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STATISTICAL ANALYSIS

Lecture 2

/-SCORES AND OTHER STANDARDIZED
SCORES, NORMAL DISTRIBUTION

CORRELATION, SIMPLE LINEAR
REGRESSION




Scores transformation

* We often transform observed score for easier understanding
and interpretation

* Making interpretation easier — linear transformations
e e.g. multiplying by 10 or 100 for getting rid of the decimals
e distribution shape remains unchanged
 descriptive statistics will change in a predictable way
* possibility of standardization
* Change of distribution shape — nonlinear transformations

* log/exp functions, square(root)...

e Change of measurement level — ordinal transformation (ranking)




Nonlinear transformations

* Example: In transformation, usually trying to make distribution ,more normal“

80 25
Mean = 01286
otd. Dev. = 02154 Mean = -5,65
N =129 Std. Dev. = 1,931
MN=129

-12,50 -10,00 -750 -500 -2,50




Ordinal transformation: ranking

* Transformation from observed values on ranking:

* Elimination of extreme values, neglecting differences magnitude between
people

* Usually ascending (the lowest value is 1)

* The same values get average ranking (=RANK.AVG)

* The distribution will be approximately uniform

* Percentiles — standardized form of ranking transformation
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Linear transformation — standardization

* The most usual transformation: standardization (z-scores)

* scores transformation, so that M=0, SD=1

* measurement unit becomes SD — we can easily compare scores from different
scales (but differences in distribution remain!)

*z,=(X.—M)/SD

» Scores derived from z-scores:
* T scores: M=50, SD=10; T, = 50 + 10z,
* |Q scores: M=100, SD=15
* Stens (Standard TENSs, cz: steny): M=5.5, SD=2; Sten, = 2z, + 5.5
* Stanines (STAndard NINEs, cz: staniny): M=5, SD=2; Stanine, = 2z, + 5

* Normal distribution is always required for correct standardized scores
interpretation!




Psychodiagnostic calculator

* Online tool for scores transformation

* Developed by Hynek Cigler and Martin Smira
from the Department of Psychology, Faculty of Social Studies MU

* http://kalkulacka.testforum.cz/transformace-skoru
* In Czech language




Normal distribution (Gaussian, bell curve)

* The distribution of nature phenomena influenced by many
independent factors: many variables

 The distribution of random errors

* Advantages: we can assume how many of which values there
are in the target population

* Many statistical procedures work with normal distribution
(-> many statistical procedures require normal distribution)




Characteristics of normal distribution

* Symmetrical, unimodal
* Mean = median = mode
e Skewness =0

* Kurtosis =3

e Standardized normal distribution: scores transformed to z-scores
(M=0, SD=1)




Percentage of
cases in 8 portions
of the curve

Standard Deviations

Cumulative
Percentages

Percentiles
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Counting quantiles in Excel

* NORM.S.DIST(z;1) — returns corresponding percentile for given
z-score (=how many people have the same or lower z-score)

* Percentage of people between two given z-scores:
NORM.S.DIST(higher z;1) minus NORM.S.DIST(lower z;1)

* NORM.S.INV(p) — returns corresponding z-score for given percentile




Example

* John got score 7 from math test and score 13 in English tests. The math tests
scores have M=5 and SD=2.2, the English test has M=9 and SD=3.6.
In which of the tests was John better?

* Math
 z-score: (7-5)/2.2=0.91
e T-score: 50 + 10*0.91 = 59.1
e percentile: NORM.S.DIST(0.91;1) = 0.82 = 82nd percentile
e John was in the math test same or worse than 82% of other students
* English
e z-score: (13-9)/3.6=1.11
e T-score: 50 + 10*1.11 =61.1
e percentile: NORM.S.DIST(1.11;1) = 0.87 = 87th percentile
* John was in the English test same or worse than 87% of other students




ASSOCIATIONS BETWEEN
VARIABLES

CORRELATION




Assoclations between variables

» Statistical mapping of association between variables depends
on measurement level: categorical vs. metric variables

categorical

metric

contingency table

difference in descriptive statistics

categorical compound bar chart
chi square
compound unidimensional graphs scatterplot
metric

correlation




Variables classification according to their function

INn the association

* We are usually interested in causal relationships
* Statistics itself cannot detect or test causality

* Causality can be determined by research
design and theoretical assumptions

Independent
variable

Dependent

variable
e Variables classification
* Dependent, independent, intervening

* Exogenous, endogenous,
mediators, moderators

e Usually we can’t identify all intervening

varia b|eS... Intervening
variable
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Compound bar chart
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Contingency table

Math grades Total
1 2 3 4 5
1 . 82 40 8 1 0 131
2 71 200 73 17 0 361
Czech language 3 4 75 109 29 0 213
grades
4 1 7 23 24 1 56
5 0 0 2 I 2 5
Total 158 322 215 68 3 766

For any variables, but most suitable for discrete variables with not many values
The cells can contain both absolute or relative frequencies (row, column and total
frequencies)

The last row and column contain so called row/column marginal frequencies
Graphical representation of contingency table is 3D bar chart or 3D histogram
High frequencies in diagonals indicate linear relationship between variables




How often do you personally encounter people of Vietnamese origin?

Total
Not at all Rarely Sometimes Often Very often

N 2 34 46 43 6 131

%
Men  (gender) 1,5% 26,0% 35,1% 32,8% 4.6% 100,0%

%
(contact) 15,4% 37,8% 21,6% 28,3% 16,7% 26.0%

Gender

N 1" 56 167 109 30 373
Women (ge;'n%;:ter) 2,9% 15,0% 44 8% 29,2% 8,0% 100,0%

%
(contact) 84,6% 62,2% 78,4% 71,7% 83,3% 74.0%
N 13 90 213 152 36 504

%
Total (gender) 2.6% 17,9% 42.3% 30,2% 7.1% 100,0%
% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

(contact)




» Substitutes contingency table
for continuous variable

e Each axis represents
one variable

* Each point represents
one subject (unit)

* Frequency of the same
values can be represented
e.g. by the dot size

Scatterplot
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Attitued thermometer towards Viethamese
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Gender
Omen

O woman

Q.6E

Scatterplot of Q.6E against Q.6D
data 281v*2002c
Q.6E =-0,006+0,1787*x-0,0014*x"2
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Variable 2

Waiting Time Between Eruptions (Min)

Different forms of associations
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Linear association

Monotonous relationship which can

be described in words: ; ; ;

the higher X, the higher/lowerY R S N ’*.*"" ,,,,,,,,

By ,correlation” we usually mean I

linear association L.’,/"’ 7777777777777
| S I ol

In the scatterplot, the ,,ideal” line can : *;’} *

be placed *.,»’"",‘ ************************
- W s

The linear function (line) Y = a + bx e . “,:o"

indicates the association slope .’:: ::‘ |

Correlation describes the strength L 7 &

of the linear association o ST T

(cz: tésnost vztahu) M




Strength of association

/,

The stronger the association, the closer
are the points to the line

Strength of association isn’t related to
the line’s slope

Strength of association can be

described by correlation coefficient
from-1to1l

-1 means maximum negative

association, 0 mean no association,
1 means maximum positive association

096 | 080 | 040  0.025
076 | 038 | 0.029

0.32 0.0046:_5

0.03

+ values: the higher X, the higher Y

- values: the higher X, the lower Y
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Covariance (shared variance)

* Covariance expresses the extent of the shared variance

* It is a numerical expression of association strength

1o
xiyi

PR

e x and y are deviation scores
(deviations from the average)

ny

e covariance is not very practical,
similarly as variance, because it is in ,squared unit”




Correlation (=standardized shared variance)

* For better interpretation, we standardize the covariance — same as with z-scores,
we divide the deviation score by standard deviation

Y
Z( Ty Ty = o

Y n—l S S S

* We already know the circled part: that’s z-score transformation, so to make it easier:

n
Z Zx,%y,
— =1

n-—1

= Pearson’s product-moment correlation
(cz: souc€inovy, momentovy koeficient korelace)




Characteristics of Pearson’s correlation
coefficient

* A deviation statistics:
* interval or higher measurement level required
* great impact of extreme values

* suitable for normally distributed variables description (approximately normal
distribution of both variables required)

* expresses only the association strength, not causality!!!

* Takes values between -1 a +1
* 0 = no association
e +1(-1) = perfect positive (negative) association = variables identity
= direct (indirect relationship)




Characteristics of Pearson’s correlation
coefficient

* r?2 = coefficient of determination (R?, D)
= proportion of shared variance

* Consequence: r0,3-r0,1#r0,7-r0,5
(0,09-0,01=0,08; 0,49-0,25=0,24)

* r=0 doesn’t mean there isn’t any |
relationship between variables, it only o
means there is no linear association Lo i
between them . 2




Computing correlation

Check assumptions: interval or higher measurement level, normal
distribution of both variables, extreme values, assumption of linear
relationship (plot scatterplot and histograms)

Compute z-scores for all observed scores — you will need M and SD
for both groups: z; = (X,— M) / SD

Excel: =AVERAGEA(data), —PRUMER(data) =STDEVA(data),
=SMODCH.VYBER.S(data), =STANDARDIZE(X;M;SD)

Compute correlation:

1 & X -m  Y,—m .
=—— > (=X —)=—
_1 i=1 Sx

S, S.S,

=[(-1,52*1,67) + (-1,01*1,01) + (0,00*0,02) + (1,52*-0,97)
+(0,51*-0,97) + (0,01*-0,31) + (0,25*-0,47) ] / (7-1) = -0,94

Excel: =COVARIANCE.P(varl, var2), =COVARIANCE.S(var1, var2),
=CORREL(varl, var2)

Weeks of Exercise

Resting Heart Rate

2
4
B
14
10
gl
.,

82
78
72
66
66
70
69

Week of exercise Resting heart rate

M=2
5D=3,96

M=71,86
5D=6,07

Week of exercise Resting heart rate

Z 5C0res

Z 5COres

-1,52
-1,01
0,00
1,52
0,51
0,01
0,25

1,67
1,01
0,02
-0,37
-0,97
0,31
-0,47




Characteristics of Pearson’s correlation
coefficient

* When correlation doesn’t make sense?
* Q1: How many hours daily do you watch TV?
* Q2: How many hours daily do you watch TV news?
e ..why?

* Correlation of variables with the same cause:
* Priests’ salaries and vodka prices correlate

Children’s 1Q and their height correlate as well...

e ...why?

Age and number of birthdays...

Covariance of variables with the same cause is the basis for other analysis
methods: scale reliability analysis and factor analysis




Rank (ordinal) correlation coefficients

 Suitable not only for ordinal data, but also for interval data with deviations
from normal distribution

Capture also nonlinear monotonic relationships

Spearman correlation=1
Pearson correlation=0.88

To what extent are ranking of the two correlated

. 10
variables the same

* Spearman rho coefficient - p, r, s S ' S o
* Based on differences magnitude in rankings i Mﬁ _
* Ordinal equivalent for Pearson’s correlation g W
* r2can be interpreted _s| Ei':!.
e Usually used as a more resistant variant of Pearson’s r g
e Calculated in the same way as Pearson’s, but on rankings Baia -
» Kendall tau coefficient—t (+,b“ and ,,c“ variants) 15 T N T
0.0 0.2 0.4 0.6 0.8 1.0
* Based on number of values ,,out of order” X

* No effect of outliers
* b and c variants deal with more values of the same ranking




Kendall rank correlation: example

Math Head Math | Head | Math | Head
grade circumference| rank |c.rank| rank |c.rank| K+, D-
3 48 3 3 1 5 -
2 43 2 2 2 2 |4+
1 50 1 5 3 3 |+
4 49 4 4 4 4
5 40 5 1 5 1

T=(K-D) /[N (N -1)/2] = 3-7)/(54/2) = -4/10 = -0,4




Partial correlation: portioning variance




STATISTICAL PREDICTION
LINEAR REGRESSION




Statistical prediction

* Statistical prediction is qualified estimating of the most probable variable value
from data we already know by modelling the relationship between the variable
and its correlates

* From one (or more) variable (predictor, independent variable) we are trying to
predict another variable (predicted variable, dependent variable)

e E.g. How well can intelligence test at 10 years predict grades in the end of high
school?

 We make a model: we collect data from both variables, that is results of an
intelligence test and high school grades from the same people (we already need
them to be finishing their high school).

* If the model works successfully, we can use the intelligence test scores in 10-year-
old children to predict their future grades...




Statistical prediction

* Example 1: Imagine that all students have exactly the same grades Math  Physics

from math and physics. The variables would be identical:

1 1

 What would be the value of correlation between the variables? - -
r=1 3 3

* What would be the value of coefficient of determination? A 4
r?(R?, D) =1%=1 5 5

 What would be the proportion of shared variance? What does it mean?
R2*100=1%* 100 =100%
It means that we can predict 100% of math grades values correctly from
physics values (or the other way).

* What of the information above would change if all students had exactly Math  Physics

opposite math grades than physics grades? 1 3
r=-1,R2=-12=1, R2" 100 = 100%

e Of course, usually we can predict with much less precision, but we’re trying to
predict with the highest precision. For that, we need correlates with high

4
3
2
correlation with the predicted variable. 1

(0 (R S ' B




Statistical prediction

 Example 2: What score in an intelligence test could we predict for a random
respondent, if we know that the test has approximately normal distribution with
M=100 and SD=157

 What information could make our prediction more precise?
* Height?
e Education?
e Score from a memory test?




Prediction of middle finger length
from index finger length

g_
X x
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W X X
g ¥ *
gln % X X
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4_
| I | I
5 6 7 8

Index finger length in cm




Linear regression

For prediction, we need a function (how to compute variable Y from know
variable X)

For linear regression — prediction based on linear relationship, it is linear
equation: Y = a + bX (a straight line, regression line)

We are modelling the linear function: we’re making estimations of variable Y
values by computing the linear equation using variable X values

Variable Y estimated = Y’
Regressionof Yon X: Y =Y+e=f(x) + e, wheree=Y"-Y

* e is residual value, Y is dependent variable,
X is independent variable (predictor)

* e represents all other variance sources except X




Middle finger length in cm

Linear regression

R2 Linear = 0,841
R2 Quadratic =0,855
__R? Cubic =0,863

Index finger length in cm




If Pearson correlation well describes relationship o
between two variables, we can express the
relationship by linear function:

Y=a+bX;Y=Y'+e=a+bX+e
a = intercept (cz: prusecik), b = slope (smérnice)
How can we find the best regression line?

» Estimate by least squares estimation — we are

Linear regression

s By i

Middle finger length in em

o
1

trying to minimize the sum of residual squares Ra.

b=r,(SD,/SD,)
a=M, —bM,

If the values of X and Y are in z-scores, then b =r,

a, b — correlation coefficients

Index finger length in cm




* Y =a+bX
* b=r,(SD,/SD,)
*a=M,—bM,

* The sum of residuals is zero, the sum of squared

If the values of X and Y are in z-scores, then b =r,

The line goes through values M, and M,

Linear regression

Middle finger length in em

o
1

residuals is the least possible

'C?
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Index finger length in cm




Y =1,175*X-1,096

M. = 6,983; Sd. = 0,658

r.=0,917

Prediction of middle finger length

from index finger length

M, =7,109;SD, =0,843 Y o
X - predict <
predictor i ol X /J’
= ¥ %
b =r,,(SD,/SD,) = 0,917(0,843/0,658) = 1,175 B ﬁlﬁl&}y
a=M,—bM,=7,109-1,175%6,983 = -1,096 £ 2T
S 5 A
N
5 6 7 8

Index finger length in em




6,5
7
7,5
5,2
6,6
6,6
7

6,8

6,4
7
7,5
4,8
6,7
6,8
7

Predicted values

6,5413
7,1291
7,7169
5,0130
6,6589
6,6589
7,1291

Middle finger length in ecm

o
1

Y =1,175*X-1,096=1,175*%6,8 — 1,096 = 6,894

'

X

s

Index finger length in cm

P
X “”f‘|
x #
xx t}’{i %
Fl’x
___.-f!"f; x
1
o |
X
f;'
1 L]
6 7 8




Frequency

20,09

15,09

Distribution of predicted values

5,04

o0.0-

* My = 7,109 = M,
* SD,, = 0,773




Linear regression: model fit

* How well, precise are the predicted values?
* Precision = the least residuals

* How large are the residuals?

6,5413 -0,1413

7 7 7,1291 -0,1291
7,5 7,5 7,7169 -0,2169
5,2 4,8 5,0130 -0,2130
6,6 6,7 6,6589 0,0411
6,6 6,8 6,6589 0,1411

7 7 7,1291 -0,1291




Distribution of residuals

*M,=0
* SD, = 0,337

-1,00 1,00

e = MF — MF’




Linear regression: model fit

Z(m -Y')’ Z(Y Y')? af

n—1 n—1 -

_Z(Y m)

n-—1

2 — 2 2
Sy - Sreg + Sres

R*=5..° /57 - Sies™=5,5(1-R?)

reg
Coefficient of determination: R?
* Exaplained variance proportion

* Measure of model fit with the data o, 2
(regression success)

For simple linear regression it applies:

|

|

|

|

X

|

|

|

|

|

|

X

5 5 ; |
R“=r 0 1 2 3
X

o -




Linear regression: assumptions

* Assumptions are the same as for Pearson correlation:
* The basic assumption: the relationship really is linear
* The residuals have normal distribution with M=0 and SD =S__,
* It means the 95% of estimation residuals lie approx. between -2s

a+2s

res res

* homoscedascity (cz: homoskedascita): residuals independency = the residual

variance won’t change with increasing X

* The model validity depends on data o = a

from which was the model extrapolated

* \Watch out for extreme values F

(as with all deviation statistics)




Other regression types

Simple linear regression: one independent and one dependent variable
Multiple linear regression: more independent variables (predictors)
*Y=a+b X;+b,X,+..+b X_
* complicated by relationships between the predictors
Logistic regression:
* Dependent variable is dichotomous (nominal)
* Prediction of dependent variable values probability

If the relationship isn‘t linear:
* We can try to transform the variables, so that the relationship becomes linear

* We can divide the sample into subgroups in which the relationship is linear




