5 Estimating Oculomotor Events from Raw
Data Samples

In this chapter, we will present the algorithms responsible for calculating fixations, saccades,
smooth pursuits, and other events directly from the raw data samples. This chapter is orga-
nized as follows.
e In Section 5.1 (p. 148) we introduce the illusively simple calculation of fixations and
saccades, illustrated by manufacturers’ analysis software.
Section 5.2 (p. 150) introduces what the algorithms have to work on; namely position,
velocity, and acceleration data. We classify the events to be detected and the algorithms
that do it.
In Section 5.3 (p. 153) we provide a condensed list of hands-on advice for the beginning
user of an event detection algorithm.
Current algorithms are far from perfect. In Section 5.4 (p. 154), the major challenges
are listed. The selection of settings is given particular emphasis. Read this if you want
to know in detail what the algorithms may do with your data.
If you are interested in the algorithms themselves and the design issues and computa-
tional reasons behind them, read Section 5.5 (p. 171).
Section 5.6 (p. 175) focuses on data recorded onto gaze-overlaid video, for which man-
ual segmentation of fixation duration and other events is often the only option.
Blink events (Section 5.7, p. 176) are easily detected, but smooth pursuit is not (Section
5.8, p. 175).
Noise and artefacts (Section 5.9, p. 181) are not even considered events, but there are
good reasons for algorithms to detect such periods, and for us as researchers to decide
how to treat them.
There are detection algorithms also for some of the lesser known events, for instance
microsaccades and square-wave jerks (Section 5.10, p. 182).
e The chapter is summarized in Section 5.11 (p. 185) by listing the events that can be
detected and the values of which we carry with us for further analysis.

Very often, the first step in data analysis is the calculation of events such as fixations
and saccades, with all their parameters. Indeed, the fixation and saccade values exported by
the algorithms of this chapter are of great importance. They are heavily used in research
in themselves. as well as in a multitude of combinations with other ways to measure and
visualize eye-tracking data. Sometimes, it is even thought to be impossible to analyse eye-
tracking data without this calculation. This is wrong, however. In many cases, fixation and
saccade analysis is not a prerequisite to data analysis. For instance, heat map visualizations
and the dwell time measure (p. 386) and scanpath length (p. 319) can all be calculated on raw
unprocessed data just as well. Only raw data, but not fixations, can be taken as input when
the analysis is tightly connected to running sample time, as with proportion over time curves
(p. 197).




148 |ESTIMATING OCULOMOTOR EVENTS FROM RAW DATA SAMPLES

Filter Settings

n. Duration M Auto

Fixation filter suggestions:
ade fenath St wh mostly pictures: Fixation fiter SO péels and 200 ms.
gth Stimuls with mostly resding: Fieatian filker 20 pleels and 40 ms.
Stiml with mixed conbent: Fixation filker 30 pikels and 100 fs.

(b) Tobii ClearView 2007

Events and Data Pro

Eue Fuent Data

~ade itivity (GH

File Sample Filter

Linksfinalog Filter
(c) ASL Eyenal 2004 (d) SR EyeLink 2007

Fig. 5.1 Settings dialogues for fixation analysis in three analysis packages and one recording software
from commercial eye-tracking manufacturers.

51 The setting dialogues and the output

In theory, the event detection algorithm takes raw, possibly filtered data samples and tries to
detect events within them. The most reported of such events are fixations and saccades. It
sounds simple and something that could be done automatically, and that we should not really
have to bother thinking about, and indeed software engineers have made it illusively simple
to use fixation algorithms. All you have to do is to accept the pre-set values in a dialogue like
those in Figure 5.1, and click OK.

In reality, however, these setting dialogues provoke many questions: What does minimal
time or minimum fixation duration actually mean? What is a fixation radius, and how does
it relate to monitor resolution, measured in pixels? And what is peak velocity threshold?
When is a normal saccade-detection sensitivity better than a high sensitivity; should not high
sensitivity always be better? And what do all the ASL Eyenal parameters mean? How sensible
are the suggestions given in the Tobii dialogue? Why should there be different settings for
different kinds of stimuli: are fixations more stable in reading than in picture viewing when
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(a) Raw samples at 50 Hz. (b) Raw samples at 50 Hz.

(c) Raw samples at 1250 Hz.

Fig. 5.2 Enlarged views of raw samples plotied against the stimulus background. Note how close sam-
ples are to one another in the 1250 Hz recording compared to the 50 Hz data, in particular during long
saccades. Also note the low precision in (b) recording compared to (a) and ().

such recordings are taken on the same eye-tracker? Is there a danger that my data is too noisy
to do a fixation analysis, or does filtering automatically fix this? Does it matter what settings
I choose? The purpose of this chapter is to give a better understanding of how event detection
works, and provide insights into how to approach a settings dialogue such as the ones in
Figure 5.1.

Figure 5.2 shows the input, the raw data samples, from three different eye-trackers. The
raw data constitute the data that you get from your eye-tracker after recording. When plotting
raw data against the background of the stimulus, each data sample is a little dot. During a
saccade, when the eye is moving quickly, the distance between dots is large. During fixations,
the dots aggregate to form one large blob from many dots. How closely the raw sample dots
are positioned is directly related to the sampling frequency of your eye-tracker. How smooth
the raw data appear is a direct consequence of the precision of the eye-tracker. Both these
system properties are crucial to how the fixation and saccade algorithms are designed, and
Jargely decide what a given algorithm can deliver.

In Figure 5.2(c), a full stimulus display is shown with an overlaid raw data plot. Fixation
blobs and thinner saccadic lines are clearly seen. Vertical lines are blinks in progress. At the
bottom and to the left, there is some high-velocity noise, probably caused by a dual corneal
reflection; either a split corneal reflection, or one real and one falsely detected. Overall, this is
the type of data you should expect from your eye-tracker. Figure 5.3(b) shows fixations and
saccades calculated from the same raw data, using manufacturer software and default settings.
Fixations are now seen as circles with a diameter indicating the duration, and abstracted
straight lines for saccades. During the fixation analysis, blinks and artefacts were filtered off.
In total, the fixation scanpath looks much cleaner than the raw data plot. Nevertheless, there
is something deeply wrong with the scanpath of fixations and saccades. A lot of fixations
that we can clearly see in the raw data plot are gone. There are two fixations on the word
“Magician” in the first line, for instance, that have simply disappeared after event detection.
Each line has lost one or more fixations. If you were to export this fixation and saccade data,
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(a) Scanpath with raw data samples. (b) Scanpath with fixations and saccades.

Fig. 5.3 Data recorded at 1250 Hz with a tower-mounted eye-tracker. Fixations were calculated with the
commercial software BeGaze 2.1, applying a velocity-based analysis and default settings with a peak
velocity threshold of 757 /s. Note that parsing the data using this algorithm omits some of the grouped
samples of 'blobs’ which from manual inspection seem to be valid fixations.

and calculate fixation durations or saccadic amplitudes from it, you would get erroneous data:
too few fixations, too large saccadic amplitudes, and the wrong average for fixation duration.
You would use corrupted data, and the results you present in your report or journal paper may
not be valid.

5.2 Principles and algorithms for event detection

Before we start addressing event detection in more detail, let us stop for a moment and reflect
over what an event is. For example, should we always look for blobs in the raw gaze plots
when we want to find a fixation, or can the fixation event be defined by other criteria?

The only raw material all algorithms have to work with is the stream of data samples
recorded by the eye-tracker. In this stream of data samples, there are sometimes portions that
exhibit a prototypical behaviour signifying that an oculomotor event has been recorded. For
example, the saccade event is loosely defined as a period when the eye ‘moves fast’, and the
fixation event where the eye ‘is rather still’. The goal of event detection is to, according to a
set of rules, robustly extract such events from the stream of data samples. Most often, this is
done automatically by applying a detection algorithm to the gaze data, but it can also be done
manually using subjective judgements.

Event terms such as ‘fixation” are used both for the events algorithmically or manually
detected in the data stream, and the oculomotor events of the eye that were recorded. In reality,
perfect matches between the fixations detected by an algorithm and moments of stillness of
the eye are very rare. To make matters worse, the term fixation is sometimes also used for
the period during which the fixated entity is cognitively processed by the participant. The
oculomotor, the algorithmically detected, and the cognitive ‘fixations’ largely overlap, but
are not the same. When reading, for instance, it is considered proven that a word can be
processed parafoveally prior to being fixated (Rayner, 1998). It is in fact easy to decouple the
fixation position from the position where attention is located and processing takes place, if
the task and stimuli are simple (Posner, 1980).

Furthermore, there are ‘eye-in-head’ fixations when the eye is still in its socket, irrespec-
tive of whether the head moves or not, and ‘eye-on-stimulus’ fixations when the eye is fixated
on a target but possibly moving inside the head to compensate for head and body motion. Only
when the head is immobile relative to the stimulus are they identical.
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Fig. 5.4 Idealized gaze position, velocity, and acceleration profile over time showing one saccade in-be-

tween the end of a fixation (to the left of the saccade) and the beginning of a new fixation (to the right of
the saccade).

The term “fixation’ in this chapter refers to an event in the data file that has been detected
by an algorithm or subjectively by a person. ‘Fixation’ in this chapter does not refer to the
cognitive event during which the fixated entity is processed by the participant (for a discussion
about the relationship between fixation and cognitive processing, see page 377).

Event detection algorithms make use of three data streams from the recording and sub-
sequent calculations: Gaze position (x,y), gaze velocity (in °/s) and gaze acceleration (in
° /s%). Besides pupil size which is sometimes used to detect blinks, that is all there is. Figure
5.4 illustrates such data from an idealized saccade'® represented by the vector to the right in
the figure. Velocity is calculated using the distance between two data samples (first derivative
of gaze position), while acceleration is estimated from three consecutive samples (second
derivative of gaze position).'® Wyatt (1998) proposes the use of jerk (the third derivative of
gaze position) to identify saccades, but it is noisy and fairly impractical in software imple-
mentations. As we saw in Chapter 2, filtering can significantly influence the data, in particular
velocity and acceleration profiles. In the remainder of this chapter, we assume that filtering
has already been done, but acknowledge that the results of event detection are tightly coupled
to both the precision of the eye-tracker and the filters applied to the recorded gaze positions,
as well as used in velocity and acceleration calculations.

There are some general principles many algorithms use to detect specific events:

1. Fixations are predominantly detected by a maximum allowed dispersion or velocity
criterion. In the former case, temporally adjacent samples must be located within a

158accade taking the shortest path between two fixation positions.
165ee page 48 for details about these calculations.
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Fig. 5.5 Fixation identification by maximum allowed (a) dispersion and (b) velocity.

spatially limited region (typically 0.5-2.0°) for a minimum duration (anywhere from
50-250 ms in the literature) whereas in the latter case, fixations are identified as con-
tiguous portions of the gaze data where gaze velocity does not exceed a predefined
threshold (about 10-50°/s) . These scenarios are depicted in Figure 5.5(a) and 5.5(b).

. Saccades are commonly identified as periods where the eyes ‘move fast’, and are in
practice defined by velocity or acceleration thresholds; everything above the thresholds
are saccades (as in Figure 5.5(b)). Saccade detection thresholds vary significantly, but
are usually in the range 30-100° /s (velocity) and 4000-8000° /s? (acceleration).

. Smooth pursuit identification does not exist in any current commercial implementation,
and it is currently an open research problem to develop a robust and generic algorithm
for such a purpose. The few algorithms that do exist mostly use information about the
velocity (typically less than 30—40° /s) and direction of smooth pursuit eye movement.

. Blinks are often identified as (x = 0,y = 0) coordinates or when the pupil diameter
is zero, indicative of a closed eyelid. Note, however, that a careful investigation of
blink parameters requires us to measure eyelid movement, and this information is only
crudely (if at all) related to the coordinates from your eye-tracker.

. An artefact is a rather ill-defined ‘event’, but can for example occur when data samples
report high velocity movement that physically cannot derive from real movement of the
eye. Typically, such parts of the eye-movement data are identified and removed during
initial analysis (e.g. the filtering stage), and sometimes even online during recording.
More generally, artefacts can be considered as consecutive data samples that do not
conform to any known eye-movement event. If the percentage of such ‘unknown’ data
samples is high, this may be an indication that the data is of poor quality and should
not be used in further analysis. It can also indicate that the algorithm is not appropriate
to use on your recorded data.

. While the above events, in particular fixation and saccade events, will be of main focus
in this chapter, other events indeed exist and algorithms have been developed to detect
them. For nystagmus, for instance, Juhola (1988) presents an adaptive digital recursive
filter capable of detecting all maxima and minima in a sequence of alterations. The
square-wave jerk (p. 183) is another event that occurs frequently in healthy partici-
pants’ eye movements. Then there are fixational eye-movement drifts, microsaccades,
and tremor, for which a few algorithms exist (the one by Engbert & Kliegl, 2003 for
microsaccade detection, for instance). Nystrom and Holmgqvist (2010) proposed an al-
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gorithm to quantify movements known as glissades, a type of wobbling eye movement
at the end of saccades.

The existing algorithms do not detect all event types; in fact they rarely detect more than
one. The common identification by dispersion threshold algorithm'T (1-DT) detects fixations
only and does not separate between remaining events. Other algorithms detect only saccadic
portions of the data. Overall, the existing methods can be divided into three broad groups:

Dispersion- (and duration-) based fixation detection algorithms using positional informa-
tion, and the related clustering algorithms using Principle 1. By making alterations
to the dispersion criterion, several varieties have developed: Salvucci and Goldberg
(2000) test five different dispersion-based algorithms, and Urruty, Lew, Thadaddene,
and Simovici (2007) have developed a completely new algorithm based on projec-
tion clustering. Santella and DeCarlo (2004) developed a mean shift clustering algo-
rithm that could be used for fixation detection. This group of algorithms is common
in commercial implementations, such as Gazetracker, ASL Eyenal, faceLab, and SMI
BeGaze, and are not uncommon in research papers. Typically, dispersion-based algo-
rithms are used for data collected with a low-speed eye-tracker.

Velocity and acceleration algorithms using Principles 1 or 2, (mostly) use velocity and/or
acceleration data to calculate events. Software packages by Tobii, SMI, and SR Re-
search (EyeLink) include detection algorithms based on such principles, although their
details are quite different. This class of algorithms typically requires data collected at
higher sampling rates (say > 200 Hz).

Manual detection of events where a number of experienced eye-tracking researchers sub-
jectively parse data samples into events. This is a method to find fixations, but it is not
an algorithm. Many researchers trust only manual detection, in particular when data
are collected with head-mounted eye-trackers without head tracking.

5.3 Hands-on advice for event detection

If you need to analyse your data with a fixation or saccade detection algorithm, and care about
the validity of the output, what should you do? Some general recommendations are:

o Perhaps most importantly, plot your fixations next to your raw data, as in Figure 5.3,
and examine what the algorithm does at different settings.

» Examine the distributions of events in your measure at different settings (look at the
histograms), before you decide which setting to use.

o Make parallel analyses with several settings, and see how this affects your results; see
Green (2006) who does this.

o Recommendations for algorithmic settings depend on factors such as the eye-tracker
used for data collection, individual traits such as fixation stability, and the particular
circumstances during calibration and recording (see pp. 154—161 for a detailed discus-
sion).

o If you want to compare your results to previous literature, use similar algorithms and
settings. Unfortunately, however, not all researchers report the settings they use.

o Fixations with unreasonably low durations often result from the current algorithms.
Remove them if they significantly influence your results, or use a better algorithm.

17Refers in this book to the implementation described in Salvucei and Goldberg (2000).
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o Beware of smooth pursuit or movement that looks like smooth pursuit in your data file.
This is likely to be part of your data if you use animated stimuli or a head-mounted
eye-tracker. Current algorithms have been designed to analyse only data recorded from
static stimuli.

Dispersion based algorithms are not suited to analyse data collected with higher sam-
pling frequencies (> 200 Hz). If you have access to velocity-based algorithms, they are
more likely to produce a good output.

Using velocity and acceleration data, make sure that you understand how the filters
used to generate the data affect detection. For example, lowpass filtering smooths out
velocity peaks and thus effects where the peak threshold intersects with the velocity
curves.

Some researchers use measures that require data samples as input, but only from fix-
ations. The fixation detection algorithms can then be used to ‘clean’ the data from all
other events prior to using the measure.

Beware that some implementations divide events (such as a fixation) that cross a trial
border into two parts. This may lead to artificially low first fixation durations for trials;
one option is to exclude such partial events from the analysis.

In you article, always report the algorithm and the detection parameters you have used.

e Clearly define the events you use in your article. For example, do ‘fixations’ refer to
implicitly detected inter-saccadic intervals or explicitly detected oculomotor periods of
stillness?

5.4 Challenging issues in event detection

There are a range of issues that influence the results of event detection. As we saw in Figure
5.1, some of them are possible to control in the settings dialogue boxes in commercial soft-
ware, while others may require post-processing or new algorithmic solutions. The validity of
your results depends on how you deal with these issues.

5.4.1 Choosing parameter settings

Given a set of raw data samples, parameter settings are used to identify a specific event or Lo
separate different types of events from each other. Therefore, they largely define the properties
of a detected event. While the settings mostly serve to distinguish between event types, they
are also commonly used by researchers to exclude data that are unreasonable with respect
to what is known about the physiological limitations of eye movements, or with regard to
the experimental design. With the important choice of parameter settings in mind, what are
the proper values to choose for the settings in event detection algorithms, and how are they
motivated?

Recommendations, arguments, and practices

Some manufacturers have provided their customers with recommendations for fixation ana-
lysis settings, but how well founded is such advice? In the Tobii Clearview settings dialogue
(p. 148), the recommended lower fixation duration threshold of 40 ms for reading studies
compared to 200 ms in picture viewing probably reflects the observation that fixations are typ-
ically shorter during reading than during picture viewing (p. 377). But what if the researcher
has participants making 165 ms fixations during picture viewing? Should she then just lose
those fixations from later statistical calculations, as Figure 5.3 exemplifies? And what about




SOth pursuit in your data file.
stimuli or a head-mounted
'se only data recorded from

_' 2 collected with higher sam- °

-based algorithms, they are

oL anderstand how the filters
: b?pass filtering smooths out
= intersects with the velocity

ks & input, but only from fix-
%52 10 “clean’ the data from all

S 2 fixation) that cross a trial
= {ixanon durations for trials;
% parameters you have used,
‘e, do “fixations’ refer to
==<ted oculomotor periods of

0n. As we saw in Figure
i< Boxes in commercial soft-
solutions. The validity of

4 specific event or to

2ely define the properties
Between event types, they

- “arcasonable with respect
svements. or with regard to
se.uings in mind, what are

i - and how are they

=adations for fixation ana-
rview settings dialogue

= ms for reading studies

2 on that fixations are Lyp-
Sat what if the researcher
* Should she then just lose
=plifies? And what about

CHALLENGING ISSUES IN EVENT DETECTION| 155

the 50 pixel radius suggestion for picture viewing, compared to 20 pixels for reading? Are
fixations more stable during reading than while viewing images? If the participant makes two
fixations close to one another during reading, the fixation analysis would give two fixations.
But if the same person makes two fixations at the same close distance during picture viewing,
should the fixation analysis produce just one long fixation?

The ASL Eyenal Manual (2001) offers the following motivation for their thresholds (de-
faults are 1° and 100 ms): “Specifically, there is research documenting the minimum latency
of saccades in response to visual stimuli (thus suggesting a minimum fixation duration) and
data defining the maximum amplitude of involuntary eye movements during the fixation (thus
establishing maximum fixation boundaries)”. Involuntary eye movements such as drift and
microsaccades indeed make up part of the movements inside a fixation, but the imprecision
in the specific eye-tracker and the specific measurement may be much larger than 1°.

Also, dispersion can be calculated in a number of different ways. Blignaut and Beelders
(2009) present the following varieties of dispersion:

1. The maximum horizontal and vertical distance covered by the gaze positions in a fixa-
tion, ((max(x) — min(x)) + (max(y) — min(y)))/2 < threshold (Salvucci & Goldberg,
2000).

. The distance between points in the fixation that are the furthest apart (Salvucci & Gold-
berg, 2000).

. The distance between any two successive points, which is an estimate of the eye veloc-
ity (Shic, Scassellati, & Chawarska, 2008).

. The distance between points and the centre of the fixation, i.e. the radius (Camilli,
Terenzi, & Nocera, 2008).

. The average or the standard deviation of the distances of all points from the centre of a
fixation (Anliker, 1976; Applied Science Laboratories, 2001).

ASL Eyenal uses the standard deviation as dispersion measure and sets it to 1° as default,
but for many of the other implementations, it is unclear what dispersion is. Surprisingly many
softwares ask for dispersion thresholds in pixels instead of visual degrees. SMI's BeGaze 2.1
software uses 100 pixels as default. To make sense of this value, the experimenter first needs
to convert them to degrees of visual angle, taking into account the viewing distance as well
as the size and resolution of the screen (p. 24), and also understand which calculation of
dispersion is used in the particular implementation they have at hand.

The dispersion setting is closely connected to the imprecision of the recorded data, and
some implementations attempt to compensate for such noise. For instance, the ASL Eyenal
dispersion algorithm for 50 Hz data requires three data samples to be outside of the dispersion
radius for the fixation to end, not just one. Allowing single data samples to deviate is an
insurance against low precision in the data; what we saw in Figure 5.2(b). In a way, this
can be seen as a temporal increase of the dispersion threshold to allow one or two deviating
fixation samples to pass unnoticed. In contrast, the I-DT ends the fixation as soon as the
dispersion criteria are violated, which makes it more sensitive to noise, possibly requiring a
higher dispersion setting.

Researchers have not paid too much attention to the dispersion setting, but Rétting (2001)
reviews studies with dispersion settings ranging from 0.5°-2° of visual angle. Blignaut and
Beelders (2009) and Blignaut (2009) argue that the optimal dispersion setting is 1° (for the
radius dispersion measure), but relies heavily on the dispersion measure used.

The minimal fixation duration setting has been a long-standing discussion among re-
searchers, however. Inhoff and Radach (1998) write that they themselves mostly use a cutoff
point for fixation duration of 50 ms, but that many of their reading research colleagues use
cutoff points ranging from 70-100 ms (but do not state which algorithms they use). Rotting
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Fig.5.6 A <45 ms fixation; following a regressive saccade during reading (Data from our example reading
set). Excluding the glissade (the little bump in the velocity curve), the fixation duration becomes even
shorter: about 30 ms. Data recorded at 1250 Hz with a tower-mounted system.

(2001) summarizes a number of studies, mainly in human factors, that use dispersion algo-
rithms and duration settings ranging from 60-120 ms. At the other end of the scale, Granka,
Hembrooke, Gay, and Feusner (2008) use a 200 ms duration setting. Manor and Gordon
(2003) notice that 200 ms has become the de facto standard in clinical studies, originally de-
rived from a 1962 study of eye movements in reading. Engmann et al. (2009) used no cutoff
at all, but found that only 3.9% of the fixations in their study had a duration of less than
100 ms. Is this divergence in settings a problem for researchers who want to compare their
results against someone else’s?

Perhaps we could decide duration setting on the basis of what is known about how short
fixations can be. However, there seems to be no concensus on how common even shorter
fixations really are. They do exist, that is clear, as shown by the fixation in Figure 5.6, which
measures exactly 45 ms when including the smaller velocity peak after the main saccade. If
we exclude the glissade duration, the true fixation is around 30 ms in duration.

As we will see on page 377, information intake may be closed for the entire duration
of such short fixations, but is this a good reason to exclude them? Rétting (2001) seems to
argue that we should, while others use cutoffs without specifying the motivation. But the short
fixations are still real oculomotor events, even if intake is closed. The fixation blob in the raw
data files represents an oculomotor event, and it is our task to measure it as best we can, and
distinguish it from other short periods of stillness that can be found in the data. The question
of intake is very important, but should not be built into the event-detecting algorithms.

The EyeLink velocity algorithm allows for ‘low’, ‘medium’, or *high’ saccade sensitivity.
although the settings dialogue in Figure 5.1(d) shows only ‘normal and high’. Medium sensi-
tivity corresponds to a velocity threshold of 30° /s and an acceleration threshold of 8000° /5%,
while the high sensitivity uses 22° /s and 4000° / s2. The algorithm assumes that a given sam-
ple of raw data is part of a saccade in progress, if at least one of the velocity and the ac-
celeration values is above the respective threshold. This is sensible when detecting saccades
online. It is safer to use two criteria than only one, as there is only one chance to get it right.
For the same reason, the settings for the EyeLink algorithm are chosen before recording the
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data. The EyeLink manual of 2007 recommends the more sensitive setting for oculomotor
research, and the medium setting for cognitive and reading research (compare the recom-
mendations in Figure 5.1(b)), arguing that “The larger threshold also reduces the number of
microsaccades detected, decreasing the number of short fixations (less than 100 ms in dur-
ation) in the data” and noting that “Some short fixations (2% to 3% of total fixations) can be
expected, and most researchers simply discard these”. Not everyone discards the short fixa-
tions, however. Velichkovsky, Dornhofer, Pannasch, and Unema (2000) not only take them
seriously, but name them ‘express fixations’, after finding that they make up 7% of the total
number of fixations given by their EyeLink system in a car simulator task. However, do poor
data, noise, microsaccades, smooth pursuit, and a too low velocity threshold—below the pre-
cision level of the system—Tlie behind these frequent ‘express fixations’, rather than actual
oculomotor behaviour?

There is a large spanwidth of velocity threshold settings among researchers. Duchowski
(2007, pp. 149-152) makes a theoretical argument about the settings for velocity algorithms.
suggesting a lower threshold of 130° /s, which “should effectively detect saccades of ampli-
tudes roughly larger than 3°7". Most other researchers use lower velocity threshold settings.
For instance, Smeets and Hooge (2003) used a velocity threshold of 75°/s when studying
rather large saccades, and Inchingolo and Spanio (1985) compare the settings 10°/s and
50° /s. Beintema, Van Loon, and Van Den Berg (2005) chose the very low setting of 20° /s,
but added a minimal saccade amplitude criterion of 1°, and a minimal duration between sac-
cades of 30 ms to distinguish saccades from noise.

While the dispersion setting may be difficult to motivate, the choice of thresholds for
velocity algorithms could be made in relation to the purpose of your study: what size of sac-
cades do you want to detect, how much noise is there in the recorded fixations, and where is
the line between the velocities of the fastest saccades you want and the slowest movement due
to artefacts you have? The precise settings inside these spans could be selected from visual
inspection of some typical samples in your data, using a plot of velocity and position, such
as Figure 5.7. The following paragraph summarizes issues related to the saccade velocity
threshold:

e Saccade velocity threshold The major setting. How small are the saccades you need
to detect? Detection of small saccades requires a lower threshold. How much noise
is there in the fixations? A lot of noise requires a higher threshold. Settings in the
literature typically range from 20-130° /s, as discussed above.

In fact, the problem with undetected fixations seen in Figure 5.3 was that the default
saccade velocity threshold (75° /s) was set too high. This means that short saccades and their
two surrounding fixations are grouped as one single fixation. We can see four such short
saccades in Figure 5.7, three of which move with a velocity below 50°/s. An appropriate
setting for this data is rather 30-40°/s.

Although the saccade velocity threshold is the most commonly used, there are three ad-
ditional thresholds for velocity and acceleration based algorithms:

o Saccade on- and offset velocity Deciding when a saccade starts and stops, and is
always equal or lower than the saccade velocity threshold. For high-quality recordings,
a setting of 10-15°/s is often used but there is no consensus on how such thresholds
should be set.
Maximum velocity threshold A little-used artefact-removal threshold. The fast-moving
artefactual movements from split and false corneal reflections, mascara, and droopy
eyelids are above the interval 750-1000° /s, which can be considered as a physical
limitation on how fast the eye can move. Not many algorithms use an upper velocity
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Fig. 5.7 Gaze velocity (black) and gaze x-coordinate (grey) for reading data. The vertical scale is in ° /s
and pixels, respectively. The horizontal scale is samples (time). 75° /s is marked by a line, which is clearly
too high for many of the saccades. 1250 Hz data from a tower-mounted system.

threshold, but Duchowski (2007) makes a theoretical argument suggesting 750° /sasa
suitable threshold.

o Saccade acceleration threshold Used in the EyeLink algorithm to allow for quick de-
tection of saccades online. An acceleration threshold can also be useful for distinguish-
ing saccades from periods of smooth pursuit; quick pursuit velocity can be larger than
slow (small) saccade velocity, but saccades always have larger accelerations (Behrens
& Weiss, 1992).

The EyeLink software allows for post-recording filtering of the fixation and saccades
resulting from the online saccade algorithm. The filter takes minimal fixation duration and
minimal saccadic amplitude as settings. Defaults thresholds are 50 ms and 1°. Subsequent
fixations that are shorter and closer than the threshold settings stipulate are merged into one
fixation. Remedying noisy recordings post-hoc seems to be the major function of this tool. It
introduces two new settings, however, making it a total of four settings for the algorithms de-
ciding what fixations and saccades should remain for data analysis. Overall, the many heuris-
tic elements of the EyeLink online saccade algorithm appear to be difficult to overview for
the average user, which is perhaps why the settings dialogue primarily provides the summary
settings of ‘medium’ or *high’ saccade sensitivity (Figure 5.1(d)).

Effects of settings

1t has long been known that fixation and saccade output is very sensitive to the choice of al-
gorithm settings (Karsh & Breitenbach, 1983, e.g.). Using 60 Hz data and a dispersion-based
algorithm, Shic, Scassellati, and Chawarska (2008) show that the effect of parameter changes
on mean fixation duration is a linear function of parameters, with a considerable slope. As
our reading data (p. 5) in Figure 5.8 show, the effect is that all basic fixation measures are
heavily altered when using the common dispersion-based I-DT algorithm. Both the disper-
sion and the duration settings may give rise to artificially significant differences that may
change the result of a study completely. For instance, the average fixation duration at setting
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Effect of I-DT settings on dependent measures
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Fig. 5.8 How fixation measures differ with different dispersion diameters and duration settings in a com-
mercial implementation of the I-DT algorithm (1250 Hz reading data from page 5). The slope is similar to
that from 50 Hz data in Shic, Scassellati, and Chawarska (2008).

60 ms and 60 pixels differs significantly from the average fixation duration at 100 ms and
60 pixels (two-sided f-test with 36490 fixations each, 1(36489) = 3.07, p < 0.01). The same
thing happens if you change the dispersion from 60 pixels to 100 pixels while keeping the
duration at 100 ms (1(26950) = 3.22, p < 0.01).

Fixation durations will not only differ in their averages—a change in dispersion and dur-
ation thresholds also alters the distribution, as shown in Figure 5.9. A change from a 100 ms
60 pixel setting to a 100 ms 100 pixel setting dramatically decreases the number of “fixations’
around the 200 ms duration, and increases the number of ‘fixations’ with durations around
400-600 ms. Such a change in distribution affects averages but also the variance of the data,
which in turn affects all your variance-based significance tests (r-tests and ANOVAs, for in-
stance). Even this small examination of the I-DT algorithm clearly shows that dispersion and
duration settings should be chosen with the utmost care.

These effects are not unique for dispersion-based algorithms, but are also present in algo-
rithms using velocity data. Figure 5.10 shows how basic saccade and fixation measures are
affected by parameter changes in the SMI velocity algorithm; at a 90° /s setting, for exam-
ple, the average fixation is 2.5 times as long as it is at the 30° /s setting (r(14340) = 2.85,
p < 0.01). Shic, Scassellati, and Chawarska (2008) found similar variation when changing
the saccade velocity setting from 18°/s to 81°/s. Tt is clear that the choice of setting can be
the determining factor to the success or failure of an eye-tracking study. Although otherwise
similar, studies using different settings of the peak saccadic velocity are not directly com-
parable. It is important to notice that the basic measures in Figure 5.10 are the foundation
that many other dependent measures in eye-tracking research are built upon. Virtually all
dependent measures will alter their values when this setting is changed.




160 |ESTIMATING OCULOMOTOR EVENTS FROM RAW DATA SAMPLES

2500
I 100 ms, 60 pixels
[_1100 ms, 100 pixels

Number of fixations

S na e o )

200 400 600 800 1000 1200
Fixation duration (ms)

It is well known
Fig. 5.9 Distribution of fixation durations for two dispersion settings of the I-DT algorithm (data source tasks, trials, and
described on page 5).
velop algorithms
(1981) suggested

Effect of settings on dependent measures

—— Avg. fixation duration

— — Total # fixations

| | = = - - Total # saccades

—+— Avg. saccade duration
—&— Avg. saccade amplitude
—s7— Avg. saccade peak velocity

w
@
@
2
g
=
[=]
o
5
w
=
[u]
[=1]
(]
-
@
N
E
o
="
3
=)
©
=

0
30
Peak velocity threshold (degrees/s)
Fig.5.10 How important dependent variables change with the setting of saccade velocity threshold in the

SMI velocity algorithm (a commercial implementation of Smeets & Hooge, 2003). Reading data recorded
at 1250 Hz and described on page 5.
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Fig. 5.11 Control ellipse for saccade detection where samples outside the ellipse—where the eye ve-
locity is large—are saccade candidates. One and a half seconds of data collected at 1250 Hz with a
tower-mounted system during reading.

Data driven threshold

It is well known that the noise levels in eye-tracking data can change across individuals,
tasks, trials, and even within trials, so why should we choose a setting subjectively and stick
with it throughout the entire analysis? This particular question has led researchers to de-
velop algorithms that let the data itself assist in how to set the thresholds. Tole and Young
(1981) suggested locally adapting the acceleration threshold used to detect saccades to com-
pensate for varying noise levels they observed in the data. Similarly, Behrens, MacKeben,
and Schrisder-Preikschat (2010) proposed a saccade detection algorithm where an adaptive,
momentary acceleration threshold was calculated based on the preceding 200 samples (for
data acquired at 1000 Hz). A related algorithm is described by Marple-Horvat, Gilbey, and
Hollands (1996). who use a “double-window™ technique where two temporal windows on
each side of the current velocity sample are subtracted, and a saccade is detected only if
the difference between the average value within each window exceeds a certain threshold.
Niemenlehto (2009) based the resilience against varying noise for saccade detection on a
constant false alarm technique.

Assuming the noise is constant over a trial, one can estimate the noise level over the
whole trial, and then use this estimate to set the thresholds. For fixational eye movements, the
dominant principle for microsaccade detection is based on the algorithm proposed by Engbert
and Kliegl (2003), who first estimate the velocity noise in x and y-dimensions separately,
and then set the thresholds as multiples of the estimated variance in the noise; all samples
outside the control ellipse formed by such thresholds are saccade candidates, as Figure 5.11
illustrates. Since the dynamics of microsaccades are similar to normal saccades, the same
principle can be used to find appropriate saccade detection thresholds. Similar strategies for
choosing saccade detection thresholds have been employed in other recent work (Nystrom &
Holmqvist, 2010; Van Der Lans, Wedel, & Pieters, 2010).

5.4.2 Noise, artefacts, and data quality

Noise can derive from the oculomotor system, the eye-tracker, or the environment, and adds
unwanted variation to the acquired data. Artefacts can be seen as a special type of noise,




162 |ESTIMATING OCULOMOTOR EVENTS FROM RAW DATA SAMPLES
550 4 - 'I._

500 %

&

g

35011

Velocity ("fs)

o 828828

15,000

Fig. 5.13 Vanzbe

participant looks
fourth fixationj.
with a threshoid of
Fig. 5.12 False fixations with black numbers 1, 4, 7, 8, and 12 result from imprecision (p. 33) in data. 2400
This means that raw data differ so much from sample-to-sample even within a single fixation that some 5200
of the samples end up outside of the dispersion radius, and will be segmented into minute fixations of
their own. Recorded at 50 Hz on the remote system on a blue-eyed participant with contact lenses, and 2000
analysed using a dispersion-based algorithm with manufacturer standard settings. The task was to look 1800
at the centre of each white number in increasing order. Dark filled circles represent detected ‘fixations’. +500
g 1405
but are typically larger and easier to distinguish from known eye-movement characteristics. £ 1200
Data quality is a more imprecise term, but is related to accuracy, precision, percentage of data S 1000
loss, perhaps in addition to a subjective rating from the person responsible for the recording. 5 500
Having access to all these quality indicators gives you an idea of whether the recorded data a0
are useful for further analysis, or should be discarded.

It is generally easier to detect events in recordings with high data quality. Figure 5.8 40
showed results from data with high quality in the sense that the calibration was judged as 200
good and no problems were reported by the operator during the recording. Unfortunately, 9
not all recorded data have the same high quality, and the algorithms need to deal with the
imperfections too. In fact, data quality is an important factor to consider when using the
algorithms, which can erroneously interpret various recording imperfections as actual eye- Fig. 514
movement events. {eye im=ge In

In dispersion-based algorithms, high noise levels can make a sample that rightfully be- =
longs to a fixation move outside of the dispersion radius, end the fixation, and trigger a new
one. Figure 5.12 shows how a number of such false ‘fixations’ are created from stray sam-
ples in the vicinity of the real fixations. Some varieties of dispersion algorithms attempt to Wil m
address this problem by temporarily allowing a few samples to exceed the maximum disper- s _c:ﬂ
sion threshold without ending the fixation (such as ASL Eyenal). High velocity artefactual “hgh_’
eye movements will also be assumed to be saccades with intermediate fixations, but the “fix- e 2
ations’ will now be deleted because they are too short. h velocity

The velocity algorithms are also best suited for high quality data. High velocity artefacts tagh that
and imprecision are major obstacles; if the imprecision inside a fixation has a velocity above sarrounding
the velocity threshold used, it gives rise to false ‘saccades’, effectively ending the fixation. of the two
The velocity threshold can be superseded many times, giving a whole array of unrealistically Figmc 20

over 10007 s

short ‘fixations’. Figure 5.13 shows how this happens during the first and fifth fixations.
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Fig. 5.13 Variable precision. Data acquired for oculomotor fixations 1-5 are noisy (imprecise) when the
participant looks at the top of the stimulus (first and fifth fixations) and precise at the bottom (second to
fourth fixation). Recorded with a remote system at 250 Hz and analysed with a velocity-based algorithm
with a threshold of 75° /s.
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Fig. 5.14 Saccadic velocity plot showing the effect of having multiple competing corneal reflections
(eye image in Figure 4.13). High-speed artefacts to the left, and slower reading saccades on the right.
Recorded at 1250 Hz a tower-mounted system, participant with contact lenses.

With both dispersion- and velocity-based algorithms, the effect of imprecision can to
some extent be alleviated by raising the threshold setting. With a larger dispersion radius,
or a higher velocity threshold, sample-to-sample motion can be quicker without endangering
the consistency of fixations. This remedy comes at a price, however. For instance, raising
the velocity threshold of Figure 5.13 above the peaks of this imprecision will make it so
high that many real saccades will not be identified. When a saccade is not identified, the two
surrounding fixations are reported as one single ‘fixation’, with a duration that equals the sum
of the two real fixations and the intermediate saccade.

Figure 5.14 shows high-speed optic artefacts: false eye movements with velocities well
over 1000° /s and virtually infinite acceleration. Such velocities appear for instance when the
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Fig. 5.15 13 readers with very poor recording quality (mascara, contact lenses, drooping eyelids, etc).
The SMI velocity algorithm in BeGaze 2.1 with different peak (saccade) velocity threshold settings. 10
readers with very high data quality at setting 40° /s for comparison.

corneal reflection moves instantly from one position to another, as in Figures 4.12(d) and 4.13
on page 124. The two ‘bumps’ further right are real saccades, included for comparison. In the
reading data used for examples here, 0.4-0.9% (depending on settings) of the saccades had
a velocity higher than 800° /s. In corresponding data with low quality, 4-9% of the saccades
had such high velocities.'® Obviously, the poor data quality caused this tenfold increase, by
having the algorithm identify as saccades various false ‘saccadic’ movements like the ones
in Figure 5.14. As a comparison, the return sweeps, when readers switch from one line to
the next, across the entire monitor, a distance about 25° of visual angle, had an average peak
velocity of 440° /s. In between the false high speed ‘saccades’ of the artefactual data, the SMI
velocity algorithm finds false 1 ms ‘fixations’, as it attempts to fill the almost non-existent
period between two false ‘saccades’. -

In fact, when running data with poor quality through the SMI velocity algorithm of
BeGaze 2.1, it identifies a huge number of false ‘fixations’ with durations shorter than 40 ms,
as clearly shown in the histogram of Figure 5.15. Similar ‘blips’ of very short ‘fixations’ in
the related I-VT algorithm were reported by Salvucci and Goldberg (2000). In both cases,
the lack in many velocity-based algorithms of a temporal criterion for fixation duration could
be one part of the problem. The other part is the lack of an upper velocity threshold that
could eliminate high-speed artefacts with intermediate 1-sample false “fixations'. For very
high quality data, the number of unreasonably short ‘fixations’ is much smaller (dotted com-
parison line), but they still exist. For durations above ~80 ms, the distribution is very similar.
This suggests that with an improved algorithm, a good portion of the poor quality data could
in fact be used, at least for some types of analyses.

5.4.3 Glissades

Interestingly enough, the very high quality data in Figure 5.15 also exhibit a small proportion
of 1 ms “fixations’. In the high quality data, the unreasonably short fixations are not found

18 Analysis was made using the SMI velocity algorithm of BeGaze 2.1 with a threshold of 40° /s
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Fig. 5.16 Saccades with multiple velocity peaks and false 1 ms fixations between them. Recorded at
1250 Hz with a tower-mounted system. Fixations (white lines), saccades (grey lines), and undetected
events (gaps in between) according to SMI BeGaze 2.1 are indicated at the botiom of the graph.

amongst noise, but when the algorithm faces a main saccade ending with smaller velocity
peaks, knows as glissades (see definition on page 183), as in Figure 5.16. The saccade of this
participant does not stop at the intended fixation goal, but continues beyond it, and then back
again, but too far, and thus wobbles back and forth for a while, before it comes to a stand-
still and the fixation can start. The velocity peaks in these very strong glissadic movements
are well beyond the normal velocity threshold (here 40°/s), and therefore the SMI velocity
algorithm finds, not a fixation right after the saccade ending, but essentially a new ‘saccade’.
Therefore, two of the saccades in Figure 5.16 are not recognized as saccades at all. The third
saccade is recognized, but only its first velocity peak. We see false 1-10 ms ‘fixations’ be-
tween the peaks inside the second and the third saccades. Glissades of this extreme size are
not uncommon in data that we have recorded from reading, mathematical problem solving,
and many other tasks. Between 20-40% of all saccades end with a glissade, but almost no
saccades start with this type of movement (Nystrom & Holmqvist, 2010).

Some algorithms treat glissades like just another type of noise. Stampe (1993) describes
glissades as noise that “includes ringing or overshoot artefacts following saccades, which
can confuse the saccade detector into extending the saccades into the next fixation”. Simi-
larly, Duchowski (2007) describes filters that are optimized for idealized saccades (without
glissades), thus smoothening out the glissades before the fixation algorithm gets the velocity
data. The EyeLink parser seems (0 assign glissades to fixations, as shown in Figure 5.18.
However, from this figure it remains unclear whether the EyeLink algorithm at times gener-
ates very short fixations as a result of poor glissade treatment, or whether it is robust enough
to avoid that. The manual tends to point in the former direction: “Post-processing or data
cleanup may be needed to prepare data during analysis. For example, short fixations may
need to be discarded or merged with adjacent fixations, or artefacts around blinks may have
to be eliminated” (SR Research, 2007). However, whether the short fixations are due to glis-
sades remains to be investigated.

First fixation duration values are extremely sensitive to these short *fixations” in data, be-
cause when a participant makes a saccade into an area of interest, the saccade very often ends
with a glissade. and the SMI velocity algorithm often outputs a false ‘fixation” before the glis-
sade, and also before the real fixation. Therefore, during analysis, forgetting to remove short
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Fig. 5.18 Event detection with the EyeLink parser for reading data (‘Normal' sensitivity). Data were col-
lected with the head-mounted system at 500 Hz. Thick lines at the bottom of the graph indicate where
‘fixations' have been detected. Note how glissadic movements are systematically assigned to the follow-
ing fixation and how parts of the saccades are also attributed to fixations.

‘fixations’ before calculating first fixation duration values means using lots of unreasonably
short ‘fixations’, and getting averages that are lower, as in Figure 5.17.

Glissades have until recently been treated unsystematically and differently across algo-
rithms and even within the same algorithm, sometimes being attributed to saccades, other
times to fixations. Some researchers express the need to exclude them completely from fur-
ther analysis. Gilchrist and Harvey (2006) require the velocity to remain below 30° /s for at
least five samples (20 ms) to count as a fixation, which “excludes the interval of ocular in-
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stability just after the saccade”, and argue that this leads to a more accurate calculation also
of fixation location, although fixation durations may be shorter than typically reported, as the
glissade is assigned to the saccade. Investigating post-saccadic drift, Collewijn et al. (1988)
considered the eye velocity during a 100 ms period after a saccade, but arguing that “This
period started 20 ms after the end of each saccade in order to avoid contamination by the
dynamic overshoot frequently associated with a saccade”.

The prevalence of glissades appears to vary across eye-trackers, being more common,
Jarger, shorter, and heavily curved in DPI-systems compared to video-based, while they are
eradicated or transformed to post-saccadic drift in coil-based eye-trackers (Deubel & Bridge-
man, 1995; Frens & Van Der Geest, 2002). Glissades can be observed in data collected with
any video-based high-speed eye-tracker with good precision. In low-speed, remote systems,
they may be more difficult to see, since the average glissade duration is only slightly larger
than 20 ms (one sample in a 50 Hz eye-tracker) (Nystrom & Holmgqvist, 2010).

Positioned in between saccades and the following fixation, the question is which to assign
the glissade to. The fact that perceptual visual intake appears to be closed during glissades
(McConkie & Loschky, 2002), as well as the fact that glissades follow the same main se-
quence relationships as saccades (p. 318) tells us that they are predominantly saccadic in
nature. As glissade-detecting algorithms become more available, we can surely expect (o see
more studies using this event.

5.4.4 Sampling frequency

There is a tendency for dispersion-based algorithms to be used for data collected at a low
sampling frequency, such as 50 Hz, and velocity algorithms for data collected at higher sam-
pling frequencies (say > 200 Hz), but there are also exceptions. The Tobii Fixation filter is a
velocity-based algorithm for fixation detection in data as slow as 30 and 50 Hz, for instance.

Dispersion-based algorithms end a ‘fixation’ as soon as the raw samples cross the border
defined by the dispersion radius. In high-speed data, this border can be crossed just about
anytime. The two ‘saccades’ identified by the I-DT algorithm in Figure 5.19, indicated by
black lines, start a bit into a real saccade, and two thirds into a real fixation, respectively. This
is clearly incorrect, and reflects the fact that the dispersion algorithm is only aware of centre
points and dispersion, but only indirectly velocity and acceleration. Take the ‘fixation’ in
Figure 5.19 that starts in the middle of the first real saccade. I-DT starts calculating the centre
point of the new ‘fixation’ here, even though the eye is in full motion and some distance
away from its landing point in the real fixation. Once the eye has reached the real fixation,
data samples are close to the dispersion radius border, as most of the distance was spanned by
the saccade. This means that even very small movements inside the real fixation make I-DT
think the dispersion border has been crossed. In Figure 5.19, this happens at time 8360 ms,
deep inside the real fixation. After a minimal ‘saccade’, the I-DT starts a new “fixation’,
with its new centre point and dispersion, which happen to be chosen generously enough to
accommodate the next real saccade inside the ‘fixation’.

Dispersion-based algorithms have a large problem with their imprecise estimate of indi-
vidual saccade and fixation durations. The same miscalculation of fixation onsets occurs at
all sampling frequencies, but for the lowest sampling frequencies, this is not as big a problem
since the sampling frequency by itself is the major limiting factor.

Velocity-based saccade detection algorithms are better suited for use with a wide spectrum
of sampling frequencies. With suitable filtering when velocity data is calculated, it is quite
possible to get clear velocity peaks even for 50 Hz data, as shown for instance in Figure 5.20.
The reason it is uncommon to use velocity algorithms for low-speed data is that velocity, and
in particular acceleration, can be calculated only crudely when the sampling frequency is low.
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Fig. 5.19 Note how the dispersion algorithm reduces the duration of saccades, and even inserts false
‘saccades’ in the midst of a fixation in this reading data recorded at 1250 Hz with a tower-mounted system.
Grey lines depict the x- and y-coordinates in the coordinate system of the scene video. The dark line is eye
velocity. The bottom bar indicates ‘fixations’ (light) and ‘saccades’ (darker) according to the I-DT algorithm
with 100 ms and 80 pixels settings.

If our task is to detect saccades correctly rather than to measure them with high precision, all
we need is a fair estimate of peak velocity, and this we can get even at 50 Hz.

In conclusion, while dispersion-based algorithms do not produce valid event data for
higher sampling frequencies, the velocity algorithms have good potential for the entire spec-
trum of sampling frequencies. The use of acceleration is only suitable for data acquired with
high-speed systems, however.

5.4.5 Smooth pursuit

An increasing number of studies use stimuli and experimental set-ups that induce the partici-
pant to make smooth pursuit movements, for instance by using animated or video stimuli, or
taking the participant out with a head-mounted eye-tracker to make simultaneous head and
eye movements. Many of these studies use data recorded at low sampling frequencies, and
dispersion algorithms are used to calculate fixations.

Figure 5.20 shows data from a participant walking past a shelf in the supermarket (ex-
periment 3 on page 5). He walks, turns his head, and moves his eyes simultaneously. When
applying the I-DT algorithm to the data in this figure, three fairly correct saccades are indeed
found, but also four or five false ones. The impact on variables such as fixation duration or
saccade rate is therefore disasterous. Such event data cannot be used. Interestingly, the veloc-
ity peaks of this 50 Hz data seem to better estimate where the saccades are located, posing
the question of whether a velocity-based algorithm would have been a better choice (which
finds some support in Munn, Stefano, & Pelz, 2008).

Velocity algorithms typically assign smooth pursuit data into the same category as fix-
ations. Itti (2006), using video data, applies a velocity algorithm to remove all saccades,
arguing that the remaining mixture of fixation and smooth pursuit data can be seen as a ‘vi-
sual intake’ category. Depending on the purpose of the study, such a mixed category could be
sound or not. Itti wanted to compare all visual intake to that predicted by his algorithm, but
made no duration statistics on the data. In most commercial software packages, this is indeed
also the best case scenario of how smooth pursuit is handled; in the Tobii Fixation filter im-
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Fig. 5.20 Eye movement data from a head-mounted eye-tracker at 50 Hz on a participant walking past
a shelf in a supermarket. Dark lines are the x- and y-coordinates in the coordinate system of the scene
video. The grey line is eye velocity. Bottom bar indicates fixations (light grey) and saccades (dark grey)
according to the I-DT algorithm with 80 ms and 80 pixels settings.
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Fig. 5.21 Event detection with the EyeLink parser for smooth pursuit data ('Normal' sensitivity). Data
were collected at 500 Hz with the head-mounted system from a person viewing a pendulum movement.
The lines at the bottom of the graph indicate where ‘fixations’ have been detected. Notice how fixation and
smooth pursuit are merged into the same category.

plementation, the ‘visual intake’ category is still labelled ‘fixations’, and users with smooth
pursuit data may be misled into making various statistics on the duration and prevalence of
these ‘fixations’. This is also the current status for parsers of high-speed data from EyeLink
and SMI. Figure 5.21 illustrates how the EyeLink parser treats smooth pursuit data from a
person following a pendulum movement on a computer screen.

The worst case scenario, Figure 5.20 is an example of this, is that smooth pursuit eye
movement causes an algorithm to output events that are clearly not present. Using velocity
thresholds only, it may be hard to separate fast smooth pursuit, which can reach velocities of
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Fig. 5.22 Reading near the borders of a flat monitor: Velocities of saccade far to the right, return sweep, 50 Hz data.

and saccade far to the left. Black line is left eye; grey line right eye. Recorded with a tower-mounted
system at 500 Hz in binocular mode.

100° /s (Meyer, Lasker, & Robinson, 1985), from slow saccades. If we want correct fixation
and saccade data with animated stimuli, smooth pursuit needs to be identified as an event in
its own right, and we will see later how this could be done.

5.4.6 Binocularity

When processing binocular data, the SMI velocity algorithm of BeGaze 2.1 finds differ-
ences in both the number and duration of fixations and saccades, as indicated by Figure 5.22.
This should come as no surprise, since it is known that the eyes do not move in complete
synchrony, either in position or in speed and acceleration (p. 24 and 449). Nevertheless, the
hard thresholds used by the algorithms could make even subtle differences in eye movement
between the left and the right eye count.

Part of the reason why events can be detected very differently is that the two eyes do
not make exactly the same glissadic movements after the saccade, and sometimes only one
of the eye velocities reaches down below the saccadic offset threshold, examplified by the
right (grey curve) eye in Figure 5.22. The amplitude and duration of the saccade then differs
between the eyes. Another reason is due to the two eyes having different distances to the right
and left part of the monitor. Figure 5.22 shows first a saccade in the far right of the monitor (at
around 19,350 ms), then a return sweep (at about 19,650 ms), and finally a reading saccade
at the far left of the monitor (at around 19,900 ms). At the right-hand side of the monitor, the
right-eye saccades have a larger amplitude and the fixation durations are shorter than for the
left eye. Conversely, on the left side of the monitor, the fixations of the left eye will be shorter,
and its saccadic amplitudes longer than in the right side of the monitor (compare Figure 2.4
on page 24). This is not really a problem of the algorithm, but rather questions whether we
should continue to record monocularly, and accept only the saccades and fixations of the one
eye that we happen to select.

Since the majority of eye-tracking research is monocular, velocity algorithms have mostly
been applied to monocular data. The I-DT algorithm appears not be used in any real binocular
research, probably as it is too imprecise in itself. Binocular event detection algorithms using
the covariance between the eyes have been developed (Van Der Lans ef al., 2010).
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Fig. 5.23 The |-DT detection criteria; gaze must reside within a limited spatial region for a specified
minimum duration. Two fixations clearly fulfil the spatial dispersion criterion, but what about the more
dispersed blob on Sorcerer? Is that one fixation or wo? In the end, your settings will decide.

5.5 Algorithmic definitions

5.5.1 Dispersion-based algorithms

Dispersion-based algorithms are the most common type of event-detection algorithms, and
are implemented in many commercial analysis software packages. They have mostly been
used for low-speed data, and have long been considered the prime choice when analysing
50 Hz data. In short, dispersion algorithms detect only fixations and collect all other events
to a common category. They identify fixations by finding data samples that are close enough
to one another for a specified minimal period of time. They do not make any use of velocity
or acceleration information to calculate the precise on- or offsets of fixation. Related cluster
algorithms are presented by Urruty ef al. (2007), Santella and DeCarlo (2004), and Goldberg
and Schryver (1995b). The most used and also best of the dispersion algorithms is, according
to Salvucci and Goldberg (2000), the identification by dispersion threshold (I-DT) algorithm;
they tested six fixation algorithms with respect not only to accuracy and robustness, but also
ease of implementation and speed. There are a number of commercial implementations of
dispersion-based algorithms, for example by ASL, and SML
The pseudo-code for the 1-DT algorithm is:

1-DT. Input: (raw data samples, dispersion threshold, duration threshold)
l. While there are still data samples

(a) Initialize window over first samples to cover duration threshold
(b) While dispersion <= threshold, add samples to window

(c) Note a fixation at the centroid of window samples

(d) Remove window points from samples

Dispersion is defined as d = [max (x) — min(x)] + [max(y) — min(y)], where (x,y) rep-
resent the samples inside the window. The dispersion algorithms combine a temporal win-
dow (duration threshold) with a spatial requirement (the dispersion threshold). For instance,
the temporal threshold may be 100 ms, and the dispersion threshold 1° of visual angle. This
would then mean that only when the data samples stay within a 1° diameter for at least 100 ms
is that sequence of data samples considered a fixation. This principle is illustrated in Figure
5.23. The I-DT algorithm has a number of cousins who all use a temporal threshold, but cal-
culate the spatial dispersion criterion somewhat differently (Blignaut, 2009; Shic, Scassellati,
& Chawarska, 2008; Salvucci & Goldberg, 2000). Moreover, the algorithmic variations have
different ways to deal with noise, as we have pointed out above.

5.5.2 Velocity and acceleration algorithms
Fixation detection algorithms

As for dispersion algorithms, fixation velocity algorithms use a duration criterion, but instead
combine it with a stillness criterion based on eye velocity. The eye velocity is seldom at the
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Fig. 5.24 Velocity chart for three fixations and two saccades, recorded at 1250 Hz with a tower-mounted
system. Velocity calculated with BeGaze 2.1.

absolute zero level, because of micro-movements in the eye and eye-tracker-related noise.
Therefore users of this algorithm must decide an upper velocity threshold for fixations. Figure
5.24 shows a velocity over time chart for three fixations and two intermediate saccades. The
velocity during fixations in this reading data has its peaks at 6-10°/s. The shortest saccades
typically have velocity peaks of about 30-40° /s. Rotting (2001) summarizes settings for the
velocity threshold used for this type of fixation analysis in five quoted studies: < 16°/s, <
20° /s, < 6.58%/s, < 50° /s, < 37.7° /s. The two last settings most likely reflect a considerable
noise in the eye-tracking systems used in the quoted studies, and definitely run the risk of
categorizing some short saccades as parts of fixations. Thresholds could also vary since the
velocity samples have undergone different types of lowpass filtering prior to detection; little
filtering requires higher thresholds.

This type of algorithm also requires an additional minimal duration threshold for fixa-
tions. which can be set to anything between 60 and 120 ms, according to Rottings review,
also see pages 155156 for an extended discussion. The algorithm thus finds fixations as pe-
riods longer than a minimal duration, during which the eye velocity is below a maximum
velocity threshold.

Even though the ‘fixation radius’ and ‘Min fixation duration’ settings in Figure 5.1(b) on
page 148 invite the user to believe that it is a dispersion-based algorithm, the Tobii ClearView
fixation algorithm is in principle similar to the I-VT algorithm by Salvucci and Goldberg
(2000); the ‘fixation radius’ setting refers to the maximum distance between two consecutive
samples in pixels. Fixations comprise consecutive samples whose distances are shorter than
the “fixation radius’ over a period longer than the minimum fixation duration. Note, however,
that according to Blignaut and Beelders (2009) classification of dispersion metrics on page
155, the Tobii Clearview algorithm could well fit the under the umbrella of dispersion-based
algorithms.

Saccade detection algorithms

A velocity-based saccade detection algorithm focuses on identifying the saccadic velocity
peaks. Motion above a velocity threshold, for instance 75°/s, is assumed to be a saccade. In
order to differentiate real saccades from artefacts, which can also be fast movements, there
are usually additional constraints on saccades, such as a clear speed peak near the middle
of the saccade (Smeets & Hooge, 2003), or that the peak saccade velocity cannot be higher
than a certain threshold (Nystrém & Holmgqvist, 2010). What is not identified as a saccade is
typically assumed to be a fixation. Surprisingly, very few, if any, algorithms have used the fact
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that saccades follow what is known as the main sequence 10 exclude ‘non-typical’ saccades
(i.e. eye movements have a typical path from which deviating saccades are obvious).

Velocity-based algorithms have been implemented by many researchers themselves, but
are also available in some commercial analysis software. One such implementation can be
found in the commercial software BeGaze 2.1 by SMLI. It has been used in this book to il-
lustrate strengths and weaknesses of current centre algorithms. The SMI velocity algorithm
is a more elaborate version of the I-VT algorithm of Bahill, Brockenbrough, and Troost
(1981) and Salvucci and Goldberg (2000), and also very similar to the algorithms tested
by Inchingolo and Spanio (1985), and possibly stemming back to the algorithms by Boyce
from 1965 and 1967 as referred to in Ditchburn (1973).

The particular implementation of the SMI velocity algorithm we have used in many exam-
ples above is based on the algorithm described and used by Smeets and Hooge (2003). This
paper spells out the algorithm in detail, because the authors thought that researchers should
be specific about their algorithms. In fact, few other papers provide such detail, so when one
SMI employee a little later made a literature search for saccade detection algorithms being
used in research papers, that particular version came to be the algorithm SMI implemented in
their BeGaze software.

The SMI velocity algorithm is a two-pass algorithm, i.e. it looks through the complete
data stream twice. The first time to calculate velocities and defect saccades, and the second
time to find saccadic onsets and offsets. The following is the pseudo-code.

es for the

16° /s, < SMI velocity algorithm. Input: (raw data samples, velocity threshold,
ssiderable saccade peak location threshold)
the risk of 1. For all samples:

since the

- : a) Calculate angular velocities
ection: little @) S

(b) Detect peaks in eye velocity

| (c) Calculate fixation velocity threshold
d for fixa-

S review, 2. For all velocity peaks:
frons as pe-

E (a) Collect all data samples to the left of the peak, but only until the velocity
maximum

is so slow that the sample must be part of a fixation (the fixation velocity
A threshold) .

3 J‘[(b}.on (b) Collect all data samples to the right of the peak, but only until the
ClearView velocity is so slow that the sample must be part of a fixationm.

d Goldberg (c) Detect a saccade from the collected data samples only if the

onsecutive velocity peak of the saccade is located within the central

shorter than part of the saccade. Otherwise it is discarded.

e, however, (d) Detect blinks as periods where only zero data ((x,y)=(0.0)) are found

on page between two saccades.

=rsion-based (¢) Fixations are everything that are not saccades or blinks.

In other words, this algorithm finds the velocity peaks that rise above the threshold, and
accepts these as saccade candidates. Originating at the saccadic peak, the algorithm then
walks down the slopes on both sides (see Figure 5.24). The calculated fixation velocity thresh-

velocity old tells the algorithm when the speed is so low (the eye is so still) as to stop counting this
saccade. In as a saccade, but rather as a fixation. The SMI implementation of this algorithm takes it that
ents, there the saccade on- and offsets are when the saccade velocity is three standard deviations higher
the middle than the average velocity of fixations, as calculated from the beginning of the stream of data

ot be higher samples. For the two saccades in Figure 5.24, the onset velocities are 12.56°/s and 10.95° /s,

s @ saccade is and the offset velocities 13.98°/s and 15.83°/s, somewhat higher than the average fixation
used the fact noise of 6-10°/s. As a very simple check that the saccade velocity profile seems valid, only
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Fig. 5.25 A finite state machine with two states: one representing fixations and one saccades.

saccade candidates that have velocity peaks in the central portion (default are 20%-80% of
saccade length) of the saccade are finally accepted. Finally, fixations are detected implicitly
as everything that is not saccades, blinks, or undefined events.

Velocity algorithms are better to use with high sampling frequencies, since saccades are

short (in the area

of 20-50 ms) and you need many samples in each slope (10-25 ms) to

calculate velocities correctly in the critical slope ends, A 200 Hz recording gives 2-5 samples

per slope (dependi

ng on the size of the saccade), which should be considered an absolute min-

imal sampling frequency for accurate saccade duration calculations (p. 29). If the algorithm
is used just for detecting the saccade, rather than measuring it, then a sampling frequency
as low as 50 Hz can be sufficient. For saccadic detection, it is enough to have one velocity

sample above the

peak threshold, which means (wo data samples at a large enough spatial

distance between them, which you find in 50 Hz data.
The “Tobii fixation filter’ developed by Olsson (2007) is used with low speed data using a
‘double-window technique’ (similar to the one proposed by Marple-Horvat et al., 1996). First,

the algorithm uses

two sliding windows on opposite sides of the current velocity sample and

finds the average velocity within each such window. These averages are subtracted, and only
if the difference exceeds a threshold, a saccade is detected. To prevent two fixations from
being identified too closely in space and time, another set of thresholds is used to control for
fixation proximity.

An increasingly popular event detection algorithm was presented by Engbert and Kliegl
(2003). It was originally developed to detect microsaccades, but works equally well for sac-
cade detection. To detect saccades, the algorithm searches for velocity samples exceeding a
threshold, which is calculated based on a median estimation of the eye velocity during a trial.

Thus, it adapts the

threshold over different trials and participants. Horizontal (v,) and vertical

(vy) velocity components are treated separately by the algorithm.

Hidden Markov Models (HMM) use a probabilistic model to classify data samples into
saccades and fixations based on velocity information. The I-HMM model described by Salvucci
and Goldberg (2000) uses two states, S; and S, each representing the velocity distribution of
either fixation samples or saccade samples (see Figure 5.25). Each state is associated with
transition probabilities, which estimate the likelihood of the next sample belonging to a fix-
ation or saccade, given the status of the current sample. Typically, consecutive samples have

a high probability

of belonging to the same type of eye movement, giving small inter-state

transition probabilities, {p 12, p21 }- The two-state 1-HMM model reported by Salvucci and
Goldberg (2000) needs eight parameters, which can be estimated from similar sample data.
Besides two transition parameters for each state, the model needs to know the observation
probabilities in the form of velocity distributions (means and standard deviations). Given the

model parameters

and a sequence of gaze positions to be classified, dynamic programming

such as the Viterbi algorithm can be use to map gaze positions to states (fixation or saccades)
in a way that maximizes the probability of a correct assignment according to the model. Fi-
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Extending the two-state approach, Rothkopf and Pelz (2004) proposed a four-state HMM
to analyse data collected using head-mounted eye-trackers. The two additional states repre-
sented data from smooth pursuits and vestibular ocular reflexes (VOR).

The I-HMM is, according to Salvucci and Goldberg (2000), accurate and robust, and it is
possible to adapt by re-estimating the parameters. In comparison with other dispersion-based
methods, it is more complex, however, and requires more parameters (0 be set (or estimated).
Algorithms based on HMMs are uncommon and cannot be found in any commercial software.

Velocity in combination with acceleration

Information about eye acceleration is particularity useful when distinguishing saccades from
smooth pursuit. Velocity by itself is not sufficient since the slowest saccade velocity can be
slower than the fastest smooth pursuit movement (Behrens & Weiss, 1992). Acceleration
is therefore used in high speed data for detecting saccade on- and offsets, where the eye
acceleration reaches its maximum value.

A widely used velocity- and acceleration-based saccade detection algorithm was devel-
oped by SR Research and thus primarily applied to eye-tracking data acquired with EyeLink-
systems, but it is not the only algorithm using acceleration data (see Tole & Young, 1981
Behrens & Weiss, 1992). The algorithm developed by SR Research is perhaps the most
heuristic of the different algorithms, with several settings and a number of pragmatic as-
sumptions built in. This may stem from its fundamental difference compared to previously
described algorithms: it is primarily designed to detect saccades online using the position
and movement of the eyes, which is (and must be) reflected in its design. This difference
gives the EyeLink parser some advantages. First, only the detected events have to be stored
on the recording computer, not raw data samples. This saves a substantial amount of space.
Second, and maybe most importantly, it allows for gaze-contingent research where stimuli
can be manipulated online in synchrony with the eye-movement events. On the other hand.
an online algorithm does not have access to all data samples in a trial before detection, and
thus needs to make its decisions based only on data recorded before the currently available
sample. Moreover, it has only one chance to get this right, whereas a multipass algorithm has
the chance to correct initial mistakes.

In the EyeLink algorithm, saccade on- and offsets are detected by comparing the instanta-
neous velocity and acceleration against user defined thresholds. To make the algorithm more
robust, detection is triggered when either velocity or acceleration become higher/lower than
their respective thresholds for a predefined number of samples. Besides saccades, the Eye-
Link parser detects blinks and fixations; blinks are identified when the pupil size is very small,
or cannot be found at all in the camera image of the eye; fixations are everything that is not
saccades or blinks.

5.6 Manual coding of events

Manual coding means that a person subjectively decides, for example, when the gaze position
is still enough to be a fixation or moves fast enough to be a saccade. An example of coding
instructions and procedures is given in Harris, Hainline, Abramov, Lemerise, and Camenzuli
(1988). While it is very time consuming, manual coding may sometimes be the only real
option, as in the case where data is available only as gaze-overlaid videos or when data are
recorded from dynamic stimuli. Compared to algorithmic detection, manual coding has the
advantage of being able to utilize the powerful pattern matching ability that humans have, but
also the weakness of human subjectivity and inconsistency.
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To identify fixation durations from video, you need to look through it frame by frame, "
and notice when the gaze overlay cursor is still and when it moves. Stillness is typically
defined as the gaze cursor remaining on the same position (usually an object) in the scene,
even if the head is moving, rather than stillness in the head.

Fixation duration coding from gaze-overlaid videos is not very common, and when it is
done, the method is rarely published. For instance, Tatler. Gilchrist, and Land (2005) recorded
the eye video image onto the gaze-overlaid video, and thus could see the movement in the eye
video while watching the gaze cursor move when coding for fixations. According to Benjamin
Tatler,20 the movement in the eye video is a much more reliable indicator of fixation and
saccade events than the gaze cursor, especially as the scene video looks a bit blurred during
saccades and head movements.

Munn et al. (2008) tested three coders, with on average 300 hours of coding experience.
They were given the instruction to code the gaze-overlaid 30 Hz video for fixation start- and
end-frames. They used a 200 ms fixation duration criterion. Coding a 100 second period of
data took 80 minutes on average. One data period was from a participant walking around in
an office environment, and the other from an animated film. The authors compared the coded
fixations to fixations produced by a velocity-based type of algorithm, also taking 30 Hz data,
with the addition of an extra fixation duration criterion of 200 ms. Results show that the
human coders agreed with each other slightly more often than with the algorithm, but this
could be due to the low sampling frequency of the eye-tracker. For head-mounted systems
with a higher sampling frequency, we should expect a better performance on the part of the
algorithm. In conclusion, Munn ef al. (2008) found that the algorithm they tested was quite
robust in finding fixations (or rather non-saccadic portions of data), and that the algorithm
could be used as a preliminary parser that reduces the effort of manual coders to find potential
fixations.

Methods for dwell time coding are described on pages 227-229. In dwell time coding,
the coded values are the total gaze durations on objects in the scene, irrespective of whether
that gaze is composed by fixations, saccades, or smooth pursuit.

5.7 Blink detection

Blink detection is an important component of an event detection algorithm, both since blinks
are related to cognitive functions (p. 410 and Fogarty & Stern, 1989), and because they need
to be separated from other types of events such as fixations and saccades. Moreover, blinks
are often considered to be artefacts in both eye-tracking and EEG data, and inaccurate de-
tection causes these undesired data to be included in the subsequent analysis. For example,
the EyeLink manual advises the user that “it is also useful to eliminate any short (less than
120 millisecond duration) fixations that precede or follow a blink. These may be artificial or
be corrupted by the blink” (SR Research, 2007). Together these reasons motivate why most
eye-trackers report information about blinks, even though they are not movements of the eye,
but rather movements of the eyelid.

There are a number of methods to detect and measure blinks, for example by analysing
the eye video directly (Grauman, Betke, Gips, & Bradski, 2001; Moriyama ef al., 2002), by
identifying large vertical EOG potentials (Abel, Troost, & Dell’Osso, 1983), by monitoring
markers attached to the upper and lower eyelids (Collewijn, Van Der Steen, & Steinman,

191f you record eye movement data at 50 Hz on a video with 25 interlaced frames per second, you can go through
the video field by field to see all data samples during coding. Not all video viewers allow this, however.

20personal communication, October 21, 2009.
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(a) Two blinks seen as pairs of artefactual down- (b) Two blinks in a velocity plot.
ward saccades with intermediate loss of data.

Fig. 5.26 Typical appearance of blinks when they appear in data collected with tower-mounted high-
-speed eye-trackers.

1985), or simply by manual counting of blinks (Taylor et al., 1999; Epelboim & Suppes,
2001). The focus of this section, however, is blink detection with data from modern video-
based eye-trackers that output at least time stamped (x,y) coordinates and pupil size.

Blinks are detected as the eyelid descends downward to eventually cover the entire eye-
ball. On its way down, it covers increasingly more of the pupil, making the calculated pupil
centre move downward, and with it the data samples, as though there was a rapid downward
saccade. When the eyeball is completely covered, both the pupil and the corneal reflection
cannot be tracked any more. Consequently, the eye-tracker reports neither data samples nor
pupil size, and instead typically outputs zeros (0). When the eyelid re-opens a corresponding
upward-moving saccade-like movement is produced, and actual eye tracking can continue.
Figure 5.26 illustrates the typical appearance of (a) data samples and (b) velocity during two
blinks recorded with a high-speed tower-mounted eye-tracker.

There are surprisingly few published articles dedicated to blink detection, and the ones
that exist can mainly be found in the data analysis sections of the paper. Indeed, most blink
detection algorithms consider pupil size and gaze coordinates, often also with a required
minimum duration. Bonifacci, Ricciardelli, Lugli, and Pellicano (2008), for example, define
blinks as sudden losses of the position signal for more than 96 ms, and Van Orden, Jung, and
Makeig (2000) use a pupil diameter threshold in combination with an 83.3 ms minimum dur-
ation requirement. Using both pupil and gaze coordinate information, Geng, Ruff, and Driver
(2009) required a loss of pupil data for at least 50 ms in combination with eye movement
of at least 13° of visual angle. Similarly, Brouwer, Van Ee, and Schwarzbach (2005) defined
blinks simply as “those samples during which no eye position was recorded”. Karatekin, Mar-
cus, and White (2007) used one of three criteria, defined as followed: “(a) the pupil diameter
falling below 1.86 mm or above 5.96 mm. (b) the horizontal or vertical positions of the eye
falling outside the limits of the screen, or (c) the diameter of the pupil changing by more than
0.74 mm over 16.7 ms.”

Several researchers do not use their own software, but rely on blink detection algorithms
implemented by manufacturers. Examples are:

o SMI’s analysis software package BeGaze 2.3 detects blinks when “zero data is embed-
ded in 2 saccade events” (SMI, 2007), i.e. exactly what is depicted in Figure 5.26. Note
that this makes the algorithms depend critically on how saccades are defined.

e The EyeLink parser describes blink detection as follows in the manual: “Blinks are
defined by a period of missing pupil surrounded by a period of artefactual saccade
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caused by the sweep of the eyelids across the pupil.” (SR Research, 2007).

e Tobii Studio’s (version 2.1.12) help function hints to the user that “A couple of gaze
data with validity code 4 on both eyes followed by a number of gaze data with validity
code 0 on both eyes are usually a sure sign of a blink™. According to the help function,
the validity code 0 means that all ‘relevant data’ have been recorded, whereas validity
code 4 indicates that data is missing or is “definitely incorrect”.

A common denominator for the algorithmic descriptions in the manufacturers’ manuals is
that sufficient detail to implement the algorithm yourself is typically missing.

Although visual intake is suppressed during blinks, it is not clear for how long (p. 324).
Therefore, it seems suboptimal in the general case to choose blink duration thresholds based
on what is known about blink suppression.

Data from eyelid trackers show that closing the eyelid is generally faster than opening it
(p. 325). This allows us to define at least four duration measures: closing time, closed time,
reopening time, and blink duration. The baseline is the position of the eyelid before closing.
As we have seen in the eye camera set-up section, eyelids can be more or less droopy in
the baseline state, and a droopy eye will have a smaller amplitude during blinks. There are
several alternative measures of blinks. For instance, blink closure duration was defined by
Morris (1984) as the time from when the lid is half closed and going down, until it is at
the same position but heading upward. Lobb and Stern (1986) introduced a whole range of
measures, such as time between blink initiation and incursion of the lid on the pupil, duration
of lid over the pupil, duration between lid over pupil and full closure, and how long the lid
remained closed.

Note that an eye-tracker typically does not measure the movement of the eyelid, and
therefore cannot provide detailed information about individual blinks. However, it may give
a good idea of how much of the pupil is covered. For instance, closing time could refer to
the time it takes the eyelid to traverse the pupil on its way down. Sometimes there is no need
to know the precise dynamics of a blink, as long as it can be detected and blink rate can be
calculated.
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5.8 Smooth pursuit detection

Smooth pursuit is the slow motion of the eye as it follows something moving. There is a
common belief that smooth pursuit can only occur when there is a target to follow, but some
studies contradict this. It appears that participants can follow the mental percept of an imag-
ined or offset stimulus for at least a few seconds (Whittaker & Eaholtz, 1982; De’Sperati &
Santandrea, 2005). So, for instance, if the participant controls a moving object, the eye can
pursue it smoothly even in total darkness (Gauthier & Hofferer, 1976).

Smooth pursuit can be studied in its own right, indirectly revealing properties of the
neural systems that underly it. Alternatively, the effect on smooth pursuit of drugs, alco-
hol, and a variety of disorders can be a reason to use smooth pursuit measures. For instance,
Trillenberg, Lencer, and Heide (2004) review a large number of eye-tracking studies with
a focus on smooth pursuit, and conclude that “eye movements provide an important tool to
measure pharmacological effects in patients and unravel genelic traits in psychiatric disease”.
Similarly, the large review by O'Driscoll and Callahan (2008) indicates that smooth pursuit
impairment is robust in schizophrenia.

Figure 5.27 shows the x-coordinate, velocity and acceleration of a person’s gaze when
trying to follow a pendulum movement—a task that requires smooth pursuit movements. As
the figure illustrates, smooth pursuit is characterized by periods with more or less constant
velocities accompanied by what is known as ‘catch-up saccades’. These are employed when
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Fig. 5.27 Gaze following a pendulum movement. Recorded with the SMI HiSpeed 1250 Hz. ‘Fixations’
(black) and ‘saccades' (grey) as detected with the SMI velocity algorithm in BeGaze 2.1 are shown at the
bottom of the graph.

the gaze position lags behind the target it follows, and therefore temporarily needs to increase
velocity to catch up with the target. Besides catch-up saccades, another two types of saccades
can interrupt smooth pursuit: back-up saccades (in the direction opposite target motion which
reposition the eyes on the target when eye position was ahead of the target) and leading
saccades (anticipatory saccades of any amplitude over 1°). Square-wave jerks can also occur
during smooth pursuit (Black, 1984). Fixations interrupt smooth pursuit when it is very slow,
at least from the viewpoint of the detection algorithm, which ignores whether or not the
smooth pursuit brainware continues to move the eyes.

In the medical research community, data on smooth pursuit is typically calculated in re-
lation to a moving object (dot) that the participant looks at. To estimate how accurately the
participant can follow a target dot as it moves, the ratio (gain) or distance (phase) between
target velocity and eye velocity over time can be calculated. There is then no need to defect
the smooth pursuit first; calculations can be made directly from the raw data stream. How-
ever, it may be necessary to remove saccades (including catch-up saccades) and interpolate
saccadic gaps to obtain accurate values (Ebisawa, Minamitani, Mori, & Takase, 1988).

Applied researchers use more complex video stimuli, as well as head-mounted eye-trackers
without head tracking, and get data where smooth pursuit is mixed with fixations and sac-
cades. Using the current dispersion or saccade velocity algorithms to calculate fixation dur-
ation, saccadic amplitude or the percentage of smooth pursuit is of little use here, but can be
directly misleading, as we saw earlier in this chapter. For such applications, a general smooth
pursuit detection algorithm is needed.

As previously described, some algorithms co-classify fixations and smooth pursuits into
a general ‘intake’ category, like the fixation velocity algorithms used by Itti (2005) as well
as the Tobii Fixation Algorithm and the EyeLink parser, which report these combined events
as fixations only. Such ‘fixations’ may not be comparable with fixations recorded from still
images.
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Fig. 5.28 Result of smooth pursuit detection (from Larsson, 2010). Data collected with a tower-mounted
system at 500 Hz from a participant looking at a sinusoidal target (the path of which is marked as ‘ideal
viewer').

Smooth pursuit detection is much less investigated than fixation or saccade detection.
Nevertheless, a number of methods have been proposed. Sauter, Martin, Di Renzo, and Vom-
scheid (1991) developed a technique based on Kalman filtering, which tries to model and
predict eye velocity online based on previous velocity samples. If the predicted velocity is
significantly different from the observed velocity according to a % *-test, a saccade is de-
tected. Otherwise, it is a smooth pursuit movement or a fixation. Komogortsev and Khan
(2007) extended this approach by detecting a fixation when the predicted eye velocity was
< 0.5° /s for at least 100 ms. Smooth pursuit was defined as everything that was not a saccade
or a fixation, and where the predicted eye velocity did not exceed 140° /s.

A different approach was used by Agustin (2010), who in an initial step separated sac-
cades from fixation and smooth pursuit with simple velocity thresholding, and then separated
fixations from smooth pursuit by looking at the direction of movement over a limited time
window; smooth pursuit was detected only when the standard deviation of the movement
directions was below a certain threshold. Since fast smooth pursuit velocity can exceed the
velocity of slow saccades, Larsson (2010) used the algorithm by Engbert and Kliegl (2003)
adapted to the acceleration domain to separate the quickly accelerating saccades from fixa-
tions and smooth pursuit. Smooth pursuit was separated from fixations by statistically testing
the uniformity in distribution of sample-to-sample vectors around the unit circle. Only por-
tions of the data where the hypothesis of uniformity was rejected by a Rayleigh test were
accepted as smooth pursuit. Finally, a dispersion-based threshold was used to find fixations.
Remaining data comprised undefined events. Figure 5.28 shows the result of applying the al-
gorithm by Larsson (2010) to data collected from a partjcipamhlooking at a sinusoidal target.

Analysing smooth pursuit in monkeys, Ferrera (2000) presented an algorithmic method
drawing on eye velocity. Assuming that saccades have already been removed from data, it
is implemented as follows. A moving window of 100 ms is applied to velocity samples, for
each stop comparing whether the data in the current 100 ms window differs significantly
from the data in the previous 100 ms window. Ferrera then uses the calculated significance
values to make an ROC (receiver operating characteristic) curve along the eye-velocity curve.
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When the ROC curve reaches 0.95, onset of smooth pursuit is assumed to have taken place.
This appears to be a fairly precise calculation of onset, and it is based on eye velocity only.
Ferrera’s major argument for using a velocity- rather than an acceleration-based algorithm is
that acceleration is a noisier measure, being a second derivative. Smooth pursuit offset is the
inverse of onset. In theory, therefore, Ferrera’s method could be used to calculate the offset
by simply exchanging the positions of the two windows.

Berg, Boehnke, Marino, Munoz, and Itti (2009) used principal component analysis (PCA)
to classify raw eye-movement data within a temporal window. A small ratio of the explained
variances (minimum divided by maximum) for each of the two principal components was
interpreted as a saccade. Raw data samples with a ratio near zero but with insufficient velocity
to be considered as a saccade were taken as smooth pursuit samples.

5.9 Detection of noise and artefacts

There are good arguments to discard imprecise data entirely. But in order to know how much
noise there can be in a recording before we delete it, we need to quantify the amount of
data which is overly noisy. Detecting which sections of the data are too poor to be used is
important, in particular if manufacturers use lower quality eye cameras in the systems they
sell.

There are many different types of noise detection. First, there is the system inherent noise
that is related to the precision of your eye-tracker. In high-end systems, this type of noise
is low enough to allow the measurements of fixational eye movements, whereas this is not
possible for lower end systems. System inherent noise can be hard to separate from real
eye movements under normal conditions, and is reduced by filters rather than detected and
removed.

Second. there are the high velocity optic artefacts—very quick jumps in eye-movement
data—that do not originate from actual eye movements, but derive from situations where
the eye-tracker temporarily fails to correctly track the pupil and/or the corneal reflection.
As a result, movements that violate known eye-movement dynamics can appear in the data.
Fortunately, most artefacts with high velocities can be removed by excluding data samples
with velocities and accelerations that exceed the theoretical values for how fast human eyes
can move: in 1250 Hz data, Nystrém and Holmqvist (2010) use upper thresholds of 1000° /s
and 100000° /s> for this purpose.

Data loss, when the eye-tracker cannot report a value of how the eye moves, can also be
seen as noise. Typically, lost samples are indicated in the data files, which makes it simple to
calculate and report. Depending on your research question, blinks are sometimes included in
this category.

Event detection algorithms are typically designed under the assumption that there is rel-
atively little imprecision and few artefacts in the data, and in particular that the level of im-
precision is even throughout the recording. In some cases, as in Figure 5.13, precision varies
over time. Assuming we have a velocity-based algorithm, there are three options for how to
deal with this variation:

1. Let the velocity threshold adapt to the local precision level in the data, as proposed
by Tole and Young (1981); Niemenlehto (2009). When precision is high, lower the
threshold, when it is low, increase the threshold. This makes the best possible use of
data, but since fixations are defined by different criteria due to the varying noise levels,
they may not be comparable with each other.




182 |ESTIMATING OCULOMOTOR EVENTS FROM RAW DATA SAMPLES

—— Left eye
—— Right eye

o
[+
=]

[+:]
(=]
(=]

x—coordinate
~
g

q
g

i
1
I

40
6000 6100 6200 6300 €400 6500 6600
Time (ms)
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Fig. 5.29 A large microsaccade recorded binocularly at 500 Hz in pupil-only mode, with a video-based
tower-mounted eye-tracker and a participant staring at a very small point.

2. Use a fixed, low threshold throughout all data. This will give proper fixations in the
high-precision sections of data, but a plethora of unreasonably short fixations and sac-
cades in the low-precision section.

3. Use a fixed, high threshold throughout all data. Noise would be ignored, but also many
small saccades.

In summary, noise can be detected as artefacts, data loss, and blinks. The proportion
of this type of noise can (and should) be reported in your study. Physiological and system
generated noise is more difficult to detect, and is usually reduced by filtering.

5.10 Detection of other events

A number of other patterns occur in eye-tracking data, that could be parsed into events.
Fixational eye movements consist of microsaccades, drifts, and tremor. Of these three
types of micro-movements, microsaccades, as illustrated in Figure 5.29, are the most investi-
gated. They can be detected by the algorithm of Engbert and Kliegl (2003). From a ballistic
point of view, microsaccades can be regarded as smaller versions of normal saccades, possi-
bly ending with larger overshoots (Mgller, Laursen, Tygesen, & Sjolie, 2002).
In short, the algorithm estimates the standard deviation oy, of the velocity

Oy y = <VJ2;\\'> = <"’x_._\'>2 (5.1)

in x- and y-dimensions with a median estimator (-) to alleviate the influence of noise. Then,
velocity samples above a threshold A6y, A > 1 are potential microsaccade samples. Several
researchers use the fact that microsaccades occur in both eyes simultaneously, and there-
fore only accept those that have a minimum overlap in time between the left and the right
eye (Engbert & Mergenthaler, 2006; Otero-Millan, Troncoso, Macknik, Serrano-Pedraza, &
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Martinez-Conde, 2008). Hafed and Clark (2002) detected microsaccades as movements of
size 0.12°—1° with a velocity > 8°/s, whereas Martinez-Conde, Macknik, and Hubel (2000)
used 0.05°=1° and > 3°/s. Mgller et al. (2002) accepted fixational movements as micro-
saccades only if their velocities and accelerations exceeded 5° /s and 2500° /5%, respectively.

Given the microsaccades, inter-microsaccadic intervals (IMSIs) can easily be calculated
as periods between the microsaccades (Engbert & Mergenthaler, 2006).

The term glissade was coined by Weber and Daroff (1972) to describe a slow, drift-
like movement without latency that “corrected dysconjugate refixations”. In other words, the
glissade was seen as a post-saccadic movement intended to realign the eyes before steady
fixation. Bahill, Clark, and Stark (1975a) propose that glissadic overshoot last 30-500 ms,
and are therefore different from dynamic overshoot, which they argue last only for 10-30 ms.

Later, glissades were hypothesized to be errors in the measurements, not something to
be detected as an event in its own right. For instance, Deubel and Bridgeman (1995) explain
the observed “post-saccadic movement” as a form of inertia in the eye lens during saccade
retardation, that makes it go further than the eyeball tissue, which then pulls then lens back
again. This movement of the lens (but not the eye) would cause what is essentially a mea-
surement error in the data, which would be especially grave for the Dual-Purkinje eye-tracker
which relies on the fourth Purkinje reflection at the back of the lens. The video-based pupil
and corneal reflection systems are much less sensitive to such swinging of the lens, assum-
ing that this is the explanation, but yet the authors of this book see the many large glissadic
movements very clearly in our data from all our video-based eye-trackers, including high-end
systems from SMI and SR Research.

For simplicity, Nystrém and Holmqvist (2010) suggested naming all types of high-velocity
over- and undershoots that occur directly after a main saccade glissades, and this is also the
terminology used in this book. According to this definition, glissades could be seen as ocular
‘wobbling’ that sometimes occurs at the end of main saccades (for an example see Figure
10.28 on page 338), and it thus differs from the slow post-saccadic drift that may go on for
the entirety of the next fixation.

In current detection algorithms, glissades are mostly assigned either to the fixation (e.g.
the EyeLink parser), or to the saccade (for instance Gilchrist & Harvey, 2006). Nystrom and
Holmgvist (2010) detected glissades separately as movement peaks that exceed a velocity
threshold within 40 ms after the offset of a saccade. According to Nystrom and Holmqvist's
definition, the onset of a glissade equals the offset of the preceding saccade, whereas the
glissade is terminated when reaching the first local velocity minimum after the last glissadic
movement peak. Using this definition of glissades they found an average glissade duration of
24 ms in reading and scene perception, but glissades between 1050 ms were common.

The square-wave jerk is an involuntary, conjugate saccadic intrusion that takes the eye
off the visual target, and then back again (Leigh & Zee, 2006, p. 164). Its typical motion pat-
tern can be seen in Figure 5.30. Square-wave jerks mostly consist of pairs of small saccades
(0.5-5°) in opposite directions, separated by a normal or slightly longer (200400 ms) sac-
cadic latency. Around 10% of square-wave jerks are biphasic, which means that they return
with saccadic overshoots, and must be followed by a third, corrective return saccade. Orig-
inally called ‘Gegenriicke’, and sometimes ‘saccadic intrusions’ (into fixations), they were
first termed square-wave jerks by Jung and Komhuber (1964). They can derive from both
physiological and pathological sources (Abadi & Gowen, 2004). In normal participants, they
can oceur at a rate of 0.3 Hz or more (Leigh & Zee, 2006, p. 164).

Research papers used a variety of detection techniques, including amplitude and velocity
criteria (Abadi & Gowen, 2004). Fahey et al. (2008) used a detection algorithm that searched
for a pair of saccades in opposite directions, separated by a 60-900 ms period of stillness. Sac-
cades were detected using a velocity threshold of 10° /s. Moreover, Fahey et al. classified the
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Fig. 5.30 Position and velocity pattern of two square-wave jerks. Recorded from an 11-year old boy Copyright (2008}
fixating a target, using a video-based 120 Hz eye-tracker with magnetic head-tracking. Reprinted from
Pediatric Neurology, 38(1),Michael S. Salman, James A. Sharpe, Linda Lillakas, and Martin J. Steinbach,
Square Wave Jerks in Children and Adolescents, Copyright (2008), with permission from Elsevier. 5.1 1

square-wave jerks into micro (< 0.5%), and macro (0.5-3°) events. Using a similar strategy,
Feldon and Langston (1977) detected square-wave jerks as pairs of opposing microsaccades
separated in time with at most 750 ms.

If the intrusive movement lacks the intersaccadic interval present in square-wave jerks,
and saccades appear ‘back-to-back’, it is most likely due to ocular flutter (horizontal move-
ments shown in Figure 5.31) or epsoclonus (movements in all directions) (Leigh & Zee,
2006, p. 165). Unlike square-wave jerks, these types of movements seem (o appear mainly
in participants with saccadic abnormalities.

Undefined events Some portions of data may simply not be possible to assign to any
known category, either because the algorithm is not designed to identify this particular type of
event, or because the portion of data does not fit according to any known prototypical pattern.
Typically, this is what is left after every known event has been detected, and is sometimes
categorized together with noise and artefacts.

Notice that the physical appearance of glissades, small saccades, microsaccades, and the
beginning/end of a square-wave jerk can be very similar, and therefore the same algorithm
could successfully detect all three types of eye movements. In the end it is up to the researcher
to decide which event has been detected, and its functional role. Sometimes terms are used
interchangeably; Abadi and Gowen (2004), for example, make no terminological difference
between dynamic overshoots (i.e. glissades) and microsaccades, and Hafed and Clark (2002)
equate square-wave jerks with a “pair of back-to-back opposing microsaccades”.
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Fig. 5.31 Square-wave jerks (S) mixed with ocular flutter (F1, F2). Reproduced from Brain, 131(4),
Michael C. Fahey, Phillip D. Cremer, Swee T. Aw, Lynette Millist, Michael J. Todd, Owen B. White, Michael
Halmagyi, Louise A. Corben, Veronica Collins, Andrew J. Churchyard, Kim Tan, Lionel Kowal, and Mar-
tin B. Delatycki, Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia,
Copyright (2008) with permission from Oxford University Press.

5.11 Summary: oculomotor events in eye-movement data

From this chapter, we can conclude that a comprehensive oculomotor event detection algo-
rithm should deliver the following data, correctly calculated, to be used directly or in further
analysis:

o Velocity- and acceleration values calculated from the raw data coordinate samples, via

a filtering that does not undermine the detection of any of the events.
Fixation events, each having values for at least position, dispersion, onset, and dur-
ation. Inside fixations, we find the fixational eye-movement events, divided into:
+ microsaccades, with at least amplitude, duration, and velocity values
* drifts
+ inter-microsaccadic intervals
Sacecade events, each having values for at least starting position, landing position, am-
plitude, starting time, duration, peak velocity, and peak acceleration.
Smooth pursuit events, with values for .. well, there is no consensus on how smooth
pursuit events should be represented. Within smooth pursuit, we find the event triple:
+ catch-up saccade
# back-up saccade
* leading saccade

o Blink events, with values for at least starting time and duration.

o Glissade events, with at least the same values as a saccadic event.

o Square-wave jerk with at least amplitude and starting position and duration.

None of the algorithms described in this chapter detect and measure all events reliably.
They all have settings that are not easy to grasp for the beginning eye-tracking researcher,
but which have profound effects on the results produced. Most worryingly. the algorithms
treat the raw samples so differently that basic measures such as fixation duration and saccade
amplitude will be difficult to compare between algorithms using the same data. The majority
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of eye-tracking researchers appear to have faith in the algorithms provided by manufacturers,
and manufacturers mostly support this faith when they hide the algorithm properties in set-
tings dialogues that are difficult to see through, and when not simultaneously showing raw
data and detection results in the same scanpath or velocity graph.

The dominating dispersion algorithm I-DT delivers fixations with a distribution (shown
in Figure 5.9) which simply does not look credible, independent of setting. It is imprecise in
its calculation of fixation onset and duration, and presents little more, yet bothering the user
with the two settings and their unclear interaction. The single setting of a velocity algorithm
is easy to relate to the velocity diagrams: just by looking at a few portions of data you can
estimate the proper threshold value, Also, the fixation duration distribution of the various
velocity algorithms looks more like a representation of a real distribution. For data with a
high sampling frequency, the velocity algorithms are the only realistic choice. In the near
future, however, we are likely to see improved algorithms for all these events.




