Experimental Humanities II (HUMB002) 2016 STATISTICAL ANALYSIS

Lecture 3

STATISTICAL INFERENCE CONFIDENCE INTERVALS

- Percentiles to z -scores : $=NORM.S.INV(p)$
- \bullet Z -scores to percentiles (probability of a z -score): $=NORM.S.DIST(z;1)$

From description to inference

- Data description, parameters estimation
- Statistical inference (cz: usuzování, inference, indukce)
- Random sampling
	- every subject has the same probability of being included in the sample
	- If we don't have random sampling, how is our sample different?

Statistics vs. parameters

- From sample (data) we compute statistics
- The value of a statistics in whole population is called parameter
	- For parameters we used Greek letters
	- e.g. mean: statistics m , parameter μ , correlation: statistics r, parameter ρ , standard deviation: statistics s , parameter σ

• Statistics are parameter **estimates**

- They are always burdened with error sampling error (cz: výběrová chyba)
- Random error (cz: náhodné chyby) we can compute them, if we know sampling distribution (cz: výběrové rozložení)
- Systematic errors biased measurement, bad sampling and other methodological problems
- How good are our estimates?

Sampling distribution and standard error

- If we compute the same statistics on many independent samples from a population, we get many different parameter estimates
- These estimates have some distribution **sampling distribution (cz: výběrové rozložení)**
- **http://onlinestatbook.com/stat_sim/sampling_dist/index.html**
- Sampling distribution can be described by:
	- Mean sampling distribution mean is close to parameter
	- Standard deviation in sampling distribution called **standard error (cz: směrodatná chyba,** také střední chyba či výběrová chyba)
	- The higher is the number of samples (statistics estimates), the lower is the standard error

Sampling distribution of mean (estimate)

- Mean estimate has approximately **normal distribution**
	- With mean μ and standard error:
	- This applies even when the distribution is not normal – thanks to **central limit theorem**
	- The problem is that we usually don't know σ
- If we don't know σ , we have to use s
	- Mean is still μ and standard error is now:
	- The sampling distribution is not normal, but Student's t-distribution

$$
S_x = \frac{S}{\sqrt{N}}
$$

Student's t-distribution

- Like normal distribution, but with "heavier ends" (cz: Studentovo t-rozložení)
- *t* in Student's distribution is the same as *z* in normal distribution
- It has different shapes for different N:
	- It is characterized by degrees of freedom: $df = N-1$ (also $v m\acute{y}$) (cz: stupně volnosti)
- The higher is N, the more t-distribution approximates normal distribution

Student's t-distribution

Sampling distribution of other statistics

- For every statistics we need to know its theoretical sampling distribution
	- Relative frequencies: approximately normal distribution
	- Pearson's r after Fisher transformation normal distribution

Statistics estimation quality

Point vs. Interval estimates

- Parameter can be estimated by:
	- Point estimate that we're trying to estimate the parameter value itself (e.g. mean)
	- Interval estimate estimating an interval in which the parameter lies with certain probability
		- The result is **confidence interval (cz: interval spolehlivosti), CI**
		- Confidence interval can be computed from point estimate and its sampling distribution (point \pm deviation)
		- Interval estimate is better we have more information

- α error probability, (1α) is **confidence level (cz: hladina spolehlivosti)**
- We typically use 95% or 99% confidence level, then it means that the parameter lies in the confidence interval with 95% probability (where α is 0.05 = 5% error probability, $(1 - \alpha) = (1 - 0.05)$)

Computing confidence interval for mean 1

- In a sample of 100 children with multicolored eyes we computed mean IQ 130 and we know that σ =15.
	- Point parameter estimate (μ) is 130
	- Interval parameter estimate:
		- **Sampling distribution of mean is normal**…
		- ...with centre in μ . We don't know μ , so we use our **point interval m = 130**.
		- …with standard error of mean $s_m = \sigma / \sqrt{N} = 15/ \sqrt{100} = 1.5$.
		- We choose our confidence level: $1-\alpha = 95\%$
		- Then we find **z-score between which lies 1-**a **% of normal distribution**: 95% of normal distribution lies between z-scores -1.96 and 1.96 in other words: $_{1-\alpha/2}z = 0.975z = 1.96$ Excel: **=NORM.S.INV(0.975)**
		- Confidence interval: **(***m −* **1.96***sm***;** *m* **+ 1,96***sm***)** = (130 1.96*15; 130 + 1.96*15) = (127.1 ; 132.9)
		- That is: with 95% probability $127.1 \leq \mu \leq 132.9$

Computing confidence interval for mean 2

- In a sample of 100 children with multicolored eyes we computed mean IQ 130 and $s = 15$.
	- Point parameter estimate (μ) is 130
	- Interval parameter estimate:
		- We don't know σ , so the sampling distribution of mean is not normal, but **Student's t-distribution with df = N-1 = 99**
		- The distribution centre will again be our **point interval m = 130**.
		- **Standard error of mean** is $s_m = s / \sqrt{n} = 15 / \sqrt{100} = 1.5$
		- We choose our confidence level: $1-\alpha = 95\%$
		- Then we find **t-score between which lies 1-**a **% of t-distribution**: 95% of t-distribution with df=99 lies between t-scores -1.98 and 1.98 in other words: $_{1-\alpha/2}t$ (*df*) = $_{0.975}t$ (99) = 1.98
		- Excel: **=T.INV(p;df), here =T.INV(0.975;99)**
		- Confidence interval: **(***m −* **1.98***sm***;** *m* **+ 1,98***sm***)** = (130 1.98*15; 130 + 1.98*15) = (127.0 ; 133.0)
		- That is: with 95% probability $127.0 \leq \mu \leq 133.0$

Confidence intervals interpretation

- 95% confidence interval means that in 95% of such interval constructions (measurements) the parameter will fall into this interval, that is in 95% of measurements the parameter estimate will lie in the interval
- We have 95% subjective confidence that the parameter lies in the interval
- But the parameter value doesn't change, only our estimates are always a bit different

Sampling distribution of relative frequencies *p*

- …is approximately normal with mean p and standard error $\sqrt{p(1-p)/n}$
- $(1-\alpha)$ % confidence interval thus is:

$$
(p-z_{1-a2}\sqrt{p(1-p)/n}, p+z_{1-a2}\sqrt{p(1-p)/n})
$$

Sampling distribution of Pearson's correlation *r*

- We don't know sampling distribution of correlation…
- …but we know sampling distribution of correlation after Fisher transformation: in Excel: *Z* = FISHER(r)
- Sampling distribution of the Fisher *Z* is approximately normal with mean *Z* and standard error $s_z = 1/\nu(n-3)$

$$
\cdot \text{ (1--\alpha)}\% \text{ CI for } z: \ \ \big(\angle -Z_{1-\alpha/2}S_{Z}; \ \angle +Z_{1-\alpha/2}S_{Z}\big)
$$

• Then, we need to transform Fisher *Z* back to Pearson's *r:* in Excel: =FISHERINV(z)

FISHERINV Z-*z*1-a²*sZ*);*FISHERINV Zz*1-a²*sZ*))

Confidence interval for correlation

On a sample of 20 children we found correlation between number of hours spend by reading per week and score in a creativity test r=0.45. Compute 90% confidence interval for the correlation.

- Transform Pearson's correlation to Fisher Z in Excel: =FISHER(0.45) = 0.48
- Sampling distribution of Fisher Z is approximately normal
- Compute standard error for Fisher Z: $s_z = 1/v(20-3) = 0.24$
- Compute border z-scores for 90% confidence interval: $= NORM.S.INV(1-0.1/2) = NORM.S.INV(0.95) = 1.64$
- 90% CI for Fisher Z: $(0.48 1.64 \cdot 0.24; 0.48 + 1.64 \cdot 0.24) = (0.09; 0.88)$
- Tranform the results back to Pearson's r: 90% CI for Pearson's r: (=FISHERINV(0.09); =FISHERINV(0.88)) = (0.09; 0.71)

Confidence interval for correlation

- Let's continue with the exercise from the previous slide. Imagine we measured the same correlation 0.45, but now in sample size N=100. What computation in the confidence interval will change with sample size?
- Only standard error for correlation will change. Will the standard error be higher, or lower than in the sample of N=20?
- It will be lower, because we divide 1 by higher number. Will the confidence interval get wider, or narrower with bigger sample?
- It will get narrower because we have lower standard error. Compute again 90% confidence interval for correlation 0.45 and N=100 and see how the CI changed.
	- $s_z = 1/\sqrt{(100-3)} = 0.10$
	- 90% for Pearson's r: (=FISHERINV(0.48 1.64*0.10); =FISHERINV(0.48 + 1.64*0.10)) $= (0.31; 0.57)$
- See that with 5 times bigger sample the confidence interval got substantially narrower (e.g.: more precise interval estimate)

Confidence interval for relative frequency

A survey on 1000 people discovered that approximately 12% women experienced a depression episode, whereas in men it was 7%. Compute 99% confidence interval for the difference in probability of having depression between woman and men.

- Compute the probability difference: $p = 0.12 0.07 = 0.05$
- Sampling distribution of relative frequency is approximately normal
- Compute standard error for probability: $s_p = \sqrt{(0.05*(1-0.05))}/1000$ = 0.007
- Compute border z-scores for 99% confidence interval: $= NORM.S.INV(1-0.01/2) = NORM.S.INV(0.995) = 2.58$
- 99% CI for p: $(0.05 2.58 * 0.007; 0.05 + 2.58 * 0.007) = (0.032; 0.068) = (3.2\%; 6.8\%)$
- Compute confidence interval for the same data, but now compute 96% CI. Will the interval be narrower, or wider?
- It will be narrower: =NORM.S.INV(1-0.04/2) =NORM.S.INV(0.98) = 2.05
- 96% CI for p: $(0.05 2.05 * 0.007; 0.05 + 2.05 * 0.007) = (0.036; 0.064) = (3.6\%; 6.4\%)$

General procedure for computing CIs

1. Determine sampling distribution of given statistics:

- for mean with known σ : normal distribution (z-scores)
- for mean with unknown σ : Student's t-distribution (t-scores) with df=N-1
- for relative frequency: normal distribution (z-scores)
- for Pearson's correlation: normal after Fisher transformation (then z-scores)

2. If needed, transform the statistics:

• from the above only for correlation, Excel: =FISHER(r)

3. Determine standard error for given sampling distribution:

- for mean with known σ : $s_m = \sigma / \sqrt{N}$
- for mean with unknown σ : s_m = *s* / \sqrt{VN}
- for relative frequency: $s_p = \sqrt{(p(1-p)/N)}$
- for Fisher Z: $s_7 = 1 / \sqrt{(N-3)}$

General procedure for computing CIs

4. Determine point estimate for given sampling distribution:

 \cdot m, p, r

5. Choose confidence level – typically 95% or 99% (theoretically any):

• for 95%: α = 0.05 = 5% error probability $1 - \alpha = 1 - 0.05 = 0.95 = 95\%$, $1 - \alpha/2 = 1 - 0.025 = 0.975$

6. Find boundary scores between which lies $(1 - \alpha)$ **% of given distribution:**

- for normal distribution (in Excel): =NORM.S.INV($1 \alpha/2$)
- for t-distribution (in Excel): =T.INV(1 $\alpha/2$; df)

5. Compute confidence interval:

- CI = point estimate ± boundary score*standard error
- normal distribution: CI = point estimate \pm _{1- $\alpha/2$} r* standard error
- t-distribution: CI = point estimate \pm _{1- $\alpha/2$}t(df)*standard error

Exercise

- A researcher studies reading efficiency in college students. He measured number of words read in one minute in 6 students: 200, 240, 300, 410, 450, 600.
- Compute mean and standard deviation.
- What sampling distribution will we use for confidence interval construcion? Why?
- Construct 95% confidence interval for mean.
- Will 99% confidence interval for mean be narrower or wider than 95% interval? Construct 99% confidence interval.