the 376
position?

Position dilation measures What is the pupil dilation at the pos- 391
ition?

We begin this chapter by spelling out the basic properties of position, that is, simply
where a participant looks in terms of raw data samples, fixations, and dwells. These basic
position measures report the very (x,y)- and area of interest (AOI)-values of data, and where
in a specific AOI the eye lands.

Next we go on to define measures which describe variability in basic position, that is,
measures of position dispersion. Position dispersion measures calculate how focused versus
distributed a collection of position data (which we will call &) are. Note that the many
dispersion measures are in fact not measures, but different mathematical definitions of the
vague concept of dispersion. The reason that we list these definitions as measures is that the
research community writes about them as measures, not as definitions. As a consequence, the
target question and use of the measures are close to identical, and the measure descriptions
are more mathematical, while less emphasis is placed on functional interpretations. Although
they all define dispersion, each such ‘measure’ behaves differently, as the comparison on page
359 demonstrates.

From dispersion, questions arise as to how comparable different position data are, and
therefore measures of position similarity come next. Position similarity measures compare
one collection & of positions—say the fixations of one group of people—and give a value
describing how similar the positions in &/ are to the positions in the collection 2. Again,
these measures are rather definitions which attempt to capture the vague concept of position
similarity. Also note that these measures only compare the similarity in position, not taking
sequence information into account. A particular statistical quirk with the similarity measures
is that they output one single value for the comparison.

In the next two sections of this chapter we consider the properties of position data. Mea-
sures of position duration focus on the temporal characteristics of eye movement events
at specific positions in space. Fixation duration and dwell time are the foundation for all
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the other position duration measures (with the exception of the inter-microsaccadic interval,
which we will come to).

Pupil dilation is another property of position data, giving the pupil size for the current
position of the eye. These properties of position data are very important because they can
reflect information processing with respect to the location a participant is looking.

As a whole, the position measures have very different units, from (x.y)-coordinates and
percentages of AOI widths, to whole attention maps, and in the case of the Kullback-Leibler
measure, a value without a unit. Consequently, statistical methods vary between the position
measures. Note that many of the ratio measures in this chapter have values that are restricted
by 0, 1, or by trial durations, and that this may give invalid outcomes from some statistical
tests, for instance if used as outcome variables in a regression analysis, or in some cases,
when performing ANOVAs on dwell times recorded with fixed trial durations.

There is much research on factors that makes us look at positions, which—if not taken into
account when designing an experiment—may turn up as confounds, but which can also be
actively manipulated in your experimental design. Therefore the final section of this chapter
summarizes potentially confounding factors which may influence position data in unwanted
or unanticipated ways (p. 394).

11.1 Basic position measures

The basic position measures address questions such as where a participant looks, and what
areas of interest (AQIs) are not looked at.

11.1.1 Position

Target question Where did the participant look?

Input representation Raw data, fixation data, or AOI-based data
Output The position (pixels) or an AOI name (symbol)

In eye-tracking data, position is given as Cartesian (x,y)-coordinates in a two (or three)-

dimensional space; this is either the stimulus for remote and tower-mounted eye-trackers,

or the scene video recording for head-mounted recordings. Typically, origo is located at the

top-left corner (p. 61-64).

After we have run the raw position data through fixation analysis and related this to our
AOIs, we are left with three types of data, each containing different position information:
Raw data samples These (x,y)-positions are the most reliable and detailed position data,

their quality endangered only by low precision, inaccuracy, latencies, and real-time
recording filters.

Fixations When transformed into events, the (x,y)-positions of the raw data samples are
replaced by an average (x,y)-position for samples belonging to the fixation. Fixation
position data are more commonly used than the raw data samples from which they are
deduced. Fixation positions are additionally subject to the peculiarities of filters, the
selected fixation detection algorithm and its settings.

Dwells The dwell event does not have (x,y)-positions. The value of a dwell position is its
AOI, so dwells have a whole area as their position value. When AOIs are large, record-
ing imprecision typically does not matter much, while inaccuracy can be problematic.
As a consequence, the variable type is categorical.
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When recording binocular data, position can be reported as (x,y,z) with z as a third dimen-
sion inferred from the relative distance between the eyes. Typically, z contains considerable
noise since it is derived from a subtraction of two already noisy measurements. Therefore, it
is used only rarely.

When recording data on gaze-overlaid scene videos, position is immediately visualized
by the gaze cursor.

Quantifying basic eye movement position can be interesting to researchers for many spe-
cific reasons, For instance, Land er al, (1999) classified fixation position into different func-
tions when participants completed the everyday task of making tea. Four categories could be
identified: locating—where in space are the objects needed to complete the task, the kettle for
instance; directing—ijust before contact the target direction must be relayed to the hand be-
fore the object is grasped; guiding—when several objects need to be manipulated in an action
sequence, supervisory fixations facilitate this process; and checking—verifying whether the
outcome is achieved or not, whether the kettle is full for instance. The researcher should keep
in mind, however, that looking at a position does not necessarily mean full understanding of
the information available there, as anyone who has tried to read a foreign language will know,
In a study of squash players, Abernethy (1990, p. 63) conclude the same: “Not finding any
differences between experts and novices provided further support for the conclusion that the
limiting factor in the perceptual performance of the novices is not an inappropriate search
strategy but rather an inability to make full use of the information available from fixated
display features”.

11.1.2 Landing position in AOI

Target question How far into an AOI A does the fixation land?

Input representation A fixation in the AOI A
Output Percentage of horizontal extension of A, or the letter position
(pixels) in the word in A

Landing position in AOI is mostly used in reading research. There, it not only assumes a
conventionalized AOI order (word order), but also that the reading direction is manifest inside
the AOIs. Landing position is typically reported as number of characters and sometimes also
as a percentage of the AOI size. Early studies in the 1970s and 80s showed that reader gaze
does not land randomly on words, at least not in single sentence reading. There are two
‘positions” in the words that have attracted the interest of reading researchers:

1. The optimal viewing position, located slightly to the left of the centre of the word. This
is the position that gives the shortest fixation durations and naming times, and therefore
presumably the most effortless lexical activation. Naming time increases on average
with 20 ms per character offset from the optimal viewing position. Also, the larger the
distance is between a reader’s landing position and the optimal viewing position, the
more likely he is to make a refixation on the word (McConkie, Kerr, Reddix, Zola, &
Jacobs, 1989).

- The preferred viewing location is the position in a word where most readers land. Its
average is located a bit further to the left from the optimal viewing position. McConkie,
Kerr, Reddix, and Zola (1988) showed that the preferred viewing location in a word
depends on the launching position in the previous word.

Vishwanath and Kowler (2004) used the measure outside of reading to investigate where
saccades land inside AOIs outlining objects. They showed that saccades land either near the
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centre of gravity in a three-dimensional (3D) object, or near the centre of gravity in its 2D
projection on the retina.

11.2 Position dispersion measures

Dispersion (‘variability’) refers to the extent to which data are spread out or scattered. Disper-
<ion measures appear in the literature in different contexts and under several different names.
For example, ‘saccadic extent’ is a measure of the extension of scanpaths in the vertical and
forizontal dimensions during a task. ‘Fixation density’ is probably the most common term
hen fixations are the events under investigation, although that term more often refers to the
counting measure number of fixations in an AOI (e.g. Henderson & Hollingworth, 1999).
When measuring the extent of raw data samples contributing to fixations, the term ‘fixation
dispersion’ is often used. ‘Distribution of gaze intensity’, ‘spread of search’ and ‘scanpath
=2’ are other common terms for the same variability.

Position dispersion could be seen as a single, somewhat vague measure with many oper-
<sional definitions. However, the very mathematics of these definitions were developed; they
were termed ‘measures’, and we adhere to this terminology.

The common denominator for all the dispersion measures presented in this section is that
“hev operate on one group of samples, either raw data samples or fixations, that do not take
e or order into account, i.e. all samples are either recorded at the same time, or collapsed
~er time. These samples can originate from different sources such as:

1. Raw data samples or fixations from one or many participants looking at a stimulus. In
this case, the dispersion in where people look derives from factors discussed previously
in the book such as task, viewer idiosyncrasies, and type of stimulus. Typical research
questions include how large the inter-participant fixation variability is, i.e. whether
viewers look at similar positions, and thus whether their fixations are constrained to a
limited part of the stimulus.

_ Raw data samples within a fixation from one or many participants looking at a stimulus.
The variation within a fixation depends on factors such as the precision of the eye-
tracker, the fixation stability of the viewer and, of course, which algorithm was used to
define the fixation. Intra-fixational dispersion is used, for example, for clinical purposes
to detect differences in fixation stability across different patient groups. Unlike data
from the first type of source, data samples within a fixation are less prone to outliers,
which have been removed during fixation detection.

11.2.1 Comparison of dispersion measures

Examples of three hypothetical spatial distributions of eye-tracking data are shown in Figure
11.1. In Figure 11.1(a), all the data samples are located very close to each other, and the
Sispersion is hence low. The opposite situation, giving a high dispersion, is illustrated in
Fizure 11.1(c) where data samples are spread out evenly over the display. However, in Figure
11.1(b) it is no longer transparent whether the dispersion is low or high. On the one hand, the
stz samples tend to cluster in two distinct groups, each with a low dispersion. If all samples
= treated as a whole, on the other hand, the sum of distances between them is quite large.
While most measures of dispersion give largely similar results along the extreme cases (very
low or high variabilities), the results produced from the intermediate range depend heavily on
= hich measure is used, as illustrated in Figure 11.1(d).

As shown in Figure 11.1, most of the measures yield similar and consistent results when
<= dispersion is very high or very low. When the scattering of data is somewhere in between
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Fig. 11.1 For the position data in (a), dispersion is low, and for (c) it is high. But what dispersion value
should the data in (b) give us?

low and high, however, less is known about how different measures behave. Here we provide
a comparison of the different dispersion measures to give the reader an overview of how the
definitions work (in particular with intermediate dispersion sources as input), before going
on to describe the specifics of each measure of dispersion in full.

The properties of the dispersion measures which we will cover were investigated by im-
plcmemingz" each operationalization and comparing them using the data in Figure 11.2(b).

The result can be seen in Figure 11.2(a), where values have been normalized to the interval
[0,1] to better highlight differences across measures. Results show that some of the measures
take more into account the fact that data with ‘medium’ dispersion forms two clusters, and
therefore give lower dispersion values. Such examples are the nearest neighbour index (NNI),
coverage, and average landing altitude. Conversely, standard deviation, range, and Kullback-
Leibler distance (KLD) treat the medium- and high dispersion groups as being quite similar.

11.2.2 Standard deviation, variance, and RMS

el question How much do the raw sample data or fixations in a set & vary
q P
from the position mean or from sample-to-sample?

Input representation A ser & of raw data samples, fixations, or angular distances a8
between data samples
Output Variance

Standard deviation, variance, and root mean square are three statistical and mathematical
ways of expressing variability in data. Standard deviation (SD) o is defined as

(11.1)

2Qur implementations, for practical reasons, differ slightly from how they are described in the text. All attention
maps are generated with superimposed Gaussian functions using ¢ = 0.10x stimulus width. For coverage, the
attention map was cut to half the maximum height, and the BCEA was calculated for k = 0.5. A symmetric version
of the KLD was used (Rajashekar er al., 2004).
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(a) Dispersion as calculated using the different operational definitions outlined in this
chapter: Standard Deviation, Variance, Root Mean Square, Range, Nearest Neigh-
bour Index, Convex Hull Area, Coverage, Volume under an Attention Map, Bivari-
ate Contour Ellipse Area, Average Landing Altitude, Kullback-Leibler Distance. ‘Low',
‘medium’ and ‘high’ corresponds to the synthetic data in (b), and a normalized vari-
ability closer to 0 indicates that the measure finds the positions to be less dispersed
in space.
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L]
Low Medium High

(b) Simple synthetic data sets representing fixation dispersions at two extremes (low
and high), and the intermediate case where ‘dispersion’ is more subjective (medium).
These data sets were input to the different dispersion measures, and position vari-
ability was calculated for purposes of comparison.

Fig. 11.2 The dispersion you come to report is very much influenced by the measure you chose. Sim-
ulated dispersion measures providing a heuristic for how your choice of dispersion measure will affect
the dispersion output calculated. Values are normalized to the interval [0,1] to make relative comparisons
=asier. Note that the measures are in less agreement concerning low variability in position data, than high
variability. This is a good index for the sensitivity of the chosen measure when, for instance, fixations are
grouped in a spatially extended, yet local AOI on your stimulus display. It is logical that measures of dis-
persion in eye tracking are more sensitive to local differences in position since viewing is often restricted
to monitors, and saccades are programmed to facilitate the acquisition of nearby visual information. Also
note that KDL, one of the most widely used measures, finds dispersion to be lower in the ‘High' case.

where < contains N data samples x;,i € [1,2,...,N] and % denotes the average of all x-values.

Di Russo, Pitzalis, and Spinelli (2003) examined fixation stability in a group of pro-
fessional shooters and a control group. They calculated average standard deviations of eye
movements during a fixation task, and found that the shooters were more stable in their fixa-
tions (i.e. had lower standard deviations) than the control group. Furthermore, the participants
in the control group were less able to keep their eyes fixated over time, since their standard
deviations tended to increase after 30 seconds of fixating the target. Similarly, Edelman and
Goldberg (2001) used standard deviation as a measure of the spread of saccadic endpoints
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(i.e. fixations) around the mean, in a study where the discharge in primate superior colliculus
was compared to saccadic direction. This particular study revealed greater neuron activity
to saccadic targets which were present at saccade execution (as opposed to when a saccade
was made to a remembered target location). Firing rate remained constant regardless of the
duration for which the target had been present, demonstrating the neural underpinnings of
greater saccadic precision to visually present stimuli.

Variance, 62, is the square of standard deviation. Snodderly and Kurtz (1985) used the
variance measure to compare fixation stability in macaque monkeys and humans, finding
a greater dispersion in macaques, but also a larger between-trial variation in variance that
reflected the type of stimulus.

A related measure of dispersion is the so called root mean square (RMS)

Sl
Gms:\/e' +6,°+:--+ 6, (112)

n

where 6 denotes the distance in degrees of visual angle. It is commonly used when calculating
the precision of an eye-tracker (p. 34—41).

Due to their sensitivity to outliers, and their inability to recognize cluster formations in a
data set, these three measures are typically used to estimate the dispersion in samples from
a fixation. Consider, for example, the case where data clusters in two well-defined groups
containing the same number of points on opposite sides of a stimulus (as in Figure 11.1(b)).
Arguably, the dispersion is low, but the variance becomes large since the mean lies in between
the two clusters. This problem can be partly overcome by first identifying the two clusters,
and then calculating the variance in each cluster separately.

Just like skewness (p. 384), the standard deviation, the variance, and RMS are summary
statistics, that is, they summarize the amount of dispersion of an underlying variable. As such,
these measures themselves should not be used as variables in a statistical test. Nevertheless,
there are specific tests that may be used to compare the variance in two or more groups. One
such test is the Levene’s test, which is often used to establish whether the assumption of
homogeneity of variance, that is equal variance across groups, in an ANOVA is violated or
not.

11.2.3 Range

Target question How large is the smallest box that covers the raw data samples,
fixations or saccades in & ?

Input representation A set of raw data samples, fivations or saccades &
Output Horizontal and vertical range /extension (pixels)

Range (R), also known as ‘extent’ is calculated as the distance between points in the
horizontal and vertical meridians (left-to-right, and up and down directions).

Ry, = max(x) — min(x)
R, = max(y) —min(y) (11.3)

Sometimes, but not always, the horizontal and vertical values are added to form an overall
range R = Rj, + R,. Figure 11.3 illustrates the calculation. It can be seen that only four points
(those that fall on the lines) are used in the calculation of range. This means that the distri-
bution of other points within the boxed area does not affect the range, and it is therefore very
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min(x)

Fig. 11.3 Minimal box encapsulating all the fixations in .=

sensitive to single outliers in the data, The maximum distance can be significantly larger if
the maximal point becomes larger or the minimum point becomes smaller.

Range is a measure mostly used in human factors research, most specifically in the form
of saccadic extent during car driving. Crundall and Underwood (1998) found that drivers have
= saccadic extent varying from 38.7° to 82.4° in the vertical and 12.1° and 24.1° in the hor-
zontal dimension. Saccadic extent is likely to be influenced by the tunnel vision that results
from a heavier mental workload (see Godnig, 2003; Rantanen & Goldberg, 1999; Williams,
1988). For instance, when participants perform mental calculations and spatial imagery tasks
while driving on highways, Recarte and Nunes (2000) observed significant decreases in sac-
cadic extent.

Range has also been used to operationalize the variation in raw data samples during a
fxation (this has also been termed ‘fixation dispersion’), for instance in the I-DT fixation
detection algorithm, to help define when a fixation begins and ends (see p. 154).

11.2.4 Nearest neighbour index

Target question To what degree are the points in &/ randomly distributed?

Input representation A set of fixations &
Output Distance (pixels)

The nearest neighbour index measure is an operational definition of dispersion originating
from Di Nocera, Terenzi, and Camilli (2006), who attempt to distinguish between ‘random-
ness’ and ‘order’ in a distribution of fixations. Its value is calculated in three steps. First, for
each point (x;,y;),i € [1,2,...,N] in &/, compute the Euclidean distance d; ; to the nearest
neighbour among all the other points in 7. Then compute the average of all such distances
% ):;-\" ymin;d; ;j and then divide that average by the expected value for random distributions

0.5 \/7 where A is the area of the convex hull of the points. This gives a distance value D
which can be calculated as

) N
D=—==Y mind; 11.4
A &y ()

D approaches 1 when the distribution is more dispersed, whereas values smaller than 1 sug-
zest more clustered distribution.

The originators of the measure calculate the NNI ratio for windows of duration 1 minute.
The measure is used in human factors studies of mental workload. For instance, Camilli ef
l. (2008) showed that temporal attentional demand (items that need to be attended changing
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Fig. 11.4 The convex hull area is marked by a dotted line.

quickly in time) led to a more dispersed pattern, whereas visuospatial demand (the amount
of information in space requiring attentional resources, irrespective of time) led to clustered
pattern of fixations.

11.2.5 The convex hull area

Target question What is the minimal convex area that spans all points in &/ ?

Input representation A set of data samples o/
Output An area (p:‘.m'sz )

The convex hull area is an operational definition of dispersion as the smallest convex
polygon containing .7, illustrated in Figure 11.4. There are several algorithms for calculating
convex hull for any set of points, the best known of which may be the ‘divide and conquer’
algorithm by Preparata and Hong (1977).

The convex hull area was adapted to eye-tracking analysis by Goldberg and Kotval (1999)
to allow for crude comparisons of the overall form of a scanpath. Goldberg and Kotval give
examples showing that a convex hull is a better representation of scanpath shape than just
circumscribing the collection of fixations with a circle. Nevertheless, like the related range
measure, the convex hull may ignore large empty areas inside the hull, and is very sensitive
to single outliers; both of these are aspects of distributions that attention maps and their
Gaussian landscapes readily account for (see Figure 11.5).

Some researchers still use convex hulls to analyse the spatial distribution of their eye-
movement data. For instance, Sullivan, Jovancevic, Hayhoe, and Sterns (2005) had a Star-
gardt’s disease patient, with bilateral central scotomata, perform three everyday activities:
making a sandwich, catching a ball, and walking. Convex hulls were calculated from fixation
data to visualize the extension of the preferred portion of visual field in each task. Ahlstrom
and Friedman-Berg (2006) compare an air traffic controller weather interface with cither a
dynamic or a static representation of upcoming storms. Their data show that dynamic rep-
resentations result in much smaller convex hull areas, and follow Goldberg and Kotval in
interpreting this to mean that the static interface is poorly designed.
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(b) Participant 2.

(c) Participant 1. (d) Participant 2.

Fig. 11.5 Two participants viewing the Mona Lisa painting. Above, convex hulls around the scan path;
oelow, heat maps for the same data.

11.2.6 Bivariate contour ellipse area (BCEA)

Target question What is the dispersion measured as the area of an ellipse en-
compassing the majority of data samples in /7

Input representation A set of raw data samples or fixations &
Output An area (pixels”)

The bivariate contour ellipse area (BCEA) is calculated as the area of an ellipse that
encompasses a given proportion P =1— ¢~ of points in a data set. It is calculated as

BCEA = 2knoyo,(1—p?)'/? (11.5)

where 0, and o, denote the horizontal and vertical standard deviation of the data samples,
and p is the Pearson’s correlation coefficient between the x and y samples. As shown above,
& then decides the proportion of samples (in %) to include in the ellipse area.

Crossland, Sims, Galbraith, and Rubin (2004) criticize the BCEA on grounds of not be-
mz able to differentiate between one dispersed fixation and two fixations very close to one
=nother. Instead they opt for using a mixture of Gaussian functions to represent raw data
samples in a fixation, in essence producing miniature attention maps for the raw data sample
Sistribution within the fixation. This allows the authors to find (sub-) fixations as maxima in
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b=5

Fig. 11.6 Five stimulus spaces with fixations that have been divided into Voronoi cells. b-values indicate
the skewness values of each. Reprinted with kind permission from Springer Science+Business Media:
Behavior Research Methods, A quantitative measure for the uniformity of fixation density: The Voronoi
method, 38(2), 2006, Eelco A. B. Over.

the probability density function, and get information on how large portions of the raw data
samples are included under each maximum.

The BCEA has mainly been used to operationalize the fixation dispersion (‘stability’)
concept for clinical applications (Crossland & Rubin, 2002; Tarita-Nistor, Gonzalez, Man-

delcorn, Lillakas, & Steinbach, 2009), but also in more applied fields to quantify the inter-
participant dispersion across viewers watching video (Brasel & Gips, 2008).

11.2.7 Skewness of the Voronoi cell distribution

Target question What is the dispersion in a very large number of fixations, &/ ?

Input representation A large set of fixations, o
Output A skewness value

The skewness of the distribution of Voronoi cell sizes was introduced by Over, Hooge.
and Erkelens (2006) who consider it an operational definition of ‘fixation density’. In this
measure each fixation is given one cell, as Figure 11.6 exemplifies. When fixations are sparse.
cells will be large, while crowded fixations give small cell sizes. When fixations are equally
distributed, cell sizes will be the same, and have an unskewed distribution. Voronoi tessalation
is a simple calculation that exists in several softwares.

Skewness is calculated with Equation (10.5) on page 316 with cell sizes as input. Over
et al. fitted mathematical probability density functions to the observed cell-size distributions
in order to estimate confidence intervals. Although the skewness value can be calculated also
when & contains few fixations, acquiring a confidence interval would require large numbers
(at least 10,000) of fixations for high accuracy, Over et al. estimate.
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a,

(a) Coverage according to Cowen  (b) Coverage in attention maps: A; is the area of the cutoff
et al. (2002), defined as %f' where  region at a selected height, while A, is the area of the entire
A, spans all grid elements visited stimulus image. Coverage is defined as %f. but is sensitive
at least once, and A all non-visited  to the slice level. The volume under the map summarizes all
areas. slice levels in one value.

Fig. 11.7 Coverage versus volume under the map.

11.2.8 Coverage, and volume under an attention map

Target question How large is the area or volume covered by the attention map
from &7

Input representation An\attention map made from &/
Output An area (pixels®), a volume (pixels®), or a proportion

The coverage as well as the volume under an attention map are two closely related oper-
~sional definitions of dispersion that deal with some of the drawbacks of extent and convex
full measures, but which have been too little used.

Coverage was proposed by Wooding (2002b) as a dispersion measure operating on atten-
tion maps to “measure the amount of the original stimulus covered by the fixations”. Given
= height at which the attention map is “cut off’, Wooding defines the coverage as the area of
the cutoff region (A2) divided by the area of the whole image (A1)

A
Coverage = o (11.6)
Ay

In Figure 11.7(b), the cutoff height is set to half the maximum height and the cutoff area is
-epresented by the shaded, grey region. However, a major problem is that the coverage value
depends heavily on an appropriate selection of slicing/cutoff level.

The volume under the map measure overcomes the settings problem by extending the
alculation to three dimensions; normalize the height of the attention map to unity (p. 248),
2nd then calculate the velume under the attention map using summation or integration. In
sddition to making the slice level setting unnecessary, the volume approach gives a more
<ensitive measure, since areas at all different slicing levels are integrated into one single
value.

An appropriate smoothing factor for the attention map (e.g. © if using Gaussian based at-
tention maps) still remains to be selected, and this choice will affect the coverage and volume
snder the map measures. See page 245 for suggestions of how to select . Parallel analyses
with several &'s can be used to test whether the dispersion value is solely an effect of choosing
the right o, or if it reflects a systematic effect in your data.

Using a slightly different method to calculate coverage, shown in Figure 11.7(a), Cowen
<t al. (2002) first divided the stimulus into a grid, and then defined coverage as the number of
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visited grid elements divided by the total number of elements. One dwell into a grid element
was sufficient to count it as a ‘visit’. They interpret the measure to be indicative of ‘focused
efficient searching’ versus ‘widespread incfficient search’. Cowen et al. describe their method
as follows: “A screenshot was taken and loaded into a graphics package so that a grid, with
squares measuring 30 x 30 pixels, could be overlaid on the screenshot of the page. The number
of squares containing one or more fixations was manually counted. This number was divided
by the total number of squares covering the page and then multiplied by 100 to produce
a percentage” (p. 329). Similar methods to calculate the dispersion of fixations had been
proposed already in the 1960s by Mackworth and Morandi (1967).

A related coverage measure is the weighted search area (WSA) proposed by Chi and
Lin (1997), who argue that the WSA “can describe concentrations of visual search patterns
and potentially quantify the amount of visual load (p. 255)” [of participants engaged in a
simulated driving task]. The implementation is described in 10 detailed steps in the paper,
and is based on the ideas to 1) divide the stimulus space into quadrants and 2) represent
fixations in each quadrant with a vector taking both the position and duration of fixations into
account.

Taking stimulus features into account, coverage has also been defined as the percentage of
objects in a scene looked at for more than a minimum duration (Yoon & Narayanan, 2004a).

11.2.9 Relative entropy and the Kullback-Leibler Distance (KLD)

Target question How large is the dispersion in &, when counted as the average
distance between the attention map of each fixation in & and
the attention map of all the other fixations?

Input representation A set of raw data samples or fixations & per participant
Output Dispersion value (bits)

Entropy was explained on page 341. The Kullback-Leibler distance (KLD), sometimes
also called the Kullback-Leibler divergence or relative entropy, is an operational definition of
distance—not dispersion, but we will come to that—between two groups of data according to
the known information theoretic measure with the same name (Cover & Thomas, 1991). Input
data have the form of probability density functions (pdfs), a form of normalized attention
maps. If p(x) and g(x) denote the input pdfs for sets of eye-tracking data & and %, the KLD

is defined as )
=Y p(x)16g, 222 117
D(pllg) = L. P82 s (1L.7)
over the alphabet X and is measured in bits. Zero-values in p(x) results in a mathematical
error (the logarithm of zero), and therefore Onat, Libertus, and Kénig (2007) replaced all
zero-values with a very small constant (¢ = 10~).

The KLD can be interpreted as the penalty in bits when assuming that the distribution of a
random variable is p(x) when it is in fact g(x). It is used in information theory to measure the
‘distance’ between two probability density functions, although it is not a mathematically true
distance, since it does not fulfil what is known as the triangle inequality, and is asymmetric.
Symmetrization of the KLD can be achieved by calculating, for example, the harmonic mean
1/[1/D(pllg) +1/D(gl|p)]. Another alternative symmetrization (and smoothing) of the KLD
is called the Jensen-Shannon divergence (D s). It is defined as

plx)+q(x) || L) gl
ﬁ)_,rs(p”q):D(p(x)”P 2‘]r ];9(4( | e e, (11.8)
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While the KLD is mathematically tractable it lacks intuitiveness; what does, for example,
a dispersion of 14 bits mean? Moreover, a pdf cannot robustly be estimated from an attention
map built from a few data samples, as pointed out by 't Hart ef al. (2009).

The Kullback-Leibler distance can be transformed into a measure of dispersion, by cal-
culating the KLD between the pdf of a single data point in &/, and the pdf generated from
all other points in . This calculation is made repeatedly, by singling out each point in &/
and comparing the KLD to the others. The final dispersion value is the average of all these
similarity measurements. This is a very general method, that can be applied to any similarity
measures to make a dispersion measure out of it, and has also been done with the average
landing altitude measure.

The KLD measure was first used as a dispersion measure for eye-tracking data by Tatler,
Baddeley, and Gilchrist (2005), and was later adopted by °t Hart et al. (2009), for example.
Tatler, Baddeley, and Gilchrist generated a gridded AOI with squares of 2° x 2°; fixations
were binned accordingly into these squares, and then normalized into a probability density
function before computing the KLD. Their study compares the consistency in fixation loca-
tions between observers over time (measured as number of fixations), finding that it is high
in the early phase, but decreases already after 3—4 fixations. Using the standard definition of
entropy, Sawahata et al. (2008) found in a study of children watching TV programmes that
dispersion varied with programme comprehension.

11.2.10 Average landing altitude

Target question What is the dispersion, measured as the average landing alti-
tude, when dropping each data sample of each participant in &
onto the attention map of all the other participants?

Input representation A ser of raw data samples or fixations &f per participant
Output A dispersion valie

The average landing altitude (ALA) dispersion measure is closely related to the similarity
measure with the same name on page 373. The average landing altitude is calculated as the
height at which the eye-tracking data of each viewer landed on the attention map created from
all other viewers’ eye-tracking data. Formally, dispersion is defined as
Dara = .1_ AM::m.rlf_ AM? (‘?!J'i)

AME . —AM!

max avg

(11.9)

where AM" denotes an atte:}tion map that has been generated by N — 1 data samples; all ex-
cluding the i’ sample. AM? . and AM},,, denote the maximum and average value of AM",

max avg
respectively. AM? (x;,y;) represents the height at which data sample (x;,y;) ‘lands’. Conse-
guently, a random distribution gives a values close to 1, whereas a dense distribution has a
dispersion close to zero.

The measure was developed by Nystrom (2008) to overcome the lack in the KLD measure
of an intuitive result unit. Inspired from the work by Itti (2005), Nystrom used the measure
to compare the dispersion across viewers’ gazes before and after foveation of videos (where
visual resolution is compressed at points at which the observer did not fixate), and found the
dispersion to decrease when participants watched the foveated videos.
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11.3 Position similarity measures

The similarity measures for position quantify similarity as the level of proximity between two
sets of position data (raw data samples or fixations) with no particular order between them.
They all take as input two sets of position data ./ and %, and they output a single value for
that comparison. A single value output for a comparison may make it difficult to perform
statistical tests determining whether . and 2 are significantly different from one another.

Like dispersion, similarity is also a vague concept for which there are several operational
definitions. These definitions, rather than the concept, are termed ‘measures’.

11.3.1 Euclidean distance

Target question What is the distance between two positions?

Input representation  Tivo position points (x1,y1) and (x2,y2), either as raw data
samples, fixations or dwells
Output Euclidean distance (pixels or degrees)

The Euclidean distance, a much-used general measure in eye-tracking research, has also
been used to operationalize similarity in position between two sets of data samples (raw or
fixations). Euclidean distance between two points is defined as

d=\/(x|—xz)?+(y| =gt (11.10)

where (x1.y;) and (x2,y2) are the coordinates of the two points in two-dimensional space.
Rao, Zelinsky, Hayhoe, and Ballard (2002) use the Euclidean distance as an operational def-
inition of position similarity. "t Hart et al. (2009) use Euclidean distance to quantify consis-
tency between observers at each time instant. However, they argue that the KLD is better
seen over a whole trial, since the Euclidean distances summed over time would give a low
similarity value when all observers visit the same positions, but in different order.

11.3.2 Mannan similarity index

Target question How similar in position are the raw data samples or fixations in
& to those in 5?

Input representation Two sets of data samples </ and %
Output A distance (pixels)

An early attempt to operationalize the similarity between two populations of eye-tracking
data was presented in Mannan et al., 1995, 1996 and Mannan, Ruddock, & Wooding, 1997. It
is closely related to the nearest neighbour index. Given two sets of positions, & and % from
raw data or fixations with M and N points, Mannan et al. used a measure where the squared
Euclidean distance d* from each position i (of M) in & to the closest position j (of N) in #
was calculated and vice versa. The similarity index was then calculated as the average of all
squared distances

+N

=

e y
Danan:M— ( m:nd;‘:j+2mmd§j) (11.11)
1 J=1

As pointed out by Tatler, Baddeley. and Gilchrist (2005) as well as Underwood et al.
(2008b), among others, this type of distance-based measure has a number of severe limita-
tions. Individual fixations may have disproportional impact on the overall similarity index,
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4

Fig. 11.8 Examples from Underwood et al. (2008b) pointing out limitations with the Mannan similarity \6 0
~dex. A shows the basic case where fixations in & (grey) can be mapped to the closest fixation in % ! A\ (
\white). Figure B exemplifies the problem that a single fixation in o/ will be mapped on all fixations in % GOACL

=nd make the similarity value artifically low. Case C shows spatial mappings between the closest fixations
= sither distribution will ignore scanpath order, making the Mannan measure a pure position measure.
Case D further exemplifies the need for scanpath simplification before alignment (pp. 273-278). With kind
sermission from Springer Science+Business Media: Knowledge-Based Patterns of Remembering: Eye
Movement Scanpaths Reflect Domain Experience, 2008, Geoffrey Underwood.

and yield an index that is clearly not commensurate with the intuitive similarity. In extreme
cases, the Mannan distance can be very unintuitive, as in Figure 11.8(B), where the positions
in # are packed in a small region somewhere in the stimulus, whereas 4 covers the whole
<timulus area. Since all distances to the closest point in 2 are low, the similarity index would
indicate a good match between & and 2, although intuitively this is not the case. After the
advent of improved similarity measures, the Mannan measure can be considered obsolete.

11.3.3 The earth mover distance

Target question What is the cost of transporting the total fivation durations from
o 10 SB?

Input representation  Tiwo sets =/ and & of fixations with position and duration
Output A distance/cost (pixels)

The earth mover distance (EMD) is a solution to the so-called transportation problem,
which concerns minimizing the cost for moving any amount of matter from one set of source
locations to another set of destinations. It can be solved by the Hungarian algorithm originally
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Fig. 11.9 lllustration of the earth mover distance: the five fixations in </ are piles of earth, while the three
fixations in 2 are holes. Both piles and holes have a volume corresponding to the fixation durations. The
earth mover distance is the minimal cost (distance) for moving all the earth into the holes.

developed by Kuhn (1955).

In terms of eye movements, one set ./ of fixations are the origins, and the other set %
the receivers. The durations of the fixations in &/ are taken to be ‘piles of matter’ (i.e. earth),
and the durations in .2 are holes to be filled, as in Figure 11.9.

If « and 2 have different total duration, either earth or holes would remain after the
transportation process ends. For this reason, Dempere-Marco et al. (2006) normalize each
fixation by dividing it by the total duration of the set it belongs to.

The EMD solves the fundamental problem of the Mannan distance by making fixation
durations a limited resource. This means that one single fixation in & cannot be the closest
to all fixations in .2, because it will long be consumed.

Mathematically, the EMD similarity is calculated as

m n

E Zd(ﬂ:‘,b;‘)ﬁf

Dap(ef, B) ==L (11.12)

m n

Y ) fi

i=li=1

where d(a;, bj) is the distance in stimulus space, and fi; the minimal transportation distance
found by the algorithm.

Dempere-Marco et al. (2006) applied this measure to compare visual search patterns of
radiologists interpreting CT images where lung disease was suspected, but argue that their
EMD measure has a broader applicability as a general similarity measure.

11.3.4 The attention map difference

Target question Where in a stimulus is the difference in attention map altitude
between & and % large, and where is it smaller?

Input representation  Two attention maps & and %
Output An arttention map or a similarity value

The attention map difference is simple: just subtract the attention map for & from the
attention map for 4, or vice versa. The originator, Wooding (2002a), proposed that this mea-
sure was appropriate to quantify the similarity after both maps were normalized to unit height.
Figure 11.10(c) shows the difference map between the attention maps in Figures (a) and (b).
To obtain a single value representing the similarity, the average value of the difference map
can be calculated.

There are at least three varieties of operational definitions for this measure:

1. Simple subtraction of one map from the other.

AMgisr = AM oy —AM gz (11.13)
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(a) Attention map 1 (b) Attention map 2

(c) Absolute difference between attention
maps 1 and 2.

Fig. 11.10 Calculating similarity by subtracting two attention maps.

This gives a difference map that can have both positive peaks and negative valleys. It
shows the direction of the difference in addition to the magnitude.
_ The absolute difference between the two maps, which is always positive.

AM anspif = |AM 7 — AM 3| (11.14)

Figure 11.10 exemplifies this case.
. The squared error (SE), which squares the differences between the maps of dimensions
mxn.

AMsg = (AMy — AM )’ (11.15)
Very often the mean squared error (MSE) is used instead of the squared error

m n

AMyse = Y. Y (AM (i, j) =AM i, 0> (11.16)
i=1j=1

In spite of its simplicity, this measure appears not to have been used in actual research.

11.3.5 Average landing altitude

Target question What is the similarity in position between the two groups & and
B of fixations or raw data samples?

Input representation Two sets of position data @ and % containing raw data or
fixations
Output A similarity value
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Fig. 11.11 Similarity as average landing altitude: for each fixation in %/, measure the landing height (for
instance, 0.28) when dropping it on an attention map formed from 48, and then form an average over all
such heights.

The average landing altitude has been used as both a dispersion (p. 369) and a similarity
measure. When measuring similarity, it calculates the height at which the fixations (or raw
data samples) from & land on the attention map created from the data in 42. This principle
is illustrated in Figure 11.11, where the raindrop represents one fixation. Consequently, the
similarity can be defined as

Sara =1—Dara (11.17)

where Daja is the dispersion value given in Equation (11.9). AM in Equation (11.9) should
now be interpreted as an attention map generated from set &/, whereas (x;,y;) represent data
samples from set Z.

11.3.6 The angle between dwell map vectors

Target question How similar is the proportion of dwell time to AOIs between &/
and A?

Input representation  Two matrices & and 2 of gridded AOIs with dwell fime in each
AOI cell
Output A similarity value

The angle between dwell map vectors is a mathematically elegant similarity measure first
used by Pomplun et al. (1996). It uses the gridded AOI representation from page 212, in
which a grid is put onto the stimulus image and dwell time is calculated for each cell. To
understand the principle, we need a simplistic example. Figure 11.12 illustrates how vectors
are formed from the gridded AOTs in a stimulus with only two AOIs, and how angles are
formed between the vectors.

Since dwell times are always positive, the angle between the vectors can vary from 0° to
90°. Similarity is then expressed as the cosine of this angle, with a value of one indicating
that the vectors are identical (0°), and a value of 0 indicating that the vectors are maximally
different (90°).

Note that this measure only compares how similar proportions of dwell time are in each
matrix. In particular, &/ and % would be considered equal by this measure if each cell value
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Fig. 11.12 Assume that there are three recordings, trial 1, 2, and 3 of data, now represented as T1-T3
in the figure. For each trial there are the same two AOls in this simple example. There is a synthetic dwell
sma in each AOI for each trial. The map vectors, vi—v3 are based on using the dwell times in the grid AOls
as vector coordinates. An angle is formed between each pair of vectors. The similarity value between two
recordings—irials in this case—is the cosine of that angle.

in & is twice the corresponding value in %, since the two vectors would then be pointing in
exactly the same direction. To test whether the dwell times in cells also equal in size, we need
1o calculate whether the two vectors are also of equal length.

DeAngelus and Pelz (2009) use dwell maps with normalized dwell time values (in %, with
2 sum of 1), which put the vectors on the unit circle. Their variety of the measure calculates
+he distance between (the tips of) the vectors, which roughly corresponds to the angle between
vectors when the dwell map consists of normalized values.

Figure 11.12 shows gridded AOIs with only two cells. With matrices containing more
cells, we have ny - n, number of cells, each with a dwell time value s, within it. A vector v =
51.52,.-.,8n,n, iS then formed for each image and group of viewers. The similarity between
zroups 1 and 2 is defined as the cosine of the angle 6 between the ny - ny-dimensional vectors
v, and v, and can be calculated as

Y1-¥2

[vallffvall

Observe that when using a measures based on gridded AOIs, the output depends on the pre-
cise division of stimulus space into grids. Therefore Pomplun ef al. (1996) calculated a final
similarity by averaging over a number of different grid sizes.

cosf = (11.18)

11.3.7 The correlation coefficient between two attention maps

Target question How similar are two sets of data samples & and $?

Input representation  Two sets of data samples o and %
Output A similarity value

The correlation coefficient between attention maps uses attention maps in the form of
gridded AOIs. Given two attention maps AM, (x,y) and AMs(x,y), the correlation can be
computed as

Y (AM; (x,y) — AM; (x,)) (AMa(x.y) — AM (x,Y))
Xy

i _ 12
(AMa (x,y) — M (5,9))2 X (Mo (3,) — AM y))z}
xy

Xy
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where AM(x,y) denotes the average value of AM(x,y). This measure is closely related to the
cosine from Equation (11.18). The only difference is that in Equation (11.18), the vectors
have been shified to have zero mean.

The advantage of using the correlation coefficient is that the results are intuitive and hence
easy to interpret. Beside directly comparing two populations of eye-tracking data, the correla-
tion coefficient and the KLD have been used to estimate the similarity between computation-
ally generated saliency maps and attention maps from human observers (see Ouerhani, Von
Wartburg, Hiigli, & Miiri, 2003; Rajashekar et al., 2004; Rajashekar, Van Der Linde, Bovik,
& Cormack, 2008).

11.3.8 The Kullback-Leibler distance

Target question How large is the position similarity between the two groups of
position data </ and %7

Input representation Attention maps &/ and 58
Output A similarity value (bits)

The KLD similarity measure, mathematically defined on pages 368-369, appears to have
been first used with eye-tracking data by Rajashekar et al. (2004), Nystrom et al. (2004) and
Tatler, Baddeley, and Gilchrist (2005). Rajashekar er al. (2004) used the symmetric KLD
to quantify the distance between fixation predictions and recorded fixations from humans.
Dempere-Marco er al. (2006) used the KLD measure in the feature domain in a study on
mammography radiologists, to examine how similar features looked at were to visual features
characteristic of malign changes. Bestelmeyer er al. (2006) compared the restrictedness of
scanpaths in schizophrenia and bipolar patients using the KLLD measure, as a diagnostic tool.
Comparing fixation distributions on videos between humans and monkeys, Berg er al. (2009)
found large differences using the KLD between distributions in a permutation test (Monte-
Carlo simulation), which reveals how our visual systems differ from our closest evolutionary
ancestors.

Levy, Bicknell, Slattery, and Rayner (2009) compared fixation distributions on a sentence
before and after reading an ambiguous word. Fang, Chai, and Ferreira (2009) used the Jensen-
Shannon divergence to investigate the change in dispersion in fixations on a scene before and
after two adjacent utterances.

11.4 Position duration measures

The position duration measures all concern how long participant gaze stays within a position.
The position stayed within is always either that of a fixation or an AOI We call the fixation-
based position duration fixation duration and the dwell-based position duration dwell time.
With the exception of IMSI, the other measures are all varieties of fixation durations and
dwell times.

11.4.1 The inter-microsaccadic interval (IMSI)

Target question How long is the inter-microsaccadic interval (IMSI)?

Input representation An inter-microsaccadic interval
Output A duration value (ms)
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Fig. 11.13 Histogram over the distribution of inter-microsaccadic interval (IMSI), reproduced from
Engbert (2006) with kind permission from Elsevier B.V.

The inter-microsaccadic interval (IMSI) is a very uncommon position measure, reported
only by a few microsaccade researchers. The IMSI is to microsaccades what fixations are
to saccades—periods of fixation-like ocular stability within the very small movements of
microsaccades. Correctly detecting and calculating them puts high demands on both the eye-
tracker hardware and filters and algorithms for event detection.

IMSI values have a distribution very similar to that of fixation durations, as Figure 11.13
shows.

11.4.2 Fixation duration

Target question For how long was the eve still in a position?

Input representation A fixation
Output The fixation duration (ms)

Fixation duration is likely to be the most used measure in eye-tracking research. It is
sometimes called *fixation time’, but also ‘dwell time’, or *‘dwell time of the fixation’, which
may be confused with the most common use of the term dwell time as defined on page 386,
which is the time from entering to exiting an AOIL Oster and Stern (1980) use the terms
saccadic reaction time and intersaccadic interval.

There are a host of methodological issues surrounding the fixation duration measure, and
we will go through them one by one.

The many different definitions

Informally, a fixation is defined as a period of time when the eye is relatively still (the oculo-
motor definition), but some definitions add visual intake as an additional criterion on fixations
(the processing definition).

In reality, fixation durations are calculated by the fixation detection algorithms described
in Chapter 5, which do not care about visual intake, and have different definitions of stillness.
As a result, we have a situation in which fixation durations are solely defined by the event de-
tection algorithms and their settings. For example, there are the ‘I-DT fixation durations’, the
‘velocity algorithm fixation durations’, and the ‘EyeLink fixation durations’, and many more
varieties due to settings, and these are related but different fixations. Researchers in general,




378 |POSITION MEASURES

however, have tended not to differentiate between the different algorithmic operational defini-
tions, but surprisingly often treat the output of their own particular event detection algorithms
as revealing generic true fixations that perfectly overlap with visual intake.

Data quality

As pointed out on page 161, the quality of the data affects fixation durations severely. Fur-
thermore, if there is smooth pursuit in the data, most fixation detection algorithms will give
faulty fixation durations.

Different fixations—different processing?

Different fixations are undoubtedly associated with different types of processing. In reading
research, the first fixation on a word appears to be associated with lexical activation, and later
fixations with discourse integrative processes. Inhoff and Radach (1998) note that it may be
confounding to form averages over fixations that are that qualitatively different. This may
be an issue for others than reading researchers, as the distinction between first and later fix-
ations during scene viewing has been made by several researchers, for instance Henderson
et al., 1999. Reading researchers and others furthermore differentiate between look-ahead
(progressive) fixations and look-back (regressive) fixations, which may or may not be quali-
tatively different. Also, Land er al. (1999) classify fixations into four distinct functional types
during everyday activities (see p. 358).

The different types of processing of fixations may be reflected in their durations. For
instance, McConkie, Reddix, and Zola (1992) show that fixations below but not above 140
ms are affected by lexical properties of the text read. Buswell (1935):142 noted that the
earliest fixations in a picture are shorter (around 210 ms) than later (around 360 ms) fixations.
This has later been interpreted as an early orienting period, followed by a more scrutinous
inspection of informative details, which could motivate a division of fixations according to
ambient and focal processing modes (Unema et al., 2005).

Furthermore, Henderson and Pierce (2008) give evidence that one population of fixation
durations is constant, while another is under the direct moment-to-moment control of the
participants’ ongoing scene analysis.

The participant idiosyncrasy

‘When a participant repeats a task, average fixation durations remain similar across trials; how-
ever different people have different average fixation durations (Andrews & Coppola, 1999,
Rayner, Li, Williams, Cave, & Well, 2007, Johansson et al., 2011). These authors conclude
that there is an endogenous component that correlates (r = 0.5-0.8) with fixation duration,
requiring an adequate experimental design as well as statistical handling of data (pp. 83-85).

Dependency between successive fixations

Fixation durations are not entirely independent of one another: in scene viewing, long fixa-
tions are more often followed by other long fixations, and short fixations by short fixations
(Tatler & Vincent, 2008). In visual search, Hooge, Vlaskamp, and Over (2007) found fixations
on difficult search elements to be followed by long fixations on the next element, irrespective
of its difficulty. Importantly, independence is required by many statistical tests.

Attention

Just and Carpenter (1980) formulated the influential strong eye—mind hypothesis, according
to which there is no appreciable lag between what is fixated and what is processed. If this
hypothesis is correct, then when a participant looks at a word or object, he also simultaneously
processes it, for exactly as long as the recorded fixation. As can be seen below, to a large
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extent research supports at least a general eye-mind hypothesis.

However, visual attention—the spatial locus of intake and processing—moves slightly
before the eye does. Deubel (2008) and others have shown that attention may be as much as
250 ms ahead of the eye, in particular in specially designed tasks called anti-saccade tasks
(p. 305). It is not known whether this large temporal lag persists in more natural tasks, but
most eye-tracking research is conducted and interpreted as though attention and fixation were
synchronous events, and they probably are not.

Tt should be noted that there are several models of eye-movement programming in reading
and scene perception (e.g. Henderson, 1992; Reichle, Rayner, & Pollatsek, 2004; Engbert,
Nuthmann, Richter, & Kliegl, 2005) which attempt to capture and predict the proportion of
fixation durations which can rightly be allocated to information processing, attention shifts,
and saccade programming. The first two mentioned, by Henderson (1992) and Reichle e al.
(2004) respectively, are strictly serial, arguing that attention does not shift until information
processing is complete. However, Van Diepen and D' Ydewalle (2003) found that this does
not hold across the board, since in scene viewing, masking the information visible in the
visual periphery early during fixations using a gaze contingent window leads to increased
fixation durations. This should not happen if a serial mechanism controls fixation duration,
since information at fixation should always be processed first. The latter model cited, SWIFT,
developed by Engbert et al. (2005), operates on the assumption that the attentional spotlight
is more distributed, and a default timer regulates eye-movement triggering. Hence, SWIFT is
a parallel model not a serial one, as attention (and thus fixations) can shift before information
processing is complete.

There are many subtleties to the modelling of fixations and attention, and saccade pro-
gramming. The main point is that there is a whole research literature on fixation duration and
attentional shifts, regarding the two as distinguishable entities, therefore, if individual fixa-
tion durations are important for your results, it is worth bearing this in mind, and it should
not just be assumed that the entirety of a fixation duration represents cognitive processing or
“visual intake’.

On the positive side, we can be fairly sure that attention and saccades are tightly coupled
(Deubel & Schneider, 1996)—you can think of this like a rubber band, where stretching
the rubber band to one point (the point where attention is allocated) means the other end of
the rubber band (or the fixation point) will naturally follow. Therefore, when a participant
executes a saccade 1o a target, you can be certain that attention has just moved to the same
place. The fixation is only a short time behind attention, which indicates the metrics of the
next eye movement.

Note that in real-world tasks, outside the laboratory from which the data and theorizing
in this section derives, fixating something does not entail close attentive processing of it, and
does not guarantee a trace in working memory of all the features of the object looked at
(Triesch et al., 2003).

Finally, we must not forget that some processing trace of a fixated item may continue for
a very long time after the eye has left the fixated position. This is evidenced by the fact that
we learn from reading.

The duration of the intake period and saccadic suppression

Fixations produced by the event detection algorithms of Chapter 5 only concern the physical
motion of the eye. The reason most researchers have for using fixation durations is that they
are assumed to reflect perceptual intake and processing.*® Generally speaking, this is a fair

0 Although many researchers have devoted their careers to understanding the functional mechanisms of fixation
durations on eye-movement programming it its own right; how and when a saccade is triggered, therefore not using
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(a) Principle of saccadic suppression.  (b) Principle for functional visual field. Visual intake
Short flashes that are produced during a takes place from an area larger than the foveal projec-
saccade are not reported by participants, tion, expertise increases the area, and a higher work-
and some of this effect spills over to neigh- load decreases it. The functional field is asymmetrical
bouring fixations. for reading Westernised texts, and information may be
gathered from a larger area during scene viewing.

Fig. 11.14 Visual intake does not coincide perfectly with fixations.

assumption if the intake period equals the period of stillness detected by the algorithms.

Most eye-tracking researchers know that their participants are effectively blind during
saccades, but it is less known that this ‘blindness’ spills over to part of the fixation, and hence
affects our use of the fixation duration measure, as illustrated in Figure 11.14(a). Typically
pre-saccadic suppression shuts down visual intake for 30-40 ms preceding the start of a
saccade, while post-saccadic suppression follows thereafter for a duration lasting around
100-120 ms (Volkmann, 1986). For a typical saccade of around 30 ms duration, some of
the saccadic suppression spills over to the following fixation, so that in theory, intake and
processing of the fixated position can start only after some 70-80 ms after the start of the
fixation. The longer the saccade, however, the more of the suppression is consumed by the
saccade, and the earlier the processing can start in the next fixation, which can thus be shorter.
If fixation duration is used as a precise measure of processing, it is therefore advisable to
measure also the duration of the preceding saccade, or at least refer to models of fixation
control and saccade generation (e.g. Findlay & Walker, 1999, or some of the others mentioned
in the previous section).

For a discussion as to what cognitive processes are suspended during saccadic suppres-
sion, see p. 321 and Irwin and Brockmole (2004). This is a large research area and full dis-
cussion is outside the scope of this chapter.

Glissades

Some authors argue that visual intake and processing starts not only directly when the fixation
starts (the one detected by the algorithms), but already during the glissadic aftermaths of
the saccade. For instance, Inhoff and Radach (1998) argue that there are good reasons for
assigning the glissades to the fixation, since studies they quote have shown that brief flashes
can be detected during the glissadic period. A counter argument is that the glissadic motion
would smear the retinal image, making processing of fine texture difficult. As we saw on
page 165, the glissadic velocity can be up to 130°/s, well above that of many saccades, so
the smear is considerable, if intake is at all open, Event algorithms vary in what they assign
the glissade to—saccade or fixation—and also in how systematically they assign them to one
or the other. All in all, this contributes to making fixation duration values less comparable, at
least between studies.

fixation duration simply as a measure which reflects processing of something else.
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The functional visual field

How large is the area in which participants can take in meaningful information during a single
fixation? In scene perception, this area has been given several names: ‘functional field of
view’ (Mackworth, 1965), ‘useful visual field’ (Saida & Tkeda, 1979), ‘functional visual field’
(Nelson & Loftus, 1980), or “visual span’ (Reingold et al., 2001), while in reading research,
the functional visual field goes under the name ‘perceptual span’, (Rayner & Pollatsek, 1989).
Engel (1971) used the term ‘conspicuity area’ in visual search to describe “the retinal locus
within which the object to be searched for was noticed in a single 75 msec exposure”. The
principle and several important factors are illustrated in Figure 11.14(b).

It is clear that the foveal projection of 1.5° of visual angle is not the only area in which
intake is made. When reading, for instance, the perceptual span is asymmetric, stretching 3
degrees from the point of fixation into the direction of reading, and hardly 1 degree back-
wards. When radiologists scan for lung nodules, their functional visual field stretches over 5
degrees of visual angle (Kundel, Nodine, & Toto, 1991), but in general in picture viewing,
it appears to be at least 10 degrees across (Shioiri & Tkeda, 1989). As with reading, a kind
of expertise, the differences in span depend on what you are looking for and what you are
practiced in. The larger functional visual field in scene viewing compared to reading perhaps
means participants need to process more information in one fixation, which could be one
explanation for why fixation durations on average are longer in scene viewing. Note, how-
ever, there are many other possible considerations: reading is highly automated with familiar
words. while scenes in scene viewing experiments are likely to be comparatively novel, thus
tacking in the same degree of automation as reading; moreover, participants are likely to have
clusters of long fixations on objects in scene viewing, in between periods of scanning where
no distinct object is fixated and fixation durations are short.

Note that the visual field is larger horizontally than vertically. Thus, human contrast sen-
sitivity is better in the horizontal periphery than in the vertical (Banks, Sekuler, & Anderson,
1991), and detection is better in the horizontal compared to vertical dimension (Engel, 1977).

During many practical tasks, such as car driving, where peripheral vision is very im-
portant, the effective size of the functional visual field can be reduced by tasks or traffic
situations that increase the cognitive load (Recarte & Nunes, 2000; Crundall, Underwood, &
Chapman, 1999; Miura, 1992, 1990; Williams, 1988; Mourant, Rockwell, & Rackoff, 1969).
For instance, car drivers’ peripheral target detection decreases between 5 and 7 degrees of
visual angle with increasing workload level, for all eccentricities (Crundall, Underwood, &
Chapman, 2002). Furthermore, increased driver age further decreases the driver’s peripheral
detection between 8 and 24 degrees of visual angle (Gilland, 2004), while expertise in all
tasks investigated have proven to increase the functional visual field.

Typical fixation duration values and how to interpret them

When you find the right algorithm and proper settings for your data, you will find that cal-
culated fixations are frequently around 200-300 ms, but may be as long as several seconds
(Karsh & Breitenbach, 1983; Young & Sheena, 1975), and as short as 3040 ms, as exempli-
fied in Figure 5.6 (p. 156). The distribution of fixation durations is not completely Gaussian;
there is almost always a positive skew. Figure 11.15 shows the distribution of fixation dura-
tions in scene viewing (a) and during reading (b).

Average fixation durations definitely vary across different tasks and stimuli. Findings
show one general pattern with several specific exceptions.

General finding—longer fixations equal deeper processing A longer fixation duration is

often associated with a deeper and more effortful cognitive processing. This has been
the conclusion in:
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(a) Scene viewing—real still photographs from (b) Reading for 1015 minutes. From case study
Nystrém (2008). 1 (p. 5).

Fig. 11.15 Distribution of fixation durations. Data recorded with a tower-mounted high-end eye-tracker at
1250 Hz: fixations calculated with BeGaze 2.1 velocity algorithm at 40° /s.

Reading Words that are less frequent, and would therefore require a longer lexical ac-
tivation process, generally receive longer fixation durations (Rayner, 1998). More
complicated texts give rise to longer average fixation durations, ranging from
around 200 ms in light fiction to around 260 ms for physics and biology texts
(Rayner & Pollatsek, 1989). More complicated grammatical structures give rise
to longer fixation durations (Rayner, 1978). Also, longer fixation durations cor-
relate with larger N400 amplitudes when taking ERP measurements (Dambacher
& Kliegl, 2007), which is indicative of processing meaning and semantic content,
particularly when the word is less frequently encountered.

Scene perception Out-of-context objects generate longer fixations than objects which
fit the context (Henderson et al., 1999; De Graef, Christiaens, & D"Ydewalle,
1990: Loftus & Mackworth, 1978). Finding the relevant information in blurred
images increases fixation durations (Mackworth & Bruner, 1970).

Usability Harris and Christhilf (1980) found that pilots fixate longer on critical instru-
ments from which information had to be extracted, rather than those requiring
a mere check. Unema and Rétting (1990) found longer fixations when partici-
pants made more difficult mental calculations than when they made simpler ones.
Stager and Angus (1978) could show shorter fixation durations with increased
experience of a task. After comparing several experimental tasks, Oster and Stern
(1980) conclude that fixation duration is a consequence of task requirements
rather than a property of the saccadic system. Car-driver fixations when nego-
tiating high-incident curves on the road were longer than for non-incident curves
(Shinar, McDowell, & Rockwell, 1977), and more than twice as long in curves
at night compared to daytime (Mortimer & Jorgeson, 1974). Experienced drivers
have shorter fixations (262 ms) compared to novices (296 ms) (Laya, 1992). Also
Goldberg and Kotval (1999) and many other applied researchers interpret longer
fixations as an indication of the difficulty a participant has in extracting informa-
tion from a display.

All this indicates functional links between what is fixated and cognitive processing of

that item—the longer the fixation the ‘deeper’ the processing. However, the following

are exceptions to this rule:

Longer fixations mean shallow processing In vigilance research, a long fixation is
sometimes taken to indicate such a low arousal that participants are close to
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daydreaming. This could be the reason why some have found that fixation du-
rations of car drivers are longer on information-poor rural roads in comparison
to information-dense urban roads (Chapman & Underwood, 1998). In this study
however the I-DT algorithm was used with data containing smooth pursuit, and
hence the concept of ‘fixation’ is different. Nevertheless, low arousal may in turn
be the product of a non-demanding road requiring little search. In order to be able
to use fixation duration as a measure of processing, it is therefore important to be
able to argue that participants have not had tendencies to forget the task and start
‘daydreaming’.

Higher stress results in shorter fixation durations In human factors, shorter fixations
are indicative of a high mental workload (Unema & Rétting, 1990; Miura, 1990;
Robinson, Erickson, Thurston, & Clark, 1972). Van Orden, Limbert, Makeig, and
Jung (2001) developed a model using regression analyses from eye-movement
data on a tracking task, showing that fixation duration was a robust and reliable
predictor of tracking performance, again with short fixations correlating with high
workload. The reader should be aware, however, that there is a distinction to be
made between high workload which you complete successfully (giving longer
fixations), and high workload which you struggle to engage with because you are
too stressed (giving shorter fixations). Many short fixations across a web page
are, according to Ehmke and Wilson (2007), indicative of the frequent usability
problem, where a user goes to a page on the site, expecting to find specific details,
but not finding them.

Expertise leads to longer fixation durations Expertise in a field such as chess, art,
and goalkeeping result in longer (and fewer) fixations than for novices (Nodine,
Locher, & Krupinski, 1993; Reingold et al., 2001; Savelsbergh, Williams, Van
Der Kamp, & Ward, 2002; Reingold & Charness, 2005). In this case the longer
fixation does not mean more processing, but rather a different kind, which in-
volves a larger visual span. With expertise it can be a matter of processing effi-
ciency; fixations may be longer for the expert, but there are less of them compared
to the novice because, with increasing skill, more information is extracted around
the point of fixation making eye movements overall more efficient.

Neurological impairment means longer fixations Schizophrenia patients have longer
fixations the more disturbed their thoughts (Ishizuka, Kashiwakura, & Oiji, 2007).
Alzheimer patients make longer fixations when reading (Lueck, Mendez, & Per-
ryman, 2000). Alcohol intoxication results in longer fixation durations (Moskowitz,
Ziedman, & Sharma, 1976; Moser, Heide, & Kompf, 1998). This should not be
interpreted as more or deeper processing, but rather as indicative of a hampered
processor. Longer fixation durations in infants have been associated with a poorer
cognitive performance, both concurrently, and later in life (Colombo & Frick,
1999), in a line of research that uses not eye tracking but videotaping and direct
observation.

Inspected stimulus moves quickly A few studies of inspection workers and internet
users have noted very long fixations on a stimulus that just passes in front of the
participant (Moraal, 1975). This is interpreted as a deliberate strategy of experi-
enced viewers/inspectors facing a fast-moving stimulus, where time constraints
make it more efficient than fixation-saccade sequences.
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11.4.3 The skewness of the frequency distribution of fixation
durations

Target question Do shorter or longer fixation durations dominate?

Input representation A set of fixations from a trial or whole recording
Qutput A skewness value for the frequency distribution

Skewness refers to the degree of asymmetry in the distribution of fixation durations. The
skewness calculation was introduced on page 315.

In human factors, this measure is taken to indicate differences in information acquisition.
that may either be due to design or to task. Ellis and Smith (1985) found values between 1.84
and 2.64 during different phases of air traffic control work. Abernethy and Russell (1987)
finds the value 1.83 for expert badminton players, compared to 1.77 for novices.

Harris, Tole, Ephrath, and Stephens (1982) evaluate two different designs of vertical speed
indicators in aircraft, and conclude that the higher skew in one of them, because of more short
fixations, indicating a lower mental workload. Some of the studies referred to by Rétting
(2001, pp. 114-119) found differences in the measure as an effect of different phases of work,
for instance as a pilot goes through the different checking phases before take-off. Megaw
and Richardson (1979) show histograms with large differences in skew between inspectors
of different materials. If it can be assumed that different fixation duration values indicate
different cognitive processes, then the skew value reflects the relative prevalence of those
processes.

11.4.4 First fixation duration after onset of stimulus

Target question How long was the first fixation on the stimulus?

Input representation  The first fivation on the stimulus after its onset
Output The duration of the fixation (ms)

The first fixation after onset has a particular status, as it coincides with the very first intake
and processing of the attended part of the stimulus, and its duration reflects the immediate
information processing. The initial fixation duration typically reflects a latency in the sense
that it measures the time between the onset of a stimulus and the initiation of a saccade (see
figures 11.16(a) and 13.1). There are important issues to consider when using first fixation
durations:

First, how to measure fixation onset? It is a mistake to think that fixation onset is aligned
with the stimulus onset, since the oculomotor fixation very often starts before the stimulus
onset, and later only continues. When the stimulus software switches trial during a fixa-
tion, many recording softwares will split the fixation into two parts, as illustrated in Figure
11.16(a). If you have many short trials, this may affect the average first fixation duration sig-
nificantly. In addition, it is likely that processing associated with the last fixation in one trial
will spill over to the first fixation in the next trial. One way to alleviate this effect is to show
a blank (noise) display between trials.

Should you use the first or the second fixations? Since the fixation position at stimulus
onset has not yet been influenced by the stimulus content, the initial fixation is often excluded,
and the first fixation after the initial saccade is counted as the first fixation 11.16(b). This way.
the duration reflects the processing at the first actively chosen fixation position.

As pointed out on page 378, some care should be taken before forming averages between
first and other fixations, as they may represent different cognitive processes.
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(a) Fixations occurring on the cusp of a trial (b) The two first fixations, F1 in AQI Band F, in ACI
border, for instance when a new stimulus A, with their durations indicated in black. Note that Fa4
picture is onset, may be split in two, and the in AOI A is not a first fixation.

second half (A) falsely registered as the first
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ity (B) is the first complete fixation after trial

onset.

Fig. 11.16 Examples of position duration measures, and a problem with trial borders for first fixation
durations.

11.45 First fixation duration in an AOI, and also the second

Target question How long was the first (or second) fiation in an AOI?

Input representation  The first or second fixation on an AO0!
Output The duration of the fivation (ms)

The duration of the first fixation in an AQI, the first fixation duration, or just FFD, is in-
terpreted as reflecting the time taken for fast processes such as recognition and identification.
Note that despite the similarity in name, this is a very different measure compared to the pre-
Lious one. first fixation duration after onset of stimulus. The current measure is specifically
—=<erved for the first fixation on a part of the stimulus image, whereas the former referred to
the very first fixation per se.

Thus, with this measure the AOI resides in the same stimulus that the participant has
already been looking at for a period of time (see Figure 11.17). It is likely that the participant
%25 seen the AOI in question using peripheral vision, and to a small extent processed it and
stems in its immediate proximity, in particular if the AOI is a word. For the previous measure,
the first fixation is only preceded by enough processing to launch a saccade.

In reading, where this measure was first developed, it is considered to reflect the lexical
sctivation process. The word properties that affect first fixation duration include word fre-
quency, morphological complexity, metaphorical status, orthographic properties, the degree
of polysemy, and other linguistic factors (Inhoff & Radach, 1998; Clifton er al., 2007). The
Gr<t fixation duration measure is now extensively used in reading research, second only to
dwell time (also known as ‘gaze duration’).

There is also the second fixation duration, for instance Foq in Figure 11.16(b). When a
long word is hit by two subsequent fixations in the direction of reading, there is a systematic
c=lationship between their landing positions and their durations. If the initial fixation hits
e word on its initial few letters, it is short, and the subsequent fixation longer. If the initial
Sxation hits the centre of the word, it is longer, and the subsequent fixation shorter. According
i Inhoff and Radach (1998), it is not clear whether this is an effect of different linguistic
srocesses being computed. The second fixation duration is sometimes taken as a measure of
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Fig. 11.17 Examplification of five related position duration measures. First fixation after trial onset: 1.
First fixations in AQl: 2 and 3. Fixation durations of 1-7 are calculated on a fixation-by-fixation basis.
Dwell time is the time from entry to exit, namely the durations of: 2, and 3+4+5+6, and 7, respectively. For
Total dwell time in AOI A, add the durations of fixations 2 and 7.

serial processing of long compound words (Pollatsek & Hyoni, 2005).

In scene perception, Van Diepen, De Graef, and D’ Ydewalle (1995), Van Diepen, Wampers.
and D’ Ydewalle (1998) and Van Diepen (2002) show line drawings of scenes, finding that
first fixation durations are longer when the fixated area is masked or degraded using gaze-
contingent technology, which indicates that first fixation duration would work as a measure on
visual information acquisition from the fixated area. Henderson et al. (1999); De Graef et al.
(1990) showed that first fixation durations on semantically inconsistent and low-probability
(hence more informative) areas in a picture are longer than for fixations on more plausible

objects. In this case, first fixation duration is used as a measure not just of object activation,
but of overall scene integration.

11.4.6 Dwell time

Target question For how long, measuring from entry to exit, did gaze remain
inside the AOI?

Input representation A dwell in an AO!
Output The duration of the dwell (ms)

A dwell is defined as one visit in an AOI, from entry to exit (p. 190). Terminology for the
dwell time measure varies. In some parts of human factors research, the measure is called
‘glance duration’, and Loftus and Mackworth (1978) used the term ‘duration of the first
fixation” for the first dwell time in an AOI. Terms like ‘observation’ and ‘visit’ can also be
found. In reading and some parts of scene perception research, dwell time is often called ‘gaze
duration’, ‘regional gaze duration’, or even ‘first-pass fixation time’, and in psycholinguistics,
Griffin and Spieler (2006) use the term ‘gaze time’. Krupinski and Jiang (2008) use the term
‘cumulative decision dwell time’ for dwell time on lesions in medical images. Dwell time is
used in most other eye-tracker-based research fields, and dwell is a more precise term than
the ambiguous gaze.

The term ‘attentional dwell time’ is used for a completely different, non-eye-tracking
measure, of the time it takes to release attention from a target that is being identified.

There are important distinctions between other measures, illustrated in Figure 11.17. First
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of all, returns to the AOI are counted as new dwells. Also, as dwell time measures from entry
to exit, not over repeated visits, it is conceptually related to fixation duration, and sometimes
the two are confused. However, dwells tend to be more dispersed than fixations, and are typ-
ically considerably longer in duration, as it usually comprises several fixations. Furthermore,
fixations are completely independent of AOIs and are calculated exclusively on the raw data
samples themselves, while dwells can only be calculated if the stimulus has been divided by
AOIs.

Dwell time is often defined as the sum of all fixation durations during a dwell in an AOI,
but the measure can just as well be based on raw data samples. The raw data dwell time
measure will include the durations of non-fixations such as blinks, saccades, and glissades,
as well as fixations shorter than your minimal fixation duration criterion. One may argue that
a lot of non-fixations means a lot of non-processing time, and that the raw dwell time measure
is unsuited as a measure of cognitive processing. That is true in special cases. for instance if
you were to have an AOI that is never looked at but is passed over by saccades a great many
times. In general, however, this non-processing time is small (up to 20% on top of fixation
durations), and should equal out across AOIs and across conditions. Also, considering the
current state of the various fixation analysis algorithms (see Chapter 5). a measure based on
fixations may contain an equal amount of imperfections.

Furthermore, a distinction is sometimes made between the first and the second dwell in
an AQI, in analogy to first/second fixation duration in the AOI The difference, of course, is
that the second dwell is preceded by an exit from the AOI, while the second fixation is not.

Hyoni et al. (2003) present the reading measure ‘extended first dwell time’ (or, ‘extended
first-pass fixation time’), which is the first dwell time in an AOI, but including regression
to other AOIs (previous text), assuming that the AOI is again returned to. This also works
if the other region is a pictorial element, The idea is that regressive excursions are part of
forming the understanding of the word regressed from, and should therefore be included
in the processing time of an AOI, and that the dwell time should not be terminated at the
regressive exit from it.

In many tasks, dwell time distribution is heavily right-skewed, as in Figure 11.18, which
shows a histogram over dwell times on photographs in paper newspapers. Such data are com-
monly log-transformed before applying statistical tests (pp. 87-90).

Dwell time distributions can be constrained by constant trial durations. For instance, a
trial duration of 3000 ms could give a distribution peak at 2700 ms for an AOI As part of the
variance can be considered to disappear outside of the 3000 ms, variance analyses (such as
ANOVA) on the data may be inappropriate (p. 83).

The recorded dwell time for an object depends on the semantics of the object, and the
task of the participant. The following research findings illustrate this:

Interest and informativeness Dwell time indicates interest in an object, or higher infor-
mativeness of an object. Friedman and Liebelt (1981) found that objects with lower
probability of occurrence (defined as higher informativeness), were looked at longer
than objects with high-rated likelihood of being present. Pieters, Rosbergen, and Har-
tog (1996) also observed that on second viewings of print advertisements, the dwell
time to advertisement elements decreases. When the contents of an AOI changes con-
siderably in the midst of a trial, the first return dwell time to the AOI (after the change)
is larger (Ryan & Cohen, 2004). All this indicates a strong relationship between con-
secutive fixations on an item and how much you need to mine information from it.

Uncertainty and poorer situation awareness A higher dwell time may be indicative of un-
certainty and poorer situation awareness. Ottati, Hickox, and Richter (1999) found that
in a navigational task, novice pilots had a higher dwell time on the outside (through the
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Fig. 11.18 Histogram with 2224 dwell times (unit: seconds) on newspaper photos during natural newspa-
per reading by 110 participants, using a headmounted eye-tracker at 50 Hz with Polhemus head-tracking.
Bin size 250 ms.

window) than experienced pilots, which the authors attribute to uncertainty in locating
navigational landmarks amongst pilots with less experience. Hauland (2002) in a large
study of air traffic controllers, found that a higher dwell time on AOIs correlates with

a poorer situation awareness.

Difficulty in extracting general information Longer dwell time may indicate difficulty in
extracting information from a display, as put forward by Fitts ez al. (1950), and Goldberg
and Kotval (1999). Jacob and Karn (2003) note that dwell time is one of the most used
measures in usability studies. In research on car driving for instance, a long-standing
discussion is how long dwells to in-car instruments (radios, air control, and GPS etc.)
can be without risk of accidents (Zwahlen, Adams, & De Bald, 1988; Rockwell, 1988)

Difficulty in extracting word information Rayner (1998), reviewing reading research us-
ing the fixation-based dwell time measure, concludes that dwell time (‘gaze duration’)
is a good index both of word frequency—Ilonger dwells relating to less frequent words—
and of comprehension processes integrating several words. Dwell time on a word thus
contrasts to first fixation duration, the other major reading measure. More generally,
Rayner and Pollatsek (1989) argue that very fast cognitive operations, such as lexical
activation and recognition, can be measured with first fixation duration, while slower
cognitive processes affect dwell time. In spoken interaction, the dwell time on the inter-
locutor’s (the speaker) mouth increases with the ambient noise levels, an indication that
mouth movements play a role in hearing and understanding speech (Vatikiotis-Bateson.
FEigsti, Yano, & Munhall, 1998).

An upcoming conscious choice When participants compared abstract, unfamiliar shapes for
attractiveness, and were asked to select one, they gradually increased dwell time on the
item that was eventually chosen, up until it was finally selected. This has been termed
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‘the gaze cascade effect’ (Shimojo, Simion, Shimojo. & Scheier, 2003).

In gaze-based interaction with computers, dwell time is the predominant criterion for
deciding whether gaze on a button AOI should cause activation of the button function. In the
basic version, a dwell time threshold of some 400 or 500 ms is required before activation.
When the dwell time threshold is too low, buttons activate prematurely, and users experience
what is known as ‘the Midas touch’: everything they look at activates (Jacob, 1991). Research
in this area is intense at present, and several new designs exist that combine other selection
criteria with dwell time (see for instance, Tall, 2008).

11.4.7 Total dwell time

Target question Over the whole the trial, how much time was spent in the AOI?

Input representation A ser of dwells on the same AOI
Output The sum of dwell durations on the AOI (ms)

Total dwell time is the sum of all dwell times in the one and same AOI over a trial (or
other specified period). This may sound simple, but so far terminology for and usage of
this measure is confusing. Rétting (2001, p. 120) uses the term ‘gaze duration’, which is
also used in the reading research community for the common single dwell time. Journal
papers and manuals also exhibit the terms ‘cumulative dwell time’, *glance duration’, ‘gaze’,
‘total viewing time’, ‘total fixation time’, “fixation cycle’, and ‘time in zone’. Clifton ez al.
(2007) use the term “total reading time’ for “the sum of all fixations in a region, both forward
and regressive movements” (i.e. total dwell time). Inhoff and Radach (1998) point out that
although total dwell time (which they call ‘total viewing durations’) seems to be sensitive
to linguistic processes that operate after the word has been identified, the measure should
be refined by separating dwell time during first reading from dwells on the same word in
subsequent readings.

Total dwell time subsumes the whole duration of a trial, and should therefore be sensitive
to slow and long-term cognitive processes, but the lack of terminological precision in much of
the literature before 2010, in particular the lack of distinction between single and total dwell
time, makes it almost impossible to review what the measure has been used for. However,
Henderson and Hollingworth (1999) conclude in their review that studies on scene perception
“show a clear effect of the meaning of a scene region on gaze duration [which here means
total dwell time] in that region, but a less clear effect on first fixation duration”.

Reading-specific varieties of total dwell time include ‘look-back fixation time’ (*second-
pass fixation time’), which is the sum of all dwells to a text AOI except the first one, and
‘regression time’, the sum of all dwells upon an AOI that follow a regression (Hyoni et al.,
2003).

‘When there are few AOlIs, total dwell time suffers from the fixed trial duration restriction
on variance analysis (p. 83) even more so than ordinary single entry dwell time.

11.4.8 First and second pass (dwell) times in an AOI

Target question How long was the first dwell in the AOI, and how long the sec-
ond?

Input representation  The first (or second) dwell & on an AOI
Output The duration of Z (ms)

First pass dwell time (also referred to as ‘first pass gaze duration’, ‘first-pass fixation
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time’, and *duration of the first fixation’) is the reading research communities’ term for the
duration of the first dwell in an AOI, which may be a word, a region, or a sentence. In Figure
6.3 on page 191, the first pass dwell time in AOI 1 consists of two fixations, while the first
pass dwell time in AOI 2 has a single fixation. When there is only one fixation, first pass
dwell time equals first fixation duration (plus saccades. in the raw data option). Both AOIs
have second pass dwell times, also, made up of 3 and 5 fixations each.

First pass dwell time has been proposed as a candidate measure for early processing
and object recognition. For instance, Liversedge et al. (1998) argue that for long words,
which are hit by many fixations, not only the first fixation involves early processing (lexical
activation), but also several fixations thereafter combine to do this, and then the first pass
dwell time is a better measure than the first fixation duration. Loftus and Mackworth (1978)
find that the measure increases for semantically informative objects and Friedman (1979)
that it increases for unlikely objects in its context. Henderson ef al. (1999) found both first
pass dwell time and second pass dwell time to be longer for semantically informative objects.
However, Henderson and Hollingworth (1999) estimate total dwell time to be a better measure
than first pass dwell time for studying object recognition.

Second-pass dwell time is defined by Hyond e al. (2003) (under the names ‘look-back fix-
ation time’ and ‘second-pass fixation time') as the summed durations of all returning dwells
to an AOL

11.4.9 Reading depth

Target question How ‘deeply’ is the text read?

Input representation  Text in an AOI and eye movement data
Output A depth (in pixels) or proportion of the text looked at

Reading depth, also known as ‘reading ratio’, is a vague measure with several possible
operational definitions. When using newspapers or other everyday written material, readers
read only portions of the text, and may skip parts to continue with later text, as in Figure 6.5
on page 192. The purpose of the reading depth measure is to quantify how much of the text
has been read. The following definitions have been used:

Centimetres Manually measuring how many centimetres have been read from scanpath vi-
sualizations and scene-overlaid videos is one option. This operational definition was
used by Hansen (1994), who found the following relationship between text length and
reading depth in newspapers: Triple the length of the text—e.g. from 20 to 60 cm—and
you will have half as deep a reading—10% rather than 20% of the whole text. Although
this entails an increase of 2 cm reading in 60 cm compared to the 20 cm text, this 2 cm
gain costs 38 cm of additional unread text space. The variable type is ratio.

Dwell time divided by AOI area Holmgvist and Wartenberg (2005) and Holsanova, Rahm.
and Holmgyvist (2006) showed that broadsheet newspapers are read less densely (34
ms/em? over all pages) compared to tabloid newspapers (50 ms/cm? over all pages).
and that the most read article had an average value of 207 ms/cm?, with the ads hover-
ing around 5 ms/ecm?. The major advantage with this kind of measure is that it works
for all sorts of combined stimuli, not just for text, as you can have pictures and words
presented together. The variable type is again ratio.

The number of fixations per word in a text AOI If the entire newspaper article is read, we
expect a value of about 0.8 (since not all words are fixated), but if a participant reads
Jess of the text, we get a lower number. Poole, Ball, and Phillips (2004), and Poole
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(2003) found the values 1.08-2.41 fixations per word in bookmark phrases that partici-
pants searched for on web pages. The variable type is nominal, as the data can only
be counted; however, recalculation into a proportion is possible. Although not for-
mally correct, ANOVA could be used if the data are normally distributed. A logit-
transformation may be appropriate.

Dwell time per word in a text AOI Processing time is included in this operational defini-
tion of the measure. We can expect a value of around 200 ms/word when the text in the
AOI is fully read, and lower values for a more shallow reading depth. This definition
exists also in the reading research community in the form of two rare measures ‘first
pass reading times per character in a region” and ‘total pass reading times per character
in a region’. The variable type is ratio.

Ratio to baseline Record a full reading of the stimulus, and use as a baseline. If a super-
market customer reads on a food package for 2.5 seconds, and we have previously
recorded a full reading at 20 seconds for the complete content on the package, then
the 2.5 seconds corresponds to a reading depth of 12.5%. This operational definition
is particularly useful for stimuli with very mixed content, such as food packages and
information graphics. The variable type is ratio.

Note that re-reading adds to the reading depth measure, even if the same text is read over
and over again, except in the centimetre length operational definition by Hansen (1994). On
the other hand, all varieties except Hansen's have no demands on consecutive reading, not
even that the participant sticks to conventional reading order.

Figure 11.19 shows one application of the reading depth measure from the newspaper
reading studies in our lab. It shows that a longer text is not only read less deeply, but reader
comprehension is also better for shorter texts.

11.5 Pupil diameter

Target question How large is the pupil?

Input representation  Raw data
Qutput Pupil diameter or area (mm, camera pixels, mm®, or pixels®)

Pupil diameter (‘dilation’, ‘size’) is raw data provided as samples (in sample frequency).
Values are typically given in pixels of the eye camera. Some eye-trackers can also report pupil
diameter in millimetres after a simple calibration routine. When considering this measure as
= property of eye position, it is important to point out that although in terms of the eye camera
Jata points are recorded giving the pupil diameter when fixating a certain position, changes in
supil diameter may occur as a function of what has just been looked at, not what is presently
Seing fixated (i.e. there may be some latency, see page 434). For the purposes of this chapter
sowever, we deal with pupil diameter as it relates to the current position being looked at in
space, as per the data recorded.

Operational definitions of pupil size

The recording software implements one of three different operational definitions. The sim-
olestis to use the horizontal pupil diameter. The reason for measuring the horizontal diameter
1= that the vertical diameter is too sensitive to eyelid closure. With extreme gaze directions,
mowever, the optical perspective may cause the horizontal diameter calculation to underesti-
mate pupil diameter. Fitting an oval to the pupil image of the eye video and calculating the
‘argest diameter, irrespective of direction, somewhat remedies the error due to gaze direction,
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(a) Two identical newspaper folds, except that one article is shorter in the leftside version, and
an advertisement fills the remaining space.

Text comprehension
Reading ratio
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(b) Text comprehension is significantly better (c) Reading depth (ratio) is significantly lower
for shorter newspaper articles. for longer newspaper articles.

Fig. 11.19 In newspaper reading, article length influences both reading ratio (in this case number of
fixations per word in the AOI) and text comprehension. Recorded using a head-mounted eye-tracker at
50 Hz with Polhemus head-tracking, and 40 participants on authentic but manipulated newspapers.

but this is more sensitive to eyelid closure. Calculating the area of the pupil is sensitive to
both eyelid closure and gaze direction. These errors are known, but their magnitudes not sys-
tematically investigated (Klingner, Kumar, & Hanrahan, 2008; Pomplun & Sunkara, 2003).

Analysing pupil diameter in data recorded from a remote system may also introduce arte-
facts, since motion of the head closer to and further away from the camera also changes the
pixel size of the pupil in the camera image. Measuring the camera—eye distance and applying
some trigonometry can remedy this problem, but any noise or latencies that you have in the
measured distance will be inherited in your pupil dilation measure. Therefore, pupil dilation
is best recorded with a system that has a fixed distance between camera and eye. Beware
of systems with automatic zoom in the camera, which can in itself cause large variations in
recorded pupil dilation. Also, if your participant moves so much that now and then, part of
the pupil is outside the eye camera image, data will not be valid.

Pupil size and luminance

When using pupil diameter as a measure of cognitive or emotional states, it is important to
remember that the cognitive and emotional effects on pupil diameter are small and easily
drown in the large changes due to variation in light intensity. Varying brightness of the stim-
ulus (screen) may easily introduce artefacts into the data. It is necessary to produce stimulus
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slides with comparable brightness and contrast. A form of baseline can be achieved by letting
each actual stimulus image be preceded for a period of 2-5 seconds with a slide with the
same luminosity, either a homogeneous tint or a randomly scrambled version of the pixels
in the following actual stimulus. In human factors studies with participants in situations with
a natural variation in luminance, for instance aeroplane pilots, or when using web pages for
stimuli, not to mention authentic advertisement videos, this is particularly difficult and data
may have to be abandoned when luminance is not constant (Dehais, Causse, & Pastor, 2008).

Absolute pupil diameter is highly idiosyncratic; the correlation value, r € [0.811,0.944],
hetween the four conditions in the data of case study 2 on page 5 illustrate this. All pupil
dilation values of a participant should be compared against an established baseline formed by
fixating a blank screen for a longer period of time. Beatty and Lucero-Wagoner (2000) point
out that normalized pupil diameter in % is inflated when the baseline pupil diameter is small,
and recommend the absolute difference measure in millimetres.

Algorithms that compensate for changes in luminance have appeared, which analyse the
variation in light on the stimulus monitor, using wavelets (Marshall, 2007) and principal
component analysis (Oliveira, Aula, & Russell, 2009). Pupil dilation depends more on the
light absorbed by the fovea, than on light hitting the peripheral parts of the retina (Piccoli,
Soci, Zambelli, & Pisaniello, 2004), which could be used for further compensation.

Interpretations of the pupil diameter

The measure can be used to study a variety of cognitive and emotional states; note however
that some commercial eye-tracking providers heavily over-estimate this possibility, and un-
derestimate the difficulties involved (Bartels, 2009). Changes in pupil dilation are triggered
by a variety of factors, which calls for a tight experimental design, if you want to make certain
that the effect in pupil dilation is caused by one specific factor.

Mental workload increases pupil diameter Hess and Polt (1964) concluded that “changes
in pupil size during the solving of simple multiplication problems can be used as a
direct measure of mental activity”. Pupil dilation increased about twice as much (22
versus 11 per cent) when participants calculated 16 times 23, compared to 7 times 8.
This general finding was replicated by Ahern and Beatty (1979), who found diameter
changes of 0.1-0.5 mm (also page 436). Hyoni, Tommola, and Alaja (1995) showed
that pupil diameters for three different types of translating vary as a function of the
level of effort (4.20 mm — listening; 4.72 mm — shadowing; 5.22 — interpreting). Just
and Carpenter (1993) found that sentences of varying syntactic complexity gave dif-
ferent pupil diameters when read. Kahneman and Beatty (1966) found larger pupillary
responses when participants memorized more digits (0.1 mm versus 0.55 mm for 3
versus 7 digits). In the human factors field, pupil dilation is one in a family of measures
used to examine mental workload and cognitive processing. Pupil diameter is often
combined with blink rate and duration, fixation durations, saccadic extent, fixation rate,
and dwell time, to estimate the cognitive requirements of different tasks (Brookings,
Wilson, & Swain, 1996; Van Orden et al., 2000, 2001). Although effects have been un-
clear when averaging over whole trials, data for the various phases of a task are clear:
While blink rate, blink duration, and fixation duration all tend to decline as a function
of increased workload (Van Orden et al., 2000; Veltman & Gaillard, 1998), pupil di-
lation instead increases (Igbal, Zheng, & Bailey, 2004; Van Orden ef al., 2000). Van
Gerven, Paas, Van Merriénboer, and Schmidt (2002) found that mean pupil dilation is
a useful event-related measure of cognitive load in research on education and learning,
especially for young adults.Lying increases the pupil dilation, and attempts have been
made to use the pupillary response as a lie-detector (Janisse & Bradley, 1980; Lubow
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& Fein, 1996). The question remains, however, whether the pupil increases because of
lying or because of a higher cognitive workload or stronger emotions in that measure
situation. Dionisio, Granholm, Hillix, and Perrine (2001) concluded that “try[ing] to
make their lies as believable as possible” was a more cognitively demanding task than
truth-telling.

Emotion and anticipation increase pupil diameter Emotional and sexual arousal increase
pupil dilation of the viewing participants in both males and females (Hess & Polt, 1960:
Aboyoun & Dabbs, 1998). Partala and Surakka (2003) found larger average pupil di-
ameter when participants listened to affect sounds, such as baby laughing and baby
crying, compared to neutral sounds (office noise). Females responded more strongly
to positive sounds, and males more strongly to negative ones. When anticipating to
see answers to trivia questions that the participant reports being curious about, pupil
dilation is larger if the participant was more curious about the answer (Kang ef al..
2009). We also appear to react to pupil sizes of others. For instance, pictures of women
are rated as more attractive, by post-pubertal males, when their pupils are larger; this
does not hold when women make the ratings (Bull & Shead, 1979). Of course, this
was known centuries ago by women who used extracts from the highly toxic plant
belladonna (meaning ‘beautiful lady”) to enlarge their pupils and increase their attrac-
tiveness. Harrison, Wilson, and Critchley (2007) show that a diminished pupil in faces
causes participants who watch those faces to judge them as sadder, although not as ex-
pressing more fear, surprise, or disgust; also, diminished pupil promotes more empathy
towards the faces. Not only has pupil size been found to be associated with emotional
judgment, it is also a social signal that influences the pupil size of others—termed
‘pupil dilation mirroring” or ‘pupillary contagion’ (Harrison, Singer, Rotshtein, Dolan.
& Critchley, 2006).

Drowsiness and fatigue decrease pupil diameter This effect was found by Lowenstein and
Lowenfeld (1962) and Yoss, Moyer, and Hollenhorst (1970), but not by Beatty (1982),
who all used visual and auditory vigilance tasks. It is likely that the studies varied with
respect to participant workload.

Diabetes decreases pupil diameter Patients with diabetes tend to have small pupil size.
possibly because their pupillary sympathetic pathway is affected (Cahill, Eustace, &
de Jesus, 2001).

Age decreases pupil diameter The resting pupil diameter was found to be smaller in the
elderly group (mean age 69) atall three illumination levels, compared to younger (mean
age 19) (Bitsios ef al., 1996).

Pain increases pupil diameter Chapman, Oka, Bradshaw, Jacobson, and Donaldson (1999)
found that peak dilation increased significantly as pain intensity increased. Female
participants show a greater increase at higher pain levels (Ellermeier & Westphal.
1995).

Drugs increase pupil diameter A large number of legal and illegal drugs increase pupil
diameter, and pupil size is regularly used as a field indicator for drug intoxication.

11.6 Position data and confounding factors

A large variety of factors affect what positions in your stimuli your participants are likely to
look at. As always, if you do not watch out for them, they may turn up as confounds in your
experiment, but if you systematically utilize these factors, you may make new discoveries.
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Table 11.1 Some participant factors that influence the positions they look at.

Factor Likely effect Sample reference

Aleohol Missed event, tunnel vision Buikhuisen and Jongman (1972)

Medication Fixation dispersion, and saccade O'Driscoll and Callahan (2008)
and smooth pursuit parameters

Schizophrenia  Restricted dispersion Loughland et al. (2002)

Autism Eye and face avoidance Klin, Jones, Schultz, Volkmar, and Cohen
(2002).

Phobias Avoidance Pflugshaupt et al. (2007).

Eating disorder More looks at their own unap- Jansen, Nederkoorn, and Mulkens
pealing body parts (2005).

Obesity Look more at food when fasted ~ Castellanos er al. (2009); Nijs, Muris,
Euser, and Franken (2009).

Sexuality Looks at body parts of either gen- Rupp and Wallen (2007); Tsujimura ef al.
der (2009)

Take alcohol as an example. The drug influences many parts of the brain and causes partici-
pants to miss task-important events, reduces their functional visual field, and induces tunnel
vision (Buikhuisen & Jongman, 1972). If you have no control over blood alcohol levels with
your participants, you have a confound that may overturn your results. But you may also con-
irol alcohol levels. and make a systematic comparison between levels or to sober participants.

In this section, we briefly point out a number of possibly confounding factors for position
cesults in eye-tracking-based research: the participant himself, and the drugs and medication
%= uses, his cultural background, the task given to him, and the experiences he has, as well as
the central bias effect with monitor-based, and research on features of the stimulus itself.

11.6.1 Participant brainware and substances

Participants vary in their brainware and in what substances they consumed before arriving in
wour lab. This not only makes eye tracking very interesting in the study of clinical groups,
“+ also makes medication a possible confounding factor in many studies. Table 11.1 lists a
sumber of participant factors.

11.6.2 Participant cultural background

The participant’s cultural background would appear to be another possible confounding fac-
tor for experiments that use position measures. Chua. Boland, and Nisbett (2005) showed
that participants from an American culture tend to look more at focal objects, and partici-
pants from a Chinese culture more at the background, when both are shown the same pictures
with a focal object and a complex background. However, this result could not be replicated
v Rayner, Castelhano, and Yang (2009); Evans, Rotello, Li, and Rayner (2009); Rayner, Li,
et al. (2007).

However, Blais, Jack, Scheepers, Fiset, and Caldara (2008), and Miellet, Lingnan, Matthew,
Rodger, and Caldara (2009) found that East Asians looking at faces look more at the nose
“2an Western Caucasians, and that this was not due to a larger functional visual field. Also,
McCarthy, Lee, Itakura, and Muir (2006) found that Canadians and Trinidadians who think
“tout the answer to a question from an interlocutor tend to look up, while Japanese partici-
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Fig. 11.20 Raw data sample from participants with varying levels of proficiency in chess, as they evaluate
chess board with attackers (A) and a king (K). The figure suggests a lower dispersion of experts. Reprinted
from Eyal M. Reingold, Neil Charness, Marc Pomplun, and Dave M. Stampe, Psychological Science,
12(1), copyright © 2001 by SAGE Publications. Reprinted by Permission of SAGE Publications.

pants look down. Canadians but not Japanese altered their gaze behaviour when knowing that
they were observed (McCarthy, Lee, Ttakura, & Muir, 2008).

11.6.3 Participant experience and anticipation

Another possibly confounding factor for position measures that may need to be controlled
for is the participant’s experience with the task. A host of studies show that expertise gives
rise not only to a more task efficient selection of gaze positions, but also to a superior percep-
tual processing from a larger functional visual field, stretching further out from the fixation
point, than it does for novices (although not overriding the physiological restrictions at the
retina, visual pathway and visual cortex). Such effects of experience has been shown for
painters (Vogt & Magnussen, 2007; Nodine et al., 1993; Antes & Kristjanson, 1991), drivers
(Mourant & Rockwell, 1972), during the diagnoses of electrical circuits (Van Gog, Paas, &
Van Merriénboer, 2005), of dental and mammography X-rays (Van Der Stelt-Schouten, 1995;
Krupinski, 1996), chess (Reingold et al., 2001; Reingold & Charness, 2005) and basketball
players (Memmert, 2006). As part of training, for instance in sign language or to drive, gaze
positions gradually change (Emmorey, Thompson, & Colvin, 2008; Mourant & Rockwell.
1970; Mourant er al., 1969).

Why is experience so important? Gaze is generally anticipatory, reflecting the partici-
pant’s probabilistic model of the world. For instance, if you meet a pedestrian coming from
the other direction, and you judge her to be collision-prone, you will look earlier and more at
her than if you feel safe with that person (Jovancevic-Misic & Hayhoe, 2009). In ball sports.
the experts look at the bounce point 100-200 ms before the ball reaches it (Land & McLeod.
2000, Ripoll, Fleurance, & Cazeneuve, 1987), giving them time to confirm their prognosis for
the continued trajectory, which in turn they need for quick action. Expert goalkeepers facing
a penalty shot look at the legs and face of the kicker (Savelsbergh et al., 2002) as part of their
preparation.

11.6.4 Communication, imagination, and problem solving

Not controlling what is said to participants is very likely to alter the position data you collect
from them, as shown already by Yarbus (1967) in the example with the unexpected visitor.
Both speaking and listening heavily influences the position of fixations (Holsanova, 2008;
Griffin & Bock, 2000; Tanenhaus et al., 1995).

Other people’s gaze will also alter the positions to which your participants will look. In
general, people are well aware of other people’s gaze direction, and it affects where they
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look themselves. In a series of studies on gesture perception, Gullberg and Holmqvist (2006,
1999) showed that speakers who fixate their own gestures attract significantly more gazes
from the listener to these gestures, and this effect is used by magicians to govern the audi-
ence gazes (Kuhn & Tatler, 2005). Communication between two people becomes easier and
mutual problem solving is quicker if they can see each other’s gaze positions (Velichkovsky,
Pomplun, Rieser, & Ritter, 1996).

An increased mental workload during speech planning or actively recalling a memory
often causes participants to look away from their interlocutor, computer monitor etc. This is
known as ‘gaze aversion’. Doherty-Sneddon, Bruce, Bonner, Longbotham, and Doyle (2002)
showed that 5-year old school children inconsistently avert gaze, but that it increases dra-
matically during the first years of primary education, reaching adult levels by 8-years of age.
Glenberg, Schroeder, and Robertson (1998) showed that the amount of time spent looking
away from an interlocutor increases with task difficulty, and that participants gave more cor-
rect answers when averting their gaze. Together, this indicates that gaze aversion may be
functional.

Speech affects eye movement even if objects spoken about and looked at just represent
the mental images produced by the participants (Polunin, Holmgqvist, & Johansson, 2008;
Loetscher, Bockisch, & Brugger, 2007; Zangemeister & Liman, 2007; Johansson er al., 2006;
Laeng & Teodorescu, 2002; Brandt & Stark, 1997). When solving geometrical and graphical
problems, the ability to imagine the functional role of part objects in the solution depends on
where participants look, as shown by Grant and Spivey (2003); Yoon and Narayanan (2004b).
In a study on ambiguous pictures, including the Necker cube, Pomplun et al. (1996) show that
gaze position coincides with the interpretations participants subjectively experience.

11.6.5 Central bias

The vast majority of eye-tracking research, even if it purports to generalize to all visual activ-
ities, is made using stimuli presented on single monitors. With most stimuli—text being the
large exception—participants show a marked tendency to fixate the centre of the screen more
than any other part. Tatler (2007) attributes this observation to one of three possibilities:
First, the center of the screen may be an optimal location for early information processing
of the scene. Second, it may simply be that the center of the screen is a convenient
location from which to start oculomotor exploration of the scene. Third, it may be that
the central bias reflects a tendency to re-center the eye in its orbit.

Fehd and Seiffert (2010) point out that looking steadily at the centre of scenes allows a par-
ticipant to keep a better overview of the multiple objects in it compared to looking around.
Interestingly, monkeys appear to have less central bias (Berg er al., 2009), which suggests
that specific human expectations and experiences cause it.

Researchers unaware of the central bias effect may erronously generalize a result from
monitors to real-life behaviour.

11.6.6 The stimulus

Elements in the stimulus itself may inadvertently attract participant gaze and become a con-
found in studies. For instance, accidentally having people or faces on a stimulus picture where
the research question refers to the other visual elements (in a park, for instance) is very
likely to alter results, because people and faces attract participant gaze. The ‘visual search’
paradigm has attempted to systematically investigate what other so-called ‘bottom-up fea-
tures” (colour, motion, orientation, for instance) in a picture attract visual attention, or in
other words make an object ‘pop out’. Wolfe and Horowitz (2004) review a large number of
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visual features that may or may not attract participant attention.

Some eye-tracking studies have indeed given support to the idea that bottom-up features
are important to human choices of gaze positions. Reinagel and Zador (1999) and Parkhurst
and Niebur (2003) report a higher luminance contrast around fixation than in randomly cho-
sen regions, while Baddeley and Tatler (2006) conclude that high-frequency edges are good
predictors of fixation locations.

The Itti and Koch (2000) saliency model is a hotly debated computational model of some
of the assumed neurological principles that employ bottom-up (pre-attentive) features to se-
lect fixation targets. Implementations are available on several web pages and in some of the
dedicated analysis softwares for eye-movement data. Competing but less known models in-
clude the target acquisition model (TAM) (Zelinsky, 2008), the gaze-attentive fixation finding
engine (GAFFE) (Rajashekar et al., 2008), the contextual guidance model (Torralba, Oliva.
Castelhano, & Henderson, 2006), and the neurodynamical cortical model (Deco & Rolls,
2004). None of these are as well investigated as the saliency model, but Nystrom (2008)
shows that the GAFFE model does somewhat better than the salience model in comparison
to human data. Itti (2005) demonstrates a better than chance similarity between human eye-
movement data and the output of the saliency model, however.

Models can be seen as useful and necessary steps in the evolution of our scientific under-
standing of what people look at, but the cost for false negatives could be very large in some
specific applications. For instance, radiologists scanning X-ray images appear (o use other
features compared to those emphasized in the visual search paradigm (Krupinski, Berger.
Dallas, & Roehrig, 2003).

Also, the dominance of bottom-up features is not supported by Chen and Zelinsky (2006)
who show that top-down guidance of eye movements in a search task always prevails over
bottom-up saliency features (colour coding of singular elements among grey-scale objects).
Similarly, by blurring some parts of stimulus pictures and increasing contrast in others,
Einhiuser ef al. (2008, 15) show that “a visual search task can override and actively coun-

termand sensory-driven saliency in naturalistic visual stimuli”. Also Henderson, Brockmole.
Castelhano, and Mack (2007) argue that Itti’s bottom-up models of saliency do not account
for human eye movements, while others have shown that central (Tatler, 2007) and oculomo-
tor biases (Tatler & Vincent, 2009) can explain eye-movement data better than the saliency
model.




