Experimental Humanities II (HUMB002) 2016 STATISTICAL ANALYSIS

HYPOTHESES TESTING

Lecture 5

Pavla Linhartová

The lectures and exercises are based on the lectures from the subject PSY117 – Statistical analysis by Stanislav Ježek and Jan Širůček from Department of Psychology, Faculty of Social Studies MU Brno

Statistical hypotheses

- Examples:
 - *H*: *μ* = 100
 - *H*: *σ* = 10
 - *H*: $\mu_1 \mu_2 = 0$

- Population mean is 100.
- Population SD is 10.
- Mean in population 1 and mean in population 2 are the same. OR There is no (zero) difference between means in the two population (e.g. between patients and healthy people).

• *Η*: *ρ*_{xy}= 0

- Variable X and variable Y don't correlate.
- Let's take the first hypothesis and confront it with data:
 - In a sample of 1000 randomly sampled adults we measure IQ mean 105 with SD = 14.

Principles of statistical hypothesis testing

- Hypothesis testing is based on probability
 - If we know probability distribution of a statistics, we can infer, how probable is some sampling statistics with regard to hypothesis: **P (D | H)**
 - Example:
 - Data: m = 105
 - Hypothesis: μ =100
 - *P*(*D* |*H*) is *P*(*m*=105 | μ=100)
 - If this probability is relatively high, the hypothesis is supported by this.
 - If this probability is relatively low, the hypothesis unlikely.
 - ... What probability is needed to support / reject the hypothesis?

Principles of statistical hypothesis testing

- Fisher, Popper: Falsification principle the hypothesis can't be confirmed, only rejected
- But we want to confirm our hypotheses, not reject them...
- Principle of hypothesis testing is that we formulate opposite hypothesis (null hypothesis) to our research hypothesis
- If we can reject the null hypothesis, we take it as support for our research hypothesis
- We reject the null hypothesis if: *P*(*D* | *H*₀) < **0,05** (**0,01**; 0,001; 0,0001)

Results dichotomization

	H_0 kept $P(D H_0) \ge \alpha$	H_0 rejected $P(D H_0) \le \alpha$
H₀ true (no effect)	OK	Type I error (false positive) α (its probability)
H₀ false (effect)	Type II error (false negative) β	OK Test power (1-β)

The lower is α , the higher is β . The exact form of the relationship depends on the test that was used. α and β can be both low only in samples with high N.

Statistical hypotheses

- *H*₀: null hypothesis (cz: nulová, testová hypotéza)
 - logical negation of alternative hypothesis
- *H*₁: alternative, scientific, research hypothesis (cz: alternativní, vědecká, výzkumná hypotéza)
 - the one we're interested in
- $P(D | H_0)$ when we reject H_0 :
 - is denoted as **p** or **Sig**.
 - probability of incorrect rejection of H_0 = type I error (cz: chyba prvního typu)
 - if we state it in advance: level of statistical significance (cz: úroveň/hladina statistické významnosti), α, often in % 5%, 1% etc.
 - error rate we are willing to tolerate in our results
- One-tailed vs. two-tailed hypotheses (cz: jednostranné vs. oboustranné hypotézy)
 - one-tailed directional: $\mu \ge 23$, $\mu \le 0$, we usually avoid them
 - two-tailed: μ = 23

Hypothesis testing process

- **1.** Formulate null hypothesis, which you're going to try to reject (e.g. H_0 : $\mu = 0$, nebo H_0 : $\mu = 6$)
- 2. Choose level of significance, that is probability that type I error occurs (e.g. $\alpha = 0,05$)
- 3. We are looking for probability of obtaining our sampling statistics or more extreme value given that H_0 is actually true: $P(D|H_0)$, p, Sig.
 - we go through probability distribution of the statistics (we have to know it)
 - e.g. m = 0.5, H1: $\mu \neq 0$, Ho: $\mu = 0$; then we are looking for: $P(|m| \ge 0,5 | \mu=0)$
 - usually we need to tranform raw statistics to test statistics (e.g. t or z) for which we know the probability distribution
- 5. We reject or keep the null hypothesis:
 - if $P(D|H_0) < \alpha$, we reject H_0
 - if $P(D|H_0) \ge \alpha$, we don't reject H_0

Example: One-sample t-test

- We are testing a therapy for problematic behaviour.
 - Difference before and after therapy: m=2.7; s=3.5; N=10
 - H1: The therapy is effective ($\mu \neq 0$) two-tailed hypothesis
- 1. H0: The therapy is not effective: $\mu = 0$
- 2. We take the usuall level of significance (in social sciences): $\alpha = 0,05$
- 3. $P(|m| \ge 2,7 | \mu=0) = ?$
 - we have to transform raw statistics to test statistic, in t-test the tests statistics is t, because we work with Student's t-distribution with df=N-1 (if we knew σ, we would work with normal disribution and use z-test instead of t-test)
 - we compute standard error for mean: $s_m = s / VN = 3.5 / V10 = 1.1$
 - $t = (m \mu) / s_m = 2.7/1.1 = 2.45$
 - t_{krit} = T.INV.2T(p;df) = T.INV.2T(0.05;9) = 2.26
 - P ($|t| \ge 2,45 | \tau = 0$) = T.DIST.2T(x;df) = T.DIST.2T(2.45;9) = 0,04
- 4. P ($|m| \ge 2,7 | \mu=0$) < 0,05, thus we reject the null hypothesis
- 5. With result m=2,7 it is very unlikely that the true difference is 0, and this is our support for statement that there actually is true difference

One-tailed tests

- We usually use them only if the opposite result than the one we're expecting would be nonsense, non-interpretable
- We usually consider one-tailed hypotheses, but we test their two-tailed forms.

Test of Pearson's correlation significance

- H0: ρ = 0, r = 0.4, N = 100
- We have to transform Pearson's r to Fisher Z with normal sampling distribution and $s_z=1/\sqrt{(n-3)}$
 - =FISHER(0.4) = 0.42
- We compute the standard error: $s_z = 1/\sqrt{(100-3)} = 0.1$
- We compute our test statistics: $Z/s_z = 0.42/0.1 = 4.2$
- $P(D|H_0)=2*(1 NORM.S.DIST(Z/s_Z;1) = 0.00003$
- $P(D|H_0) < 0.05$ (and 0.01, 0.001), thus we reject the null hypothesis
- The correlation is considered significant

Problems in statistical hypothesis testing

- Results dichotomization:
 - the same effect size give different results for H0
 - with very high sample sizes even even very small difference can result as significant (even difference with no practical significance)
 - on the other hand, we need sufficient sample size to reject the null hypothesis
- Interpretation problem:
 - $p = P(D | H_0)$ a nikoli P(H | D)
- Always indicate a measure of effect size (Cohen d, r, R^2 , η^2 , ω^2)
- Always use interval estimates
- Hypothesis testing should be rather supplementary information