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STATISTICAL ANALYSIS

Lecture 2

Z-SCORES AND OTHER STANDARDIZED 
SCORES, NORMAL DISTRIBUTIONSCORES, NORMAL DISTRIBUTION

CORRELATION, SIMPLE LINEAR CORRELATION, SIMPLE LINEAR 
REGRESSION



Scores transformationScores transformation

• We often transform observed score for easier understanding 
and interpretationand interpretation

• Making interpretation easier – linear transformations
• e.g. multiplying by 10 or 100 for getting rid of the decimals• e.g. multiplying by 10 or 100 for getting rid of the decimals

• distribution shape remains unchanged

• descriptive statistics will change in a predictable way

• possibility of standardization• possibility of standardization

• Change of distribution shape – nonlinear transformations

• log/exp functions, square(root)…• log/exp functions, square(root)…

• Change of measurement level – ordinal transformation (ranking)



Nonlinear transformations
• Example: ln transformation, usually trying to make distribution „more normal“



Ordinal transformation: rankingOrdinal transformation: ranking
• Transformation from observed values on ranking:

• Elimination of extreme values, neglecting differences magnitude between 
people

• Elimination of extreme values, neglecting differences magnitude between 
people

• Usually ascending (the lowest value is 1)

• The same values get average ranking (=RANK.AVG)• The same values get average ranking (=RANK.AVG)

• The distribution will be approximately uniform

• Percentiles – standardized form of ranking transformation



Linear transformation – standardizationLinear transformation – standardization

• The most usual transformation: standardization (z-scores)

• scores transformation, so that M=0, SD=1• scores transformation, so that M=0, SD=1

• measurement unit becomes SD – we can easily compare scores from different 
scales (but differences in distribution remain!)

• z = (X – M) / SD• zi = (Xi – M) / SD

• Scores derived from z-scores:
• T scores: M=50, SD=10; Ti = 50 + 10zi• T scores: M=50, SD=10; Ti = 50 + 10zi

• IQ scores: M=100, SD=15

• Stens (Standard TENs, cz: steny): M=5.5, SD=2; Steni = 2zi + 5.5

• Stanines (STAndard NINEs, cz: staniny): M=5, SD=2; Stanine = 2z + 5
i i

• Stanines (STAndard NINEs, cz: staniny): M=5, SD=2; Staninei = 2zi + 5

• Normal distribution is always required for correct standardized scores 
interpretation!interpretation!



Psychodiagnostic calculatorPsychodiagnostic calculator

• Online tool for scores transformation• Online tool for scores transformation

• Developed by Hynek Cígler and Martin Šmíra
from the Department of Psychology, Faculty of Social Studies MUfrom the Department of Psychology, Faculty of Social Studies MU

• http://kalkulacka.testforum.cz/transformace-skoru

• In Czech language• In Czech language



Normal distribution (Gaussian, bell curve)Normal distribution (Gaussian, bell curve)

• The distribution of nature phenomena influenced by many 
independent factors: many variablesindependent factors: many variables

• The distribution of random errors

• Advantages: we can assume how many of which values there • Advantages: we can assume how many of which values there 
are in the target population

• Many statistical procedures work with normal distribution • Many statistical procedures work with normal distribution 
(-> many statistical procedures require normal distribution)



Characteristics of normal distributionCharacteristics of normal distribution

• Symmetrical, unimodal

• Mean = median = mode

• Skewness = 0

• Kurtosis = 3

• Standardized normal distribution: scores transformed to z-scores 
(M=0, SD=1)
• Standardized normal distribution: scores transformed to z-scores 

(M=0, SD=1)





Counting quantiles in ExcelCounting quantiles in Excel

• NORM.S.DIST(z;1) – returns corresponding percentile for given 
z-score (=how many people have the same or lower z-score)z-score (=how many people have the same or lower z-score)
• Percentage of people between two given z-scores:

NORM.S.DIST(higher z;1) minus NORM.S.DIST(lower z;1)NORM.S.DIST(higher z;1) minus NORM.S.DIST(lower z;1)

• NORM.S.INV(p) – returns corresponding z-score for given percentile



ExampleExample
• John got score 7 from math test and score 13 in English tests. The math tests 

scores have M=5 and SD=2.2, the English test has M=9 and SD=3.6. scores have M=5 and SD=2.2, the English test has M=9 and SD=3.6. 
In which of the tests was John better?

• Math

• z-score: (7-5)/2.2 = 0.91• z-score: (7-5)/2.2 = 0.91

• T-score: 50 + 10*0.91 = 59.1

• percentile: NORM.S.DIST(0.91;1) = 0.82 = 82nd percentile• percentile: NORM.S.DIST(0.91;1) = 0.82 = 82nd percentile

• John was in the math test same or worse than 82% of other students

• English

• z-score: (13-9)/3.6 = 1.11• z-score: (13-9)/3.6 = 1.11

• T-score: 50 + 10*1.11 = 61.1

• percentile: NORM.S.DIST(1.11;1) = 0.87 = 87th percentile• percentile: NORM.S.DIST(1.11;1) = 0.87 = 87th percentile

• John was in the English test same or worse than 87% of other students



ASSOCIATIONS BETWEEN 
VARIABLESVARIABLES

CORRELATIONCORRELATION



Associations between variablesAssociations between variables

• Statistical mapping of association between variables depends 
on measurement level: categorical vs. metric variableson measurement level: categorical vs. metric variables



Variables classification according to their function 
in the associationin the association

ModeratorModerator

• We are usually interested in causal relationships

• Statistics itself cannot detect or test causality

ModeratorModerator

• Causality can be determined by research 
design and theoretical assumptions

• Variables classification

Independent Independent 

variablevariable

Dependent Dependent 

variablevariable

• Variables classification

• Dependent, independent, intervening

• Exogenous, endogenous, 
mediators, moderators

MediatorMediatorExogenous, endogenous, 
mediators, moderators

• Usually we can’t identify all intervening
variables… Intervening Intervening variables… Intervening Intervening 

variablevariable



Compound bar chartCompound bar chart



Contingency tableContingency table
Math grades Total

1 2 3 4 5

Czech language
grades

1 82 40 8 1 0 131

2 71 200 73 17 0 361

3 4 75 109 25 0 213
grades

4 1 7 23 24 1 56

5 0 0 2 1 2 5

Total 158 322 215 68 3 766Total 158 322 215 68 3 766

• For any variables, but most suitable for discrete variables with not many values
• The cells can contain both absolute or relative frequencies (row, column and total • The cells can contain both absolute or relative frequencies (row, column and total 

frequencies)
• The last row and column contain so called row/column marginal frequencies
• Graphical representation of contingency table is 3D bar chart or 3D histogram• Graphical representation of contingency table is 3D bar chart or 3D histogram
• High frequencies in diagonals indicate linear relationship between variables





Scatterplot

• Substitutes contingency table 
for continuous variable

• Each axis represents • Each axis represents 
one variable

• Each point represents • Each point represents 
one subject (unit)

• Frequency of the same 
values can be represented values can be represented 
e.g. by the dot size



Scatterplot of Q.6E against Q.6DScatterplot of Q.6E against Q.6D

data 281v*2002c

Q.6E = -0,006+0,1787*x-0,0014*x^2
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Different forms of associationsDifferent forms of associations

LINEAR RELATIONSHIPS



Linear associationLinear association
• Monotonous relationship which can 

be described in words: 
the higher X, the higher/lower Ythe higher X, the higher/lower Y

• By „correlation“ we usually mean 
linear associationlinear association

• In the scatterplot, the „ideal“ line can 
be placed

• The linear function (line) Y = a + bx• The linear function (line) Y = a + bx
indicates the association slope

• Correlation describes the strength • Correlation describes the strength 
of the linear association 
(cz: těsnost vztahu)



Strength of associationStrength of association

• The stronger the association, the closer 
are the points to the lineare the points to the line

• Strength of association isn’t related to 
the line’s slope

• Strength of association can be 
described by correlation coefficient 
from -1 to 1from -1 to 1

• -1 means maximum negative 
association, 0 mean no association, 
1 means maximum positive association1 means maximum positive association

• + values: the higher X, the higher Y

• - values: the higher X, the lower Y• - values: the higher X, the lower Y





Covariance (shared variance)Covariance (shared variance)

• Covariance expresses the extent of the shared variance

• It is a numerical expression of association strength• It is a numerical expression of association strength
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Remember the formula for variance calculation:
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This sum is the higher the more pairs of xy there are, where  both x 
and y value is above-average or below-average. The sum is the 
lower the more pairs of xy there are, where one of the values is 

• x and y are deviation scores 
(deviations from the average)

• covariance is not very practical, 
similarly as variance, because it is in „squared unit“

lower the more pairs of xy there are, where one of the values is 
above-average and the other below-average.

similarly as variance, because it is in „squared unit“



Correlation (=standardized shared variance)Correlation (=standardized shared variance)

• For better interpretation, we standardize the covariance – same as with z-scores, 
we divide the deviation score by standard deviationwe divide the deviation score by standard deviation
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Characteristics of Pearson’s correlation 
coefficientcoefficient

• A deviation statistics:

interval or higher measurement level required• interval or higher measurement level required

• great impact of extreme values

• suitable for normally distributed variables description (approximately normal • suitable for normally distributed variables description (approximately normal 
distribution of both variables required)

• expresses only the association strength, not causality!!!

• Takes values between -1 a +1

• 0 = no association• 0 = no association

• +1(-1) = perfect positive (negative) association = variables identity 
= direct (indirect relationship)



Characteristics of Pearson’s correlation 
coefficient

• r2 = coefficient of determination (R2, D) 
= proportion of shared variance

coefficient

= proportion of shared variance

• Consequence: r 0,3 – r 0,1 ≠ r 0,7 – r 0,5 
(0,09-0,01=0,08; 0,49-0,25=0,24)(0,09-0,01=0,08; 0,49-0,25=0,24)

• r=0 doesn’t mean there isn’t any 
relationship between variables, it only relationship between variables, it only 
means there is no linear association 
between them



Computing correlation

1. Check assumptions: interval or higher measurement level, normal 
distribution of both variables, extreme values, assumption of linear 
relationship (plot scatterplot and histograms)

2. Compute z-scores for all observed scores – you will need M and SD 
for both groups: zi = (Xi – M) / SD

Excel: =AVERAGEA(data), =PRŮMĚR(data), =STDEVA(data), Excel: =AVERAGEA(data), =PRŮMĚR(data), =STDEVA(data), 
=SMODCH.VÝBĚR.S(data), =STANDARDIZE(X;M;SD)

3. Compute correlation: 
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rxy = [ (-1,52*1,67) + (-1,01*1,01) + (0,00*0,02) + (1,52*-0,97)
+ (0,51*-0,97) + (0,01*-0,31) + (0,25*-0,47) ] / (7-1) = -0,94

Excel: =COVARIANCE.P(var1, var2), =COVARIANCE.S(var1, var2),Excel: =COVARIANCE.P(var1, var2), =COVARIANCE.S(var1, var2),
=CORREL(var1, var2)



Characteristics of Pearson’s correlation 
coefficientcoefficient

• When correlation doesn’t make sense?When correlation doesn’t make sense?
• Q1: How many hours daily do you watch TV?

• Q2: How many hours daily do you watch TV news?

• …why?• …why?

• Correlation of variables with the same cause:
• Priests’ salaries and vodka prices correlate• Priests’ salaries and vodka prices correlate

• Children’s IQ and their height correlate as well…

• …why?

• Age and number of birthdays…• Age and number of birthdays…

• Covariance of variables with the same cause is the basis for other analysis 
methods: scale reliability analysis and factor analysismethods: scale reliability analysis and factor analysis



Rank (ordinal) correlation coefficientsRank (ordinal) correlation coefficients
• Suitable not only for ordinal data, but also for interval data with deviations 

from normal distribution

• Capture also nonlinear monotonic relationships• Capture also nonlinear monotonic relationships

• To what extent are ranking of the two correlated
variables the same

• Spearman rho coefficient - ρ, rs
• Based on differences magnitude in rankings
• Ordinal equivalent for Pearson’s correlation• Ordinal equivalent for Pearson’s correlation
• r2 can be interpreted
• Usually used as a more resistant variant of Pearson’s r
• Calculated in the same way as Pearson’s, but on rankings

• Kendall tau coefficient – t (+ „b“ and „c“ variants)
• Based on number of values „out of order“
• No effect of outliers• No effect of outliers
• b and c variants deal with more values of the same ranking



Kendall rank correlation: exampleKendall rank correlation: example

ττττ = (K-D) / [N (N -1)/2] = (3-7)/(5.4/2) = -4/10 = -0,4ττττ = (K-D) / [N (N -1)/2] = (3-7)/(5.4/2) = -4/10 = -0,4



Partial correlation: portioning variancePartial correlation: portioning variance

variable B

variable A
variable Cvariable C



STATISTICAL PREDICTIONSTATISTICAL PREDICTION
LINEAR REGRESSIONLINEAR REGRESSION



Statistical predictionStatistical prediction

• Statistical prediction is qualified estimating of the most probable variable value 
from data we already know by modelling the relationship between the variable from data we already know by modelling the relationship between the variable 
and its correlates

• From one (or more) variable (predictor, independent variable) we are trying to 
predict another variable (predicted variable, dependent variable)predict another variable (predicted variable, dependent variable)

• E.g. How well can intelligence test at 10 years predict grades in the end of high 
school?school?

• We make a model: we collect data from both variables, that is results of an 
intelligence test and high school grades from the same people (we already need 
them to be finishing their high school).them to be finishing their high school).

• If the model works successfully, we can use the intelligence test scores in 10-year-
old children to predict their future grades…old children to predict their future grades…



Statistical prediction
• Example 1: Imagine that all students have exactly the same grades

from math and physics. The variables would be identical:
• What would be the value of correlation between the variables?• What would be the value of correlation between the variables?

r = 1

• What would be the value of coefficient of determination?

r2 (R2, D) = 12 = 1r2 (R2, D) = 12 = 1

• What would be the proportion of shared variance? What does it mean?

R2 * 100 = 1 * 100 = 100%

It means that we can predict 100% of math grades values correctly from It means that we can predict 100% of math grades values correctly from 
physics values (or the other way).

• What of the information above would change if all students had exactly 
opposite math grades than physics grades?opposite math grades than physics grades?

r = -1, R2 = -12 = 1, R2 * 100 = 100%

• Of course, usually we can predict with much less precision, but we’re trying to 
predict with the highest precision. For that, we need correlates with high predict with the highest precision. For that, we need correlates with high 
correlation with the predicted variable.



Statistical prediction

• Example 2: What score in an intelligence test could we predict for a random 
respondent, if we know that the test has approximately normal distribution with 

Statistical prediction

respondent, if we know that the test has approximately normal distribution with 
M=100 and SD=15?

• What information could make our prediction more precise?• What information could make our prediction more precise?
• Height?

• Education?

• Score from a memory test?• Score from a memory test?

• …



Prediction of middle finger length 
from index finger lengthfrom index finger length



Linear regressionLinear regression
• For prediction, we need a function (how to compute variable Y from know 

variable X)variable X)

• For linear regression – prediction based on linear relationship, it is linear 
equation: Y = a + bX (a straight line, regression line)

• We are modelling the linear function: we’re making estimations of variable Y • We are modelling the linear function: we’re making estimations of variable Y 
values by computing the linear equation using variable X values

• Variable Y estimated = Y’• Variable Y estimated = Y’

• Regression of Y on X: Y’ = Y + e = f(x) + e, where e = Y’ – Y

• e is residual value, Y is dependent variable, 
X is independent variable (predictor)X is independent variable (predictor)

• e represents all other variance sources except X



Linear regression



Linear regression

• If Pearson correlation well describes relationship 
between two variables, we can express the 

Linear regression

between two variables, we can express the 
relationship by linear function:

• Y’ = a + bX; Y = Y’ + e = a + bX + e

a = intercept (cz: průsečík), b = slope (směrnice)• a = intercept (cz: průsečík), b = slope (směrnice)

• How can we find the best regression line?

• Estimate by least squares estimation – we are • Estimate by least squares estimation – we are 
trying to minimize the sum of residual squares

• b = rxy(SDy/SDx)• b = rxy(SDy/SDx)

• a = My – bMx

• If the values of X and Y are in z-scores, then b = rxyxy

• a, b – correlation coefficients



Linear regression

• Y’ = a + bX

Linear regression

• Y’ = a + bX

• b = rxy(SDy/SDx)

• a = My – bMx• a = My – bMx

• If the values of X and Y are in z-scores, then b = rxy

• The line goes through values Mx and My • The line goes through values Mx and My 

• The sum of residuals is zero, the sum of squared 
residuals is the least possible



Prediction of middle finger length 
from index finger length

• Mm = 7,109; SDm = 0,843 Y

from index finger length

• Mm = 7,109; SDm = 0,843 Y

• Mi = 6,983; Sdi = 0,658 X - predictor

• rmi = 0,917rmi = 0,917

• b = rxy(SDy/SDx) = 0,917(0,843/0,658) = 1,175

• a = My – bMx = 7,109 – 1,175*6,983 = -1,096

• Y´ = 1,175*X – 1,096



Predicted valuesPredicted values

IF MF MF'

6,5 6,4 6,5413

7 7 7,1291

7,5 7,5 7,7169

5,2 4,8 5,0130

6,6 6,7 6,6589

6,6 6,8 6,6589

7 7 7,1291

6,8 ? Y´ = 1,175*X – 1,096 = 1,175*6,8 – 1,096 = 6,894



Distribution of predicted values

• MMF’ = 7,109 = MMF

• SDMF’ = 0,773



Linear regression: model fitLinear regression: model fit

• How well, precise are the predicted values?

• Precision = the least residuals

• How large are the residuals?

IF MF MF' e = (MF - MF')

6,5 6,4 6,5413 -0,14136,5 6,4 6,5413 -0,1413

7 7 7,1291 -0,1291

7,5 7,5 7,7169 -0,2169

5,2 4,8 5,0130 -0,2130

6,6 6,7 6,6589 0,0411

6,6 6,8 6,6589 0,1411

7 7 7,1291 -0,1291



Distribution of residualsDistribution of residuals

• M = 0• Me = 0

• SDe = 0,337



Linear regression: model fit
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• Coefficient of determination: R2

• Exaplained variance proportion• Exaplained variance proportion

• Measure of model fit with the data 
(regression success)

• For simple linear regression it applies:
R 2 = r 2



Linear regression: assumptionsLinear regression: assumptions

• Assumptions are the same as for Pearson correlation:

• The basic assumption: the relationship really is linear• The basic assumption: the relationship really is linear

• The residuals have normal distribution with M=0 and SD = Sres

• It means the 95% of estimation residuals lie approx. between −2sres a +2sres

• homoscedascity (cz: homoskedascita): residuals independency = the residual • homoscedascity (cz: homoskedascita): residuals independency = the residual 
variance won’t change with increasing X

• The model validity depends on data 
from which was the model extrapolated

• Watch out for extreme values • Watch out for extreme values 
(as with all deviation statistics)



Other regression typesOther regression types

• Simple linear regression: one independent and one dependent variable

• Multiple linear regression: more independent variables (predictors)• Multiple linear regression: more independent variables (predictors)

• Y = a +b1X1 + b2X2 + … + bmXm

• complicated by relationships between the predictors• complicated by relationships between the predictors

• Logistic regression:

• Dependent variable is dichotomous (nominal) • Dependent variable is dichotomous (nominal) 

• Prediction of dependent variable values probability

• If the relationship isn‘t linear:• If the relationship isn‘t linear:

• We can try to transform the variables, so that the relationship becomes linear

• We can divide the sample into subgroups in which the relationship is linear


