8 Scanpaths——Theoretical Principles and
Practical Application

Previous chapters explained how to process raw data samples into fixations, saccades, and
smooth pursuit (Chapter 5), how to divide stimulus space into areas of interests (AOIs) (Chap-
ter 6) that give rise to events such as dwells and transitions, and also how to build represen-
tations of overall spatial distribution called attention maps and their visualizations such as
heat maps (Chapter 7). In this chapter, we discuss the scanpath—a trace of a participant’s
eye-movements in space and time—and its events and representations.

Using and analysing scanpaths raises many questions, some very practical, and some
deeply abstract. This chapter consists of the following sections, and we suggest selective
reading:

o The first Section 8.1 (p. 253) presents a formal definition of scanpaths and relates it to

visualizations and representations of scanpaths.

o Section 8.2 (p. 255) provides condensed hands-on advice for research with scanpaths.

o In Section 8.3 (p. 256), we present the most common usages of scanpaths.

¢ Common events that occur in scanpaths are defined in Section 8.4 (p. 262): The back-

track, the regressions, the look-back, the look-ahead, local versus global scans, and the
reading versus scanning events.

Section 8.5 (p. 268) describes by what means a scanpath may be represented: strings,
Euclidean vectors, and sequences of attention maps.

Scanpath representations are typically used for the purpose of comparing two or more
scanpaths. The principles for scanpath comparison are outlined in Section 8.6 (p. 273).
Section 8.7 (p. 278) discusses whether scanpaths can be related to specific cognitive
processes. It addresses scanpath theory and the related role of memory and task to
scanpath planning and inhibition of return. The section further discusses the average
scanpath and the challenging issue of how to develop and evaluate better scanpath
comparison methods. This section ends with open issues in scanpath comparison.
Finally, Section 8.8 (p. 284) summarizes the chapter and the scanpath events and rep-
resentations that we will use throughout the rest of the book.

8.1 What is a scanpath?

The term ‘scanpath’ originates from the work by Noton and Stark in the early 1970s (Noton &
Stark, 1971a, 1971b). Other common terms for scanpaths are ‘scan pattern’, ‘search pattern’,
‘scan sequence’, ‘gaze sequence’, ‘fixation trac ’, ‘inspection pattern’, and ‘eye-movement
pattern’. About 70% of the journal papers and 84% of Google hits write scanpath as a single
word (‘scanpath’), and the rest use separate words (‘scan path’).

Noton and Stark’s scanpath term refers to the fairly abstract concept of a fixed path that
is characteristic to a specific participant and viewing pattern. In contrast, the term scanpath is
today used to very concretely describe how the eye physically moves through space, typically
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but not exclusively for one participant. In agreement with the physical definition of other
common terms in this book, we define a scanpath as the route of oculomotor events through
space within a certain timespan. This assumes that the ‘path’ has a beginning and end, and
therefore a length.

The most accurate estimate of a scanpath that an eye-tracker can provide is the spatial
coordinates of a participant’s gaze on a stimulus taken every 1/F; second, where F; is the
sampling frequency of the eye-tracker. Space is usually confined to two dimensions x and y,
and a scanpath of length L can then be described by a sequence of coordinates S; = (x;,y;),i =

,L. This is what we can see if we plot a raw data sample scanpath.

A scanpath function f(-) is given one or many scanpaths as input and computes a repre-
sentation of those scanpaths. For example. one output from f would be a sequence of atten-
tion maps which can then be seen as a Gaussian-based scanpath function, which encodes the
probability that a certain spatial position will be a part of the scanpath. Another output would
be vectors representing the fixations and saccades of which a scanpath is comprised. Figure
8.1 shows four different scanpath representations of the same data.

The most common previous definitions of scanpaths have followed Noton and Stark
(1971a) in saying that scanpaths consist of a sequence of saccades. Fixation positions are
part of several scanpath definitions, but fixation durations are seldom utilized in any of the
measures of scanpaths. Smooth pursuit is completely absent from most researchers” working
definition of what a scanpath is, with rare exceptions, such as Boccignone, Caggiano, Mar-
celli, Napoletano, and Di Fiore (2005), who conduct an analysis of eye-tracking data on video
stimuli.

The minimum requirement of a scanpath representation is that it is a sequence that fakes
ordinal information into account. This means that any representation of a specific scanpath
must transform into a representation of another scanpath whenever the order between ele-
ments in the representational sequence is changed.

Static and dynamic visualizations

Recorded scanpaths are typically projected onto the stimulus or an empty space representing
the stimulus. Visualizations of data that are not projected onto a 2- or 3D stimulus space,
for instance a space-time diagram of (x,y)-coordinates, are not generally considered to be
scanpath visualizations.

Most analysis softwares offer scanpath visualizations in a number of varieties, and the
possibility to export or print them. Scanpath visualizations are either static, of which previous
chapters have had many examples, or dynamic, which comes out well on computers but not
on paper. Both these allow for direct inspection of the data from a single participant and a
single trial. Most software packages support viewing four types of static visualizations: raw
data sample scanpaths, which depict the entire set of raw (x,y) coordinates; fixation-based
scanpaths, with fixations plotted either with or without circles of different size to indicate
their duration, and with the option to print sequence numbers next to fixations.

In the static visualizations, the dynamic aspect of the scanpath is supported by connection
lines and fixation numbering. Without these, the static scanpath visualization is reduced to a
density plot: the same set of unconnected points that underly the attention maps of Chapter
7. The dynamic visualizations in the software additionally emphasize the sequential order
of scanpaths in a variety of ways depending on the manufacturer. The basic dynamic scan-
path is a single gaze cursor that is played back. This type of visualization is often used to
replay participants’ eye-movement data in order to elicit verbal data from them (pp. 99-108).
Moreover, this type of visualization may also be depicted for many participants at a time.
Scanpaths of multiple participants typically become very cluttered, except in dynamic gaze
replay, whereby multiple gaze cursors are played back against a stimulus.




(a) Fixations as dots on positions and undirected
connection lines for saccades.

(c) A sequence of directed vectors for saccades,
first five of which are numbered.

HANDS-ON ADVICE FOR USING SCANPATHS| 255

(b) Attention map visualizations with just position
information.
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Fig. 8.1 Visualization of the four different scanpath representations of the same data.

Scanpath representations

The three scanpath representations that are more than sole visualizations are all designed
to cope with what visualizations are poor at; namely providing a representation of data that
can be used for computational analysis and statistics. The AOI strings—in particular the

dwell string—are the most common non-visu
of Euclidean vectors and attention maps are als
Besides visualization, the commercial anal

alizing scanpath representation, but sequences
o beginning to be used.
ysis software packages of 2010 are only just

beginning to add functionality for scanpath analysis. If you want to use the existing scan-
path measures, you therefore need to export data such as raw data samples, fixations, sac-

cades, and/or AOIs, and then implement the
commercial applications (e.g. West, Haake,

measures yourself. The alternative is to use non-
Rozanski, & Karn, 2006; Tsai, 2010; Foulsham,

2010; Cristino, Mathot, Theeuwes, & Gilchrist, 2010).

8.2 Hands-on advice for using scanpaths

Scanpaths are used so variably that only a few general pieces of advice can be offered. If you
plan to use scanpaths as visualizations, or calculate statistics from scanpath representations

you should consider the following issues:
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Scanpath visualizations are excellent for first inspections of data, answering questions
such as: is the data quality good, did the fixation detection algorithm do a good job, is
this recording in line with my hypothesis?

Do not put scanpath visualizations in your papers just as decoration. Ask yourself why
you have put it there, and see to it that the scanpath visualization aligns well with your
hypothesis, operationalizations and results.

There are a whole number of scanpath events ready to be used in statistical analyses,
and many more could be defined.

In order to attribute meaningful interpretations to individual scanpaths, you need to
disambiguate the data using a tight experimental design, verbal data, or other comple-
mentary data recordings.

All scanpath representations used in measures reduce the level of detail in the scan-
paths, for example in terms of spatial and temporal accuracy. Other properties such as
fixation duration are sometimes ignored completely. Be sure to use a scanpath repre-
sentation that retains the properties that you want to measure.

If you are using measures that utilize scanpath representations, be aware that raw data
quality, event detection algorithms and their settings. as well as all issues around AOI
identification may introduce noise in the values you get from the measure. Scanpath
events and representations are at the top of the hierarchy.

8.3 Usages of scanpath visualization

There is little doubt that the most common use of scanpaths is plotting them in order to check
the quality of data immediately after a recording. “Let’s have a look at the recording” is often
synonymous with “Let’s look at the scanpath”, even though other data quality visualizations
exist. We can recapitulate several down-to-carth usages of scanpath visualizations as:

Data quality checks In Chapters 4 and 5, we made ample use of scanpath visualizations for
this purpose. It shows you if there are offsets or poor precision in the data, and whether
fixation and saccade detection worked properly.

Preliminary impression of the data Often a scanpath is visualized to receive a quick first
impression of where the participants looked, and in which order. During piloting, such
inspection can be used to check whether the task elicits the desired eye-movement
behaviour, and to give a first impression of whether your hypothesis will be supported.

Offset compensation If your data has an offset, some software allows you to perform man-
ual offset compensation and drift correction watching scanpath visualizations, as de-
scribed on page 224.

Manual data analysis Scanpath analysis by visual inspection is hopefully decreasing as
methods and software become more capable, but has been the main form of analysis in
previous years (e.g. Josephson & Holmes, 2002; Holsanova, 2001; Buswell, 1935).

Tllustrating scanpaths in publications There are a variety of reasons why scanpaths are
shown, from showing off some good data on the background of a stimulus, to using
the scanpath visualization to clearly demonstrate the experiment and/or the analysis.

Cued retrospective thinking aloud Participant’s thoughts may be difficult to access through
eye-movement data and tight experimental designs alone. It has become increasingly
common to show the scanpath to a participant just after his data has been recorded, and
ask him to retell what he was thinking of during the initial inspection of the stimulus.
This method is described in-depth on pages 99-108.
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In the next sections, we present and discuss three of the most common usages of scanpath
visualizations: checking the data quality, analysing the data manually, and exhibiting scanpath
visualizations in publications.

8.3.1 Data quality checks

Checking data quality is undoubtedly the most common, yet informal and quite undocu-
mented use of scanpath visualizations. We have already looked extensively at data quality
issues in Chapters 2 and 4, and only reiterate the major points here. Visual inspection of eye-
movement data for quality checking should not be a problematic issue, unless your software
does not allow you to visualize scanpaths with raw data samples. Data quality checks can tell
us a lot about the data:

o Is the data accurate or is there an offset in any part of the stimulus image? Offsets can
often be seen as mismatches between actual data and semantic entities in the stimulus
picture that were likely fixation targets given the task. Accuracy tests arc easier to do
with text than with general images. The upper scanpath in Figure 8.2(a) provides an
example.

Are there many optic artefacts in the data, as in Figure 8.2(a)?

o Are many data samples lost? This could indicate that the eye image is poor and the
pupil and corneal reflection therefore cannot be properly detected. It could also occur
if the participant is closing his eyes or is turning his head away from the eye-tracker.
Is the precision low (noise levels high) in the recording, as seen in the spread of raw
samples contained within fixations? For example the fixations of six participants in
Figure 8.2(b).

Is the event calculation algorithm doing a proper job? Plot the raw sample scanpath next
to the fixation-based scanpath, and compare. Figures 8.2(c) and 8.2(d) from Chapter 5
provide an example where fixations were lost during fixation and saccade calculation.

8.3.2 Data analysis by visual inspection

There are many reasons why researchers would want to use scanpath visualizations for their
data analysis.

First of all, a manual, participant-by-participant analysis may be what is needed for ped-
agogical reasons in the publication, for instance in Buswell (1935), who starts his book with
2 long commentary to the scanpath visualization from the data of the participant called “Miss
W, focusing on the order and position of individual fixations, and on what has not been
Gxated. This manual analysis and the description of the scanpath serve a particular pedagogic
purpose that quantitative analyses could not easily provide.

In other cases the software is inadequate. For instance, Buswell (1935) reports statis-
tics using what we today call gridded AOIs, constructed by manual analysis from scanpath
visualizations. It took many decades until software supported such AOI analyses.

Even fairly recently, researchers have had to retreat to manual analysis because statistical
sools are inadequate. For instance, Josephson and Holmes (2002) give a thorough description
of the string-edit method (p. 348), and additional methods that can be used to further a string-
=dit analysis. They conclude, however, that statistical results based on string-edit calculation
wre currently not possible, and end up eyeballing their data. Similarly, Tzanidou. Minocha,
+nd Petre (2005) discuss the problem of identifying metrics that compare scanpaths across
many participants and many stimuli, concluding that there is no such measure, and decid-




(a) Above a scanpath with corner offset due to (b) Noisy recording showing raw samples (scan-
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(c) Raw data samples. Fixations are seen as (d) Adter fixation and saccade analysis, some fix-
black blobs. ations have disappeared.

Fig. 8.2 Data quality checks using scanpaths.

ing to analyse their own scanpath data over web pages using visual inspection and manual
categorization.

Arguing that the types of analysis provided by the academic fields of eye tracking are
not useful for usability research, Ehmke and Wilson (2007) set out to find types of scan-
paths that coincide with a specific cognitive process, but since so little is known about scan-
paths and possibly meaningful subscans, manual analysis of scanpaths against retrospective
interviews—that is verbal data—appears to be the only way forward.

As Holsanova (2001, 2006, 2008) studied the eye-movements of participants freely de-
scribing pictures, she examined patterns in scanpaths and speech that jointly indicated spe-
cific cognitive processes, using a manual transcription method to finds alignment between
sub-scans and spoken items. More precisely, Holsanova (2001) built what are known as mul-
timodal score-sheets, in which several tiers of temporal data share one common timeline. As
shown in Figure 8.3, one tier was the sequence of dwells in AOIs, while another tier listed the
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stone stone tree stone

in front of the tree which is curved is a stone
.

Time
Fig. 8.3 Multimodal score-sheet resulting from manual co-analysis of synchronized speech and eye—
movement data. The final dwell on the 'stone’ AO! is a lookback, coinciding with the participant naming

the stone, and thus most likely due to the planning and development of speech. Adapted from Holsanova
(2001).

development of speech units over time. As this was a picture description task, gaze travelled
across the same AOIs that speech referred to, and so the multimodal score-sheet indicated
patterns of temporal alignment of speech to gaze.

Using an adapted variety of the method in Holsanova (2001), Johansson ef al. (2006)
compared scanpaths during scene perception with scanpaths during subsequent imagery, and
needed to take into account shrinking and repositioning of scanpaths, as well as synchroniza-
tion to speech. Again, this could only be done manually.

Land, Mennie, and Rusted (1999) recorded scene videos with overlaid gaze cursors of
participants making tea. Their analysis of task behaviour led to a multimodal score-sheet
<imilar to Figure 8.3, but instead with tiers representing actions rather that speech. This video-
hased analysis could only be made manually.

How should a manual analysis be carried out? In all the above cases, manual scanpath
analysis aims at finding the sequence of fixations or dwells in AOISs, that is a list of the
obiects looked at, with information about when and for how long gaze stayed there. Today
many softwares can output this list, but not when data consist of gaze-overlaid scene videos,
and not always with dynamic stimuli or in mental imagery studies where AOIs are difficult
+ define. Since in these cases the scanpath needs to be played back, the coding methods for
zaze-overlaid scene videos in Chapter 6 (p. 227) can be utilized, with small adaptions to take
advantage of the more advanced playback control features in scanpath visualization software.

83.3 Exhibiting scanpaths in publications

11 quantitative results in Buswell (1935) and Yarbus (1967) were based on manual analysis
“rom scanpath visualizations. Both publications make extensive use of scanpath illustrations,
#oth for illustration of data and presentation of actual results.

Many authors still publish selected scanpath visualizations in their papers and books, fora
variety of reasons. First, some publications simply address an audience new to eye-movement
4ata and the scanpath is needed to explain what eye-movement data are. Second, when the
oresented analysis includes an important gualitative description of the scanpath (Buswell,
1235 Holsanova, 2008), a scanpath visualization is obviously needed. Difficulties in oper-
~sionalizing the concept under study in terms of computational measures could be another
mzjor reason why we find scanpath visualizations in research publications. Methodology pa-
pers and papers that discuss measures, such as Goldberg and Kotval (1999), Rétting (2001),
+=d Underwood, Humphrey, and Foulsham (2008a) present many scanpath visualizations to
lustrate concepts and operationalizations, and the same is true in this book.
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Fig. 8.4 This “typical viewing pattern” in fact proves to be an outlier. The circle in (a) and (c) denotes the
cocktail glass and microscope respectively, which are then blown up with dimmed background in (b) and
(d) to indicate fixation clustering (note, this is a visualization only, and fixation dots in (b) and (d) may not
reflect the exact number of fixations in the recorded data). Reprinted from Journal of Experimental Psych-
ology: Human Perception and Performance, 25(1), John M. Henderson, Phillip A. Weeks, and Andrew
Hollingworth, The Effects of Semantic Consistency on Eye Movements During Complex Scene Viewing,
pp. 210-228, Copyright (1999), with permission from Elsevier.

In other cases, when the audience of the paper knows about eye tracking, when the oper-
ationalizations are clear and quantitative results do not rely on visualizations, why then use
scanpaths for illustrations?

Our first example is taken from Henderson, Weeks, and Hollingworth (1999). It has been
selected because it is a well-known paper with many citations, but also because the scanpath
visualization the authors choose to include in the paper is in line with their hypotheses. but
deviates from the statistical results. More precisely, they present two “typical viewing pat-
terns” (stated in the last paragraph of page 213 in their article) over almost identical bar room
scenes, but where a cocktail in one is replaced by a microscope in the other. Their Figure
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2, here reproduced as Figure 8.4 depicts this. The concept under investigation is ‘semantic
consistency’, and it is a natural hypothesis that participants will look earlier, more often and
longer at the inconsistent microscope compared to the consistent cocktail. Indeed, this is also
what the included scanpath visualization shows. When counting the fixations in the scanpaths
of their Figure 2, we find 7 or 8 fixations near the microscope, but only one or two next to the
cocktail glass. However, a scanpath visualization is not a result. For one thing, a scanpath is
descriptive data from one single participant, usually in one single trial. Therefore, Henderson
et al. (1999) make a statistical analysis of the data, over several participants, using a number
of AOI measures, including number of fixations on the target, number of entries, first-pass
and second-pass dwell time, and several others.

After we have seen the impressive example in the scanpath visualization of the authors’
Figure 2, the reported overall difference in number of fixations is somewhat disappointing:
0.7 versus 10.7, which was found to be a non-significant difference. The large difference in
the scanpath visualization from this particular participant is not even close to the reported
nonsignificant 9.7 versus 10.7 averages. In fact, this “typical viewing pattern” is an outlier.

Maybe scanpath visualizations are often superfluous additions to the results presented in
current-day journal papers. They may distract some readers to look for confirmation of the
hypothesis, and even to start counting fixations in the single scanpaths visualization, rather
than to look at the overall data analysis and the quantitative results. The authors appear o
2dd these scanpaths with unclear but probably quite different intent, for instance proof that
data were actually recorded and not just made up, or that data quality—as judged from the
included scanpath—was good, or perhaps just as decoration or in tribute to Buswell (1935)
and Yarbus (1967).

In our second example, however, we should trust the published scanpath illustration rather
than the given quantitative data. In schizophrenia research, there has been much discussion
sbout ‘restricted’ scanpaths to facial stimuli, which have consistently been reported in studies
of schizophrenia patients (for instance, Green, Waldron, Simpson, & Coltheart, 2008; Green,
5006: Benson, Leonards, Lothian, St Clair, & Merlo, 2007; Loughland, Williams, & Gor-
don, 2002, just to mention & few). Similarly, participants with social phobia tend to exhibit
‘hyperscanning’ when watching faces, (Horley, Williams, Gonsalvez, & Gordon, 2004). ‘Re-
siricted’ and ‘hyperscanning’ are definitely characteristics relating to scanpaths. Figure 8.5
<hows examples with such (fabricated) data.

Operationalizing ‘semantic (in)consistency” with reference to ‘looking earlier, more, and
longer’, as did Henderson ef al, (1999) in our first example, is relatively uncomplicated.
There is a direct connection between the concepts used in their hypothesis, and conclusion,
nd the measures used. There is one AOI only, and the measures in use are simple and well-
tnown, and nothing is really said about the general shape of the scanpaths that motives a
<canpath visualization in the paper. In contrast, operationalizing ‘restricted scanpaths’ puts
much larger demands on data representations and measures, and eye-tracking-based papers
in schizophrenia and social phobia research are consequently richly decorated with scanpath
L isualizations illustrating restrictedness and hyperscanning.

Green et al. (2008) and other schizophrenia researchers attempt to construct quantita-
tive tests that approximate a ‘scanpath restrictedness’ measure, using a combination of two
measures:

1. Scanpath length (p. 319) should be shorter for more restricted scanpaths in almost all
cases. There are unfortunate exceptions however. Many short fixations at the circum-
ference around the nose could add up to quite a long scanpath, while a small number
of long fixations at the eyes and mouth could give a shorter scanpath length.
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(a) Normal (b) Restricted (c) Hyperscanning

Fig. 8.5 Examples of normal, restricted and hyperscanning scanpaths on the well known face image
used by Yarbus (1967), here faded to increase scanpath visibility. The scanpaths are fabricated for the
purpose of illustration.

2. Therefore, the authors additionally compared number of fixations (p. 412). In partic-
ular, if the number of fixations were equal and the scanpath lengths still differ, the
probability increases that the shorter scanpath would indeed be restricted (in the sense
of the presented scanpath visualizations).

Operationalizing the ‘restrictedness’ concept using the combination of scanpath length
and number of fixations is not intuitive, but requires careful mathematical thinking of why
this operationalization could work. The scanpath visualizations are included to explain what
‘restrictedness’ really is, and in effect define the concept ostensively, rather than through the
measures.

Generally, if it is difficult to make the operationalization of the study intuitive with the use
of scanpaths and their visualization, then it is advisable to shop around for other measures
in collections such as Part IIT of this book. For instance, the variability measure known as
convex hull (p. 364), the Kullback-Leibler similarity measure (p. 376) and related measures
on pages 359-376, could have provided the authors with a single measure that would be
closely aligned with the restrictedness concept.

8.4 Scanpath events

Just as fixations and saccades are eye-movement events that can be detected from raw data
samples, scanpath events are temporally restricted patterns that occur in eye-movement se-
quences. Typically, scanpath events comprise subscans of length two or more in a sequence of
fixations, saccades, or other events (such as smooth pursuit). A scanpath event can be associ-
ated with any type of form or pattern, and therefore an almost unlimited number of scanpath
events may exist. Reading researchers, and some usability researchers have defined the few
scanpath events that have been used in published research, and these are the ones discussed
here.

8.4.1 The backtrack

A backtrack is the specific relationship between two subsequent saccades where the second
goes in the opposite direction of the first.
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(a) The backiracking saccade, for (b) The last fixation F3 must be
instance S;, must deviate by more within 2° of the first fixation Fy.

than 90° from the previous saccade

Sy.

Fig. 8.6 Two definitions of backtracking. Dashed lines indicate saccades that are not counted as back-
tracks. In (a) the definition by Goldberg and Kotval (1999), and in (b), the one by Renshaw et al. (2004).

Reading direction

Fig. 8.7 Backtracking versus regressions: Saccade S; s a regression, because it moves in the opposite
direction to the text, and also a backtrack because it moves in the opposite direction to the previous
saccade. Saccade S3 is only a regression, but not a backtrack in the sense of Figure 8.6. If a fourth
saccade Sy continued backwards, $,—S4 would count as backiracks according to Murray and Kennedy
(1988).

There are two operationalizations of backtracking saccades outside of reading research.
The original definition by Goldberg and Kotval (1999) counted all saccades deviating more
than 90° from the previous, making many saccades backtracks. Renshaw, Finlay, Tyfa, and
Ward (2004) gives a more restrictive definition of backtracking, which requires the fixation
ending the backtracking saccade to be within a minimal distance (set to 2°) for the event to
count as a backtrack. Figure 8.6 illustrates the two operationalizations. When comparing their
own definition to that of Goldberg and Kotval, Renshaw et al. found, in data collected from a
usability evaluation task, that their more restrictive measure was morc sensitive, arguing that
it is a better measure for finding differences in usability studies.

In reading research, backtracks have been defined as “sequences of three or more left-
soing saccades, each of which is no greater than 13 character spaces in extent. Typically,
these comprise a series of short saccades directed to a sequence of words, which are, as a
result, inspected in reverse order” (Murray & Kennedy, 1988). It is interesting to note that
Tatler and Vincent (2008) found that reversal of direction in a scanpath is preceded by a
longer than average fixation.

8.4.2 The regression family of events

The closely related term regression refers to events that are similar to backtracks but not the
<ame. In order to be a regression, the saccade needs to move in the opposite direction to the
wext. but not necessarily the opposite direction to the previous saccade. Figure 8.7 illustrates
the difference.

Regression events exist in different sizes: an in-word regression is a small movement
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Fig. 8.8 A short in-word regression that does not leave the word just looked at, and a long between-word
regression.
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(a) Fixation number 20 at ‘given’ is the foremost fixation in the text. Then the regression starts
with a saccade back to 'broom many’ at the beginning of the previous line.
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(b) The regression scanpath continues as the participant re-reads one and a half lines, until
fixation number 49 at ‘the’, just before ‘command’, passes fixation number 20.

Fig. 8.9 A regression scanpath is a reading event, defined as going back in the text (a) and re-reading 2
passage. The regression scanpath ends when the point of departure from forward reading is passed and
the participant resumes reading left-to-right (b).

backwards within a single word, a between-word regression moves further back in the sen-
tence, to a previously fixated word (Figure 8.8).

The regression scanpath is a scanpath event in reading research. Figure 8.9 shows a re-
gression scanpath starting after fixation number 20. Not until fixation number 48 is gaze back
at the same word, so this regression scanpath has a length of 28 fixations.

Hyonii, Lorch Jr, and Kaakinen (2002); Hyond et al. (2003) furthermore differentiate
between re-inspections (when re-reading parts of the currently fixated sentence) and look-
backs (when re-reading parts of another previously read sentence). Each of these are events
from reading data.

8.4.3 The look-back and inhibition of return

Both backiracking and regressions differ from look-backs. Look-backs are operationalized as
saccades to AOIs already looked at; they are also known as ‘returns’ and ‘refixations’. The
term look-back more pertains to spatially extended viewing behaviour, outside the field of
reading research, for example searching for a target in a visual array or a link on a web page.

Look-backs are closely related to the concept of inhibition of return (Posner, Rafal,
Choate, & Vaughan, 1985), which is the observation that attention is unlikely to be re-directed
to previously inspected areas within a transient temporal window—in short, we do not look
back to places we have just looked. Although considered a well-established phenomenon,
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Smith and Henderson (2009) found only little support for a general inhibition of return mech-
anism in scanpaths during scene viewing. They provide empirical evidence that saccades fre-
quently go back to previous fixation locations. It therefore seems that inhibition of return is
not sustained enough to account for extended viewing scanpaths. This is not to undermine the
importance and validity of inhibition of return however. There is a large corpus of literature
examining the phenomenon. Its effects are more subtle and are likely masked when viewing
visually complex stimuli like scenes.

“Returning to a previously fixated item constitutes a failure of memory”, Gilchrist and
Harvey (2000) write, but working memory has a limited temporal capacity, and it should
matter how long ago the AOI was previously looked at for fixations there to count as look-
backs. If the AOI content is no longer in working memory, is a look-back then different
from looking at an object that has not yet been fixated? With this in mind, Mennie, Hayhoe,
and Sullivan (2007) limited the operational definition of look-backs to within a 10 s window
(after a reach and grasp sequence had been completed). Gilchrist and Harvey (2000) instead
measured the number of “petween-refixation intervals”—the periods between visits of the
same AOI—at different durations in a visual search task, finding them to be below 8 seconds
for one participant, and below 3 seconds for the two others.

8.4.4 The look-ahead

Look-aheads are saccades forward towards, and resulting fixations upon, objects that will
soon be used, picked up, or in other ways be part of future planned actions.

Mennie et al. (2007) define look-ahead fixations according to the following spatial and
temporal properties. When a fixation lands upon an AOI corresponding to a container within
the “10 second period before the initiation of a reach from the workspace to that container”
it counts as a look-ahead fixation. They emphasize that guiding fixations coinciding with the
reach are excluded from the look-ahead category.

Although not providing a precise definition of look-aheads, Pelz, Canosa, Babcock, and
Barber (2001) propose that “look-ahead fixations represent a strategic deployment of atten-
tional and visual resources to optimize information gathering during natural tasks”™. In this
sense, look-aheads are highly task dependent. Pelz er al. (2001) reported that, in a hand wash-
ing task, 3% of all the fixations were look-aheads compared to only 1% in a less complex
control task.

8.45 The local and global subscans

The idea of local scanpaths is that spatially confined saccades with a small amplitude—
Zangemeister, Sherman, and Stark (1995) suggest the thresholds 1.6°,4.6°,7.9°, or 11°—
belong to a local scan of the particular details in a small patch of the stimulus. Larger sac-
cades are assumed to belong to global overview scanning. Viewers tend to alternate between
clobal and local scans when inspecting visual scenes, and tend to start with a global overview
scan directly after onset of the scene.

Overview scans appear to be associated not only with longer saccadic amplitudes but
4lso with shorter fixation durations (Unema, Pannasch. Joos, & Velichkovsky, 2005). These
authors, amongst others, propose that global and local scanpaths are indications of two dif-
ferent types of cognitive processing: ambient and focal, respectively. The distinction is based
on the well-known observation that fixation durations gradually increase from the time of
<imulus onset, while saccadic amplitudes decrease. Participants initially exhibit scanning of
the salient features of the image—long saccades, short fixations (ambient processing)—and
later inspect the local areas in more detail—using short saccades and long fixations (focal
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Fig. 8.10 Short fixation durations combined with long saccades are characteristic of ambient processing,
according to Unema et al. (2005), while longer fixation durations and shorter saccades are indicative of
focal processing. These principal drawings are adapted from data presented by Unema et al. (2005), and
Tatler and Vincent (2008).

processing).

The local versus global distinction indicates that clustering, for instance on saccadic am-
plitude, may separate data into events belonging to two qualitatively different categories. The
need for a threshold is its major drawback.

On a more theoretical level, Groner, Walder, and Groner (1984) argue that local scans are
not necessarily comprised of short saccades, and global scans long saccades. Rather, local
scanpaths are seen to be driven by cognitive processing real-time, whereas global scanpaths
are driven by an overall search strategy, or purpose. The former is bottom-up mediation of
scanpaths, while the latter reflects top-down control.

8.4.6 Ambient versus focal fixations

Ambient and focal are two different cognitive states that a fixation with its preceding sac-
cades is believed to correspond to. The distinction is operationalized as illustrated in Figure
8.10: a fixation with duration below a threshold d following a saccade with amplitude above
threshold a is ambient (overview scanning), while the fixation is focal (focused inspection)
when the fixation duration is above d and the preceding saccadic amplitude is below a. The
thresholds do not have clearcut settings, but Velichkovsky, Rothert, Kopf, Dornhofer, and
Joos (2002) argue that d should be in the vicinity of 250 ms, and a around 4°. In principle, an
event detection algorithm could categorize fixations into ambient and focal.

Alternative operationalizations exist. The saccade/fixation ratio from Goldberg and Kot-
val (1999) is argued to compare search time (saccades) to processing time (fixations). This
variety uses saccade duration rather than amplitude, which is of little importance, as both
correlate strongly. The global to local (g/1) ratio measure on page 338 quantifies the overall
amount of global scanning versus detailed inspection, but does not classify the fixations.

The interpretation stems from Buswell (1935), who noted that the earliest fixations in a
picture are shorter (around 210 ms) than later (around 360 ms). Also, saccadic amplitudes are
longer in the initial scan and decrease over time (Figure 8.10). Several studies have repeated
both these findings, and interpreted them as indicative of an early orienting period, followed
by a more scrutinous inspection of informative details.

Unema et al. (2005) argue that a model for saccade generation with two visual processing
systems, ambient and focal processing, can be supported with data on this relation. Ambient
processing is characterized by long saccades and short fixation duration, corresponding to
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the peak in 8.10(b). Ambient processing is thought to be a process that is bottom-up driven
and which creates an overview for later focal processing. Their speculation is that ambi-
ent processing is linked to what is known as the where/how system of the dorsal stream.
Focal processing, which takes place at the flatland in Figure 8.10(b), conversely reflects top-
down-driven scrutinous inspection of details which may be associated with the corresponding
‘what’ system.

When participants searched for possibly camouflaged military vehicles in photos, their
mean saccade amplitude decreased and mean fixation duration increased gradually as a func-
tion of the ordinal saccade and fixation number (Over, Hooge, Vlaskamp, & Erkelens, 2007),
independent of whether they knew that the target was the only unknown part of the scene or
not. Over et al. interpret the result as showing that the coarse-lo-fine search strategy is used
even when it is not optimal.

8.4.7 The sweep

Aaltonen, Hyrskykari, and Riihd (1998) define a ‘sweep’ as a sequence of saccades that move
in the same direction, and compare downward and upward scanpaths (sweeps) of varying
sizes. Aaltonen et al. do not present a computational method for detecting sweeps, but various
computational operationalizations are possible (e.g. detecting sweeps has similarities with
detecting reading; see the next section).

8.4.8 The reading and scanning events

Reading and scanning events can be loosely defined as scanpath patterns that correlate with
the cognitive processes of reading and scanning (see Rayner & Fischer, 1996 for a distinc-
tion between reading and scanning). In practice, such patterns are detected by algorithms that
follow a set of predefined criteria, much like those detecting fixations and saccades. As with
the detection of other scanpath events, reading detectors identify physical properties of scan-
paths, and do not assess cognitive processing in the participant; it is indeed possible to move
the eye in a reading-like pattern, even though the mind is occupied with something else.

The simplest reading detectors use criteria for saccadic amplitude, which is quite short
during focused reading, whilst when scanning across pages saccades are longer. More ad-
vanced versions of reading filters add requirements on saccades such that they must be hor-
izontal in direction (within certain bounds), or fixation durations such that different timings
correspond to reading rather than scanning.

Figure 8.11 shows the principle for a simple reading detector. It assumes that the current
fixation is located at position (curr, curr,), and imposes an area in which the next fixation
must land for it to be part of a reading event. The area, indicated by a rectangle, spans about
+wo words ahead horizontally, and a word back (in case of in-word regressions): there is
also some margin for upwards and downwards movements along the line. A second return
sweep detector finds long backward movements corresponding to line length; this also detects
slightly downward movements, again with a delimiting area around the expected landing
position at the start of the next line. Reading is assumed to have been detected if at least three
fxations (two intermediate saccades) fulfill the detection conditions. The reading detector
developed by Holmqvist ef al. (2003) compared the amount of reading in paper newspapers
compared to internet newspapers. It was found, in contradiction to popular expectation, that
traditional newspapers give rise to more reading and less scanning, with the opposite being
true of online news.

Several other detection algorithms have been published:

1. Attempting detection of online reading, Campbell and Maglio (2001) use three criteria
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Fig.8.11 Spatial requirements for the simple algorithmic reading detector used by Holmgvist etal. (2003).
Successive saccades should move within or to restricted boxes to count as reading.

on saccades: amplitude (long versus short), direction (right, left, up, and down), and
axis (x versus y). Using these criteria, each recorded saccade is given a total score that,
when summed over all combinations of criteria, can then be compared to a threshold
for reading. The authors report high classification accuracy and a detection latency of
1000 ms.

. Simola, Salojirvi, and Kojo (2008) trained a 9_state discriminative hidden Markov
model to differentiate between eye-movement data from three different reading tasks:
(i) simple word search, (ii) finding a sentence that answers a question, and (iii) choos-
ing the subjectively most interesting title from a list of ten titles. Their model has a
60% accuracy in determining the correct type of task.

. Kollmorgen and Holmqvist (2009) used Markov models to train a version of the read-
ing filter from Holmqvist ef al. (2003) to detect reading in eye-movement data recorded
from participants writing on computers (data shown on p. 291). This was also used to
analyse the interplay between reading and writing activity in a number of other studies
(see Johansson, Johansson, Wengelin, & Holmgvist, 2008; Wengelin et al., 2009; Jo-
hansson, Johansson, Wengelin, & Holmgvist, 2010). The 6-state hidden Markov model
has a precision/recall of 0.88/0.87 on validation data.

. Based on the work by Campbell and Maglio (2001), Buscher and Dengel (2009) imple-
ment a reading and skimming detector. Again, saccades are scored based on saccadic
amplitudes such that a sequence of long saccades is likely to reflect skimming over the
text.

8.5 Scanpath representations

Even a scanpath built from raw data samples contains so much information that calculations
quickly become computationally complex. Therefore, several representations of scanpaths
have been developed that take only selected aspects of the oculomotor behaviour included
within scanpaths into account. In the following sections, we will describe how sequences of
symbols (typically letters representing AOIs), Euclidean vectors, and attention maps are used
to represent scanpaths.

Besides containing voluminous amounts of data, scanpaths generated from data samples
may contain information that is largely irrelevant to the experimental questions at hand. The
goal when building the scanpath representation is therefore to retain as much of the rele-
vant information as possible while allowing the desired visualization or calculation. AOI
strings, for example, have mainly been developed to render string-edit comparisons (p. 348)
of scanpaths possible. However, this comes at the cost of decreasing the spatial and temporal
resolution of the scanpath, since the positions of data samples are replaced with letter strings
corresponding to larger areas.
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Scanpath representations reside at the top of the hierarchy. A small error in the simpler
components (such as fixation detection criteria) travels all the way up, thus affecting higher
representations (such as scanpath length). For instance, Green (2006) calculated scanpath
length on her data as the sum of all saccadic amplitudes. She used the 1-DT algorithm with a
minimal fixation duration setting of 200 ms however, which strongly reduces the number of
detected fixations as well as the distribution of their durations (p. 159). Green includes a raw
data sample scanpath (the sum of all distances between successive samples) “to ensure that
potential group differences in fixation scanpath length did not simply reflect group differences
in the number of fixations.” (her page 87), or, we could add, the settings of the algorithm.
Overall, the reported saccade-based scanpath length is about half the raw sample scanpath
length. As another example, a scanpath represented by gridded AOIs is uniquely defined
by the grid size. Consequently, scanpaths that are judged as similar using one grid size may
become dissimilar when using a smaller or larger grid size. Choosing an appropriate scanpath
representation with carefully defined fixations, saccades, AOIs, and/or other entities is of
crucial importance for the outcome of a study.

Three formal scanpath representations have been devised for algorithmic comparison of
pairs of scanpaths, and the calculation of a few other measures. These are: strings, vectors,
and attention maps. They make use of the representations defined in Chapters 5-7.

8.5.1 Symbol sequences

Symbol sequences refer to a string of symbols, typically letters, that represent selected aspects
of a scanpath with or without relation to AOIs. By far the most common type is the AOI string,
where each symbol represents either fixations or dwells in an AOL Other types of strings are
based on properties such as fixation duration, saccade amplitude, or saccade direction. These
representations are mainly developed for the purpose of calculating scanpath similarity using
the string-edit (Levenshtein, 1966), or related methods.

AOl-based fixation and dwell strings

Several scanpath measures, the most known of which is the string-edit measure, represent
scanpaths with a string of fixations or dwells in areas of interest (AOIs), as defined in Chapter
6. The important difference between gridded AOIs and semantic AOIs should be taken into
account in this type of representation. Figure 8.12 shows both varieties. The gridded AOIs are
constructed by putting a grid of equally sized areas across the stimulus, ignoring whatever
semantic parts the stimulus consists of. When a scanpath runs over the gridded AOIs, each
Axation or dwell is replaced by the name of the AOI it hits. The scanpath in Figure 8.12(a)
will be represented by the string: A6 CS FO I1 J1 K2 I3.

Each letter is a representation of a single fixation position within a whole AOI area, which
is known as spatial downsampling. As a consequence, @ small difference in gaze pattern
would be enough to alter the string, but interestingly, other small differences would result in
the same string. That is, some small differences matter, whereas others are ignored. Fixation
and dwell string representations thus introduce a form of noise in your scan path data that
may occlude actual results.

A division of stimulus space into semantic AOIs adopts the natural semantic parts of
the stimulus. In Figure 8.12(b), the semantic AOIs are taken from Josephson and Holmes
(2006), who used them to analyse viewing behaviour on a television screen. Semantic AOIs
have different sizes, so in Figure 8.12, the scanpath example would be represented by the
string MMTCCHGM (where M = “Main’ etc.. and each letter denotes a fixation). The three Ms
in the string represent fixations with very different positions in the stimulus, which means
we have a very coarse position representation. This can be motivated if the ‘Main” AOl is a
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Fig. 8.12 Gridded versus semantic AOls for representing scanpaths.

semantically homogeneous area from the viewpoint of the hypothesis, analysis and theory.
Otherwise, very different scanpaths will be represented as equal when using semantic AOIs.

As an alternative to gridded and semantic AOIs, data driven methods where recorded
eye-movement data are used to define AOIs are only beginning to emerge for scanpath rep-
resentations (see Santella & DeCarlo, 2004; Hooge & Camps, 2009). As pointed out earlier
(pp. 219-220), data-driven AOI representations should be used with appropriate care.

Since our sample scanpath has two subsequent fixations in each of ‘Main’ and Crawler’,
we have a repetition for M and C in the string MMTCCHGM. Brandt and Stark (1997) use a variety
of the AOI-string representation of scanpaths that ignores such repetitions, or in other words,
they represent the scanpath with dwells rather than with fixations. The dwell-based AOI-
string for the same scanpath would be MTCHGM. Removing consecutive repetitions is referred
to as “compressing” the string; several fixations (CC) are replaced by one dwell (C).

The major advantages of the AOI string representation of scanpaths are that it retains an
approximate sequence representation of the order of fixations, and that the string is a rough
representation of the shape of the scanpath. The major drawback is the reliance on AOI
segmentation, which necessarily introduces noise in the measures that rely on it.

Saccade amplitude and direction based strings

While being most frequently used, AOI strings represent scanpaths only in relation to spatial
areas. If we are more interested in other aspects of a scanpath, strings can be constructed
from other properties of eye-movement data such as the amplitude and direction of saccades.
or the durations of fixations.

Gbadamosi (2000) and Zangemeister and Liman (2007) developed a string representation
of scanpaths that combines one number for amplitude with another for direction. They use 16
(hexadecimal) numbers for each, as illustrated in Figure 8.13. Each saccade is therefore rep-
resented by a pair of (hexadecimal) numbers, and a scanpath with a sequence of pairs, such as
D6 23 71 28 73 B3 54. This representation of scanpaths does not require a segmentation
of space into AOIs; in fact, it completely abandons positional and semantic information, and
instead focuses on representing our subjective perception of the overall shape of a scanpath.
Still, it is based on segmentation (of direction and amplitude) and therefore again introduces
noise when used in measures.

Letter strings with fixation durations have been proposed in the literature (Jarodzka, Nys-
trom, & Holmqvist, 2010; Goldberg & Helfman, 2010), although they are only just beginning
to appear (see Cristino et al., 2010 and p. 353).
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Fig.8.13 To the left, the amplitude (length) of the first saccade is measured using a hexadecimal (16 unit)
ruler. To the right, a discreet 16 region segmentation of saccadic direction, and the same first saccade has
been placed so its direction is measured. With a 6 unit amplitude and a D for direction, the first saccade is
represented by D6, where the first (hexadecimal) number in each pair represents direction and the second
amplitude. The whole scanpath is represented by the string: D6 23 71 28 73 B3 54.

horizontal axis
F

(a) A single saccade with amplitude A from (b) A scanpath represented by a series of vectors.
fixation F to fixation F; as a vector in a Eu-

clidean space, with the absolute direction @

and relative direction ¢’

Fig.8.14 We can think of a scanpath as a sequence of vectors in space (b). Each vector is described by
“s origin F and endpoint F;. We can immediately derive its amplitude A, its angular deviation from the
orevious saccade ', and its direction @ relative to the horizontal axis.

8.5.2 Vector sequences

Because of the reliance on the string-edit similarity calculation, few non-symbol represen-
tations have evolved. However, Jarodzka, Nystrém, and Holmgvist (2010) argued that Eu-
Slidean vectors were suitable to represent ideal saccades, i.e. those that take the shortest dis-
tance between subsequent fixation positions.

A vector is a mathematical entity with length (A) and direction (@), as shown in Figure
%.14(a), Apart from curvature, it thus approximates two major properties of a saccade. In
addition, the vector representation does not require a segmentation of space, but retains the
original detail of the ideal saccade and hence introduces no additional noise in future calcu-
tations. As shown by Jarodzka, Nystrém, and Holmqvist (2010), a similarity calculation can
severtheless be made, using geometric calculations instead of letter identity checks.

Using vectors for single saccades, a scanpath can be represented as a sequence of vectors,
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Fig. 8.15 Scanpaths (a) and (c) and their corresponding attention maps (b) and (d). The stimulus is the
Mona Lisa painting (not shown).

as shown in Figure 8.14(b). Given the position of the initial fixation, such a vector sequence
completely describes a fixation—saccade based scanpath. If saccadic start- and end-points
explicitly encode fixation positions, we can attribute a duration to them, and utilize them in
calculations as well. This way, a vector-based representation contains the same information
as the recorded data after event detection. A vector-based representation can additionally
be visualized in an intuitive manner very similar to the scanpath visualizations from most
manufacturer software.

8.5.3 Attention map sequences

Attention maps, introduced in Chapter 7, are two-dimensional functions or ‘maps’ that rep-
resent the spatial distribution of a scanpath(s). Examples are shown in Figure 8.15 where the
left pictures illustrate scanpaths connecting fixation sequences with lines, and the pictures
on the right illustrate the corresponding attention maps. Attention maps are generated from
cither data samples or fixations, and ignore the order of these. According to the scanpath def-
inition in this book, an attention map therefore does not qualify as a scanpath representation,
because it does not signify the route, or order, of oculomotor events through space.
Nevertheless, the attention map measures of pages 359-376—including the Mannan dis-
tance measure developed by Mannan, Ruddock. and Wooding (1996)—are often referred to
as ‘scanpath metrics’ in the literature (for example, by Cerf, Harel, Huth, Einhiuser, & Koch,
2009; Boccignone et al., 2005). Similarly, in their overview over what they refer to as scan-
path analysis metrics, Underwood ef al. (2008a) discuss both the Mannan distance measure
and fixation maps, before settling for the string-edit analysis, which uses fixation and dwell
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string representations of scanpaths.

It is however straightforward to generate a sequence of attention maps from a scanpath,
thus retaining order information. In the simplest case, each position §; = (x;,y) in a scanpath
can be replaced with an attention map G = f(x,y), where f (-) denotes a function that gener-
ates an attention map G from the position (x,yi). The most common function used for this

purpose is the Gaussian
x—x)?  (v=»)?
f(x,y) =exp— (Li_of}_ 7 ——2;3')— (8.1)
X '\’

where 6, and o, denote the horizontal and vertical standard deviation, respectively. Given just
one scanpath, its attention map equivalent carries the same spatio-temporal information, since
peaks in the attention maps correspond directly to positions in the scanpath. An alternative
is to think about the attention map sequence as a probabilistic scanpath that encodes the
probability that a certain spatial position will be visited by a participant’s gaze. However, as
more scanpaths are used to build the attention map sequence, the ‘path’ in each individual
scanpath is lost, but not the ordinal, collective eye-movement behaviour. In this sense, an
attention map sequence does not violate our definition of what a scanpath is.

More generally, we can define a scanpath function g(x.y) that represents any mapping
from a set of scanpaths to an alternative representation, regardless of whether it is based on
Gaussian functions or not. This concept is closely related to the average scanpath discussed
on page 282.

8.6 Principles for scanpath comparison

We should stress here that this section deals with the prineiples of comparing scanpaths only,
and by this we mean the different processing steps necessary before scanpath comparison
can be carried out. The exact measures of quantitative scanpath comparison are covered in
detail in Chapter 10, where we also discuss other measures of movement in eye-tracking data,
besides the movement inherent in a scanpath representation.

According to Henderson and Ferreira (2004, p. 42), one of the reasons for reduced re-
search interest into ‘scan patterns’, as they refer to them, is the lack of appropriate scanpath
similarity measures for calculating commonalities in viewing behaviour both within- and
between-participants: “it may be that with more careful examination, more consistency in
scan patterns will be found, especially as analysis tools become more sophisticated”. Indeed,
scanpath comparison is needed in fields from neurological schizophrenia research (Benson ef
al.. 2007), over to mental imagery (Johansson ef al., 2006) and scene perception (Underwood,
Humphrey, & Foulsham, 2008b), but also including applied areas such as evaluating web page
design (Josephson & Holmes, 2002), and in expertise task analysis (Jarodzka, Scheiter, ef al.,
2010). See the unresolved issues section towards the end of this chapter (p. 278) for further
discussion.

Methods to compare two OF more Sequences have long been used in bioinformatics to
align DNA and protein sequences. In this field they have been used to test, for example,
whether mutated sequences have evolved from the same original sequence, or to match a test
sequence against a database.

In eye-movement research, the majority of sequence comparison methods have been used
to compare pairs of scanpaths comprising AOI-strings. For example, Brandt and Stark (1997)
compared scanpaths from participants viewing checkerboard patterns with scanpaths from
subsequent visual imagery of the same stimuli. Similarly, Foulsham and Underwood (2008)
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compared scanpaths from participants viewing the same pictures twice; the initial viewing
was followed by a later recognition test.
Scanpath similarity calculation is typically performed in four sequential steps:

1. Representation. A scanpath representation is chosen that best fits the experimental
questions at hand.
2. Simplification is performed to remove parts of the scanpaths that are irrelevant to the
hypothesis or that decrease subsequent computational power.
3. Alignment aims to optimally map entities between scanpaths.
4. Calculation of similarity between the aligned scanpaths then generates the final simi-
larity score(s).
Only the last step is required to actually compute a similarity score, whereas the first three
steps are performed to prepare the scanpaths to best address the experimental questions.
As noted, we discuss the principles of scanpath comparison here, and leave the imple-
mentation details of specific algorithms, as well as the calculation of similarity scores, for
Part I11.

8.6.1 Representation

The first step concerns choosing a suitable representation of the scanpath. The most common
representations are data samples (x,y,1), AOI letter strings, vector sequences, and attention
maps sequences. By definition, a representation does not retain all oculomotor information
contained within the scanpath, but provides a more crude approximation of some of its fea-
tures.

8.6.2 Simplification

Scanpaths are sometimes subjected to a process that typically is called compression, or sim-
plification. Compression further simplifies the representation such that detail considered su-
perfluous by the designer of the measure—such as several small fixations next to one another
in Figure 8.16—is removed, and the output is a simplified version of the original scanpath.
For AOISs strings, ABC would be a compressed version of the original string ABBBC, since the
repetitive Bs have been removed. This type of simplification is suitable when order of AOI
visits is of relevance, but not when dwell time or number of fixations within an AOI is of
importance.

8.6.3 Sequence alignment

Sequence alignment originates from bioinformatics and aims to arrange two or more se-
quences in such a way that their elements (e.g. amino acids) optimally match. For very short
sequences, the optimal match is usually easy to identify simply by looking at the sequences.
However, as they get longer, alignment become an increasingly harder problem that needs to
be addressed computationally. Then optimality is defined by a set of scoring parameters, and
alignment is reduced to the problem of finding the optimal solution (e.g. the maximum or
minimum score) based on the scoring scheme. Common scoring parameters consist of costs
to insert, delete, and substitute sequence elements or blank spaces (gaps).

Alignment is typically global or local in nature. Global alignment intends to optimally
match whole sequences with each other, whereas local alignment aims to identify shorter
subsequences that are shared between the sequences being aligned. As an example, consider
the following sequences:
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(a)

Fig. 8.16 Simplification of a vector-based scanpath representation as a prerequisite for successful align-
ment. In (a), four fixations in scanpath A with small saccades between them should be aligned to two
fixations in scanpath B. Our intuition tells us that these small saccades are irrelevant for the comparison,
and algorithmic simplification provides a firm tool to justify this judgement. Figure (b) shows two types of
simplifications: small saccades are removed (dashed circles), and sequences of saccades in the same
direction are removed (dashed arrow).

Global FTFTALILLAVAV
F--TAL-LLA-AV

Local FTFTALILL-AVAV
-—FTAL-LLAAV--

Fig. 8.17 Sequence alignment between a short and a longer scanpath represented as strings. Global
sequence alignment creates several gaps, indicated by —, in the shorter AOI fixation string, while local
sequence alignment maximizes the length of substrings. Example from Wikimedia Commons.

§y: FTFTALILLAVAV
S»: FTALLLAAV

These are aligned according to Figure 8.17. Gaps or blank spaces, denoted by -, have been
introduced at locations where matching between elements has not been possible. They cor-
respond to one participant looking at some extra AOL for instance, that the other participant
skipped. A gap penalty is then paid for every such unmatched element. Notice that the
number of possible alignments becomes huge as the sequence length increases, and that the
optimal alignment is not necessarily unique.

A concise way to express the cost associated with matching one sequence element to
another is the substitution matrix. Table 8.1 shows such a matrix for the sequences in Figure
$.17. Thus, the cost of matching I in one string with T in another is given by the value c3s.
The diagonal is zero, and the reason for this is because there should be no cost associated with
replacing an element with itself. Most substitution matrices are symmetric, that is ¢j; = ¢jji,
but nothing prevents you from assigning higher costs for alignments in one direction and
building an asymmetric similarity measure. The substitution matrix is particularly useful
<ince it encodes the relationships between sequence elements. Translated to AOISs, this means
that costs can be directly related to how similar two AOIs are with respect to each other in
terms of spatial (e.g. Euclidean distance) or psychological (e.g. semantic similarity) aspects.
Together with the gap penalty, the substitution matrix defines the optimal sequence match.

The matching process often utilizes a comparisen matrix, in which the two strings being
compared form the column and row divisions in the matrix, as shown in Table 8.2. Again,
<ubstitution costs can be added that allow the computation of an optimal path through the
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J ) o N B
0 epeizciacs s
ca1 0 e23 €24 €25 €26
cirex 0 caaess e
cq1 cq2 €43 0 cas ca6
51 c52 ¢53 €54 0 cs6
€61 Cp2 €63 Co4 C65 0

Table 8.1 A substitution matrix for the sequences in Figure 8.17. The cost of aligning I in one string
with T in another is given by the value c3s. The Levenshtein measure has ¢;; = | for all cells except the
diagonal, where ¢;; = 0.

F T A L L L A A V
€22 €25 €12 €24 €24 €24 €12 €12 €26
€25 €55 C15 €45 €45 €45 €15 €15 €56
Ca €25 €12 €24 €24 €24 €12 €12 C26
€25 Css €15 €45 €45 €45 C15 CIs Cs6
c12 €15 C11 €14 €14 €14 €11 €11 €16
coy €45 C1a Cag Caq Caq Cl4 Cl4 Ci6
€23 ¢35 €13 C34 €34 €34 €13 €13 C36
€24 €45 €14 Caq Caq Cyp €14 Cl4 Ca6
€24 €45 C1a ca4 €44 Caa Cig C14 Ca6
c12 ¢i5 cu s ¢4 cia ey €y g
€26 €56 Cis €46 C46 Ca6 €16 C16 Ceo
C12 €15 C11 Ci4 €14 €14 C11 €11 €16
€26 €56 €16 C46 Cap C46 Cl6 Cl16 €66

=S rFr<F=0CCHC®>3m4dM9

Table 8.2 A comparison matrix for the sequences in Figure 8.17. The path for local alignment is outlined
with Cs.

comparison matrix, from the upper left corner to the lower right corner. With the optimal
path for local alignment, denoted by C in the comparison matrix, vertical and horizontal
movements are treated as gaps, whereas diagonal movements represent matches.

The popular string-edit algorithm uses three types of operations for sequence matching:
insert, delete, and substitute (Levenshtein, 1966), usually with equal weights. Therefore, it
can be seen as optimal sequence matching to use a very simple substitution matrix containing
only ones in the cells ¢;j.

Recently, more flexible algorithms have been adapted into eye-movement research and
scanpath comparison, mainly the Needleman-Wunsch algorithm (Needleman & Wunsch,
1970) and Dijkstra’s algorithm (Dijkstra, 1959). The Needleman-Wunsch algorithm is a
method to align two sequences globally and allows a flexible scoring scheme. It performs
best for sequences with already high similarity and similar lengths. Dijkstra’s algorithm op-
erates on representations known as graphs to find the shortest path from one node in the
graph to another. The use of Dijkstra’s algorithm presupposes that the comparison matrix is
first transformed to a graph representation.

Note that a substitution matrix is only of practical use when the number of possible se-
quence elements is finite and small. In the case of sequences with infinite alphabets (i.e. an
unlimited number of unique elements), costs have to be calculated directly in the comparison
matrix. This is the case for example when scanpaths are represented by a sequence of vectors,
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(a) Comparison matrix. (b) Scanpaths.

Fig. 8.18 Pairwise vector comparison of all saccades in two vector representations
Sy = {u,up,u3,ug,us} and Sy = {v1,v2,v3,v4,vs} of scanpaths. Circles denote the onset of a
scanpath. The comparison matrix (a) shows, for each pairwise vector comparison, the length of the
differential vector ||u; —v;|| in degrees of visual angle. If the two vectors are similar in amplitude and
direction, this value is low. Figure (b) shows the scanpaths used in the comparison. Grey matrix cells
indicate consecutive mappings that would produce a good alignment for a subset of the saccades.

which can have a large number of possible amplitudes and directions. Figure 8.18 illustrates
a situation where saccade vectors u; and v; are compared to each other and the substitution
cost equals the length of the differential vector ||t —vjll-

Closely related to the comparison matrix is the visualization known as a dot-matrix plot or
simply dotplot. Instead of assigning each value in the matrix with a substitution cost, it adds
a dot at positions where elements match, while keeping other matrix cells empty. This is vi-
sualized in Figure 8.19, which shows a dotplot for self-similarity where one string is matched
with itself to point out commonly recurring subsequences. Two identical strings with a unique
set of elements (i.e. without recurrences) would generate a diagonal in an otherwise empty
dotplot. A collection of dots located off the main diagonal represent matching subsegences.
However, more than being a method to align and quantitatively compare sequences, dotplots
are typically used to subjectively inspect and interpret similarity.

8.6.4 Calculation

Finally, we calculate the similarity between the two scanpaths. Given the aligned scanpaths
and the similarity metric, this is usually a simple and quick operation. For example, when
the optimal alignment represented by a path in the comparison matrix is found, the similarity
score is typically found by summing all cost and gap penalties along the path.

Scanpath similarity is a complex multidimensional concept, yet all similarity measures
proposed so far have had at their heart the design criterion that they should output a single
similarity value between 0 and 1. This could be a problem when scanpaths are very similar in
some aspects, but dissimilar in others. For a multidimensional approach, which takes account
of scaling, spatial and temporal offset, as well as fixation duration amongst other components
which are important in the comparison of scanpaths. Details are given in Jarodzka, Nystrom,




Fig. 8.19 Dot-matrix plot for visual evaluation of regional self-similarity between two identical strings.
Similar repetitive patterns within the same string are seen as black regions. This is particularly com-
mon in the first 25% of string, in the upper left corner of the plot. From Wikimedia Commons
(File:Zinc-finger-dot-plot.png).

and Holmgvist (2010) and on page 354.

8.6.5 Pairwise versus groupwise comparison

The comparison measures that exist for scanpaths, irrespective of their representations, are
mainly pairwise and output a single value. Methods to compare groupwise similarity between
scanpaths are only beginning to surface, in particular those that allow statistical testing of
similarity. Feusner and Lukoff (2008) attribute the lack of statistical methods to the fact that a
scanpath itself does not produce a numerical value, but only a pairwise comparison between
two scanpaths. This disqualifies the use of traditional statistical methods such as the f-test.
which require one value for each group entity (scanpath).

A way to approach groupwise scanpath comparison is first to calculate the average scan-
path for each group (p. 265), and then compare this pair. However, if the comparison only
results in a single value, statistical analysis is still not possible.

Feusner and Lukoff (2008) provide one solution to this problem by calculating the average
pairwise similarity between (dbeiween) and within (dwimin) two groups of scanpaths. Then they
calculate the difference between these two values,

d* = dperween — Awithin (8.2)

for all possible group divisions where one group has n scanpaths and the other one has m
scanpaths (m+ n is fixed), yielding a symmetric distribution of d* with zeros mean. If the
groups contain random scanpaths, we would expect a d*-value around zero. Significance
tests of group similarity are then possible using permutation tests.

8.7 Unresolved issues concerning scanpaths

There are several important but unresolved issues that it is useful to be aware of when work-
ing with scanpath representations of eye-movement data. One is the question of whether there
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is a direct relationship between scanpath patterns and specific cognitive processes. Another
is the validity of scanpath theory, and its prediction that participants will re-produce a spatial
model of the same scanpath when looking at an identical stimulus anew. Closely related is
the issue of scanpath planning; that is the question of what drives the eyes to the successive
locations along the route of a scanpath, and whether inhibition of return (Posner & Cohen,
1984) decreases the likelihood of the eyes going back to their previous location. Another un-
resolved issue is whether it is possible, or even meaningful, to build an ‘average scanpath’
from a group of scanpaths. The final unresolved issue revolves around open problems con-
cerning how to compare the similarity of two scanpaths computationally and statistically,
adopting the framework(s) outlined earlier in the chapter.

8.7.1 Relationships between scanpaths and cognitive processes

It is easy to agree with Yarbus (1967) who wrote:
Eye-movements reflect the human thought processes; so the observer’s thought may be
followed to some extent from records of eye-movements (the thought accompanying the
examination of the particular object). It is easy to determine from these records which
elements attract the observer’s eye (and, consequently, his thought), in what order, and
how often.
Often, Yarbus’ findings raise the question of whether “thought processes” can reflect more
specific cognitive states such as interest, difficulty, or confusion? Is there a specific scanpath
pattern that directly and uniquely corresponds to a cognitive process?

There is indeed a general consensus that scanpaths are determined to a large extent by
idiosyneratic cognitive factors (as claimed by Choi et al. (1995) and others). Very few studies
however have targeted what a specific cognitive process (like a “thought”) looks like when
appearing in a scanpath. The attempts by Goldberg and Schryver (1995b), Goldberg and
Kotval (1999), and Salvucci (1999) to infer intent from eye movements, led to the definition
of several new measures, but none of them could be directly and systematically linked to
specific cognitive processes.

Usability analysts using eye tracking are in need of a method to investigate the relation-
ship between scanpaths and cognitive processes; Ehmke and Wilson (2007) argue that the
measures used by academic researchers are of little help to someone looking at scanpaths for
signs of interest, confusion, hesitation, or poor computer interface design. They argue that the
usability analyst needs to be able to draw concrete conclusions from scanpaths. For instance
when seeing a scanpath comprised of “many short fixations across a page where information
might be expected”, can she conclude that “expected information is missing”? Is it scientif-
ically justified to ask the participant if they expected content to be present at certain points
along the route of this scanpath?

There are several dangers to such manual assignment of cognitive processes o scanpaths.
For instance, it is not unlikely that a scanpath described as “many short fixations across a
page” will co-occur with many different cognitive states, and will not be uniquely deter-
mined by any one of them. The usability analyst may easily fall prey to guesswork, and the
participant to inadvertently confirming the guesses (compare p. 105). Moreover, many of the
scanpath-based concepts (such as ‘regularity’), referred to by Ehmke and Wilson (2007), are
vague and difficult to accurately capture in a measure. Trying to relate vague scanpath-based
concepts to guessed cognitive processes is not scientific, and is unlikely to be revealing for
research purposes.

While it is very difficult, if possible at all, to define a general relationship between a
cognitive process and a prototypical scanpath pattern, there are ways to associate a cognitive
process with a scanpath that is specific to a situation. One way is to use an experimental
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(a) “there are three birds in the tree" (b) “it looks like ... early summer”

Fig. 8.20 Two scanpaths and concurrent speech. Reprinted from Human Cognitive Frocesses, 23,
Holsanova, J., Discourse, vision, and cognition, Copyright (2008) by, and re-printed with kind permission
from, John Benjamins Publishing Company, Amsterdam/Philadelphia, www.benjamins . com.

design that constrains the number of possible interpretations of the scanpath. This requires
control over stimuli, task, and even background of participants, however. Another option is
to include complementary data sources, such as speech, neurophysiological data, or body-
movement data.

For example, Holsanova (2008, 2006, 2001) had participants describe complex scenes and
then segmented the spoken discourse into a series of what Chafe (1994) calls “idea units";
sections of thought expressed as speech and delimited by prosodic features, speech timing.
and a particular form of words called *‘discourse markers”. The flow of idea units in speech is
considered to correspond to the flow of thought in the speaker’s mind. Holsanova then tem-
porally matched the idea units to scanpath patterns, so that it became clear what participants
looked at while speaking a particular idea.

Figure 8.20 shows two of the clearest simple patterns from Holsanova’s research. In Fig-
ure 8.20(a), “three birds in the tree”, a limited picture element, corresponded very well to the
idea in speech. In Figure 8.20(b), the idea in speech, “it looks like early summer”, was not lo-
cated at any particular position, but spread out in the image, at places where there is evidence
of summer. These examples suggest a tight coupling between sub-scanpaths and cognitive
processes in free description, complementing the more well known visual world paradigm of
Tanenhaus et al. (1995) and others. However, it still only means that scanpaths reflect ideas.
not that ideas or cognitive states can be uniquely identified from scanpaths. It also shows that
the particular stimulus partly determines the scanpath, so it might be difficult to find general
stimulus-independent scanpath patterns for the same cognitive processes.

What does Holsanova’s research tell us about interpreting all those scanpaths from non-
experimental freeviewing tasks that have no concurrently recorded speech? Without the idea
units from speech and their temporal on- and offsets, we have no method to find the on- and
offset in the scanpath, i.e. event, that corresponds to the start and end of a thought, and we
have no content of the thought either. Without speech or other complimentary data, we are
simply left guessing.

8.7.2 Scanpath Theory

It is rare for discussions about scanpaths to circumvent scanpath theory as devised by Noton
and Stark (Noton & Stark, 1971a, 1971b). From two reported studies, which use two partici-
pants in the first and four in the second experiment, the authors conclude that when a partici-
pant looks through an image already seen, the remembered spatial model (which the authors
term “the feature network”) from the first viewing directs him to look at the stimulus in the
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the same way the second time around. In essence the scanpath theory predicts that:
. for each pattern with which he is familiar, each person has a fixed and characteristic
path which he follows from feature to feature, both when viewing the pattern and when
matching it with its internal representation during recognition. (Excerpt from Noton &
Stark, 1971b.)

Note that the scanpath according to this theory is a fixed, theoretical path that has a rep-
resentation in the brain. The main implication of scanpath theory is that scanpaths will be
re-capitulated, not being driven by image content, but by a stored internal representation.

Scanpath theory has been re-considered, for instance by Henderson and Ferreira (2004),
who review a number of studies in contradiction to the predictions of Noton and Stark. In
particular, participants can recognize a scene without making eye-movements (Biederman,
Rabinowitz, Glass, & Stacy, 1974), and there is usually very little sequence similarity be-
tween repeated viewings by the same participant; even if looking at the same positions a sec-
ond time, the order is different, according to these authors. In fact, some authors completely
refrain from the term ‘scanpath’ in order to dissociate themselves from scanpath theory, for
instance Underwood, Foulsham., and Humphrey (2009) and Henderson (2003).

On the other hand, scanpath theory is to some extent supported by empirical evidence.
When recording eye movements from participants viewing pictures during encoding and later
recognition, Foulsham and Underwood (2008) found higher than chance similarity between
scanpaths. Moreover, mental imagery studies from the Jate 1990s and onward repeatedly find
that participants shown a blank screen and asked to retell a previously shown scene, largely
reiterate the same eye-movement sequences on the blank screen as when viewing the scene
itself (Zangemeister & Liman, 2007; Johansson et al., 2006: Brandt & Stark, 1997). In these
studies scanpath theory has been replaced by newer theoretical explanations, however.

8.7.3 Scanpath planning

Research on scanpath planning investigates whether, when, and to what extent participants
plan their scanpaths ahead, and which information is involved in this planning.

An appealing argument in favour of scanpath planning is the frequent occurrence of one or
a series of short fixations (< 100 ms); considering that the time it takes to program a saccade
by far exceeds these 100 ms, some of the saccades in the sequence must be pre-programmed
(Becker & Jiirgens, 1979).

Zingale and Kowler (1987) proposed that a scanpath results from an organized plan that
is retrieved from memory before the scanpath is initiated. Using simple visual arrays, they
asked participants to fixate a sequence of 15 static targets and found the latency of the first
<accade to increase with the number of targets. Zingale and Kowler attributed the increase to
the additional planning required to encode a longer scanpath.

Findlay and Brown (2006) identify three possible scanning strategies which they go on to
test empirically: systematically directional, raster-like as in reading or back and forth scan-
ning; locally perceptual, based on low-level information acquired at the current point of fix-
ation; and globally perceptual, considering global stimulus features such as shape. Asking
participants to sequentially fixate each item in a visual array, they found empirical evidence
only for the strategies to scan items in a raster order (directional), and to use the global exter-
nal contour to guide eye-movements, making saccades towards the centre, but still using the
contour as a guide. Supposedly, a systematic strategy such as a raster scan can be pre-planned,
but there is no need to encode the whole scanpath into memory (Gilchrist & Harvey, 2006).
In contrast, a scanpath guided by global contour requires some initial global processing of
the stimulus, where the scanpath is first encoded and stored in some way.

Both Zingale and Kowler (1987) and Findlay and Brown (2006) argue that it is likely
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that bottom-up information can modify the scanpath, and make it deviate somewhat from
the pre-planned scanpath. In visual search, for example, backtracks were found to be more
common to items that resembled the visual search target (Peterson, Kramer, Wang, Irwin, &
McCarley, 2001). Interestingly, using very reduced stimuli with a small set of equal-sized
objects, some researchers have suggested that when there is no bottom-up information to
distinguish between objects, attentional deployment is random (Horowitz & Wolfe, 2001)
and no memory is retained of what objects have (and have not) been visited.

An important part of scanpath planning is to keep track of previously visited locations,
and prevent revisits to these. This mechanism is known as inhibition of return, and is argued
to serve as a ‘foraging facilitator’ in visual search (Klein & Maclnnes, 1999), preventing
inefficient returns to areas already inspected. It has been suggested that at least five spatial
objects can be kept in memory (Synder & Kingstone, 2000), and that this information is used
when planning future scanning (Findlay & Brown, 2006).

Other research has concluded that memory not only guides the selection of targets along
a scanpath (Gilchrist & Harvey, 2000), but that this memory can also prevent revisits of
earlier targets for fairly large sets of objects (Dickinson & Zelinsky, 2007). This research has
developed into the question of whether visual search is like foraging, carried out over chunks
of space that can then be successively dismissed.

Using real-world stimuli and tasks, such as letting participants make sandwiches, avoid
non-animate targets, or meet other people approaching in a narrow hallway, Land and Hayhoe
(2001); Hayhoe and Ballard (2005); Rothkopf, Ballard, and Hayhoe (2007), and others show
that scanpath planning is tightly connected with the ongoing task and the immediate visual
surroundings. In particular, look-ahead fixations during real-life tasks, for instance looking
at the jam jar four or five seconds before it is actually time to grab it, show how the eye-
movement system is used in the planning of future sub-activities in the overall task (Mennie et
al., 2007). In this view, task-driven plans lie behind virtually all eye movements, and random
scanpaths would only occur when participants feel they have no task, and bottom-up features
are free to pull the eyes—even then, however, we quickly apply meaning to what we look at.

8.7.4 The average scanpath

Although some researchers find the ‘the average scanpath’ difficult to calculate due to the
unique unfolding of each scanpath (for instance, Hornof, 2007, p. 317), others make an at-
tempt to take a number of scanpaths and build an average from them (Josephson & Holmes,
2002; Hembrooke, Feusner, & Gay, 2006; Torstling, 2007).

Josephson and Holmes (2002) first calculate the pairwise string-edit distance between
all AOI-based scanpaths, and then define ‘the most central scanpath’ as the sequence with
the smallest average distance to all other sequences. Using multiple sequence alignment,
Hembrooke et al. (2006) construct the average scanpath from global similarities among the
scanpaths.

A slightly different definition of the average scanpath was suggested by Holsanova et al.
(2008). It is illustrated in Table 8.3 with a hypothetical example including five AOIs and five
participants. The AOIs in this table have been ranked in the order that they were visited by
each of the five participants. Participant 1, for instance, looked at AOI 1 first, then at AOI 3,
etc. Revisited AOIs are not counted, only first visits. AOIs that are not visited by a participant
receive the highest remaining rank or the average of the highest remaining ranks.

Finally, a sequence of attention maps can be considered (o represent an average scanpath
in the sense that each attention map in the sequence describes spatial distribution for all
participants.

The term ‘averaging’ implies calculating one single entity out of several, so that the single
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Table 8.3 Average scanpath as the average order of entry for five AOls seen by five participants (fictitious
data).

Participant AOIL1 AOI2 AOI3 AOI4 AOIS

Average 1.60

average is somewhere near the middle, and accepting that the variance information from the
averaged group of scanpaths is lost. This makes the average scanpath alone unsuited for
statistical calculations. Moreover, if two participants consistently look at different sides of a
monitor, their average scanpath will be in the centre of it, where none of the participants have
ever looked. These are severe limitations when using averaging scanpath representations and
measures.

8.7.,5 Comparing scanpaths

The general principles for scanpath comparison were outlined earlier in the chapter. However,
many challenges still need to be addressed. Ata conceptual level, there are a large number of
desirable pairwise scanpath comparisons. For instance, We would like to detect the degree to
which:

o the overall shape is the same between two scanpaths, and whether both scanpath shapes
exhibit the same temporal sequence. The string-edit measure has approximated a shape
comparison for some cases, while many measures completely ignore temporal order.
two scanpaths are similar in shape but different in scale. A half-sized but otherwise
identical scanpath should be considered similar by a measure to be useful in for instance
mental imagery studies, but no current measure can do this.
two scanpaths have a difference in spatial extent. This can be studied with measures
utilizing attention map representations of scanpaths.
there is a similarity in position but reversal of order. This could in principle be detected
using the sequence alignment method described above.
one participant executes his scanpath faster than another participant, although to the
exact same positions, by investigating how the temporal alignment differs.
the fixation duration profiles between two scanpaths differ, even if position and se-
quence order is identical.
similar sub-scans exist in either of the two scanpaths (even though the sub-scans may
appear in a different order).

Any proposed scanpath comparison measure must eventually be validated. There are two
main methods for validating scanpath similarity: absolute and relative. Absolute validation
can only be made by comparing the output from the proposed measure to a baseline that
expresses the true similarity between scanpaths. One such baseline can be established by
showing people a large number of scanpath pairs and asking them to judge the similarity
for each pair on some scale. However, setting up this baseline both requires and allows us
to answer many open questions: Should we show static or dynamic scanpath pairs (i.e. is

dynamics a part of scanpath similarity)? Should our judges rate the similarity using a single
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or multiple scales? Is human judgement of the similarity between pairs of scanpaths really
systematic across individuals? Is it possible for a human to judge the degree of similarity
between any two scanpaths at all?

Validating relative similarity is much easier. Take for example any scanpath and create
distorted versions of it by adding an increasing amount of noise. Since we know that scanpath
similarity between the original scanpath and its distorted version should increase with the
level of noise, this is something that should be reflected in a valid scanpath similarity measure.
Still, we cannot tell whether the absolute differences in similarity between noise levels are
sensible.

Given a substitution matrix, another open issue is how to choose appropriate costs. Al-
though the matrix offers a flexible scoring scheme, it is up to the researcher herself to choose
costs that are suitable to the experiment in hand.

Finally, it is important to distinguish between scanpath comparison in picture- and video
viewing; objects, and therefore fixations, in video stimuli are largely associated with a par-
ticular temporal span. Therefore, scanpaths recorded from videos do not critically require
sequence alignment prior to comparison. Moreover, since the duration of a video is always
fixed, different sequence lengths are not a Jarge problem in the comparison.

8.8 Summary: scanpath events and representations

Scanpath events are specific subscans that occur within a limited chunk of a scanpath. Six
such events have been defined in this chapter:

o backtracks, saccades going in the opposite direction to the previous one.

o regressions, which exist as in-word and between-word regressions, regression scan-
paths, and re-inspections.
look-backs, which are also known as refurms.

o look-aheads, saccades towards items that are important in the immediate action plan.
local versus global, a categorization of the scanpath into two types of subscans; this is
very similar to ambient versus focal.

o sweeps, a sequence of saccades in the same direction.

o reading versus scanning, events in reading of larger texts such as newspapers.

Furthermore, a scanpath can be represented in a number of ways:

o Sequences of symbols aim to represent selected features of a scanpath by means of
symbols. The most different types of symbol sequences are

« Fixation strings where fixations are represented by letters denoting names of the
AOIs where they reside. An example of a fixation string is MMTCCHGM.

« Dwell strings, which are fixation strings where consecutive, repetitive fixations
are merged. The dwell string of the example string above would thus become
MTCHGM.

+ Direction/amplitude strings of saccades such as
D6 23 71 28 T3 B3 54,
where the first hexadecimal digit in each pair is segmented saccadic direction and
the other digit segmented saccadic amplitude.

+ Duration strings where symbols represent quantized fixation duration. However,
these have been used very sparingly in the literature.
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o The vector sequence represents a scanpath by a sequence of Euclidean vectors. Typi-
cally, the vectors represent saccades, and the start and end position of saccade vectors
represent fixations.

o Attention map sequences represent one of many scanpaths as a sequence of attention
maps. Sequence information but no participant identity are retained in this representa-
tion.

Scanpaths and their representations are also commonly used in visualizations. They are
for example useful for exemplifying data in journals, for checking data quality, and to see
what the fixation algorithm did, and have often been used for manual analysis. Scanpath
visualizations can be used as elicitation in retrospective speech.

This chapter also outlined the principles for scanpath comparison, which include choosing
a suitable scanpath representation, simplifying the scanpath, and aligning scanpaths with each
other before calculating a similarity score. When selecting between ‘scanpath comparison
measures’, of which there are many, be certain that you use a representation that retains the
information you want in the comparison.

Finally, a number of open issues that researchers dealing with scanpaths should be aware
of concerning scanpaths were discussed.




