Experimental Humanities II (HUMB002) 2016 STATISTICAL ANALYSIS

NONPARAMETRIC TESTS

Lecture 7

Pavla Linhartová

The lectures and exercises are based on the lectures from the subject PSY117 – Statistical analysis by Stanislav Ježek and Jan Širůček from Department of Psychology, Faculty of Social Studies MU Brno

$\chi 2$ goodness of fit test

- Do empirically observed frequencies differ from theoretically expected frequencies?
 - e.g. Political parties preference in elections
 - = one-sample test
- We are testing the probability of the difference between observed (f_o) and expected (f_e) frequencies
- The difference is expressed by value of χ^2 with χ^2 distribution with df=k-1, where k is the number of categories and mean = df
- Excel: CHISQ.DIST(χ^2 ; df; 1); CHISQ.INV(p; df)
- The expected frequencies are theoretically inferred
- f_o and f_e always as relative frequenceis, never as percent

In which city would you like to live?

Category	fo	р	fe	(fo-fe)^2/fe
Paris	28	0,2	28	0
New York	28	0,2	28	0
London	28	0,2	28	0
L.A.	28	0,2	28	0
Tokio	28	0,2	28	0
Total	140	1	140	0
Chi ²				0

 $\chi^2 = \sum_{i=1}^k \frac{(fo_i - fe_i)^2}{fe_i}$

In which city would you like to live?

Category	fo	р	fe	(fo-fe)^2/fe
Paris	38	0,2	28	3,57
New York	37	0,2	28	2,89
London	22	0,2	28	1,29
L.A.	25	0,2	28	0,32
Tokio	18	0,2	28	3,57
Total	140	1	140	11,64
Chi ²				11,64

 $\chi^2 = \sum_{i=1}^k \frac{(fo_i - fe_i)^2}{fe_i}$

P(c2 > 11,64 | c2 = 4)=1-CHISQ.DIST(11,64;4;1)=0,02

Relationship between two categorical variables

- What is the relationship between political parties preferrence and income level?
- Based on contingency table: rows x columns = i x j
- Marginal frequencies: e.g. N₁₂ means number of people in the interception of the first row and the second column

Categories	B ₁	B ₂	B _s	Row marginal frequencies
A ₁	n ₁₁	n ₁₂	 n _{1s}	n _{1.}
A ₂	n ₂₁	n ₂₂	 n _{2s}	n _{2.}
A _r	n _{i1}	n _{i2}	 n _{ij}	n _{i.}
Column marginal frequencies	n _{.1}	n _{.2}	 n. _j	n

Relationship between two categorical variables

- Chi-square independence test
- Observed frequencies = n_{ii}, expected frequencies = m_{ii}
- df=(i-1)*(j-1)

$$f_e = m_{ij} = \frac{n_{i.}n_{.j}}{n} \quad \chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(n_{ij} - m_{ij})^2}{m_{ij}} = \sum_{i=1}^r \sum_{j=1}^s \frac{(fo_{ij} - fe_{ij})^2}{fe_{ij}}$$

Categories	B ₁	B ₂	B _s	Row marginal frequencies
A ₁	n ₁₁	n ₁₂	 n _{1s}	n _{1.}
A ₂	n ₂₁	n ₂₂	 n _{2s}	n _{2.}
A _r	n _{i1}	n _{i2}	 n _{ij}	n _{i.}
Column marginal frequencies	n _{.1}	n _{.2}	 n. _j	n

Relationship between residence size and number of rubber boots

Observed frequencies Row %	0	1	>2	Row marginal frequencies
Big city	10 67%	1 7%	4 27%	15
Small town	15 43%	19 54%	1 3%	35
Village	15 30%	20 40%	15 30%	50
Column marginal frequencies	40	40	20	100

Expected frequencies / cell χ^2	0	1	>2	Row marginal frequencies
Big city	6/2,7	6 / 4,2	3/0,3	15
Small town	14 / 0,1	14 / 1,8	7/5,1	35
Village	20 / 1,3	20/0	10 / 2,5	50
Column marginal frequencies	40	40	20	100

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(n_{ij} - m_{ij})^{2}}{m_{ij}} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(fo_{ij} - fe_{ij})^{2}}{fe_{ij}}$$

 $\chi^2 = 17,9$ df=(3-1)*(3-1)=4 P($\chi^2 > 17,9 \mid \chi^2 = 4$)=0,001

Association strength and assumptions

- Strength of association in contingency table
 - Indexes: Cramer V, phi
 - Standardized residuals: standardized difference between observed and expected frequencies for each contingency table cell
 - $R = (n_{ij} m_{ij}) / v m_{ij}$
 - Standardized residuals have normal distribution, we consider as significant standard residuals higher than 1.96
- Assumptions
 - Expected frequency in each contingency table cell should be at least 5

Association strength in contingency table

Observed frequencies Row % Expected frequencies Standardized residuals	0	1	>2	Row marginal frequencies
Big city	10 67% 6 1,6	1 7% 6 2,0	4 27% 3 0,6	15
Small town	15 43% 14 0,3	19 54% 14 1,3	1 3% 7 2,3	35
Village	15 30% 20 1,1	20 40% 20 0	15 30% 10 1,6	50
Column marginal frequencies	40	40	20	100

Nonparametric ordinal tests

- Alternatives to t-tests
- Robust towards distribution shape
- Differences in medians (mean ranks):
 - One-sample: Wilcoxon test, sign test
 - Independent samples: Mann-Whitney U test (Median test)