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ABSTRACT 

The Arabian Gulf is a relatively recent sea that formed as a result of post-glacial sea 

level rise in the Late Pleistocene and Early Holocene. Prior to this, the former Gulf 

basin was an open landscape, with a substantial river flowing through it. There is 

considerable potential within this former landscape for the preservation of drowned 

archaeological sites and palaeoenvironmental remains from the Early Holocene, and 

for the preservation of remains of shipwrecks from the Mid-Holocene onwards. 

Despite the potential, there has been very little research into this submerged 

landscape, largely due to the difficulty and expense involved. In order to begin to 

address the gap in knowledge, this research developed and tested new 

methodologies for the exploration of the submerged landscape within a defined Study 

Area off the northwest coast of Qatar. The methodology utilised marine remote 

sensing data, including sidescan sonar and LiDAR bathymetry, and drew on 

techniques used in terrestrial historic landscape characterisation and acoustic 

seabed classification, in order to zone the seabed in the Study Area and identify 

broad zones of archaeological and palaeoenvironmental potential and survival. The 

seabed characterisation has provided a framework within which to begin more 

detailed investigations of the submerged landscape, by defining areas of potential to 

target, and specifying appropriate techniques to use within those areas, in order to 

maximise the chance of successful exploration of the submerged landscape. 

Keywords 

Seabed Characterisation; Marine Geophysics; Acoustic Classification; Qatar; 

Submerged Landscapes; Arabian Gulf 



ACKNOWLEDGEMENTS  

I would like to thank my supervisors, Professor Vince Gaffney, and especially Dr 

Richard Cuttler, who provided unstinting support in so many ways, and without whom 

this research would not have been possible. I would also like to thank H.E Shaykha 

al-Mayassa bint Hamad bin Khalifa Āl-Thāni (Chairperson of the Board of Trustees, 

Qatar Museums Authority), H.E. Shaykh Hasan bin Mohammed Āl-Thāni (Vice-

Chairman of the Board of Trustees, Qatar Museums Authority) and Faisal Al-Naimi 

(Director of Antiquities, Qatar Museums Authority), for their support for this research. 

Many other people provided support and assistance in many different ways, and I 

would like to extend grateful thanks to the following people: 

The University of Birmingham/QNHER marine survey team, and in particular Kate 

Bain and Robyn Pelling, for undertaking the ground-truthing programme (grab 

sampling and diving) and high-resolution survey, and generally providing vast 

amounts of technical, logistical and other support; Ismail Mahmoud Al-Shaikh, Abdul 

Rahman Al-Obaidly and Abdel Rahman Sorour from the Environmental Studies 

Centre at Qatar University for kindly carrying out the granulometry analysis on the 

grab samples and providing a fantastic report; Eoghan Kieran (Geomara) for advice 

and assistance with the grab sampling and granulometry programme, and for 

invaluable advice on seabed classification software; Tony Tipple and Chris Elliott 

from Quester Tangent Software Ltd for providing free access to their software for a 

trial period, and for providing expert advice on the use of their software; Dr Richard 

Bates (University of St Andrews) and Brandon Mason (Hampshire and Wight Trust 

for Maritime Archaeology) for providing advice and assistance with initial processing 

of the sidescan sonar data; Dr Emma Tetlow (University of Birmingham/QNHER 



Project) for providing expert palaeoenvironmental advice and moral support; Tobias 

Tonner (Coaptics Ltd) and Liam Delaney (University of Birmingham/QNHER Project) 

for assistance with coordinate system conversions; Dr Simon Fitch (University of 

Birmingham) for initial assistance with the sidescan sonar data processing; Access to 

the sidescan sonar data and geotechnical reports was kindly provided by the Qatar 

— Bahrain Causeway Management and access to the Bathymetric LiDAR data for 

research purposes was kindly provided by the Hydrographic Office. I would also like 

to thank Chris Dodds and Isaac Dingwall, who have supported me unwaveringly 

throughout my research. 

 



Contents 

 

CHAPTER 1: CONTEXT ......................................................................................................................... 1 

1.1 Introduction .................................................................................................................................... 1 

1.2 Overview of The Study Area ......................................................................................................... 6 

1.2.1 Research Themes .................................................................................................................. 6 

1.2.2 Geology and Geomorphology .............................................................................................. 10 

1.2.3 Sedimentation and Marine Taphonomic Processes............................................................. 14 

1.2.4 Climate ................................................................................................................................. 18 

1.2.5 Tides and Salinity ................................................................................................................. 18 

1.2.6 Sea Levels ............................................................................................................................ 20 

1.2.7 Vegetation History and Palaeo-climate ................................................................................ 24 

CHAPTER 2: REVIEW OF PREVIOUS RESEARCH AND ARCHAEOLOGICAL POTENTIAL ........ 27 

2.1 An overview of Archaeology in the Arabian Peninsula ............................................................... 27 

2.1.1 The Palaeolithic .................................................................................................................... 27 

2.1.2 The Neolithic......................................................................................................................... 30 

2.1.3 Maritime History.................................................................................................................... 35 

2.2 Submerged Landscapes Research ............................................................................................. 40 

2.2.1 Research Outside the Arabian Gulf ..................................................................................... 40 

2.2.2 Research Within the Arabian Gulf ........................................................................................ 43 

CHAPTER 3: OVERVIEW OF METHODOLOGY ................................................................................. 46 

3.1 Processes of Seabed Characterisation ....................................................................................... 46 

3.2 Primary Characterisation ............................................................................................................. 49 

3.2.1 Sediment Texture Classification ........................................................................................... 49 

3.2.2 Topographic Mapping ........................................................................................................... 50 

3.2.3 Ground-Truthing ................................................................................................................... 52 

3.3. Secondary Characterisation ....................................................................................................... 53 

3.3.1 Identification of Geophysical Anomalies .............................................................................. 53 

3.3.2 Clarification of Geophysical Signatures ............................................................................... 55 

3.4 Defining Character Areas and Assigning Potential ..................................................................... 55 

CHAPTER 4: PRIMARY CHARACTERISATION ................................................................................. 57 

4.1 Sediment Texture Classification .................................................................................................. 57 

4.1.1 Methodology ......................................................................................................................... 57 

4.1.1.1 Overview of Sidescan Sonar .......................................................................................... 57 

4.1.1.2 Acoustic Techniques for Sediment Texture Classification ............................................. 60 



4.1.1.3 Trialling the Classification Methodology ......................................................................... 62 

4.1.1.4 Classification using Swathview ...................................................................................... 65 

4.1.2 Results .................................................................................................................................. 71 

4.1.2.1 Area 4 ............................................................................................................................. 74 

4.1.2.2 Area 2/3 .......................................................................................................................... 78 

4.1.2.3 Area 1 ............................................................................................................................. 82 

4.1.2.4 Generating Initial Landscape Units ................................................................................ 87 

4.1.3 Discussion ............................................................................................................................ 90 

4.2 Topographic Mapping .................................................................................................................. 97 

4.2.1 Methodology ......................................................................................................................... 97 

4.2.1.1 Overview of LiDAR Bathymetry ...................................................................................... 97 

4.2.1.2 Generating the Surface Model ....................................................................................... 99 

4.2.1.3 Mapping Features......................................................................................................... 103 

4.2.2 Results ................................................................................................................................ 104 

4.2.2.1 Topography Within the Study Area .............................................................................. 105 

4.2.2.2 Topography Outside the Study Area ............................................................................ 120 

4.2.2.3 Topography and Sediment Classification ..................................................................... 123 

4.2.3 Discussion .......................................................................................................................... 127 

4.3 Ground Truthing ........................................................................................................................ 134 

4.3.1 Methodology ....................................................................................................................... 134 

4.3.1.1 Direct Sediment Sampling ............................................................................................ 134 

4.3.1.2 Video and Photography ................................................................................................ 140 

4.3.2 Results ................................................................................................................................ 141 

4.3.2.1 Direct Sediment Sampling ............................................................................................ 141 

4.3.2.2 Video Transects ............................................................................................................ 148 

4.3.3 Discussion .......................................................................................................................... 151 

CHAPTER 5: SECONDARY CHARACTERISATION ........................................................................ 156 

5.1. Identification of Geophysical Anomalies .................................................................................. 156 

5.1.1 Methodology ....................................................................................................................... 156 

5.1.2 Results ................................................................................................................................ 160 

5.1.2.1 Geophysical Anomalies ................................................................................................ 160 

5.1.2.2 Geophysical Anomalies and Topography .................................................................... 175 



5.1.3 Discussion .......................................................................................................................... 180 

5.2 Clarification of Geophysical Signatures .................................................................................... 184 

5.2.1 Methodology ....................................................................................................................... 184 

5.2.1.1 Diver Inspections .......................................................................................................... 184 

5.2.1.2 High-Resolution Geophysical Survey ........................................................................... 185 

5.2.2 Results ................................................................................................................................ 185 

5.2.2.1 Diver Inspections .......................................................................................................... 185 

5.2.2.2 High-Resolution Geophysics ........................................................................................ 189 

5.2.3 Discussion .......................................................................................................................... 191 

CHAPTER 6: DEFINING CHARACTER AREAS AND ASSIGNING POTENTIAL ........................... 193 

6.1 Refining the Initial Landscape Units into Character Areas ........................................................ 193 

6.2 Assigning Potential .................................................................................................................... 202 

CHAPTER 7: DISCUSSION ............................................................................................................... 210 

7.1 An Evaluation of the effectiveness of the methodologies, and suggestions for further work .... 210 

7.2 An evaluation of the archaeological and palaeoenvironmental potential of the submerged 

landscape within the Study Area ..................................................................................................... 225 

CHAPTER 8: CONCLUSION: IMPLICATIONS FOR RESEARCH AND MANAGEMENT OF THE 

MARINE HERITAGE RESOURCE ..................................................................................................... 239 

APPENDIX 1: PROCESS AND PARAMETERS USED FOR THE ACOUSTIC CLASSIFICATION OF 

SIDESCAN SONAR DATA ................................................................................................................. 243 

APPENDIX 2: PROCESS AND PARAMETERS USED FOR PROCESSING THE LIDAR 

BATHYMETRY DATA ........................................................................................................................ 247 

APPENDIX 3: GRAB SAMPLE GRAIN SIZE ANALYSIS REPORT ................................................. 249 

APPENDIX 4: PARAMETERS USED FOR PROCESSING AND MOSAICING SIDESCAN SONAR 

DATA ................................................................................................................................................... 309 

APPENDIX 5: LIST OF ALL ANOMALIES LOGGED FROM THE SIDESCAN SONAR DATA ....... 310 

APPENDIX 6: DERIVED DATA INCLUDED ON ACCOMPANYING CD .......................................... 352 



Figures 

Figure 1 Location of the Study Area (illustration by Nigel Dodds). ......................................................... 4 

Figure 2 Bathymetry (height data) between Qatar and Bahrain (from Al-Naimi et al., 2012). .............. 13 

Figure 3 Location of the Bahrain Anticline (from Cuttler, 2014). ........................................................... 14 

Figure 4 Shoreline Reconstructions at 14,000 BP after Lambeck (1996) (from Cuttler et al., 2011b). 22 

Figure 5 Shoreline reconstructions at 8,200 BP after Lambeck (1996) (from Cuttler and Al-Naimi, 

2013). .................................................................................................................................................... 23 

Figure 6 Distribution of ‘Ubaid and ‘Ubaid -Related Sites around the Arabian Gulf (from Cuttler, 2013).

 ............................................................................................................................................................... 33 

Figure 7 Sidescan sonar operation (from Al-Naimi et al., 2012). .......................................................... 58 

Figure 8 Coverage of sidescan sonar survey lines in the Study Area. ................................................. 59 

Figure 11 Sub-Images (rectangles) generated by Swathview for the purpose of generating image 

statistics. ................................................................................................................................................ 66 

Figure 13 Results of the Swathview preliminary seabed classification using catalogues based on the 

entire dataset, and using catalogues based on trial areas. ................................................................... 68 

Figure 14 Track plot from Swathview showing classified data points (left) and interpolation of data 

points using Clams (right). ..................................................................................................................... 70 

Figure 15 Classified data (left) and mosaic of sidescan sonar data (right) in Area 4. .......................... 74 

Figure 16 Edge of brighter reflectivity demarcating a change in texture in Area 4. .............................. 75 

Figure 17 Trawler scarring in Area 4. .................................................................................................... 76 

Figure 18 Pattern of mixed classes south of the reef in Area 4 corresponding with visual patterns in the 

mosaic data. .......................................................................................................................................... 77 

Figure 19 Sand ridges visible in the mosaic data in Area 4 and differentiated as Class 3 in the 

classified data. ....................................................................................................................................... 77 

Figure 20 Classified data and mosaic of sidescan sonar data in Area 2/3. .......................................... 78 

Figure 21 Mosaic of sidescan sonar data around the reef in Area 3. ................................................... 79 

Figure 22 Sand ridges visible in the mosaic data in Area 2 and differentiated as Class 3 in the 

classified data. ....................................................................................................................................... 80 

Figure 23 Sand ridges visible in the mosaic data in Area 3 and differentiated as Class 6 in the 

classified data. ....................................................................................................................................... 81 

Figure 24 Classified data and mosaic of sidescan sonar data in Area 1. ............................................. 82 

Figure 25 Brighter reflective area immediately north of the reef in Area1............................................. 83 



Figure 26 Large band of lower reflectivity in Area 1, differentiated in the classified data mainly as 

Classes 9 and 4. .................................................................................................................................... 84 

Figure 27 Sand ripples in the north of Area 1, visible in the mosaic data. ............................................ 85 

Figure 28 Sand banks in the southeast of Area 1, visible in the mosaic data and differentiated as 

Classes 3 (red) and 8 (lime) in the classified data. ............................................................................... 86 

Figure 29 Initial landscape units based on classification of acoustic backscatter. ............................... 89 

Figure 30 Extent of available LiDAR bathymetry. ................................................................................. 98 

Figure 31 3D visualisation of the seabed in the Study Area (created in Erdas Imagine, based on the 

surface model generated from the bathymetry). ................................................................................. 102 

Figure 32 Surface model of the Study Area created from  LiDAR bathymetry. .................................. 106 

Figure 33 Features mapped from the surface model. ......................................................................... 107 

Figure 34 Putative former shorelines in the Study Area. .................................................................... 109 

Figure 35 Hillshaded surface model with putative former shorelines. ................................................. 109 

Figure 36 Hillshaded surface model with putative east-west former shoreline. .................................. 110 

Figure 37 Putative east-west former shoreline with sidescan sonar data overlain. ............................ 110 

Figure 38 Putative former shorelines with possible associated mapped features. ............................. 111 

Figure 39 Palaeochannel possibly relating to the former course of Wadi Debayan. .......................... 112 

Figure 40 Cluster of palaeochannels. ................................................................................................. 113 

Figure 41 Fishtraps visible in the surface model (top), mapped during the QNHER cultural mapping 

project (middle) and an example photographed by the QNHER project (bottom). ............................. 114 

Figure 42 Channels and depressions in the north of the Study Area. ................................................ 115 

Figure 43 Channels and depressions in the south of the Study Area. ................................................ 115 

Figure 44 Megaripples in the north of Area 1. ..................................................................................... 116 

Figure 45 Possible sand banks between the reef and the bay of Al-Zubārah. ................................... 117 

Figure 46 Possible solution hollow visible in the surface model but not in the sidescan sonar data. . 118 

Figure 47 Undulations in the seabed to the north of the putative east-west shoreline in Area 1. ....... 119 

Figure 48 The Reef in the west of the Study Area. ............................................................................. 120 

Figure 49 Potential former shorelines to the south of the Study Area. ............................................... 121 

Figure 50 Seabed surface in the Gulf of Salwa. .................................................................................. 122 

Figure 51 Surface model with the classified data in Area 4. ............................................................... 124 

Figure 52 Surface model with the classified data in Area 2, West of the Ras Ushayriq Peninsula. ... 125 



Figure 53 Surface model with the classified data in Area 3, north of the reef. ................................... 126 

Figure 54 Surface model with the classified data in the deep channel in Area 1. .............................. 127 

Figure 55 Postulated extent of dry land at 7,000 BP (based on Stanford et al,. 2011)....................... 129 

Figure 56 Postulated extent of dry land at 8,000 BP (based on Jameson and Strohmenger, 2012). 130 

Figure 57 Postulated extent of dry land at 7,000 BP (based on Jameson and Strohmenger, 2012). 131 

Figure 58 Grab samples overlain on Initial Landscape Units. ............................................................. 135 

Figure 59 Exploratory boreholes drilled in 2008, overlain on Initial Landscape Units. ....................... 137 

Figure 60 Vibrocores taken in north of the Study Area in 2009, overlain on Initial Landscape Units. 138 

Figure 61 Vibrocores taken in south of the Study Area in 2009, overlain on Initial Landscape Units. 139 

Figure 62 Boreholes drilled over the reef in 2009, overlain on Initial Landscape Units. ..................... 139 

Figure 63 Grab sample locations overlain on the surface model. ....................................................... 141 

Figure 64 Grab sample locations overlain on the classified data. ....................................................... 142 

Figure 65 Vibrocores and boreholes overlain on the surface model (grab samples are visible in the 

background). ........................................................................................................................................ 144 

Figure 66 Vibrocores and boreholes overlain on the classified data (grab samples are visible in the 

background). ........................................................................................................................................ 145 

Figure 67 Video transects overlain on surface model. ........................................................................ 148 

Figure 68 Video transects overlain on the classified data. .................................................................. 148 

Figure 69 Graph displaying sediment types for each class as derived from ground truthing data 

(expressed as a percentage of the total number of samples/observations recorded for each class). 153 

Figure 70 Distribution of all recorded anomalies within the Study Area. ............................................. 161 

Figure 71 Anomalies interpreted as potential debris, and proven to be debris from ground-truthing. 162 

Figure 72 Examples of high-confidence anomalies in Area 1: Modern debris relating to artificial reefs 

(cars, tyres etc).Clockwise starting from the top left corner: QBC_Q10126, QBC_Q10270, 

QBC_Q10334, QBC_Q10902. (Each image depicts an area measuring 100m x 100m.) .................. 163 

Figure 73 The same anomaly (QBC_Q10815) visible in different survey lines: Modern debris relating 

to artificial reefs (each image depicts an area measuring 100m x 100m)........................................... 164 

Figure 745 Distribution of anomalies that are possibly depressions. .................................................. 166 

Figure 75 A selection of anomalies that were logged as possible depressions. From left to right: 

QBC_Q20071, QBC_Q40064, QBC_Q40119 (each  image depicts an area measuring 100m x 100m).

 ............................................................................................................................................................. 166 

Figure 76 Anomalies logged as possible debris. From left to right: QBC_Q40089, QBC_Q10001 (each 

image depicts an area measuring 100m x 100m). .............................................................................. 171 



Figure 77 Anomalies logged as areas of possible sediment accumulation. From left to right: 

QBC_Q40055, QBC_Q20060 (each image depicts an area measuring 100m x 100m). ................... 171 

Figure 78 Anomalies logged as natural features of potential topographic significance. From left to right: 

QBC_Q40026, QBC_Q20046, QBC_Q10195 (each image depicts an area measuring 100m x 100m).

 ............................................................................................................................................................. 172 

Figure 79 Anomalies logged as potentially partially-buried objects or features. From left to right: 

QBC_Q10126, QBC_Q10202 (each image depicts an area measuring 100m x 100m). ................... 172 

Figure 80 A potential seabed crater: QBC_Q20094 (Image depicts an area measuring 100m x 100m).

 ............................................................................................................................................................. 173 

Figure 81 Long linear anomaly: QBC_Q10729/Bham0028 (Image depicts an area measuring 100m x 

100m). ................................................................................................................................................. 173 

Figure 82 Possible debris cluster in Area 1 (the green grid lines represent 500m x 500m squares). 174 

Figure 83 Long linear anomaly (QBC_Q10729/BHAM0028) visible in the sidescan sonar data, and the 

surface model of the seabed from the same location (Both images are at same scale and orientation).

 ............................................................................................................................................................. 176 

Figure 84 Bright reflective anomalies in Area 2, shown in the surface model to be natural outcrops. 177 

Figure 85 Seabed crater (QBC_Q20094) visible in the sidescan sonar data (image depicts an area 

measuring 100m x 100m), and the surface model of the seabed from the same location, showing 

anomalies QBC_Q20094 and QBC_Q20096. ..................................................................................... 177 

Figure 86 Bright reflective anomalies in Area 3, shown in the surface model to be natural coral 

outcrops. .............................................................................................................................................. 178 

Figure 87 Bright reflective anomalies in the southwest of Area 4, shown in the surface model to be 

natural outcrops. .................................................................................................................................. 179 

Figure 88 Anomaly QBC_Q10051 (modern debris): sidescan sonar, LiDAR points and surface model.

 ............................................................................................................................................................. 181 

Figure 89 Anomaly QBC_Q10128 (car reef) visible in the sidescan sonar but not visible in the surface 

model. .................................................................................................................................................. 182 

Figure 90 Anomaly QBC_Q10376 (topographic location of potential interest for human settlement) in 

the sidescan sonar data (image depicts an area measuring 100m x 100m), and in its landscape 

context in the surface model. .............................................................................................................. 183 

Figure 91 Anomaly QBC_Q10634 in Area 1: Sediment Basin (Photo by QNHER marine team, 2013).

 ............................................................................................................................................................. 187 

Figure 92 Anomaly QBC_Q40118 in Area 4: Linear Ridges (Photo by QNHER marine team, 2013).187 

Figure 93 Anomaly G3/07.05.13/L8/TG1:Car reef in Area 1 (Photo by QNHER marine team, 2013).188 

Figure 94 Long linear anomaly QBC_Q10729/BHAM0028 (Photo by Hampshire and Wight Trust for 

Maritime Archaeology, 2011). ............................................................................................................. 189 



Figure 95 Long linear anomaly (QBC_Q10729/BHAM0028) surveyed in high resolution (each image 

depicts an area measuring 100m x 100m). ......................................................................................... 190 

Figure 96 Anomaly QBC_Q10815 (car reef) surveyed in low resolution (left) and high resolution (right) 

(each image depicts an area measuring 100m x 100m). .................................................................... 191 

Figure 97 Cross-correlation of different input datasets with the Initial Landscape Units. ................... 194 

Figure 98 Final Character Areas (labelled with Character Area numbers). ........................................ 195 

Figure 99 Character Areas (labelled with Character Area numbers) showing overall potential. ........ 206 

Figure 100 Distribution map of major ʿUbaid-related sites in Qatar. ................................................... 227 

Figure 101 Misfer Cave, Qatar. ........................................................................................................... 231 

Figure 102 Evidence for archaeological deposits preserved beneath marine deposits at Wadi Debayan 

(Image by Richard Cuttler/Emma Tetlow). .......................................................................................... 236 



TABLES 

Table 1: List of acoustic classes generated by Swathview, and their preliminary interpretation   72 

Table 2: Initial landscape units - polygon statistics        90 

Table 3: Seabed descriptions summarised from the video survey information   149 

Table 4: List of terms used for initial categorisation of anomalies     159 

Table 5: List of anomalies selected for more detailed examination    168 

Table 6: Summary of results of diver inspections on selected anomalies    186 

Table 7: Summary of results of diver inspections on anomalies near QBC_Q10729  188 

Table 8: Summary description of Final Character Areas      197 

 



1 

 

CHAPTER 1: CONTEXT 

1.1 Introduction 

 

The Arabian Gulf1 and Peninsula, bordered by Africa, the Levant and the Iranian 

plateau, are located in a highly significant location in archaeological terms, straddling 

the African and Eurasian landmasses, and strategically located on an important 

ancient trade route between the civilisations of Mesopotamia and the Indus Valley 

(Parker and Goudie, 2008). The sea that currently occupies the Arabian Gulf Basin is 

relatively recent, having formed as a result of post-glacial sea level rise during the 

Late Pleistocene and Early Holocene, reaching its highest level just before 6,000 BP 

(Lambeck, 1996; Bird et al., 2010). Prior to this, the former Gulf basin would have 

been an open landscape, with a substantial river flowing through it, formed by the 

confluence of the Tigris and Euphrates Rivers to the north, and containing large, 

possibly freshwater, lakes (Lambeck, 1996). This resource-rich basin would have 

been a very attractive habitat for human communities in the region before sea-levels 

rose, possibly more attractive than the landscape that is now the Arabian Peninsula. 

The coastal region of the Arabian Peninsula is known to have been a focus for newly-

established human settlements in the 7th Millennium BP, just as sea levels were 

reaching their peak (Parker and Goudie, 2008). Evidence also exists for a very early 

maritime trade network emerging at that time in the Arabian Gulf (Carter and 

Crawford, 2010). Research into the archaeology of the submerged continental shelf 

elsewhere in the world (Faught and Donoghue, 1997; Fitch et al., 2005; Bailey et al., 

                                                                 
1
 The Arabian Gulf is also commonly referred to as the Persian Gulf, but as this research focuses on 

the Arabian side of the Gulf, it is referred to as the Arabian Gulf throughout the thesis. 
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2007; Gaffney et al., 2007; Westley et al., 2011a) suggests that the former landscape 

of the Arabian Gulf basin has considerable potential for the survival of drowned 

archaeological sites and palaeoenvironmental remains from  periods pre-dating the 

marine transgression, and for the presence of shipwrecks dating from the 7th 

Millennium BP onwards.  

 

Despite this potential, there has been very little research into the submerged 

landscape of the former Gulf basin. This is due in large part to the difficulty and 

expense of such exploration and research, and as a result it has often been excluded 

from archaeological analyses and ignored in the literature. However, the full picture 

of Prehistoric settlement in the region cannot be adequately understood whilst this 

highly significant expanse of former landscape remains unexplored. Random survey 

of such a large area of submerged landscape is unlikely to be either cost-effective, or 

yield useful results. The need for a research framework within which to begin to 

explore the marine environment in a meaningful and effective way is therefore 

required. The continuing development of techniques in marine geophysics, allowing 

cheaper and more rapid examination of large areas of the seabed than would be 

possible using diver survey alone, has opened up new possibilities for large-scale 

exploration of the submerged landscape. Also, the availability of large, remotely-

sensed datasets that have been gathered by commercial companies in advance of oil 

exploration and offshore infrastructure projects makes the costs of undertaking 

archaeological research of the seabed more feasible. 
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This research aims to provide a starting point for effective study of the submerged 

landscape in the Arabian Gulf. It focuses on developing and testing classification and 

characterisation methodologies for identifying zones of high potential for the survival 

of archaeological and palaeoenvironmental remains that can subsequently be 

targeted for more detailed investigations. The approach developed, seabed 

characterisation, utilises commercially-captured marine geophysics data and LiDAR 

bathymetry, and draws on techniques used in seabed habitat classification and 

terrestrial historic landscape characterisation to try and maximise the potential for 

successful exploration of the submerged landscape.  

 

A large area of the seabed off the northwest coast of Qatar was surveyed by a 

commercial company using sidescan sonar (a geophysical technique that measures 

the acoustic reflectivity of the seabed) in 2008, as part of assessments for the 

proposed Qatar-Bahrain causeway (GEMS, 2008). The part of the survey dataset 

that lies within Qatari national waters was made available to the Qatar National 

Historic Environment Record (QNHER) project (Al-Naimi et al., 2012) for the 

purposes of archaeological assessment. The area surveyed covers 365 square 

kilometres of the seabed, and now forms the Study Area for this research (Figure 1).  

Previous research into sea level change indicates that this part of the Gulf between 

Qatar and Bahrain remained free from marine influence until after 8,000 BP 

(Lambeck, 1996; Al-Naimi et al., 2012). 
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Figure 1 Location of the Study Area (illustration by Nigel Dodds). 

The aims and objectives of the research were: 

 To develop and test techniques for classifying the submerged landscape in the 

Study Area into characterisation areas that could be used to target further, 

more intensive study 

 To create the characterisation areas and use them to generate zones of 

archaeological and palaeo-environmental potential 

 To evaluate the effectiveness of the techniques used 

 To evaluate the archaeological and palaeoenvironmental potential of the 

submerged landscape within the Study Area 
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 To assess the implications for research and management of the marine 

heritage resource 

 

This was to be achieved by:  

 Undertaking acoustic sediment texture classification on the complete sidescan 

sonar dataset and using the results to classify the seabed in the Study Area 

into initial landscape units 

 Analysing available bathymetry and Holocene sea-level data and integrating 

the results into the classified data in order to refine the initial landscape units 

into character zones  

 Using ground-truthing data obtained by direct sediment sampling and video 

footage to validate the character zones  

 Analysing the complete sidescan sonar dataset in order to identify and classify 

geophysical anomalies, set them in a landscape context, and use the results 

to further inform the character areas 

 Targeted diver survey and high-resolution geophysical survey of selected 

anomalies in order to clarify signature types 

 Using the final character areas to generate zones of archaeological and 

palaeoenvironmental potential 
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1.2 Overview of The Study Area 

 

The Arabian Gulf is a shallow enclosed sea bounded at the south and west by the 

Arabian Peninsula, and to the north and east by the Zagros Mountains (Lambeck 

1996), with the confluence of the Tigris, Euphrates and Karun rivers forming the 

Shatt al-Arab and flowing into the northern end of the Gulf. The Study Area itself, an 

area measuring 365 square kilometres, lies off the northwest coast of Qatar, between 

the Ras ‘Ushayriq peninsula area, and extends northwest towards the northeast 

coast of Bahrain. The substantial Qit’at ash Shajarah reef, bordering Bahrain national 

waters, forms the western edge of the Study Area. The water depths within the Study 

Area are very shallow, averaging between 1 and 7 m, with the reef lying very close to 

the surface.  

 

1.2.1 Research Themes 

 

Despite the technical and interpretational difficulties of studying the pre-transgression 

landscape of the Arabian Gulf, and its consequent marginalisation within research 

and published literature, it is clear that there are highly significant regional research 

themes that could be informed by studying it.  

 

There is increasing interest in the dispersal of early humans out of Africa, and the 

geographical position of the Arabian Peninsula, lying between Africa and Asia, is 

highly pertinent to this. Recent research into genetics and population movements 

(Petraglia and Rose, 2009) has suggested that a postulated ‘southern dispersal 
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route’ would take populations around the southern coast of the Arabian Peninsula 

and into the Arabian Gulf.  

 

Another major research theme that is relevant to the Study Area is the 'Ubaid 

phenomenon', that is, the relatively sudden appearance of settlement sites yielding 

Mesopotamian ‘Ubaid pottery around the coastlines of the Arabian Gulf during the 

second half of the eighth millennium BP. The question as to where these coastal 

settlers had migrated from is of great significance to the study of Neolithic Arabia. 

The dating and nature of these sites suggests that they may represent human 

populations that were displaced from the former Gulf basin by the relatively rapid 

marine transgression between c.8,000 BP and 7,500 BP (Cuttler, 2013; Rose, 2010). 

The submerged landscape of the Study Area lies in close proximity to several of 

these ‘Ubaid-related sites, which are considered to be the most significant pre-

Islamic sites in Qatar. Linked to the theme of human settlement patterns in the Early 

and Mid-Holocene is the likelihood that the archaeologically-significant Karst 

landscape of Northern Qatar extends into the Study Area as a drowned landscape, 

and also the fact that submarine freshwater springs are known to have existed off 

Bahrain in recent historical times (Cheesman, 1923).  

 

The nature of potential submerged Prehistoric archaeological remains within the 

Study Area, and the conditions and locations in which such remains could reasonably 

be expected to survive marine inundation and sea-level fluctuation, are key issues for 

this research. In order for settlement remains such as stone walls or cairns to survive 

marine incursion and remain recognisable, they would have to have been buried 
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quickly due to the rapid rate of carbonate accretion in the Gulf. The most likely 

locations for quick burial conditions to occur would be within tranquil areas protected 

from the full force of wave action whilst sea-levels were rising. Potential marine 

accretionary locations in the Study Area include sheltered environments on former 

coastlines such as bays, spits, promontories and drainage channels.  

 

The geographical location of the Arabian Gulf made it a nexus for trade from very 

early on in maritime history (Al-Naimi et al., 2012, p.255). The Study Area itself lies in 

close proximity to Bahrain, which is well-documented as a very important maritime 

trade centre in the Prehistoric period (Killick and Moon, 2005). More recently, 

principal trade routes to Bahrain and Southern Iraq lie to the north of Qatar, relatively 

close to the Study Area. There is likely, therefore, to have been a high level of 

shipping passing near, or through the Study Area. These factors, taken together with 

the presence of the reef and the shallow water in the Study Area suggest that there is 

a relatively high probability that shipwrecks could have occurred in the Study Area 

from the Prehistoric period onwards. 

 

Another important theme is the potential for preservation of palaeoenvironmental 

remains in the Study Area. The arid climate and wind-deflated landscape of Qatar is 

not conducive to the preservation of organic remains, and therefore very little 

palaeoenvironmental evidence survives from terrestrial sites in Qatar. Even sites 

dating from 2000 years ago are unlikely to contain useful quantities of organic 

remains (Cuttler, 2014). However, the nature of the Holocene marine transgression 

may have enabled the preservation of palaeoenvironmental caches dating from the 
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Late Upper Palaeolithic to Neolithic periods within sediment traps in the submerged 

landscape (Cuttler, 2010, p.152). This therefore represents our best chance to find 

palaeoenvironmental remains to inform research into these periods in Qatar , so it is 

very important that we establish effective methodologies for locating such sediment 

traps. The potential locations of such sediment traps may well coincide with the 

potential locations of archaeological remains. 

 

Although the Study Area forms only a small part of the extensive sub-aerial 

landscape of the former Gulf Basin, it provides a convenient starting point from which 

to begin to develop methodologies for effective exploration, which may help to 

provide valuable information on a number of important regional research themes. 
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1.2.2 Geology and Geomorphology  

 

The Arabian Gulf is a long, shallow, epicontinental sea, covering an area of 210,000 

square kilometres, and is connected to the Indian Ocean by the Straits of Hormuz. 

The Arabian Plate is slowly subducting below the Eurasian Plate, and the Arabian 

Gulf basin is a direct result of this subduction. The subduction has resulted in a 

gentle southwest to northeast tilt in the plate, and much of the northern Gulf between 

Kuwait and Iran is topographically lower than the southern and western Gulf. (Cuttler 

and Al-Naimi, 2013). Fringing the southern side of the Gulf are coastal islands, coral 

reefs, tidal channels, tidal flats, raised beaches, and coastal salt flats known as 

sabkhas (Teller et al., 2000). The Gulf is almost completely surrounded by arid land, 

and as a result virtually no runoff is received from the Arabian Peninsula, where 

precipitation is very low (100 mm/yr). The only runoff into the Gulf comes from rivers 

draining the Zagros Mountains to the northeast and from the confluence of the Tigris, 

Euphrates and Karun rivers forming the Shatt-al-Arab at the northern end of the Gulf 

(Teller et al., 2000).  

 

The Qatar peninsula projects from the relatively linear Arabian coastline on the 

western side of the Gulf (KSEPL, 1973). It consists of an anticlinal dome, with a 

north-south main axis (Cavalier, 1970), and it has a low-relief landscape with a 

maximum elevation of about 110m above sea level (Sadiq and Nasir, 2002). The 

exposed geological sequence on the Qatar peninsula consists of Tertiary limestones 

and dolomites with interbedded clays, shale, gypsum and marls. This sequence is 

covered in places by a series of Quaternary and recent deposits. (Leblanc, 2008). 
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About 70% of the total land surface of the Qatar peninsula is Eocene Dammam 

formation limestone (Al Saad, 2005). This in turn overlies the Rus formation and the 

Umm er Radhuma formation (Macumber, 2011). The anticlinal structure of Qatar (the 

Qatar Arch) controls the outcrop pattern of the Dammam Formation, as do smaller 

longitudinal folds such as the Dukhan anticline and the Simsima Dome (Al-Saad, 

2005). In the south of Qatar, Miocene marls and limestone outcrop in mesas and 

hills, and significant areas of sand dunes occur in the southeast (Johnstone and 

Wilkinson, 1960, p.445)  

 

The Fuwayrit Formation is found overlying Eocene sediments at certain locations in 

Qatar. This formation consists of shallow marine and marine-derived aeolian 

carbonates, preserved in coastal localities (Williams and Walkden, 2002). A study in 

1999 on the Quaternary carbonates along the coastline of Qatar established that the 

Quaternary Carbonate sequence, which consists almost entirely of detrital 

limestones, is comprised of three lithostratigraphic units which vary in character along 

the coastline, and the sequence is considerably more developed along the eastern 

coast (Abu-Zeid et al., 2001, p.26). The study also established that the great variation 

in the nature and intensity of freshwater cementation displayed by the Quaternary 

carbonate sequence was a reflection of very considerable fluctuations in groundwater 

levels (Abu-Zeid et al., 2001, p.35). The stratigraphy of offshore deposits has not 

been properly formalised, but studies of sea-floor cores from six localities in the 

southern Arabian Gulf indicates that the uppermost Pleistocene sequence of marine 

carbonates and sabkha-derived evaporites represents the offshore equivalent of the 

Fuwayrit Formation (Williams and Walkden, 2002). 
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Karst features are a widespread and striking aspect of the landscape of the Qatar 

peninsula. These consist of more than 9,700 large and small depressions, and 

several exposed sinkholes and caves , caused by the dissolution of the surface and 

sub-surface rock. These depressions, which range from 50m to 3km in diameter, 

overall covering an area of c.33,500 ha, can reach depths of up to 25m (Sadiq and 

Nasir, 2002, p.132; Macumber, 2011, p.1). They form catchments for surface water 

runoff, and contain better soils (known as rawdha) than are present in the rest of the 

peninsula, and are therefore important for agriculture (Macumber, 2011). It is 

reasonable to assume that these Karst features are also present, albeit in a modified 

form, in the area that is now submerged around Qatar.   

 

The seabed within the Study Area is relatively flat, with water depths averaging 

between 1 and 7m between Qatar and Bahrain, dropping to 12m at the northern 

extent of the Study Area. There are two large drying reefs in the area, the Fasht al 

Azm reef and the Qit’at ash Shajarah reef (Marin Mätteknik AB, 2002). The former 

reef extends on a southeast-northwest alignment between the Qatar border and 

Bahrain, whilst the latter is located along the western edge of the Study Area (Figure 

2).  
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Figure 2 Bathymetry (height data) between Qatar and Bahrain (from Al-Naimi et al., 2012). 

 

The geology and geomorphology of the Study Area itself is influenced by the Bahrain 

anticline. This consists of an arch or ridge which runs northwest-southeast from 

Bahrain to Qatar, through the Study Area (Figure 3). This anticline is a significant 

hazard for shipping and as a result no deep water ports were established along the 

southwestern coastline during the Late Islamic period (Cuttler, 2014). 
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Figure 3 Location of the Bahrain Anticline (from Cuttler, 2014). 

Sandbanks that have been tentatively interpreted as drowned sand dunes have been 

mapped from LANDSAT images in the Gulf of Salwa between Qatar and Bahrain (Al-

Hinai et al., 1987, p.254).  

 

1.2.3 Sedimentation and Marine Taphonomic Processes 

 

The evidence from sediments in the Gulf, which date from 18,000 B.P. to the present 

day (Kassler, 1973, cited in Al Ghadban et al., 1998, p.24), indicates that the present 

sedimentary regime was established soon after 9,000 years B.P. when sea levels 
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were still considerably lower than present day levels, and a more humid climate 

developed (Uchupi et al., 1996). On the Arabian Peninsula side of the Gulf, 

carbonate deposition dominated throughout the Holocene (Uchupi et al., 1999). 

Impure carbonate sediments tend to occur near the centre of the Gulf, changing to 

high energy sands and local muddy embayments on the coast (KSEPL, 1973). The 

present-day seafloor sediments in the Arabian side of the basin are largely wind-

borne, as virtually no water-borne sediment reaches the Gulf from the arid Arabian 

Peninsula (Marin Mätteknik AB, 2002). This lack of water-borne sediment is probably 

a major factor in the predominance of almost pure carbonate sediments on the 

Arabian side (Purser, 1973). 

 

There is still insufficient evidence for a detailed picture of sedimentation rates in 

specific areas of the Gulf. According to Uchupi et al. (1996, p.267), overall sediment 

patterns in the Gulf are influenced by bottom water leaving the Gulf through the Strait 

of Hormuz, accretion/deposition and chemical precipitation along the Arabian coast, 

and also by widespread gas seeps. Although sedimentation rates are generally high 

throughout the Gulf (Al Ghadban, 1998, p.24), it is clear that there are considerable 

regional and local differences that are influenced by seabed topography, sediment 

types, wave energy, the orientation of the coast in relation to the prevailing wind, and 

the presence or absence of offshore barriers (Alsharhan and Kendall, 2003, p.193). 

However, in the shallow, Arabian parts of the Gulf, waves and surface currents are 

almost certainly the strongest influence on sediment transport (KSEPL, 1973). 

Furthermore, in a small sea like the Gulf, waves are largely created by the wind, so 
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the prevailing northwest ‘Shamal’ wind is crucial in determining sedimentation 

patterns (Herman, 1957).  

 

The effects of aeolian deposition by the Shamal are strongest in the northern parts of 

the Gulf, and along the leeward (east) coast of the Qatar Peninsula (KSEPL, 1973). 

Extrapolation from profiles of Holocene sediment accumulation indicates that fine-

grained sediments can be up to 10m thick in the low-energy environments of 

sheltered parts of shallow western coastal areas of the Gulf, such as in the area of 

Khor and Dakhira to the east of Qatar (Kassler, 1973, cited in Al Ghadban et al. 

1998, p.25; KSEPL, 1973). Thick, muddy sediment occurs in sheltered coastal 

lagoons and depressions, and geophysical survey in the Gulf has indicated that 

topographic depressions and submerged wadis act as sediment traps for large 

volumes of mud sediment, which has smoothed out the relief of the seabed. 

However, this sediment accumulation has not yet completely masked the underlying 

topography. (Kassler, cited in Purser, 1973, p.31). 

 

Conversely, in the high-energy windward areas along the southwestern coastline of 

the Gulf, where coarse-grained sediments are laid down, lower sedimentation rates 

result in sediment thicknesses of less than 2m (Al Ghadban et al., p.25). There are 

areas off the Saudi Arabian Coast, especially at relatively shallow depths, where 

marine geophysics data indicates that the sediments are so thin that they barely 

cover the underlying rock, probably due to the complex topography in that area 

(Evans, 1966, p.295). In these areas, a thin covering (5 - 20 cm) of sand overlies the 
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rock, and the hard rock surface tends to be exposed between large mega-ripples 

(Purser, 1973, p.5).  

 

Ooid build-ups mainly occur in tidally-influenced areas on windward coasts (Williams 

and Walkden, 2002, p.382). Geological studies carried out around Qatar in the 1960s 

proved that submarine lithification is in progress in some areas, mainly in areas 

where there is slower sediment accumulation. (Shinn, 1969, p.139).  

 

The Study Area lies off the northwest coast of Qatar, which directly faces the full 

force of the northwesterly 'Shamal' wind, a coastal orientation not normally 

associated with rapid sediment accumulation. However, the picture is more complex, 

as this area is not fully exposed to strong marine currents due to the protecting 

barrier of Bahrain and the Saudi Arabian coast. (KSEPL, 1973). An algal coral reef 

has developed 1-4 km offshore from the northwest tip of the peninsula (Taylor and 

Illing, 1969, p.72).  

 

The seabed surface, summarised by GEMS (2008), suggests that the northern extent 

of the Study Area comprises mainly hard coral and rocky substrates interspersed by 

sands and gravels. The central part appears to consist predominantly of relatively 

featureless medium to coarse sands, with areas of broad sand ribbons stretching for 

kilometres in a general north to south direction. East of the reef, the seabed is hard 

and rocky with numerous coral heads and very complex localised relief. The southern 

extent of the survey area appears to be characterized by medium to coarse sands 

and gravels, with evidence of extensive trawler-scars in the west. 
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1.2.4 Climate 

 

Most of the southern Arabian Gulf currently falls within the hyper-arid zone in the 

UNESCO (1979) classification scheme. It falls within the subtropical trade wind belt, 

and is at present dominated by the Shamal wind (Williams and Walkden, 2002). 

Qatar itself has an arid to hyper-arid climate, with annual rainfall from winter 

westerlies averaging 80 mm in the north and less in the south. This small amount of 

rainfall recharges into the limestone aquifer system, and discharges at the coast, and 

therefore there is no permanent fresh surface water on the Qatar peninsula 

(Macumber, 2011). Several substantial wadis, charged seasonally, run from the 

anticline towards the coast (Cuttler and Al-Naimi, 2013). Although rainfall is low, the 

country is named ‘Qatar’, the Arabic word for ‘Land of Dews’, due to the frequent 

occurrence of heavy night dews (Taylor and Illing, 1969, p.71). 

 

1.2.5 Tides and Salinity 

 

At present, the average tidal range in the Arabian Gulf is small, around 1-2 m 

(Lambeck, 1996), and in Qatar itself, the normal tidal range changes from one part of 

the coast to another, for example it is about 1.4m at Doha and only 0.5m in western 

lagoons. However, in these areas, the movement of water due to the wind is often far 

more significant than tidal movement (Taylor and Illing, 1969, p.71). A slow 

circulatory current flows within the Gulf, moving from the Straits of Hormuz 

anticlockwise along the Persian Coast. This affects the distribution of salinity and 

temperature in the Arabian Gulf waters as it brings in new oceanic water (KSEPL, 
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1973). A small amount of freshwater flows into the Gulf, mainly from the Shatt al-

Arab, and also from intermittent streams on the Persian Coast (Teller et al., 2000). 

However, this small amount of freshwater inflow is exceeded by the high rate of 

evaporation that occurs in this restricted basin with such high temperatures. As a 

result, the average salinity of the Gulf is relatively high. Water temperature and 

salinity are closely linked, and both are highest in shallow embayments and lagoons 

(KSEPL, 1973). The water temperature, although varying throughout the different 

parts of the Gulf, is generally high, recorded in 1966 (Evans, 1966) to be up to 320C, 

and higher in the shallow waters along the coasts, although it should be noted that 

the temperatures may be quite different nearly 50 years later. This same study 

recorded salinities ranging from 37 to 38 %0  in the Straits of Hormuz to 38 to 41 %0 

at the northern end of the Gulf, and reaching higher levels in the coastal areas along 

the southwestern shore. According to Taylor and Illing (1969, p.71), salinity values of 

1.5-1.8 times standard seawater have been logged in some of the more secluded 

lagoons opening to the west coast of the Gulf, although, as with temperatures, 

salinity may have changed in the intervening decades. A more recent study was 

carried out on water temperature and salinity around the coasts of Qatar and Bahrain 

in 1992 (Abdel-Monim Mubarak and Kubryakov, 2000). This study identified a thin 

surface layer of water 2m in thickness with a temperature around 26 to 270C, and 

relatively low salinity for the Persian Gulf (around 38.1%0). Below this layer, 

temperature decreased and salinity increased, down to 20.40C and 39.6%0 at 24m 

depth. Seasonal variations were observed, due to solar heating and wind circulation.  
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1.2.6 Sea Levels 

 

The Arabian Gulf Basin has been occupied by numerous marine transgressions, of 

which the Holocene transgression is the most recent. The retreat of glaciers in the 

northern hemisphere from around 18,000 BP caused a rise in global sea levels from 

more than 100m below their present levels (Cuttler and Al-Naimi, 2013). The lack of 

reliable regional sea-level curves, and the considerable debate surrounding the effect 

of tectonic movement and isostatic loading movements (Lambeck, 1996; Uchupi et 

al., 1999), means that it is not possible to be exact about the rate and timing of 

marine transgression within the Arabian Gulf. Lambeck (1996) plotted the marine 

transgression across the Gulf using seabed bathymetry to create a `glacio-hydro-

isostatic model’, basing his model on the assumption that the sea-level rise was 

continuous without still stands or regressions, whilst acknowledging that the rise 

would not have been spatially uniform (Teller et al., 2000). Sarnthein (1972) 

estimated that the rising sea levels covered the land laterally at an average rate of 

100-120 m per year, with periods of still stands at about 11,300 and 10,500 BP. 

There must also have been periods of faster transgression, at times greater than 1km 

per year, during times of rapid eustatic rises, such as are known to have occurred 

around 12-11.5 BP and 9.5-8.5 BP (Teller et al., 2000). 

 

Models of marine transgression based on bathymetry do not take into account 

tectonic movement, hydrostatic loading or marine deposition. The evidence suggests 

that there has not been significant tectonic movement around Qatar during the 

Holocene, and that deposition levels should not affect results at a landscape scale, 
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whereas hydrostatic adjustment is likely to have significantly affected models for the 

Arabian Gulf. The effect of this is that later dates occur than would be expected for 

the equivalent depth in other parts of the world (Cuttler, 2014, p13-14). This effect is 

likely to be more pronounced further back in time. Despite these limitations, a good 

overview of the evidence for the progress of marine transgression in the Arabian Gulf 

is provided by Cuttler and Al-Naimi (2013), and this overview is summarised here.  

 

It is generally agreed that at the time of the last glacial maximum at about 18,000 BP, 

the Gulf was entirely free of marine influence. At this time, instead of flowing into the 

Gulf, it is reasonable to assume that the confluence of the Tigris-Euphrates Rivers 

(known as the Ur Shatt River) would have flowed through the Gulf basin, discharging 

into the Gulf of Oman through the Strait of Hormuz (Cuttler and Al-Naimi, 2013). The 

topography of the former Ur Shatt River valley was relatively flat, and Cuttler (2013) 

has suggested that the Ur-Shatt would have been a low-energy channel which was 

more likely to be a corridor of marshland and lakes rather than a high-energy river. 

Although there are studies that have identified morphological or sedimentological 

traces of this former watercourse, few details are available (Teller et al. 2000). 

Lambeck’s model (Lambeck, 1996) indicates that during the last glacial maximum, 

the Ur-Shatt fed three large freshwater lakes on the floor of the basin, along the 

central part and along the southern side (Figure 4), although the issue of whether 

they would have been freshwater or saline has not yet been completely resolved. 

The lake hypothesis is now supported by ETOPO2 data (a combination of satellite 

altimetry observations, shipboard echo-sounding and data from a Digital Bathymetric 

Data Base, NOAA), which confirms the presence of a western basin and a central 
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basin in the Gulf (Cuttler and Al-Naimi, 2013). It is also supported by the analysis of 

3D seismic data as part of the QNHER project, which has provided evidence of 

sediments relating to the eastern lake (Cuttler, 2013). However, these models do not 

take into account any subsequent tectonic plate movements or extensive marine 

deposition (Cuttler and Al-Naimi, 2013).  

 

Figure 4 Shoreline Reconstructions at 14,000 BP after Lambeck (1996) (from Cuttler et al., 2011b). 

 

The evidence suggests that the Strait of Hormuz became a narrow waterway at the 

mouth of the Ur Shatt River by 14,000 BP. (Lambeck, 1996). Around 12,500 years 

ago, the central basin would have been subject to marine incursion, probably causing 

a change from fresh water to saline lakes (Cuttler and Al-Naimi, 2013). The Western 

Basin flooded about 1,000 years later (Lambeck, 1996). By 10,000 BP, the marine 

transgression would have resulted in a long narrow sea, and the Iranian coastline 
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would already resemble the present-day coastline. However, large areas of the 

southern and western basin around the Emirates, Qatar and Bahrain would have 

remained as open landscape at this time (Lambeck, 1996).  

 

After 10,000 BP periods of still-stands were interspersed with periods of more rapid 

marine transgression. As late as 8,200 BP extensive areas between Qatar, Bahrain 

and the Emirates remained free from marine influence (Figure 5). The Bahrain 

anticline would have delayed marine transgression into the Gulf of Salwa until the 

final stages of sea level rise in the 8th Millennium BP (Cuttler, 2014). The present-

day shoreline was reached shortly before 6,000 BP, after which sea levels continued 

to rise for a further 1-2 m above present-day levels (Lambeck, 1996). During this 

period, Qatar was almost an island, connected to the remainder of the Arabian 

Peninsula by a thin strip of land (Cuttler and Al-Naimi, 2013).  

 

Figure 5 Shoreline reconstructions at 8,200 BP after Lambeck (1996) (from Cuttler and Al-Naimi, 

2013). 
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Evidence for the Mid-Holocene high stand is widespread in the southern Gulf 

(Williams and Walkden, 2002), and is demonstrated by dated terraces and marine 

sediments along the southern shore of the Gulf (Uchupi et al., 1999; Lambeck, 1996; 

Teller at al., 2000). In Qatar, cemented beach sands from the northwestern coast, at 

locations between 1.5 and 2.5 m above present sea level, were identified and dated 

by Taylor and Illing (1969) to between 3930 ± 130 and 4340 ± 180 BP. Similarly, Vita- 

Finzi identified beach rock deposits up to 2m above present sea level from several 

coastal areas in Qatar, and dated them from between 4690 ± 80 and 5830 ± 70 BP. 

(Vita-Finzi, 1978, cited in Williams and Walkden, 2002). The evidence indicates that 

this high stand was due to eustatic change rather than tectonic activity. Both 

Lambeck (1996) and Williams and Walkden (2002) agree that although the Gulf lies 

close to an active plate margin, there is no evidence for significant tectonic 

movement for much of the sea floor or coastline in the southern Gulf during the 

Holocene, although there are exceptions, such as on the northern side of the Strait of 

Hormuz (Lambeck, 1996). Recent work at Wadi Debayan, close to the west coast of 

Qatar, has dated the earliest relic beach terraces there to around 6,000 BP, 

indicating a sea level high from around 6,000 BP onwards, supporting the sea-level 

models produced by Lambeck (1996) and Heyvaert and Baeteman (2007). 

 

1.2.7 Vegetation History and Palaeo-climate 

 

The impact of the rise and fall of sea levels on human populations in the Arabian Gulf 

is also intimately connected with past climate change, which itself had a profound 

effect on human occupation and exploitation of the area. There is evidence from 
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sediments in the region that indicate pronounced climate changes, closely linked to 

global glaciation cycles and prevailing wind systems. Such changes caused phases 

of increased aridity and humidity relative to the present day climate. (Petraglia, 

2005). Most palaeoenvironmental experts recognise widespread evidence for a 

wetter climate during the Early Holocene period in the region, between around 9,000 

and 6,000 BP (Teller et al., 2000). This evidence includes radiocarbon-dated 

lacustrine sediments that developed during that period in areas that are now in the 

Arabian Desert regions, including the Rub' al-Khali and Nafud regions (McClure, 

1976, p.755; Parker et al., 2006). The wetter phase is linked to the northward 

migration of the Indian Ocean monsoon into the Gulf region between 8,500–6,000 BP 

(Parker and Goudie, 2008), bringing higher rainfall, although it is not known exactly 

how far north this influence reached. Fleitmann et al. (2004, p.20) speculate that the 

monsoon rainfall activity did not affect areas further north than around 23-24° 

latitude, whereas most of the Qatar peninsula lies at between 25-26 ° latitude. 

However, further research is needed to support this hypothesis. After around 6,000 

BP, the monsoon migrated southwards, and from 4,500 BP the climate became more 

arid, with an intense arid period occurring at 4,100 BP. Since then, arid conditions 

similar to those found in the region today have predominated (Parker and Goudie, 

2008). 

 

Faure et al. (2002, p.53-54) proposed a ‘Coastal Oasis’ model, whereby the falling 

sea levels reduced the sea level pressure on the continental shelf and steepened the 

water table gradient at the coast, leading to reduced water availability in the interior, 

but increased freshwater via springs on the newly-emerged coastlines. This model 
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has considerable significance for research into human settlement patterns in the Gulf 

Basin both during, and immediately after, the Holocene marine transgression.   



27 

 

CHAPTER 2: REVIEW OF PREVIOUS RESEARCH AND ARCHAEOLOGICAL 

POTENTIAL 

 

2.1 An overview of Archaeology in the Arabian Peninsula 

 

2.1.1 The Palaeolithic 

 

Very little is known about the Palaeolithic of the Arabian Peninsula as a whole, and it 

is very difficult to characterise Palaeolithic settlement (Parker et al., 2006) as there 

are still very few stratified sites, most of the evidence coming from unstratified 

surface finds, often in deflated landscapes with no geological context (Marks, 2009, 

p.295). The largest concentrations of Palaeolithic sites are located ‘at the margins of 

modern deserts in the northern and southern portions of the peninsula (Nafud Desert 

in the north, the Empty Quarter in the south)’ (Petraglia, 2005, p.306). Three stratified 

sites with lithic assemblages dating to the Middle Palaeolithic period (Jebel Qattar, 

Jebel Katefeh and Jebel Umm Sanman) were recently found along the shores of the 

Jubbah palaeolake in the Nefud desert in Northern Arabia (Petraglia et al., 2012, 

p.1). 

 

There has been a considerable amount of debate and uncertainty surrounding the 

presence, or otherwise, of Palaeolithic remains in the Eastern Arabian Peninsula. 

Surface finds were reported from Qatar, Bahrain, Oman and Eastern Saudi Arabia 

from the 1930s onwards (Potts, 1990, p.30-31). An influential Danish survey of the 

Qatar Peninsula, beginning in the 1950s and continuing into the 1960s (Kapel, 1967) 
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identified more than 120 Prehistoric sites from surface lithic scatters, which were 

categorised into 4 groups, A, B, C and D. The A group was initially typologically 

identified as Palaeolithic (‘Mousterian’-related), and the B, C and D groups were 

typologically classified as following on chronologically from the A group (Rose, 2010). 

On the basis of Kapel’s classifications, a Palaeolithic presence was also identified 

elsewhere in Eastern Arabia (Kapel, in Bibby, 1973; Masry, 1974; Pullar, 1974), and 

further attested to in Qatar in the early 1970s (De Cardi, 1978). In the late 1970s, a 

French research programme investigated a site near Khor in southeastern Qatar and 

discovered assemblages similar to Kapel’s A group present in Middle Holocene 

layers (Inizan, 1988, p.62; Tixier, 1980, p.197). This research placed Kapel’s Qatar A 

group material in the Neolithic, and not only led to a wholesale reassessment of all 

Kapel’s groups as being Holocene in date, but also led to a general consensus that 

Palaeolithic material, and by implication, Palaeolithic human activity, was absent from 

the whole of Eastern Arabia (Potts, 1990, p.31).  

 

However, this position was subsequently revised again in the light of more recent 

research which has identified several new Palaeolithic sites in Eastern Arabia. 

Systematic survey in Dhofar, Oman identified evidence of one stratified site, Aybut Al 

Auwal, and more than 100 surface scatters, containing Middle Palaeolithic lithic 

assemblages. These assemblages represent technology very similar to that from the 

late Nubian Complex in northeastern Africa. The sites are all on the Nejd Plateau, 

and OSL dates obtained from stratified deposits at Aybut Al Auwal produced dates of 

106,000 years BP. (Rose et al., 2011, p1; Groucutt and Petraglia, 2012, p.119-120). 
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Excavations at Jebel Faya in Sharjah Emirate identified stratified Palaeolithic 

material, providing clear evidence of Upper Pleistocene activity, with the earliest 

stratified levels dated to c.128,000 years ago (Uerpmann and Uerpmann, 2008; 

Uerpmann et al., 2009; Marks, 2009; Rose, 2010; Bretzke et al., 2013). Unstratified 

surface lithic scatters containing material with similarities to the stratified material at 

Jebel Faya have been identified in Abu Dhabi and Sharjah (Scott-Jackson et al., 

2009; Wahida et al. 2009; Rose, 2010).  

 

Although these recent findings can be seen as confirmation of hominim activity in 

Eastern Arabia in the Upper Pleistocene, the date of the earliest human occupation 

of the Arabian Peninsula still remains uncertain. Also, there is considerable debate 

about whether this occupation was continuous or intermittent (Rose, 2010), and 

whether there was population continuity from the Pleistocene into the Holocene 

(Uerpmann et al., 2009, p.206). Any evidence for Late Pleistocene human occupation 

along the former waterway of the Ur-Shatt river corridor will now be submerged 

(Parker and Goudie, 2008, p.465). Macumber (2011) argues that permanent 

occupation of the area that now forms the Qatar Peninsula was unlikely in the Upper 

and Middle Palaeolithic due to the lack of accessible freshwater as a result of low 

groundwater tables caused by the drop in sea levels. However, it is not currently 

clear how extensive surface water would have been during ameliorating climatic 

conditions, or within deep sinkholes which have been subsequently infilled by 

collapse and/or sediment accumulation. It is also worth noting that Lower Palaeolithic 

artefacts in Qatar are most likely to have been re-deposited in secondary contexts 

due to erosion or to re-working by later Neolithic groups (Cuttler, 2010, p.151). 
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2.1.2 The Neolithic 

 

The marine transgression across the Gulf basin after the last glacial maximum took 

place between 14,000 and 6,000 years ago, in the Late Pleistocene/Early Holocene, 

and the environment within the exposed Gulf Basin during this period is likely to have 

been highly favourable to human settlement (Teller et al., 2000). However, the 

archaeological and palaeoenvironmental record for the area around the former Gulf 

basin is scant and incomplete for the Early Holocene, and consists mainly of 

relatively ephemeral campsites (Rose, 2010). The French investigations of the late 

1970s (Tixier, 1980; Inizan, 1988) re-interpreted and re-arranged Kapel’s 

classifications so that Kapel’s Qatar B group of lithics, found at a few sites around the 

Oman peninsula and Qatar (Parker et al., 2006), was classed as the earliest phase of 

occupation, dating to the beginning of the Holocene. Kapel’s A, C and D groups were 

classed as a single, later group, dating to within the 7th millennium BP (Drechsler, 

2009, p.16). Three sites from around the Gulf Basin, Wadi Wutayya in Northern 

Oman, and Nad al-Thamam and Jebel Faya 1 in Sharjah Emirate, which have been 

dated by radiometric dates to between 11,000 and 8,500 cal BP, have been used to 

place the Qatar B sites within the same date range, on the basis of similarities 

between the lithic technologies (Rose, 2010).  

 

At c.8,000 BP, the Qatar B technology in Qatar was replaced by what was known as 

the Arabian Bifacial Tradition (ABT), a technology specific to this region of the 

Peninsula (Cuttler et al., 2011b, p.3). It is worth noting that use of the term ABT is 

problematic, as it is now considered by flint specialists to be loosely representative of 



31 

 

a range of lithic technologies (Crassard and Dreschler, 2013, p.5-6). The northward 

migration of the Indian Ocean monsoon in the Early-Mid Holocene led to a 

significantly wetter period in southern parts of the Gulf region between 8,500-6,000 

BP (Parker and Goudie, 2008), making conditions more favourable for human 

exploitation in areas affected, although Fleitmann et al. (2004, p.20) suggest that the 

effects of this wetter period reached no further north than 24° latitude. It has been 

suggested that this improved climate influenced the expansion of settlement in the 

8th and 7th millennia BP (Masry, 1997, p.44), a time when larger and more 

permanent sites appeared in eastern Arabia (Carter, 2010, p.193). However, if we 

accept Fleitmann's theory, all of the Mid-Holocene sites from the Central Gulf would 

have been unaffected by the wetter conditions as they lie to the north of 24° latitude 

(Cuttler, 2013, p.40). Also, there is currently little evidence for an expansion of 

settlement into the interior of the Arabian Peninsula at this time. 

 

Evidence from the 8th and 7th millennia BP for the presence of domesticated forms 

of cattle, sheep and goat is increasingly appearing as a result of recent work in the 

Southern Arabian Peninsula, indicating a change in food procurement. (Drechsler, 

2009). However, since the evidence for domesticates is mainly confined to the 

southern part of the peninsula, there is currently significant debate around their 

origins (McCorriston and Martin, 2009, p.246-247; McCorriston, 2013). At this period, 

semi-nomadic herding was predominant in the interior of the Arabian peninsula 

(Potts, 1990; Uerpmann, 1992, cited in Parker and Goudie, 2008, p.466), and 

hunting, fishing and the exploitation of marine resources such as shellfish were also 

important for the coastal settlements at this time (Parker and Goudie, 2008).  
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It has long been recognised that there was a dramatic increase in settlements 

appearing around the shoreline of the Gulf in the Mid-Holocene (Rose, 2010). This 

occurred just after the final phase of marine incursion into the Gulf basin, when sea 

levels rose to approximately 2-3m higher than present-day levels (Lambeck, 1996). 

These settlements, predominantly located around the former Mid-Holocene 

shoreline, are characterised by the presence of ABT lithic artefacts, and display 

evidence for contact with Mesopotamia during the 8th and 7th millennia BP, in the 

form of Mesopotamian ‘Ubaid pottery (Carter, 2006, p.58) (Figure 6). 

 

These sites are generally referred to as ‘Ubaid-related sites, as they are clearly not 

Mesopotamian ‘Ubaid settlements. However, the use of the term ‘Neolithic’ in relation 

to these sites is the subject of some debate (Crassard and Drechsler, 2013, p.4). The 

‘Ubaid-related sites appear to be relatively complex in comparison to the ephemeral 

campsite-type sites that typify the Early Holocene sites in Eastern Arabia, particularly 

in relation to the presence of more permanent, stone structures, sophisticated boat-

building technology and well-established trade networks (Carter and Crawford, 

2010).  However, although they do display some evidence for the domestication of 

plants and animals, they are largely based around hunting, gathering and the 

exploitation of coastal resources, and with the exception of Arabian Coarse Wares, 

all of the pottery is imported. Rose (2010) points out that almost all of the stratified 

‘Ubaid-related sites in Eastern Arabia appear to have been located in previously 

unsettled areas. Only Ain Qannas in Saudi Arabia (Masry, 1997) shows evidence of 

earlier occupation at the site (Rose, 2010). This relatively abrupt change in 
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settlement patterns is also reflected by unstratified surface sites, where ‘Ubaid 

pottery and pre-ABT lithics have not so far been found together. (Rose, 2010) 

 

 

Figure 6 Distribution of ‘Ubaid and ‘Ubaid -Related Sites around the Arabian Gulf (from Cuttler, 2013). 

 

Marine inundation did not occur around the west coast of Qatar until after 8,000 BP 

(Al Naimi et al., 2012), and occupation of sites along the Qatar coastline begins 

during the second half of the 8th millennium BP (Carter, 2010). Sites in Qatar include 

Ras Aburuk/Raʾs Abarāq (De Cardi, 1978, p.82), Bir Zeikrit/Biʾr Zikrīt (De Cardi, 

1978, p.115), Site A4 near Dukhan, (Kapel, 1967, p.37), Al-Dasah/al-Daʿsah (De 

Cardi, 1978, p.55), Al-Khor/al-Khawr (Tixier, 1980), and Wadi Debayan/Wādī al-
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Ḍabaʿyān (Cuttler et al., 2011b; Tetlow et al., Forthcoming). Outside Qatar, major 

sites include al-Markh, Bahrain (Roaf, 1976, p.146), Dosariyah/Dawsāriyyah, Saudi 

Arabia (Drechsler, 2011, p.71), Abu Khamis, Saudi Arabia (Masry, 1997, p.87), 

Khursaniyah, Saudi Arabia (Masry, 1997, p.84), Ain as-Sayh, Saudi Arabia (McClure 

and Al-Shaikh, 1993), As-Sabiyah H3, Kuwait (Carter and Crawford, 2010) and 

Bahra 1, Kuwait (Rutkowski, 2011). There are far fewer ‘Ubaid-related sites in the 

Lower Gulf than in the Central Gulf, probably as a result of increasing distance from 

Mesopotamia. (Carter, 2006, p.59).   

 

So far, it has not been possible to firmly establish where these ‘Ubaid-related 

communities originated from. Whilst the increase in settlement may in part be 

attributed to the greater archaeological visibility of more permanent settlement, it is 

also possible that the new settlers migrated into the area as a result of displacement 

from the Gulf basin by relatively rapid inundation between c. 8,000BP and 7,500BP 

(Rose, 2010). If this theory is accepted, then Rose proposes that we should not 

necessarily view the existing, ephemeral Terminal Pleistocene/Early Holocene sites 

around the Gulf as representative of the population in the region at the time, but 

rather as ‘more mobile, peripheral elements of a larger core group’ (Rose, 2010, 

p.850). 

 

The archaeological evidence indicates that there was a break in human settlement in 

Eastern Arabia in the early 6th Millennium BP. No ABT/’Ubaid-related sites  have 

been dated to later than 5,800 BP (Parker and Goudie, 2008, p.467), and there is a 

complete absence of known archaeological sites throughout Eastern Arabia during 
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the following millennium (Uerpmann, 2003), with the exception of the recently-

excavated site at Wadi Debayan in Qatar. The fish midden at this site has been 

radiocarbon dated to between 5,200 and 4,500 BP (Tetlow et al., Forthcoming). This 

relatively sudden break in human settlement in Eastern Arabia, and evidence for a 

major population decline in the Arabian Peninsula as a whole, coincides with the end 

of the mid-Holocene wet phase, and the onset of arid conditions, following on from 

the southward migration of the Indian Ocean monsoon (Parker and Goudie, 2008). It 

has been suggested by Uerpmann (2003) that the break in human settlement is due 

to this climatic deterioration, but there may also have been other contributory factors, 

indicated by the evidence from Wadi Debayan of a high energy event affecting the 

coast of Qatar soon after 4,500 BP (Tetlow et al., Forthcoming). 

 

2.1.3 Maritime History 

 

The potential for archaeological sites within the submerged Gulf is not simply limited 

to sites from the Late Pleistocene/Early Holocene, but also includes the potential for 

shipwrecks from the 8th-7th Millennium BP to the present day. The earliest direct 

evidence for maritime trade in the Gulf consists of boat-related remains found at H3, 

As-Sabiyah in Kuwait (Carter and Crawford, 2010). These remains took the form of 

more than 50 fragments of bitumen with reed impressions and barnacles, interpreted 

as the waterproof coating from sea-going reed bundle boats (Carter, 2006, p.55-56) , 

and they are the earliest sea-going boat remains yet identified anywhere in the world. 

Representations of boats were also found at the site, including a ceramic model of a 

reed bundle boat and a picture of a masted boat painted on a ceramic disc. These 
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boat-related remains were found in archaeological contexts dating between 7,500 

and 7,000 BP (Carter, 2006, p.53-55).  

 

There is also indirect evidence for seafaring and maritime trade in the 8th-7th 

millennia BP, as represented by quantities of ‘Ubaid pottery from Mesopotamia found 

at more than 60 Arabian Neolithic sites around the coast of the Eastern Arabian 

Peninsula, including Saudi Arabia, Bahrain and Qatar (Burkholder, 1972; Masry, 

1974; De Cardi, 1978). Recent research has led to the general acceptance that this 

pottery represents an extensive maritime trading network between the Arabian Gulf 

and Southern Mesopotamia (Carter, 2006; Carter and Crawford, 2010). There is no 

evidence for boat-building in Qatar at this time, but presence of ‘Ubaid pottery at the 

coastal Neolithic sites in Qatar clearly demonstrates that these settlements were 

participating in this well-developed maritime trading relationship. The archaeological 

evidence indicates that the interaction between Mesopotamia and the Gulf petered 

out during the 7th millennium BP (Carter and Crawford, 2010, p.212).  

 

In the Bronze Age, a complex maritime trade network existed between Southern 

Mesopotamia, Dilmun/Bahrain, southeastern Arabia and the Indus Valley civilisations 

(Al-Naimi et al., 2012, p.249) around 5,000-3,500 BP. Of particular relevance to the 

Study Area, given its location, is Dilmum, which, between 4,500 and 3,500 BP, 

became a very important international trading nation, channelling trade through the 

Gulf. This was due in part to its strategic location between the head of the Gulf and 

the Straits of Hormuz, its safe anchorage and its plentiful freshwater supplies (Killick 

and Moon, 2005, p.1). There are frequent mentions in cuneiform texts from 
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Mesopotamia from the 5th Millennium BP onwards of ships sailing from Ur in 

Southern Mesopotamia to Dilmun, to Magan (Southeastern Arabia) and to Meluhha 

(thought to be in the Indus Valley) (Roux,  p.32). Qatar was clearly a part of this 

trading network, as Barbar pottery typical of Dilmum has been found at sites in Qatar, 

including on the Ras Abaruk peninsula (Carter, 2003). A 4th millennium BP dye 

production site on Khor island in Qatar, which produced quantities of Kassite pottery, 

is also evidence of significant trade with Mesopotamia (Edens, 1999).  

 

The Arabian Gulf continued in historical times to be a very important trade route 

linking the West and the East. The Sassanid dynasty, established in Mesopotamia in 

AD 225, controlled the trade of a wide range of commodities in the Gulf, and by the 

early Islamic period Arab dhows were trading with India, China, Southeast Asia and 

East Africa, playing a central role in trade, and in other aspects of society such as 

exploration, and defence (Al-Naimi et al., 2012). The Arabian Gulf has long been 

famous for its role in the historic pearl trade, and extensive pearl beds are found all 

along the Arabian side of the Gulf, with the most productive located to the north and 

east of Bahrain (Bowen, 1951, p.166). The importance of Bahrain as a pearl-trading 

centre is apparent from the many references to the pearls of Bahrain by early 

travellers to the Gulf (Bowen, 1951, p.161). It was estimated in the early 19th Century 

that there were 1500 pearl fishing boats in Bahrain (Wilson, 1883, p.285), and 900 at 

the turn of the 20th Century (200 in Qatar) (Bowen, 1951, p.168). The northwest 

coast of Qatar was well-known to early Arab navigators (Johnson and Wilkinson, 

1960, p.444), and the remains of the former pearl-fishing and trading port of Al-

Zubārah, in close proximity to the Study Area, are testament to the importance of the 
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northwest coast of Qatar to maritime trade in the 18th and 19th centuries. Khor 

Hassan (Khuwayr), further up the coast to the north of Al-Zubārah, became the base 

of the notorious pirate Rahma bin Jabir, in the early 19th Century (Johnson and 

Wilkinson, 1960, p.444; Misbahuddin, 1984), again an indication of the role that this 

stretch of water played in shipping and trade.  

 

However, despite the longevity of this maritime history, there has been very little 

research into wrecks or other maritime archaeological finds in the Gulf. A relatively 

recent discovery of an ancient merchant ship and its cargo, lying at a depth of 70m 

near the port of Siraf in Iran, was reported in 2006 by local fishermen, who 

discovered it accidentally. More than 40 amphora have been recorded on the 

seabed, and the wreck is believed to date from the Parthian or Sassanid periods 

(NOAA, 2006, p.17). There is also an unconfirmed report of a wreck with a cargo of 

amphora lying at a depth of 10m in a deep-water channel in Bahrain territorial waters. 

Fragments of amphorae from this site have been retrieved on several occasions by 

local divers (Al-Naimi et al., 2012, p.249). Elsewhere in the Gulf, twenty-eight stone 

anchors and ring-stones were discovered from a single submerged site near Qalhat, 

an important Early Islamic and Medieval port in Oman (Vosmer, 1999, p.250).  

 

Regarding more recent times, there is documentary evidence, in the form of a series 

of telegrams between various officials, of a major sea battle involving the British navy 

that took place around the Bay of Al-Zubārah in Qatar in 1895. According to the 

correspondence, this battle occurred as a result of a potential threat from a fleet of 

dhows, assembled by the Ottomans and Sheikh Jassim bin Thani, that were 
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apparently armed and ready for an imminent attack on Bahrain (Wilson, 1895). The 

British Navy became involved as a result of their relations with, and influence over, 

the affairs of Bahrain. The battle took place on 6th September 1895, and 

correspondence from the captain of the British warship H.M.S. Sphinx, records that 

the warship shelled the fleet of dhows for hours, and then despatched boats, under 

cover of firing blanks, to set fire to the dhows. The captain states that ‘The total 

number of dhows destroyed as far as can be ascertained from the ship is about 44’ 

(Pelly, 1895. However, no traces of these boats have ever been found.  

 

An early 18th Century naval cannon was recovered from the sea relatively recently 

(the exact recovery date is unknown) near Mesaieed/MusayΚīd, off the east coast of 

Qatar, reportedly during the excavation of a new pipeline (QNHER ID 355; Al-Naimi 

et al., 2102, p.249). There are also documented modern wrecks in Qatari waters, 

including 17 from the past century recorded within the Qatar National Historic 

Environment record, which have been recorded from maritime charts. These include 

wrecks off the northern tip of the Qatar peninsula, to the northeast of the Study Area, 

which are depicted on an old Admiralty chart, the survey date for which is given as 

1925 (UKHO 1925). 
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2.2 Submerged Landscapes Research 

 

2.2.1 Research Outside the Arabian Gulf 

 

There has been very little work carried out into submerged landscapes in the Arabian 

Gulf basin, and relatively little has been written about its archaeological significance 

or potential (Cuttler, 2014). Before detailing the small amount of work that has been 

done, it is useful to place it into a wider context by providing an overview of 

investigations into areas of submerged landscape elsewhere in the world. 

 

Research on submerged coastlines has been carried out in the Red Sea, around the 

Farasan Islands (Bailey et al., 2007), in the context of human occupation in the area 

of the Bab al-Mandab Straits during periods of lower sea levels. Archaeological 

survey and underwater exploration recorded archaeological sites, largely shell 

middens formed in the last 6,000 years, located at characteristic geomorphological 

locations on land, and then recorded similar locations underwater at submerged 

former shorelines. Work is continuing to try and identify archaeological sites 

associated with these shorelines.    

 

In the USA, underwater geoarchaeological studies were carried out in an area of 

drowned Karst landscape in Apalachee Bay, off Florida in the Gulf of Mexico. The 

research used seismic profiling, vibrocoring, diver surveys and underwater 

excavations to reconstruct palaeo-landscape features and to successfully locate and 

investigate submerged archaeological sites (Faught and Donoghue, 1997).  
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In Europe, pioneering research was carried out into the palaeo-landscapes of the 

North Sea, using an extensive 3D seismic dataset that was originally collected for oil 

exploration purposes, to map Holocene features across a large area of the southern 

North Sea (Fitch et al., 2005; Gaffney et al., 2007). This work demonstrated how 

regional-scale studies of submerged landscapes using remotely-sensed data can 

reveal highly significant information about an archaeological landscape that would 

have been a major habitation area in the Mesolithic period.   

 

Also in Europe, research has been undertaken into submerged landscapes off the 

north coast of Ireland using high-resolution multibeam bathymetry to map the palaeo-

landscape. The result of this work was the identification of ten areas of high 

archaeological potential which will be subject to more detailed analysis in subsequent 

stages of the research (Westley et al., 2011a).  

 

A significant amount of work has been carried out on developing marine classification 

and characterisation projects around the UK coast. Some of these have been based 

entirely on environmental attributes, such as the Irish Sea Pilot (Golding et al., 2004), 

which was not specifically an archaeological or historic classification project. This 

project was aimed more at ecological aspects of marine conservation, and used 

geophysical and hydrographical data to map marine landscape types. The Isles of 

Scilly Rapid Coastal Zone Assessment Survey (Johns et al., 2004), used historical, 

archaeological, geographical, topographical and environmental data to investigate 

the submerged heritage around the Isles of Scilly. The survey methodology included 

extending the existing Historic Landscape Characterisation for the Isles of Scilly 
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(Land Use Consultants, 1996) to the intertidal and maritime zones. English Heritage 

undertook an extensive Historic Seascapes Programme in several areas around the 

English coast for the purposes of resource management (Cornwall County Council, 

2008). This programme was guided by the principles of terrestrial historic landscape 

characterisation, and aimed to map the historic character of the marine environment 

using maps, charts and other documents together with recent marine data sources 

such as bathymetry and sediment information. However, none of these projects 

utilised sidescan sonar data or acoustic classification as part of their methodology. 

 

The research carried out in different parts of the world has shown clearly that random 

surveys of submerged landscapes are unlikely to yield successful results. All of these 

studies used landscape-based approaches to a greater or lesser extent as the first 

stage of investigation, in order to highlight areas of potential that could then be 

targeted for further, more detailed study, and all of them incorporated topography and 

geomorphology to some extent. The key to the success of the study in the Gulf of 

Mexico lay in using knowledge of geological and topographic markers from terrestrial 

archaeological sites to try and find similar settings on the seabed. In this study, such 

settings included locations close to fluvial and aquatic features, including karst 

features, at river estuaries and near lithic resources. This emphasises how important 

the identification of palaeo-drainage patterns, buried karst features and former 

coastlines is to the study of the submerged karst landscape off Northern Qatar. The 

work in the Gulf of Mexico also demonstrated the value of utilising a range of different 

investigative techniques as the study became more targeted. 
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2.2.2 Research Within the Arabian Gulf 

 

The lack of research into the archaeological and palaeoenvironmental potential of the 

Arabian Gulf basin is now beginning to be addressed with the pioneering work that is 

being carried out by the QNHER project around the Qatar peninsula. A limited 

amount of assessment work was carried out in 2010/2011 on the sidescan sonar 

dataset that was collected for the Qatar Bahrain Causeway project. This is the same 

sidescan sonar dataset that was used for the research outlined in this thesis. This 

assessment consisted of a rapid review of the sonar contacts originally identified by 

the survey company, and 83 features of potential archaeological interest were 

highlighted (Cuttler et al., 2011a). Approximately half of these anomalies were diver-

inspected by a team of marine archaeologists in March 2011, but all proved to be of 

modern or natural origin (Al-Naimi et al., 2012). Despite the lack of significant 

archaeological finds, this work proved very successful in establishing effective 

methodologies for ground-truthing seabed anomalies, and in increasing 

understanding of the interpretation of acoustic signatures from the seabed around 

Qatar. However, it was apparent from this work that investigating geophysical 

anomalies in isolation, and using low frequency sidescan sonar data as the sole 

dataset, was not an effective way of understanding the submerged landscape. It was 

also equally clear that random surveys would be extremely unlikely to be successful 

in locating archaeological and palaeoenvironmental remains.  

 

The QNHER project has also been conducting further marine surveys, including a 

programme of high-resolution sidescan sonar survey using a Klein Hydroscan, which 
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is capable of collecting very high resolution sidescan data over large areas, and 

using this to target diver inspections (Cuttler, Forthcoming). In 2012-2013, this work 

led to the confirmation of the location of seven relatively recent shipwrecks off the 

north coast of Qatar, which were subsequently inspected by divers. These were all 

steel-hulled vessels dating to within the last 60 years. Their concentration in the north 

is probably related to the fact that the principal trade route towards Bahrain and Iraq 

lies to the north of Qatar (Cuttler, 2014).  

 

Research carried out by Cuttler (2013; 2014), using high-resolution 3D seismic 

survey data that was collected from the offshore Al Shaheen oil field to the northeast 

of Qatar for oil exploration purposes, has identified fluvial landscape features. This 

research has confirmed the presence and character of the Ur-Shatt river (originally 

postulated by Lambeck, 1996) as a wide, flat valley of marshland, lake and swamps, 

although it is still not clear if this was a freshwater or saline environment.  

 

Research into human settlement in Arabia in the Palaeolithic period undertaken by 

Rose (2010) has focused on Prehistoric occupation in and around the Arabian Gulf 

basin. This research uses hydrological, geoarchaelogical and archaeological 

evidence to support the theory that the former Gulf basin was once an oasis which 

supported a sizeable human population in the Late Pleistocene and early Holocene.  

 

There has been a significant amount of non-archaeological survey work in the Study 

Area. Geophysical surveys have been carried out by commercial companies as part 

of the planning phases of the proposed Qatar-Bahrain Causeway. An acoustic survey 
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was carried out in 2002 (Marin Mätteknik AB, 2002) which captured bathymetry using 

a single beam echo sounder (a geophysical technique that captures depth 

information), shallow seismic data using a sub-bottom profiler (a geophysical 

technique which provides profiles of the upper layers of the ocean bottom), and 

sidescan sonar data. However, the acoustic data from this survey was not made 

available for this research. The survey company logged 107 targets in the sidescan 

sonar data, and also classified the seabed in the whole of the causeway area in both 

Qatari and Bahrain waters into 12 types (Marin Mätteknik AB, 2002, p.17), but no 

information is provided in the report as to how the classification was carried out. Each 

seabed type is summarised in a short description (two or three sentences) and given 

a single-sentence description of the area location. 

 

Further acoustic data was captured in the causeway area in 2008 for the purposes of 

sand-search survey and hydrographic survey (GEMS, 2008). This survey utilised a 

single beam echo sounder and sidescan sonar, and also a sub-bottom profiler in 

Qatari waters. The survey company logged a total of 601 contacts in the data from 

the Qatari side of the causeway project area. The sidescan sonar data collected for 

this survey is the core dataset that was used for the sediment texture classification 

and geophysical anomaly identification sections of this research. Geotechnical data, 

including core sampling (Fugro Peninsular, 2008; QBC Consortium, 2009a, 2009b), 

and an underwater video survey (Creocean, 2008) were also carried out as part of 

the causeway planning phase. 
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CHAPTER 3: OVERVIEW OF METHODOLOGY 

 

This chapter provides an overview of the theory and usage behind historic landscape 

characterisation methodology, and briefly summarises the stages of the seabed 

characterisation, and the data sources and techniques to be used. Detailed 

methodologies for each stage of the characterisation are provided at the beginning of 

the relevant sections.   

 

3.1 Processes of Seabed Characterisation 

 

A major aim of this research was to test methodologies for investigating the 

submerged landscape. It was decided, therefore, to explore how concepts and 

methods used for terrestrial Historic Landscape Characterisation (HLC) could be 

adapted in novel ways and applied to submerged landscapes in the form of ‘seabed 

characterisation’. The seabed characterisation aimed to combine principles of HLC, 

acoustic classification and natural environment mapping, based primarily on a range 

of environmental attributes, but drawing on human exploitation and interpretational 

elements wherever possible.  

 

The basic premise of landscape characterisation is to define areas ‘on the basis of 

combined shared values of dominant character attributes, with secondary attributes 

recorded in a consistent and structured manner’ (Cornwall County Council, 2008: 

14). Terrestrial HLC can encompass topography, habitats, natural and semi-natural 

features and palaeoenvironmental deposits as well as archaeological sites. It can 
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also encompass intangible and non-visual elements such as cultural and 

psychological perceptions, and historical associations (Fairclough, 2001). The core 

principles of landscape characterisation require it to be systematic, comprehensive, 

repeatable and interpretational.  

 

Many different methodologies have been developed and used for terrestrial 

landscape characterisation (Aldred and Fairclough, 2003). The methodology used for 

this seabed characterisation follows the ‘multi-mode’ approach (Aldred and 

Fairclough, 2003, p.18), a combination of attribute-led description followed by 

interpretative classification. In this approach, the entire Study Area is divided into 

initial landscape units on the basis of one or more core attributes. The basic 

classification can then be built on and supplemented by gathering data on a range of 

natural environmental and cultural attributes which can then be assigned to each 

unit. Whilst environmental data can be considered to be more objective and 

consistent, the human and interpretational dimension is also an important factor in 

providing a holistic understanding of the landscape. When discussing attributes, it is 

worth noting that the differentiation between ‘environmental’ attributes and ‘cultural’ 

attributes is slightly blurred, since environmental attributes can both influence and 

reflect cultural attributes, and vice versa. It is the ability to accommodate the interplay 

of these linked factors that is one of the strengths of the seabed characterisation 

approach.  

 

The characterisation types are defined through analysis and identification of the 

trends and combinations in which certain attributes occur. Further analysis is then 
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undertaken to allocate a characterisation type to each unit, according to which type 

best represents its predominant landscape character. This approach is a very flexible 

and transparent method, allowing the generation of many different classifications and 

interpretations, and the creation of intermediate theme mapping which may be used 

as individual information sources (for example the extents of a particular type of 

seabed habitat).  

 

The factors influencing the character of the seabed can be classified as primary (or 

core) attributes, which form the basis for the division of the seabed into initial 

landscape units, and secondary attributes, which do not necessarily provide 

seamless, continuous coverage over the landscape, but can be used as supporting 

data sources to further refine and calibrate the initial landscape units. The procedure 

is recursive, with the data collection stages and data analysis stages having the 

potential to inform each other, and the character areas can be gradually refined with 

each new stage of data input and analysis (Dingwall and Gaffney, 2007). Some 

patterns will emerge in relation to Prehistoric settlement, and others in relation to 

maritime exploitation and shipwrecks. This process of calibration and refinement is 

the essence of the seabed characterisation. The end result of this process is the 

identification of areas formerly favourable to human occupation, and areas 

expressing potential for the preservation of palaeoenvironmental and archaeological 

remains. This latter process takes a step beyond first-stage historic landscape 

characterisation, as initial landscape characterisation does not normally seek to 

provide value judgments on the landscape under investigation, the core principle 
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being that every part of the landscape is classifiable and in need of change-

management to some degree. 

 

The core data sources used for the primary characterisation were low-resolution 

sidescan sonar data and LiDAR bathymetry data. These datasets covered extensive 

areas of the seabed and were deemed suitable for the primary classification of the 

seabed. The aim was to undertake the primary classification by carrying out sediment 

texture classification using the sidescan sonar data, and mapping of seabed 

topography using the LiDAR bathymetry. This would be further informed by ground-

truthing data from direct sediment samples and video footage. The secondary 

classification would then be undertaken, and would consist of the analysis of 

individual geophysical anomalies within the sidescan sonar data, and the further 

targeted investigation of selected anomalies via high-resolution geophysical survey 

and diver inspection, in order to support the primary classification. The end result of 

this characterisation process would be a set of contiguous polygons covering the 

entire Study Area, representing broad character zones, which could be used to 

assess potential and inform further research.  

 

3.2 Primary Characterisation 

 

3.2.1 Sediment Texture Classification 

 

The first step of the seabed characterisation process is to establish how the seabed 

can be divided up into initial landscape units in the most effective and objective way. 
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Sidescan sonar is an efficient and rapid method of creating images of large areas of 

seabed based on the acoustic ‘backscatter’ reflected from the sonar beam. It can be 

used to detect objects that are either raised from, or sunken into, the seabed, and 

also to identify distinct changes to the material and texture type of the natural seabed 

(Blondel, 2007). The sidescan sonar data available for the Study Area provides 

continuous, seamless coverage, and this type of acoustic backscatter data has been 

successfully used elsewhere in the world for seabed sediment classification, largely 

for the purposes of natural habitat mapping. Since the seabed sediment usually 

reflects the character of the underlying substrate, and is therefore a fundamental 

characteristic of the seabed, sediment classes are a suitable primary attribute that 

can be used for the division of the seabed into initial landscape units. The acoustic 

backscatter data captured by the sidescan sonar can be used to aggregate areas 

(classes) of similar acoustic signature (Penrose et al., 2005), the aim being to reflect 

the variability in the nature of the seabed sediment, and highlight landscape-scale 

changes. 

 

3.2.2 Topographic Mapping 

 

The topography of the seabed (bathymetry) is also a major influence on the character 

of the seabed, although in this characterisation, the aim was not to use bathymetry 

as the primary dataset for the initial determination of landscape units, but rather to 

use it to inform and refine the initial units. A surface model can be created from 

bathymetry that can then be visually inspected for evidence of topographic features 

that formed when sea-levels were lower. Seabed topography, like sediment 
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character, is, at least partially, a reflection of the underlying geology, and provides 

the ability to highlight landscape-scale features that would have been attractive for 

human settlement, such as former shorelines, and/or features that are conducive to 

the survival of palaeoenvironmental caches, such as palaeochannels. The shape of 

the seabed evolves through factors such as erosion, deposition, the energy of the 

sea and the hardness of the underlying rock. However, the present day seabed is not 

going to be a direct reflection of the palaeo-land surface, as sedimentary processes 

associated with marine transgression are likely to have buried the past landscape in 

some areas and eroded it in others. We need to consider the processes that would 

have either protected or eroded land surfaces as sea levels rose. Also, any study of 

seabed mapping and classification has to take into account the mobility of features 

and sediments, since seabed features such as sand waves and sand ripples are not 

static features. However, the aim of this part of the research was to define broad 

areas where conditions are suitable for features of high archaeological and 

palaeoenvironmental potential to be created and maintained, and use these to inform 

and refine the character areas.  

 

Sea level changes are critical, since they can be used, together with the topographic 

data, to locate and define former shorelines. Former shorelines are highly significant, 

both in relation to patterns of human settlement, and in relation to preservation 

factors. The marine incursion since the last glacial maximum was not a steady 

process, with periods of both slow and rapid incursion, and also periods of still-

stands. The lack of reliable regional sea-level curves, and the debate surrounding the 

effect of tectonic movement and isostatic loading movements (Lambeck, 1996; 
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Uchupi et al., 1999), means that it is not possible to be exact about the timing of 

marine transgression within the Study Area. However, we have enough detail for the 

purposes of broad-brush seabed characterisation.   

 

Marine taphonomic processes are also very important in this respect, and it is critical 

to determine the types of changes which might affect the form and condition of 

submerged sites prior to, during and after the rise in sea level (Faught and 

Donoghue, 1997). This is particularly important, since we currently have very little 

information about how sedimentary regimes and taphonomic processes in the Gulf 

affect potential archaeological remains. Different depositional environments and 

preservation factors are likely to apply to Prehistoric sites as opposed to more recent 

wrecks.   

 

3.2.3 Ground-Truthing 

 

Ground-truthing data is essential for characterisation undertaken via acoustic 

classification, as it provides validation for the initial classes. The most common ways 

to ground-truth acoustic classification data are direct sediment sampling and 

photography. The aim for this characterisation was to undertake a sampling 

programme over as much of the Study Area as possible, using a Van Veen grab 

sampler, and then to subject the grab samples to texture analysis (granulometry) in 

order to test the correlation between the acoustic classes and the sediment 

characteristics. A further aim was to supplement the ground-truthing element of the 

seabed characterisation by utilising geotechnical data that was collected for the 
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planning stages of the Qatar-Bahrain Causeway project (Fugro Peninsular, 2008, 

QBC Consortium, 2009a; 2009b), together with underwater video survey transects 

that were taken for benthic habitat assessment purposes, also for the Qatar-Bahrain 

Causeway project (Creocean, 2008) . 

 

3.3. Secondary Characterisation 

 

3.3.1 Identification of Geophysical Anomalies 

 

The sidescan sonar data can also be used to identify geophysical anomalies that 

may represent areas of archaeological significance. The influence of Prehistoric 

human exploitation of the landscape and the subsequent marine environment, as 

represented by physical remains on the seabed, is a very important interpretational 

aspect of the characterisation, and this is where identifying geophysical anomalies 

from the sidescan sonar data plays a key role. The earliest archaeological remains 

could consist of relict land surfaces and palaeochannels, as well as buried 

archaeological sites. Cairns dating from 6,000 years ago, constructed out of rubble, 

and measuring 1-2 m high and 5m across, are present in the terrestrial Qatari 

landscape. Building in stone was being undertaken at ‘Ubaid-related sites around the 

Gulf shores 6,500 years ago, as documented by sites such as Ras Abaruk 4b, Qatar 

(De Cardi 1978, p182), where traces of stone structures were found, As-Sabiyah H3, 

Kuwait (Carter and Crawford, 2010), where a series of stone structures were 

excavated, and Marawah Island, Abu Dhabi (Beech et al., 2005), where stone walls 

up to 0.7m in height survived. It is reasonable to suggest that comparable stone 
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structures would have been constructed by the populations occupying the former 

Gulf basin in the period preceding the final phase of marine incursion. Such 

structures as these would be large enough to be visible on sidescan sonar, but the 

likelihood of this would depend on subsequent depositional and erosional processes. 

Features would have to have been buried rapidly in order for them to have been 

preserved, but would also require some level of subsequent erosion in order to be 

detected by sidescan sonar.  

 

After the most recent marine transgressions, archaeological remains will consist of 

shipwrecks, lost cargoes and other marine debris. The aim was to try and reflect 

these factors through thorough analysis of all geophysical anomalies visible in the 

sidescan sonar data, and use this analysis to inform the primary characterisation.  
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3.3.2 Clarification of Geophysical Signatures 

 

As the sidescan sonar data used for the research was low-resolution data, it was 

expected that selected geophysical anomalies may need further clarification, via a 

targeted programme of high-resolution geophysical survey and diver inspection, in 

order to try and further clarify geophysical signature types. 

 

3.4 Defining Character Areas and Assigning Potential 

 

The final stage of the characterisation process is to integrate the analyses from all 

the different data sources and techniques. Once all the data is collected and 

integrated, it is possible to analyse and seek consistent patterning in the data, and 

use this to refine the landscape units into character areas, These character areas 

should reflect broad environmental trends, which will have had an influence on past 

human activity in the landscape.  

 

It is essential that part of the interpretational aspect of the seabed characterisation 

comprises the study of known human settlement patterns in the coastal region of 

Qatar in the Mid-Holocene, when sea levels were approximately 2-3 m higher than 

today (Lambeck, 1996, p.50), and the subsequent utilisation of this knowledge to 

inform pre-transgression settlement patterns in the submerged landscape. The 

successful discovery of submerged archaeological sites depends on applying our 

knowledge of geological and topographic markers from terrestrial archaeological 

sites to find analogous settings on the seabed. 
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One of the advantages of utilising landscape characterisation approaches is that the 

recursive nature of the characterisation process allows the integrated data to be 

manipulated in different ways for different purposes, by combining attributes to derive 

new information, and using the results to feed back into the characterisation again. In 

this way, the resulting character areas can be used to generate zones of 

archaeological and palaeoenvironmental potential. Preservation factors and human 

settlement patterns are key to this, and certain locations score relatively highly both 

in terms of being formerly favourable locations for human settlement and for having 

high preservation potential in terms of the probable presence of extensive 

sedimentary deposits.  
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CHAPTER 4: PRIMARY CHARACTERISATION 

 

The following chapter describes the methodology and results of the primary 

characterisation. This comprises three different strands - the sediment texture 

classification using the sidescan sonar data, the topographic mapping using the 

bathymetric LiDAR data, and the ground-truthing data using the direct sampling and 

visual observation data. Each strand has three sections consisting of the detailed 

methodology, the results and a discussion.  

 

4.1 Sediment Texture Classification 

 

The sediment texture classification was undertaken by applying acoustic 

classification techniques to the available sidescan sonar data.  

 

4.1.1 Methodology 

 

4.1.1.1 Overview of Sidescan Sonar 

 

The sidescan sonar data collected for the Qatar-Bahrain Causeway project has 

provided an image of the seabed in the Study Area, which can be used as the basis 

for landscape-scale investigations. The data consisted of 229 files in xtf format, each 

representing a single survey line and together covering 365 square kilometres of 

seabed on the Qatari side of the Causeway Project area. Sidescan sonars are either 

towed by ships or hull-mounted (Figure 7), and carry sideways-looking transducers 
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which emit sound pulses, giving an image of sound (sonograph) reflected from the 

sea floor beneath, and on either side of, the survey vessel (Jones, 1999, p.37). 

 

Figure 7 Sidescan sonar operation (from Al-Naimi et al., 2012). 

 

A range of different frequencies can be used to give different resolutions, but as with 

most geophysics, there is a trade-off between resolution and coverage. Higher 

frequencies give higher resolution data, but attenuate more quickly with range than 

lower frequencies, so the widths of the survey lines have to be smaller than with low-

resolution surveys. The survey dataset for the Study Area was acquired using single 

channel sonar at a frequency of 325 Kh in the Qatar-Bahrain Causeway’s custom 

coordinate system (GEMS, 2008). This resolution is relatively low, and the data 

quality is therefore not as good as could have been obtained with a higher resolution 

survey, so accurate interpretation of some features could be potentially more difficult. 
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However, low-resolution surveys enable quicker data capture, thus enabling a larger 

area of seabed to be surveyed within the time and resources available. In order to 

ensure comprehensive coverage of the seabed, there should be sufficient overlap 

between adjacent survey lines, ideally a minimum of 100%. This is because sidescan 

sonar systems have two side-facing transducers that cannot ensonify the seabed 

directly beneath the towfish, so an overlapping adjacent swath is necessary to 

achieve complete seafloor coverage. It is also good practice to overlap survey lines 

in different directions, as the appearance of certain features can vary considerably 

when seen from different angles (Blondel, 2007). In the dataset for the Study Area 

there is very little overlap in the survey lines, they are mainly contiguous, except for 

the northern part of the Study Area (Area 1) where there are actually gaps between 

the survey lines (Figure 8).  

 

Figure 8 Coverage of sidescan sonar survey lines in the Study Area. 
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Although the low resolution and the lack of overlap in the survey lines are recognised 

limitations on the data, a large-scale, low-resolution dataset such as this is suitable 

for seabed characterisation when used in combination with other datasets, since 

characterisation is intended as a ‘broad-brush’ study, designed to identify areas of 

high potential and target them for more detailed investigation, rather than focusing on 

the detail of individual, small-scale features . 

 

4.1.1.2 Acoustic Techniques for Sediment Texture Classification  

 

Sediment classification was undertaken using the sidescan sonar data as the base 

data source. The use of acoustic techniques for large-scale seabed classification and 

benthic habitat mapping was established in the mid-1990s (Anderson et al., 2008), 

initially using backscatter data from sidescan sonar, and more recently multibeam 

echo sounders (MBES), and their use is increasing as the technology evolves to 

allow larger areas to be surveyed more cheaply at higher resolutions. Multibeam 

systems produce contoured bathymetry from beneath and to the sides of the survey 

vessel, and hybrid multibeam systems combine both sidescan sonar and bathymetry 

(Jones, 1999, p.37). 

 

Acoustic classification consists of classifying the area of surveyed seabed into similar 

and distinct regions based on the characteristics of the acoustic backscatter. The 

theory behind it is that classified acoustic data can be used as a proxy for sediment 

classification, based on the fact that the character of the backscatter is influenced by 

the roughness of the surface, and therefore the ‘roughness’ of the backscatter is an 
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indication of the roughness of the physical sediment. The seabed sediment, in turn, 

usually reflects the character of the underlying substrate. Generally, hard substrate 

such as exposed rock generates a high backscatter value, whilst soft material such 

as mud or silt will produce a low backscatter value (Penrose et al., 2005). 

 

The big advantage of this method over photographic and direct sampling methods for 

mapping seabed sediments is the ability to obtain rapid coverage of large areas of 

seabed, without the big spatial gaps in the data that photography and discrete 

sampling inevitably leave. However, the classified acoustic data alone can only 

provide preliminary baseline mapping, and needs to be analysed in conjunction with 

ground-truthing data, usually obtained by direct sampling and photography. Although 

ground-truthing is a necessity for a valid and robust classification, and can be time-

consuming to collect, the attributes obtained from well-targeted ground-truthing sites 

can be potentially applied to large areas of seabed, even to areas which may be 

remote from the ground-truth sites (Preston, 2009). Depending on the classification 

methodology, the classified dataset can be used to guide the ground truthing, and 

also further, more detailed acoustic survey.  

 

In the past, interpretation and classification of the images of the seabed obtained 

from the acoustic data was usually carried out by skilled, human visual interpreters. 

Although this is a relatively subjective process, it has been shown to be effective in 

areas where adjacent seabed types are well-differentiated, or where specific seabed 

features produce distinctive backscatter. However, in areas of heterogeneous 

seabed, or where the seabed character changes gradually without clear 
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differentiation in the backscatter response, visual interpretation becomes more 

difficult, and other methods have to be investigated (Collier and Brown, 2005). 

Increasingly, automated processes are being explored, and although generally more 

objective, these processes can provide new and different challenges. Whilst 

automated classification can be done more rapidly than visual interpretation, more 

intensive data cleaning and preparation is required before classification is attempted. 

This is because the impact of image artefacts such as beam-pattern effects, which 

are easily detectable and excluded from the classification by human interpreters, 

needs to be minimised if coherent automated classification results are to be obtained, 

(Preston, 2009, p.1277).  

 

The classification carried out for the Study Area was ‘unsupervised’ classification. 

This type of classification is carried out without any foreknowledge of the classes to 

be created, and can be used in areas where there is little or no ground-truthing data 

(such as sediment samples or underwater photographs). This is different to 

‘supervised’ classification, which can be undertaken where there is sufficient ground-

truthing data available from the survey area to create training data that can be used 

to classify the entire dataset (Ellingsen et al., 2002).  

 

4.1.1.3 Trialling the Classification Methodology 

 

Trials were carried out using different software to try and establish the best method 

for classification and interpolation of the data. The first trial used the relatively newly-

developed seabed classification module in Chesapeake’s SonarWiz software. The 
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raw data (xtf format) from the parallel tracks covered by the survey boat were 

imported into the software, batch processed and used to create a mosaic image of 

the seabed. The classification module was then run on the mosaic data a number of 

times using a variety of parameters, including using different gain settings, varying 

window sizes, trimming the sidescan swaths by varying amounts, using different 

texturers (statistical processes), setting different window sizes and applying different 

filters, but no coherent results could be obtained; the classification module was 

unable to detect enough differentiation in the data (Figure 9). It is not clear why the 

results were so poor, given the amount of testing that was undertaken with different 

parameters. It is possible that there may have been issues with the processing of the 

data, and also at the time of use in 2011, the classification module had only just been 

released and was still being refined. It was decided that the limited time available 

could be more usefully spent trialling other software to see if better results could be 

obtained. 

 

Figure 9 Results of a trial of Sonarwiz's seabed classification module. 

The second trial was undertaken using Erdas Imagine image processing software. 

The mosaic image that was initially created in SonarWiz was exported as a GeoTiff 

and imported into Erdas Imagine. Unsupervised classification was then carried out on 

this image, but again no coherent results could be obtained, and the survey lines 

were all classified as the same complex and unusable mix of pixels (Figure 10).  
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Figure 10 Results of unsupervised image classification in Erdas Imagine. 

The third trial was carried out using a specialised seabed classification software 

called Swathview and a specialised interpolation software called CLAMS, both 

developed and supplied by Quester Tangent Ltd. These two software packages were 

very kindly made freely available for a trial period by Quester Tangent, purely for the 

purposes of this research. The Swathview software classifies the data using the 

statistical properties of the backscatter images. It allows the selection of an optimal 

number of classes relating to the composition and diversity of the seabed and 

assigns records to those classes using principle component analysis and clustering 

algorithms (Keller, 2011. p.16). Unlike the previous two trials, which used the mosaic 

data for the classification, Swathview uses the data in image space (Preston, 2009). 

The advantage of this is that analysis can be carried out with reference to the original 

geometry with which the data were acquired, such as survey direction and beam 

angle (Penrose et al., 2005). Fonseca et al. (2009, p.1300) consider that the 

processing and choices required to create a mosaic image of backscatter data (such 

as AVG correction methods and normalisation angles) are necessarily subjective, 

and therefore visual or pixel-based analyses may not be the best approach to seabed 

classification. They argue that the inherent angular response should be used instead. 
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The CLAMS interpolation software was specifically designed for the mapping and 

visualization of seabed classification data. This software differs from other image 

processing software in that it can perform categorical interpolation of the spatial data. 

This means that it does not interpolate the data as though it were a continuous 

variable, and it does not use intermediate class numbers, since the numbering 

sequence in the seabed classification is arbitrary (Preston, 2009). This categorical 

interpolation, using the mode rather than the mean of the points for the interpolation, 

gives much more coherent results than that produced by more general image 

processing software. After initial trials on subsets of the data, it was clear that the 

results obtained using Swathview and CLAMS were far better than those obtained in 

either of the trials that used the mosaic data, so it was decided to use this software 

for the entire classification.  

 

4.1.1.4 Classification using Swathview 

 

The basic steps of classification using Swathview consist of importing the raw data, 

data cleaning, image compensation, generation of image statistics, reducing 

dimensionality, clustering and mapping (Preston, 2009). The Swathview software 

performs most of the classification automatically, but as with all image processing, it 

is necessary for the user to make decisions regarding various parameters that need 

to be set, and a considerable amount of trial and error is therefore involved in order 

to establish the optimum settings. It is beyond the scope of this thesis to provide a 

detailed explanation of the complex statistics behind the processing that is carried 

out by the software (Quester Tangent, 2012a), but an overview of the processing 
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steps is necessary in order to demonstrate that sufficient testing was carried out to 

create a robust classification. 

 

Various parameters can be set for data cleaning, including range masking and angle 

masking of data. This step is crucial in order to remove along-track artefacts and 

avoid striping in the classified data. The most significant decision to make is the size 

of the rectangular sub-images that the software generates during the classification 

process (Figure 11). The generation of image statistics (called features in Swathview) 

is carried out within these sub-images or rectangles. Amplitude and texture are 

analysed within each rectangle, and the centre pixel in the rectangle becomes a data 

point position for that class. If more rectangles are generated, more data points are 

created, leading to a higher image resolution, and consequently a longer processing 

time (Personal Communication, Tony Tipple, Quester Tangent Ltd, 2012). 

 

 

Figure 11 Sub-Images (rectangles) generated by Swathview for the purpose of generating image 

statistics. 
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The features generated are merged into a catalogue file and principle component 

analysis is used to reduce the features to the first three principal components. Once 

built, the feature catalogue can be applied to whole datasets, or parts of them, to 

create classified seabed files. Cluster analysis is then performed on a range of 

classes, chosen by the user, who can select the optimal number of classes once the 

analysis is complete. The final product is a georeferenced map of the classified data 

points.  

 

 

Figure 12 A three-dimensional plot of the clusters generated during the classification process in 

Swathview. 

 

The resulting georeferenced point data can then be interpolated using the CLAMS 

software, to create a continuous raster dataset. Again, systematic experimentation 

has to be carried out using different settings and parameters in order to obtain the 

best results for the raster dataset. The most significant decision to be made is the 

grid spacing for the interpolation, as this influences the resolution of the final image.  
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The raw sonar data, in xtf format, was batch-imported into Swathview. Following 

initial testing of settings and parameters, a preliminary classification and interpolation 

was carried out on the entire dataset, and the results analysed. Comparative testing 

was then carried out on smaller areas in order to test the robustness of the 

classification results. This was done by running the classification process, using the 

same parameters as those used for the entire dataset, on two subsets of the data, 

one from Area 3 and one in Area 4. A catalogue of features was generated from each 

test area, and each one of these catalogues was used to classify each test area, and 

also to classify the entire dataset (Figure 13). The settings used for this preliminary 

classification, the test area files, and the interpolation, are listed in Appendix 1. 

 

 

Figure 13 Results of the Swathview preliminary seabed classification using catalogues based on the 

entire dataset, and using catalogues based on trial areas. 
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The results of the preliminary classification and the trial areas showed that although 

there were small discrepancies, the same broad trends were apparent in all of the 

classifications. Once the general validity of the method had been established by the 

preliminary classification and the trial areas, further experimentation was undertaken 

to identify the settings and parameters that gave the best results. Valuable feedback 

was provided by the expert staff at Quester Tangent during this stage of the process. 

The preliminary classification indicated that more aggressive angle and range 

masking needed to be carried out to reduce the along-track striping that was visible 

in the georeferenced plot. This was always going to be a problem in this particular 

sidescan sonar dataset as there was no overlap in the survey lines, and in some 

areas there were gaps between the survey lines. The expert interpolation across data 

gaps that is provided by the CLAMS software allows for this type of aggressive 

masking-out of data. Alterations were also made to the rectangle size, so that smaller 

and more square-shaped sub-images were created. 

 

The settings for the CLAMS interpolation were adjusted, so that the search radius 

was increased to close up gaps in the interpolated image, and the search size was 

increased, thus decreasing the amount of fine detail (Quester Tangent, 2012b). The 

full classification and interpolation process was then run again on the entire dataset, 

and also on the smaller test areas, using the altered parameters, to obtain the final 

classification data. The parameters used for the final classification are also included 

in Appendix 1.  
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After the final classification was complete, it was necessary to choose the optimal 

number of classes that would be used for the final classification dataset. On the basis 

of the statistics generated by Swathview, ten was selected as the optimal class 

number, so the seabed was ultimately divided into a very large number of data points 

(more than 2 million), each one of which was allocated to one of ten distinct classes. 

The resulting track plot displays the geographical position of data associated with 

each class (Figure 14). 

 

 

Figure 14 Track plot from Swathview showing classified data points (left) and interpolation of data 

points using Clams (right). 

 

The software also generates confidence data for each of the classified points, 

showing the probability that each point belongs to the class to which it has been 
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assigned. Using this data, it was possible to verify that for the chosen number of 

classes, the majority of the points had a high level of confidence, and therefore that 

the classification is robust. Out of a total of 2,033,711 data points, 85% of them had a 

confidence level of 75% or more, and 51% had a confidence level of 98% or more.  

 

The georeferenced map of the classified data points was converted to a continuous 

image file using the CLAMS interpolation software (Figure 14), which was then 

imported into ArcGIS, and analysed. This raster surface was used to create 

contiguous polygons that formed the initial landscape units for the seabed 

characterisation. 

 

A considerable amount of testing was carried out using different parts of the dataset 

and comparing the results in order to ensure that the resulting classification was as 

robust as possible. Since the classification was unsupervised, the classes needed to 

be validated by ground-truthing in representative sample areas, in order to more fully 

understand what type of seabed sediment was represented by each class. However, 

the classification carried out on the acoustic survey data provided a preliminary 

dataset which could then be further refined using a range of other data sets.  

 

4.1.2 Results 

 

As outlined in the methodology section, following extensive trials, the acoustic data 

from the sidescan sonar survey was eventually classified into ten acoustically distinct 

classes, and the output of this process was a georeferenced raster image of the 
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Study Area. The colours allocated to the different classes in the raster image do not 

have any significance in regard to their interpretation, they have been allocated solely 

based on the best way to visualise the data. The preliminary interpretation of the 

classes is summarised in Table 1 below. 

 

Table 1: List of acoustic classes generated by Swathview, and their preliminary interpretation. 

Class No. Colour in Classified 

Image 

Preliminary Interpretation 

1 Dark Green Finer Grained Sediment (Lower Reflectivity) 

3 Red Coarser Grained Sediment (Higher Reflectivity) 

4 Yellow Finer Grained Sediment (Lower Reflectivity) 

5 Lilac Medium Grained Sediment (Medium Reflectivity) 

6 Brown Coarser Sediment (Higher Reflectivity) 

8 Lime Green Coral (High Reflectivity) 

9 Salmon  Finer Sediment (Lower Reflectivity) 

10 Blue Medium Grained Sediment (Medium Reflectivity) 

 

The analysis is based on the premise that sandy environments tend to be good 

reflectors of acoustic energy, while silty/muddy environments tend to be poor 

reflectors of acoustic energy (Sutherland et al., 2007). However, at this point it is not 

useful to undertake too much analysis based solely on the classified data, as unless 

there is more information about what the classes actually represent, then the analysis 

will have little meaning for archaeological purposes. The real strength of the 

classification will be demonstrated later in this chapter when integrated analysis of 

different datasets is undertaken, in order to zone the seabed on the basis of 



73 

 

character and potential. However, before carrying out the integrated analysis it is 

useful to summarise the general trends displayed by the classified data, and to 

examine how the classified data compares to the mosaic image of the sidescan data. 

 

The crucial issue when analysing the classification of an extensive area of seabed is 

to treat it as a broad-brush technique, viewing the image in its entirety, and not to use 

the classified data for fine detailed analysis, as that is not its purpose. In this respect 

the classification was successful, in that the overall image appears coherent, and 

dominant trends in the data can be picked out. There are clearly large, discrete areas 

where a single class is dominant, especially in the south and centre of the Study 

Area. The picture is more complex in the north of the Study Area, but this was 

expected, as there were gaps in the survey lines in this area, making it more difficult 

to achieve a sensible automated classification. The lack of overlap in the survey lines 

has led to striping in the classification data that could not be completely removed by 

pre-classification processing, but it was minimised as far as possible (see 

methodology section). The different regions of the Study Area are analysed below, 

starting from the south and moving northwards. 
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4.1.2.1 Area 4 

 

Figure 15 Classified data (left) and mosaic of sidescan sonar data (right) in Area 4. 
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Classes 4 (yellow) and 5 (lilac) fill the majority of Area 4 (Figure 15). The large yellow 

area (Class 4) in the southwestern part can be relatively clearly seen in the sonar 

mosaic, in which it appears as a darker, possibly finer sediment, demarcated from the 

surrounding area by an edge of brighter reflectivity (Figure 16). Extensive trawler 

scars are evident all over this area, and the acoustic classification has clearly picked 

the area out as separate and distinct from the surrounding area.  

 

 

Figure 16 Edge of brighter reflectivity demarcating a change in texture in Area 4. 

 

In the very far southwest corner, brighter patches, possibly indicating coarser 

sediment and/or hard, rocky substrate, are apparent (Figure 17). 
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Figure 17 Trawler scarring in Area 4. 

 

Further north in Area 4, closer to the reef, although there is an area of predominantly 

Class 9 (salmon) in the classified data, it looks very mixed at this point, probably 

reflecting the complexity of the seabed in the vicinity of a coral reef, where the 

acoustic classification is able to discern differences that aren't visible to the human 

eye. The mosaic image here, although it has darker, less reflective areas of possibly 

finer sediment (represented by Class 9 in the classified data), looks brighter in 

patches, indicating rougher, harder reflectors such as coral and rocks, in a roughly 

triangular-shaped area. This triangular shape also emerges as an overall pattern of 

mixed classes in the classified image (Figure 18).  
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Figure 18 Pattern of mixed classes south of the reef in Area 4 corresponding with visual patterns in the 

mosaic data. 

The area to the south has been classified predominantly as a mix of Class 5 (lilac) 

and Class 10 (blue), with a band of Class 3 (red), which is an area of brighter 

reflectivity and therefore possibly coarser sediment, running up the centre. At first 

view, this area looks relatively homogenous in the mosaic image, but the 

classification has picked out differences that can also be seen on closer inspection of 

the mosaic image, which shows an area of northwest-southeast trending sand ridges 

in the red area (Figure 19).  

 

Figure 19 Sand ridges visible in the mosaic data in Area 4 and differentiated as Class 3 in the 

classified data. 
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4.1.2.2 Area 2/3 

 

 

Figure 20 Classified data and mosaic of sidescan sonar data in Area 2/3. 
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Class 3 (red) dominates Area 2/3, in the centre of the Study Area (Figure 20). There 

is a gap in the data in the west of Area 2/3 due to the reef, which could not be 

surveyed with the sidescan sonar as the water was too shallow for the survey vessel. 

The area immediately to the west of the reef is clearly picked out by the classification 

as a large area of lime green (Class 8). The same class also appears as small 

patches ringing the reef, as well as odd outcrops elsewhere, indicating that it is coral. 

This is where the automated classification really shows its strengths, as the large 

area of coral does not show up particularly clearly as a separate class in the mosaic 

image, (Figure 21) although the smaller outcrops do show up as bright reflectors.  

 

 

Figure 21 Mosaic of sidescan sonar data around the reef in Area 3. 
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The area to the east of the reef is predominantly Class 3 (red) and Class 5 (lilac). The 

red areas in the classified data seem to correspond to brighter reflective areas of 

north-south trending linear bands in the mosaic data, possibly sand ridges, whereas 

the lilac areas correspond to less reflective, possibly finer sediment (Figure 22).  

 

 

 

Figure 22 Sand ridges visible in the mosaic data in Area 2 and differentiated as Class 3 in the 

classified data. 

 

Immediately to the north of the reef, the classified image again shows a rather 

complex picture.  North-south linear bands here have been picked out as Class 6 

(brown) (Figure 23) rather than Class 3 (red), as they were further east. The less 

reflective area to the west has been classed as predominantly Class 9 (salmon), 

whereas a similar-looking area further to the east was classed as Class 5 (lilac). The 

automated classification here appears to be picking out differences between classes 

that actually look quite similar to the human eye. 
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Figure 23 Sand ridges visible in the mosaic data in Area 3 and differentiated as Class 6 in the 

classified data. 
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4.1.2.3 Area 1 

 

Figure 24 Classified data and mosaic of sidescan sonar data in Area 1. 
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As previously mentioned, the classification in the north of the Study Area (Area 1 - 

Figure 24) appears very mixed, particularly the area in the far north, and it is 

therefore necessary to categorise this area based more on discrete areas of mixed 

classes rather than areas of single classes. 

 

The area to the north of the reef appears in the classified data as predominantly 

Class 3 (red) with green patches (Class 8). Although it is quite difficult to see area 

differentiation in the mosaic image where there are gaps in the survey lines, this area 

does show up as a more brightly reflective area than the area further to the north, 

suggesting that it could consist of coarser sediment, and/or rock and coral, which 

would fit with its location close to the reef (Figure 25).  

 

Figure 25 Brighter reflective area immediately north of the reef in Area1. 
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The most obvious feature in Area 1 is an extensive and relatively cohesive 

southwest-northeast trending band of classes 4 (yellow) and 9 (salmon), with a few 

patches of Class 1 (dark green) contained within it (Figure 26). It generally appears in 

the mosaic image as an area of slightly lower reflectivity than the surrounding areas, 

possibly because it is finer grained, and contains less rocks and coral. 

 

Figure 26 Large band of lower reflectivity in Area 1, differentiated in the classified data mainly as 

Classes 9 and 4. 

 

This is flanked to the north by an another extensive area that, although quite mixed, 

predominantly consists of classes 5 (lilac) and 10 (blue). This latter area manifests 

itself in the mosaic image as containing large-scale, north-south aligned linear 

features (Figure 27), which are probably sand ripples. 
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Figure 27 Sand ripples in the north of Area 1, visible in the mosaic data. 

 

In the southeast of Area 1 is another quite mixed area that is largely composed of 

Class 3 (red) , merging into patches of Class 6 (brown) in the north and mixed with 

patches of Class 8 (lime) in the south. This area can be differentiated in the mosaic 

image as a concentrated area of bright, reflective curvilinear features which would 

appear to be sand waves and/or reef structures (Figure 28).    
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Figure 28 Sand banks in the southeast of Area 1, visible in the mosaic data and differentiated as 

Classes 3 (red) and 8 (lime) in the classified data. 

 

On initial analysis using solely the mosaic sidescan data, the classes generated by 

the acoustic classification process largely seem to be coherent and logical. The red 

(Class 3) and brown (Class 6) areas roughly correlate with areas of brighter 

reflectivity, suggesting that these areas represent coarser sediments, often 
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containing areas of sand ripples. The lime green areas (class 8) coincide with the 

reef, and with other bright reflectors dotted around the mosaic data, suggesting coral 

reef and coral/rocky outcrops. The salmon (class 9) and yellow (class 4) areas 

correlate with less reflective areas of seabed, suggesting finer sediments, and no 

rocky substrate. The lilac (class 5) and blue (class 10) areas indicate finer-grained 

sediment than that in the red and brown areas, but not as fine as that in the salmon 

and yellow areas. However, it is not immediately clear, solely on the basis of the 

mosaic data, as to why the automated classification process has classed the blue 

and lilac areas separately, since it is difficult to distinguish much difference between 

these areas in the mosaic data. The dark green areas (Class 1) are harder to 

interpret as they do not appear as large cohesive areas anywhere, but rather appear 

mixed in with other classes. However, they occur most frequently with classes that 

have been interpreted as finer-grained sediments, so it seems logical to assume the 

green areas also represent a class of finer sediment, albeit with some differences 

that are not discernible by the human eye in the mosaic data.  

 

4.1.2.4 Generating Initial Landscape Units 

 

As part of the seabed characterisation process, the classified raster file was 

polygonised to create initial landscape units, in order to carry out integrated data 

analysis with other data sets. Initially these polygons were created by automatically 

converting the raster image to polygon format, which resulted in an enormous and 

unworkable amount of polygons (more than 39,000), many of which were very small, 

and not suitable for use as base landscape units. Accordingly, the data was 
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iteratively processed to merge small polygons into neighbouring polygons. However, 

although this was an objective and repeatable method that resulted in polygons of a 

sensible size, it did not always produce a good representation of the dominant class 

within each merged polygon in areas where the classes were very fragmentary. A 

different methodology for creating the polygons was then trialled, where the raster 

image file of the seabed classes was used as the basis for manually digitising 

polygon boundaries, mostly based on single classes. However, in areas where the 

classes were very fragmented and mixed, visual judgement was used to define 

polygons based on the dominant class within a mixed area. This method proved to 

be the most successful at capturing coherent and useable base landscape units. 

Although by using this method the initial landscape units were created manually, they 

were still based on the automated classification undertaken using Swathview, which 

had picked out differences in the acoustic data that could not be seen by manual 

visual examination of the unclassified sidescan data. A total of 90 individual polygons 

were created as a result of this process (Figure 29 and Table 2). Also, as a result of 

refining the data into polygons of a more useable size at a landscape level, two of the 

classes, which only covered negligibly small parts of the Study Area, were removed 

(Classes 2 and 7). 
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Figure 29 Initial landscape units based on classification of acoustic backscatter.   
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Table 2: Initial landscape units - polygon statistics. 

Class No. No. Polygons 

Total Class 

Area 

(Sq Km) 

Average 

Polygon Size 

(Sq Km) 

Max Polygon 

Size 

(Sq Km) 

Min Polygon 

Size 

(Sq Km) 

1 7 31.10 4.44 10.44 0.18 

3 14 74.97 5.36 30.23 0.19 

4 4 32.41 8.10 11.93 1.97 

5 22 111.88 5.09 20.86 0.22 

6 3 6.45 2.15 4.75 0.71 

8 5 13.84 2.78 10.32 1.13 

9 15 37.31 2.49 7.76 0.50 

10 20 48.26 2.41 18.51 0.19 

TOTAL 90 356.22 3.96   

 

4.1.3 Discussion 

 

Following on from the results of the acoustic classification, it is necessary to critically 

examine how valid the acoustic classification methodology is in the context of 

previous work in this field. Sidescan sonar backscatter data has been used for more 

than 30 years for seabed mapping, and more recently, multibeam backscatter data 

has also been used. Considerable research has been undertaken in the last decade 

into assessing different seabed classification methodologies using acoustic 

backscatter, although almost all of this work has been done for the purposes of 

geological and/or benthic habitat mapping, rather than for exploring archaeological 

potential (for example Penrose et al., 2005; Anderson et al., 2008; Brown and 



91 

 

Blondel, 2009; Van Rein et al., 2011). It should also be noted that none of this work 

has been done in the Arabian Gulf. 

 

Although there are studies that have produced inconclusive results (Kostylev et al. 

2001, cited in Orpin and Kostylev, 2006), the published research generally supports 

the theory that there is a correlation between acoustic backscatter and seabed 

sediment characteristics (Brown and Blondel, 2009). Collier and Brown (2005) 

undertook a study to examine the dependence of acoustic backscatter on sediment 

grain size distribution using sidescan sonar data and sediment grab samples from 

the Loch Linnhe artificial reef site on the West Coast of Scotland. Overall, the results 

did support previous studies that have suggested that the highest backscatter tends 

to correspond with the coarsest sediments, although they also found some issues 

with coarse sediments having a disproportionate effect on the backscatter response , 

and stated that ‘it would be desirable to improve the correlations obtained between 

backscatter and sediment grain size properties’ (Collier and Brown, 2005, p.446).  

 

Brown et al. (2011) undertook sediment mapping of a 4,800km2 area of seabed off 

Canada by using a semi-automated backscatter classification software (QTC 

Multiview) on a large multibeam sonar dataset, and obtained promising results for the 

production of geological maps. However, a study carried out in the Aleutian Islands 

utilised backscatter response, seafloor rugosity and complexity data to classify the 

substrate, and did not find a strong correlation between mean sediment grain size 

and acoustic reflectivity. The researchers emphasised the need for a combination of 

techniques for ground-truthing, a relatively large number of samples, and ground-
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truthing of all potential substrate types represented in the classification (Rooper and 

Zimmerman, 2007, p.956). Acoustic seabed classification carried out in Western 

Norway (Ellingsen et al., 2002) using the QTC View system, found that there was 

generally concordance between the acoustic classification and sediment grain size. 

However, the study also found that other physical and/or biological factors that could 

not be detected by grab sampling or coring were influencing the acoustic classes.  

 

When comparing seabed classification from acoustic methods with direct sampling 

methods or optical methods, it can be seen that each technique has its strengths and 

weaknesses, for example acoustic survey provides the opportunity to examine large 

areas more efficiently than direct sampling. It can be difficult to establish the spatial 

scale of different seabed classes based on discrete sample stations alone, whereas 

acoustic backscatter provides continuous data. It is likely that this continuous data 

will result in a more diverse seabed map than would be produced using photography 

or sampling at discrete locations (Sutherland et al., 2007). Also, research by Orpin 

and Kostylev (2006) suggests that classification from photography is likely to result in 

more seabed classes than would be identified from grab samples alone, as 

photography can show a wider range of textural variability. The researchers 

attributed this in part to the difficulties in quantifying coarse gravel using grab 

samplers, which have a tendency to lose the coarsest grains. Rooper and 

Zimmerman (2007) found that it was not possible to determine sediment grain size 

from video footage, and Orpin and Kostylev (2006) found that that similar backscatter 

responses could be produced by different mean grain sizes, hence the importance of 

direct sediment sampling. Also, factors which may affect classification, such as ripple 
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marks and other micro-topography will not be apparent in grab samples or sediment 

grain size analysis, but may be detectable in video or backscatter imagery (Ellingsen 

et al., 2002). The most robust classification, therefore, is likely to result from 

combining acoustic techniques with photography and grab sampling. The aim of a 

successful acoustic classification system should be to bring greater powers of 

analysis into the classification than would be achievable through manual 

interpretation (Blondel and Sichi, 2009). 

 

A workshop was carried out in 2006 at the University of Ulster in Northern Ireland, 

which brought together several international research teams involved in developing 

techniques for interpreting MBES backscatter data. The teams applied a range of 

acoustic classification approaches to a single common MBES dataset collected from 

Stanton Banks, in the northeast Atlantic, 120 km west of mainland Scotland, for the 

purpose of geological and habitat mapping (Brown and Blondel, 2009). The dataset 

covered a 7.5 x 9 km area, and ground-truthing data was provided by 90 seabed 

photographs.  

 

Blondel and Sichi (2009) undertook textural analysis via unsupervised classification 

of the backscatter imagery, using a software called TexAn that was specifically 

designed for textural analysis of sidescan sonar rather than multibeam data. 

Although the results were not perfect, the classification worked well in relation to the 

ground-truthing data, and the translation to multibeam proved to be successful. 
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Fonseca et al. (2009) used a combination of visual interpretation of the mosaic data 

and angular response analysis techniques to classify the data, and the approach 

resulted in a good correlation with the available ground-truthing data.  

 

Marsh and Brown (2009) utilised an artificial neural network model called a self-

organising map (SOM) for classifying the data. This approach, based on the beam 

level angular response and bathymetry rather than just on the mosaic data, does not 

require any a priori specification of the number or type of classes, and is capable of 

producing a range of maps with different parameters based on end-user 

requirements. This work demonstrated that much better results were obtained using 

the beam-level classification than the directionally-filtered, mosaiced backscatter 

strength data (Marsh and Brown, 2009, p.1274-1275). 

 

Preston (2009) undertook unsupervised classification of the data based on image 

amplitudes and texture, followed by assigning attributes based on the available 

ground-truthing data. Rather than being derived from a geographic mosaic, the 

classification was done in image space, which means that the axes consist of sample 

number and ping number, in order to avoid artefacts common in mosaics (Preston, 

2009, p.1278). The classification process was carried out using specialised 

multibeam classification software, (QTC Multiview), and categorical interpolation 

software (QTC Clams). The resulting acoustic classes correlated well with the 

ground-truthing data. This is the processing method that is the most similar to that 

undertaken for the seabed classification off the coast of Qatar, albeit using multibeam 

data rather than sidescan sonar data.  
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Simons and Snellen (2009) applied a Bayesian approach, using the averaged 

backscatter data per beam, so that the MBES calibration was irrelevant, and also, 

along-swathe seafloor type variations did not affect the classification, since no use 

was made of the angular dependence of the backscatter data (Simons and Snellen, 

2009, p.1267). The results showed a good correlation with the available ground-

truthing data.  

 

It has been noted that dense concentrations of seagrass and algae contribute to the 

acoustic backscatter response, even to the extent where they can mask the acoustic 

signals from the actual sea floor (Penrose et al., 2005). However, this is less likely to 

be a concern for low frequency data, where only the dominant return is required, and 

there are certainly cases where the roughness of rocks, boulders, and bedrock have 

produced very different backscatter responses, even though the benthic habitat type 

is the same on all of them (Preston, 2009). Research based on human visual 

interpretation of high-resolution acoustic backscatter imagery undertaken by Van 

Rein et al. (2011) in Church Bay, off Rathlin Island near the North of Ireland, found 

that there was no discernible difference between the imagery taken before and after 

the removal of 100m2 of kelp from three sites. The authors also referenced other 

studies where it was found that it was not possible to easily identify low density 

seagrass beds from acoustic backscatter data (Van Rein et al., 2011, p.345). 

Conversely, previous research using acoustic classification has also demonstrated 

that there is at least some correlation between benthic habitat and substrate type 

(Brown and Blondel, 2009).  
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Although the published literature shows varied approaches to, and results from the 

classification of seabeds using acoustic backscatter data, the two issues that all of 

the studies emphasise heavily are, firstly, the need for a combination of techniques to 

be used for classification, as the results from each become far more informative in 

combination, and secondly, the importance of the amount and quality of the ground-

truthing data. It is clear that that there is still a lot of work to be done on different 

methodologies, and that some of the results from trials and experiments seem to 

conflict with each other. The reality is that the results are probably very specific to the 

particular seabed type that is being investigated, and it is therefore very important to 

build up a regional picture and establish which methods work and which don't work 

for a particular region. Concepts and ideas can be taken from other areas but they 

need to be refined according to regional variances.  

 

The results presented in section 4.1.2 show that the acoustic classification process in 

the Study Area has successfully enabled the division of the seabed into a set of initial 

landscape units based on sediment texture, which is a huge step towards the 

process of building up knowledge about the archaeological and palaeoenvironmental 

potential of zones within the submerged landscape. However, these initial polygons 

are only an interim step in the characterisation process, and need further analysis 

and refinement. In this form, there are too many landscape units to be useful for 

landscape-scale study, and not enough is known of their character for them to be 

meaningful, but they provide the basic building blocks for further characterisation 

based on bathymetry, ground-truthing data and analysis of geophysical anomalies 
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(see sections 4.2, 4.3 and Chapter 5). Attributes relating to the character and 

potential of the seabed in particular zones, derived from the other datasets, can be 

attached to the base landscape units, and the units refined accordingly.  

 

4.2 Topographic Mapping 

 

4.2.1 Methodology 

 

A surface model of the seabed in the Study Area was generated from the LiDAR 

bathymetry in order to be able to identify broad zones of high archaeological and 

palaeoenvironmental potential which could be used to refine the landscape units 

created from the sediment texture classification. 

 

4.2.1.1 Overview of LiDAR Bathymetry 

 

The Bathymetry data (seabed topography) was kindly made available by the 

Hydrographic Section of the Ministry of Municipality and Urban Planning  in Qatar.  

The bathymetry was captured by LiDAR (Light Detection and Ranging) survey, an 

effective technique for measuring depth in shallow water. The technique consists of 

an aircraft-mounted laser transmitting light pulses downwards. These pulses reflect 

from the sea surface and the sea floor, and therefore measure the depth. This type of 

airborne survey is extremely useful for coastal and shallow-water research. It allows 

very rapid data collection over large areas in comparison to sonar techniques. Also, it 
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can cover very shallow areas that cannot be covered by ship-based techniques and 

therefore allows seamless mapping through the land/sea interface.  

 

Figure 30 Extent of available LiDAR bathymetry. 

(m) 
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The extent of the available bathymetry did not coincide exactly with the extent of the 

defined Study Area (the extent of the sidescan sonar data), but it did cover a large 

part of the Study Area, and extended significantly beyond it in the south into the Gulf 

of Salwa. The survey started approximately 15 km north of Al-Zubārah and continued 

for some 130 km down the west coast of Qatar to approximately 15km beyond Umm 

Bab (Figure 30).  

 

4.2.1.2 Generating the Surface Model 

 

The LiDAR data was provided as ASCII xyz files, containing the three-dimensional 

coordinates of the points collected by the LiDAR survey, projected in the UTM39N 

coordinate system. Vertical heights were given in metres based on the Qatar Chart 

Datum, which lies 0.88m below Qatar Vertical Control Datum (Mean Sea Level at 

Doha Port). It was processed and analysed using the 3D analyst module in ArcGIS. 

The first step was to convert the ASCII data to 3D feature data and add the height 

information (z values). The z values in the data had to be reversed as drying heights 

were recorded as negative values, and depths below sea level were recorded as 

positive values. This resulted in a point-based shapefile which could then be used to 

interpolate a raster elevation model for the seafloor surface. This was done by using 

the raster interpolation function in ArcGIS, and choosing the ‘natural neighbour’ 

method of interpolation. It was necessary to experiment with different cell size 

settings to establish the best balance between resolution of the surface model and 

feasible processing time and power. As the point data was spaced on average 

between 5 and 7m apart, it was originally decided to use a cell size of 7m for the 
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interpolation, as this fitted with the resolution of the original data, and did not use too 

much processing power, data storage or time. However, this made it difficult to see 

some of the features when zoomed in, so after further testing, it was decided to use a 

cell size of 2m for the bathymetry data in the Study Area, and 5m for the data outside 

the Study Area. It was not possible to use such a high-resolution for the entire 

dataset due to the processing time and data storage requirements involved. Although 

the 2m resolution did not add any more detail to the features visible on the surface 

due to the 7m spacing of the original LiDAR points, it did mean that features were 

easier to examine when zoomed in. The resulting raster elevation surface was 

visualised using stretched values along a colour ramp (Figure 30). 

 

It became apparent at this stage, once the coastline was visible in the bathymetry 

and could be compared to the coastline data that had already been obtained from the 

Qatar Centre for GIS, that there appeared to be a shift in the bathymetry data to the 

northwest. All possibilities were examined, including possible coordinate 

system/projection issues, and the processing of the data was repeated again from 

scratch. This was done first using the UTM39N projection, which still showed the shift 

in data, and then using the Qatar National Grid projection in case there was an error 

in the metadata provided, but the data was still not located correctly. Finally, it was 

decided to use the coastline data provided by the Centre for GIS to correctly locate 

the bathymetry data. Two control points were logged with a GPS at known locations 

on the coast (piers) for ground-truthing purposes, to ensure that the coastline data 

being used for the correction was actually in the right place itself. Then a series of 

reference points were logged at identifiable locations over the extent of the 
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bathymetry and in the coastline data, and the differences in the X and Y coordinates 

were compared and averaged. It was apparent that in the bathymetry data, the X 

coordinates were all approximately 80m too far to the west, and the Y coordinates 

were all approximately 80m too far to the north. This was a constant error noted in all 

of the reference points, so it was possible to shift the data by adding 80m to the X 

coordinates and subtracting 80m from the Y coordinates. Once this was done there 

was a clear fit between the bathymetry and the coastline data. The coordinates of the 

reference points and the values used for shifting the data are provided in Appendix 2. 

 

The next step was to carry out a hillshade operation on the raster elevation surface in 

order to create a shaded relief model of the seafloor, and therefore greatly enhance 

the visualisation of the topography. This was done by using the hillshade tool in 3D 

analyst, which works by considering the illumination source angle. Shadows can also 

be considered in the analysis if required, but were not used in this case as a better 

hillshaded surface was created without the use of shadows. A variety of models were 

created using different vertical exaggeration factors to further enhance the surface 

visualisation, and for most of the analysis, a vertical exaggeration factor of 20 was 

deemed to provide the best results. The elevation surface was then set to be 40% 

transparent, and layered on top of the hillshaded surface to create an enhanced 

visualisation of the seafloor topography. The elevation surface draped over the 

hillshaded surface, with a vertical exaggeration factor of 20, was the final surface 

model that was used for the analysis. The surface model was also exported into 

Erdas Imagine software and used to generate a 3D visualisation in order to assist 

interpretation (Figure 31). 
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Figure 31 3D visualisation of the seabed in the Study Area (created in Erdas Imagine, based on the surface model generated from the bathymetry). 

 

N 
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4.2.1.3 Mapping Features 

 

The aim was to use the surface model to create a map of significant landscape 

features by digitising polygons around any significant features or areas of seabed 

that could be identified. Features or areas were deemed to be significant on the basis 

of two criteria. The first criteria was whether areas had the potential to be attractive to 

past humans (Westley et al., 2011a).  On the basis of what we know about human 

settlement in the region in the Early Holocene, attractive areas include former 

coastlines, which could appear in the surface model as distinct breaks in slope, and 

sheltered coastal settings such as former bays, estuaries and lagoons. Other 

features known to be attractive to past humans in terrestrial Qatar in the Mid-

Holocene include protective Karst-related settings, for example, former sinkholes. 

The second criteria was whether areas had the potential for the burial of palaeo-land-

surfaces and the presence of palaeoenvironmental caches, that is, areas 

characterised by sediment deposition rather than erosion. Such areas could include 

sediment traps, for example, depressions and palaeochannels, as well as smooth 

areas of seabed with protruding rock outcrops. Other features such as spits and 

barriers are also indicative of landscape preservation rather than erosion. Key factors 

in the preservation of wrecks are not exactly the same as those for archaeological 

sites, but the probable presence of extensive sedimentary deposits is common to 

both. More features were mapped in the Study Area itself, as the higher resolution of 

the surface model within the Study Area allowed more detailed analysis. Beyond the 

Study Area, only larger, landscape-scale features were mapped.  
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It was also possible to use the surface model generated from the bathymetry in 

conjunction with information about former sea levels to create models of where 

shorelines would have been likely to occur in the Early Holocene. This was done by 

taking minimum and maximum sea level values at specific time periods from the 

global sea level curve produced by Stanford et al. (2011), and using these values to 

differentially shade those areas of the surface model that would have been under 

water and those that would have been dry land within a certain time period. The 

same was also done with sea level values from the Qatar sea level curve produced 

by Jameson and Strohmenger (2012), although with this curve there was just a single 

value for any particular point in time rather than minimum and maximum values. This 

process was relatively easy to do as the LiDAR bathymetry, unlike bathymetry data 

generated from sea-based sonar survey, provides seamless coverage from land to 

sea. The differentially shaded surface models were then compared to the 

topographic features that had been mapped from the surface model.  

 

4.2.2 Results 

 

The surface model created from the LiDAR bathymetry has provided a significant 

amount of detail about the present character and shape of the seabed. However, it is 

worth noting that there are limitations to the surface model produced by the 

bathymetry. The resolution of around 7m means that is possible to identify and 

interpret large, landscape-scale features such as former shorelines and large 

channels, but smaller, more discrete or ephemeral features will not show up at this 

resolution. There are also a few small areas within the LiDAR survey area where no 
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data was collected, and these appear as completely smooth areas in the surface 

model. 

 

Also, it also has to be borne in mind that the present topography of the seabed will 

not be an exact reflection of what it would have been in the Early Holocene, as it will 

have been substantially affected by subsequent processes of erosion and deposition 

(see Chapter 7). Generally, it is thought that sediment deposition will have had the 

effect of smoothing out the seabed surface in this area (Marin Mätteknik AB, 2002, 

p.17) by filling in depressions, hollows and channels. 

 

4.2.2.1 Topography Within the Study Area 

 

The bathymetry shows that generally the seabed within the Study Area is relatively 

flat. The two deepest areas are along the southwestern edge of the Study Area, 

where the seabed averages around 12 to 13m deep (the deepest point here is just 

under 15m deep), and a southwest-northeast orientated channel in the north of the 

Study Area, averaging 8 to 9 m deep. Apart from near-shore, the highest areas in the 

Study Area are on and around the Qit’at ash Shajarah reef in the centre-west of the 

Study Area, which is only just below the surface of the water at certain points. Apart 

from the shallower near-shore area to the north of the Ras ‘Ushayriq  peninsula, the 

rest of the Study Area averages between 4-6m in depth (Figure 32).  
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Figure 32 Surface model of the Study Area created from  LiDAR bathymetry. 

(m) 
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Figure 33 Features mapped from the surface model. 

 

(m) 



108 

 

The most prominent seabed feature is the Qit’at ash Shajarah drying reef in the west 

of the Study Area. The other major feature is a wide, deep, southwest-northeast-

trending channel which runs across the north of the Study Area (Figure 33). This 

channel is more than 5 km wide at its widest point, and it reaches depths of more 

than 9m in parts.  

 

Most significantly for the purposes of archaeological potential, the surface model 

shows three coherent linear areas of relatively abrupt change in depth, which have 

been tentatively interpreted as former shorelines (Figures 34 and 35) that may have 

formed during periods of still-stands in the marine transgression. These putative 

former shorelines are extremely significant, as the archaeological evidence from 

terrestrial sites in Qatar in the Mid-Holocene demonstrates that coastlines were clear 

foci for human settlement (see Chapter 7). 

 

Two of these potential former shorelines, running roughly north-south, lie close to the 

present-day coastline to the north of the Ras ‘Ushayriq peninsula (Figure 35). The 

easternmost one roughly follows the -1m contour, possibly on the seaward edge of 

the intertidal zone. The westernmost one does not closely follow a single contour, 

instead mirroring the -5m contour in the south and rising to the -2m contour in the 

north. Both of them appear to lie roughly parallel with each other, looping around a 

headland and then merging.  
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Figure 34 Putative former shorelines in the Study Area. 

 

Figure 35 Hillshaded surface model with putative former shorelines. 

(m) 

(m) 
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The third putative shoreline appears as a very abrupt change in depth which runs 

west-east across the centre of the Study Area (Figure 36), roughly following the -7m 

contour line. This edge is very clear along most of its length, but it becomes more 

indistinct towards its western end. The deep, southwest-northeast orientated channel 

mentioned above lies immediately to the north of this feature.  

 

Figure 36 Hillshaded surface model with putative east-west former shoreline. 

The edge of this change in depth is also clearly visible in the mosaic image of the 

sidescan sonar data (Figure 37). 

 

Figure 37 Putative east-west former shoreline with sidescan sonar data overlain. 

(m) 

(m) 
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Several significant topographic features lie in close association with the north-south 

former shorelines, and are probably related to them (Figure 38). These features 

consist of raised ridges, likely to be former promontories, spits or islands. These 

types of feature are highly significant locations for potential human settlement, as are 

the possible bays and headlands on these shorelines, which may have been both 

attractive areas for settlement, and protective in terms of deposits. 

 

Figure 38 Putative former shorelines with possible associated mapped features. 

(m) 
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Another feature in close proximity to the former shorelines is a north-south aligned 

deeper channel, more than 700m wide, which runs from the east of the Ras 

‘Ushayriq peninsula northwards (Figure 39). This may represent a former  river 

channel, and its orientation and proximity to a present-day Wadi (Wadi Debayan) 

suggest that this palaeochannel is actually a continuation of Wadi Debayan. 

 

Figure 39 Palaeochannel possibly relating to the former course of Wadi Debayan. 

 

A cluster of small curvilinear depressions, some interconnected, are visible in very 

shallow depths approximately 1km offshore, in the intertidal zone (Figure 40). These 

features, interpreted as palaeochannels, are narrow and very shallow, and the most 

(m) 
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well-defined channel appears to end at the postulated former shoreline. The location 

and orientation of this cluster of palaeochannels suggests that they represent a 

drainage system relating to that shoreline, and are therefore of considerable 

significance in terms of palaeoenvironmental potential.  

 

 

Figure 40 Cluster of palaeochannels. 

 

A few fish traps (currently undated) are just about discernible in the intertidal zone in 

this area (Figure 41), and these are so ephemeral that it would have been very easy 

to miss them had their locations not been mapped already as a result of the QNHER 

cultural mapping project (Breeze et al., 2011). Only a few of the traps mapped by the 

QNHER can be identified in the surface model, as most of them lie in 'no-data' areas 

in the bathymetry.  

 

(m) 
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Figure 41 Fishtraps visible in the surface model (top), mapped during the QNHER cultural mapping 

project (middle) and an example photographed by the QNHER project (bottom). 

(m) 

(m) 
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A number of linear and curvilinear depressions or channels occur in the Study Area. 

These are concentrated in the deep channel previously mentioned to the north of the 

west-east shelf (Figure 42), and are almost all on the same southwest-northeast 

orientation as the channel itself. However, there are also two north-south aligned 

linear depressions or channels in the south of the Study Area, between the Bay of Al-

Zubārah and the reef (Figure 43). 

 

Figure 42 Channels and depressions in the north of the Study Area. 

 

Figure 43 Channels and depressions in the south of the Study Area. 

(m) 

(m) 
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The orientation of these linear and curvilinear depressions are worth highlighting. 

Those lying in the deep channel in the north (Figure 42), as well as reflecting the 

orientation of the channel itself, also lie roughly parallel with the southwest-northeast 

alignment of the present-day and putative former shorelines to the southwest. The 

linear depressions in the south, to the east of the reef (Figure 43), reflect the north-

south orientation of the putative extension of Wadi Debayan, and it is likely that these 

three features represent palaeochannels that may all be part of a larger drainage 

system. 

 

Two extensive areas of linear ridges are discernible in the north of the study data, 

one north-south trending (Figure 44), and one northwest-southeast trending. These 

are very large, widely-spaced features, between 100m and 200m apart, and are 

interpreted as sand ripples or 'megaripples'. Another area of smaller, east-west 

trending sand ripples is visible in the south of the Study Area.   

 

Figure 44 Megaripples in the north of Area 1. 

(m) 
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The central area, between the reef and the Bay of Al-Zubārah is dominated by 

narrower, less prominent north-south trending linear features which are interpreted 

as either sand banks or linear reef structures (Figure 45). 

 

 

Figure 45 Possible sand banks between the reef and the bay of Al-Zubārah. 

 

Several small hollows can be identified in the surface model, exclusively in the north 

of the Study Area. These are concentrated into two groups, one in the extreme 

northwest of the Study Area, and one to the north of the west-east potential former 

shoreline. The two concentrations are separated by an extensive area of sand ripples 

where no hollows are present. It seems logical to assume that the sand ripples will 

have masked any hollows that may have been present in those areas. These 

features appear as small, but very distinctive circular or sub-circular holes on the sea 

floor, ranging from 20m to 50m in diameter. They do not appear to be very deep, 

either because they are filled with sediment, or because the resolution of the LiDAR 

data may not be sufficient to adequately reflect the morphology of such small 
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features. These hollows were cross-checked against the sidescan sonar data to see 

if they could be further clarified, but unfortunately most of them do not lie within the 

area covered by the sidescan sonar survey. One that did lie within the survey area 

was not visible in the sidescan sonar data at all, at least in part because it lay at the 

inner range of the swath, directly below the towfish (Figure 46). It is not clear exactly 

what these features are, but they have been tentatively interpreted as former solution 

hollows, as found in the terrestrial Karst landscape of present-day Northern Qatar. It 

is interesting to note that one of the potential solution hollows lies very close to one of 

the linear depressions, as it has been noted that sequences of Karst-related 

depressions in terrestrial Qatar can form linear depressions (Sadiq and Nasir, 2002).  

 

Figure 46 Possible solution hollow visible in the surface model but not in the sidescan sonar data. 
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There are some very low mound-like features present, mainly to the north of the 

west-east former shoreline (Figure 47). These are only very slightly elevated, by 

around 1m, and range in size from 50m to 150m in diameter, so could be better 

described as undulations. It is possible that these features could represent outcrops 

in a sediment-covered seabed. 

 

 

Figure 47 Undulations in the seabed to the north of the putative east-west shoreline in Area 1. 

 

More complex topography exists around the reef (Figure 48), making it difficult to 

interpret, but it includes a raised area to the west that is likely to be part of the reef 

formation. There is also an elevated area to the south, which may represent an 

accumulation of sediment on the leeward side of the reef, and it includes two 

prominent larger outcrops of either rock or coral. A deeper area in the southwest may 

represent a basin, but this can only be a tentative interpretation as the feature lies at 

the edge of the surface model.  
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Figure 48 The Reef in the west of the Study Area. 

 

4.2.2.2 Topography Outside the Study Area 

 

In the area to the south of the Study Area, where topographic features were not 

mapped in as much detail, greater depths are present, particularly in the far south in 

the Gulf of Salwa (Figure 49). Here, depths increase to more than 28m in the west, 

but there are also numerous large areas of significantly higher elevation within this. 

The predominant features identified were potential former shorelines, which can be 

traced virtually all the way down the coast, although their occurrence is more 

sporadic in the area immediately to the south of the Study Area. Due to the narrow 

width of the data set around the Hawar Islands (which lie in Bahrain territorial waters 
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and therefore not included in the survey), it is not possible to tell if these putative 

shorelines in the central area link up to form a continuous feature with those in the 

south or if they represent different phases of shoreline. However, it is likely that the 

area around the Hawar Islands may incorporate part of this shoreline. 

 

Figure 49 Potential former shorelines to the south of the Study Area. 
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The areas of higher elevation down in the Gulf of Salwa form quite significant 

protrusions from the seabed (Figure 50), with elevation changes of 7 or 8 m, and 

would have been islands at some time in the past, when sea levels were more than 

10m lower then present-day levels.  

 

Figure 50 Seabed surface in the Gulf of Salwa. 

(m) 
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4.2.2.3 Topography and Sediment Classification 

 

As part of the integrated analysis of different datasets in order to refine the zoning of 

the submerged landscape, the results of the acoustic classification and the 

bathymetry analysis were examined together to see how each could inform and 

enhance the other. The aim was to highlight those areas where the two datasets 

were consistent with each other and vice versa, and in particular to see if the surface 

model could provide useful additional information about the acoustic classes that 

were generated by the unsupervised acoustic classification process.   

 

The broad patterns of the classified data in the south of Area 4 seems to show a 

good correlation with the broad patterns that can be discerned in the surface model 

(Figure 51). The deeper area that is present along the western edge of Area 4 in the 

surface model is largely reflected by the yellow area (Class 4) in the classification. 

This coincides with the extensive area of trawler scarring that is visible in the mosaic 

of the sidescan sonar data. These scars are not visible in the surface model, 

probably because they are too superficial.  

 

The pattern of raised areas visible in the surface model is also discernible in the 

classification, including the sub-oval area in the south, and the triangular elevated 

area immediately south of the reef. There is a complex pattern evident in the 

topography in the elevated area to the south of the reef, and the classified data in this 

area is also very complex. The patterns in the two datasets don't reflect each other in 

detail, but a similar general outline shape can be traced in both datasets. 
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Figure 51 Surface model with the classified data in Area 4. 

 

In Area 2, the deeper north-south trending channels that were identified in the 

surface model show some coincidence with the lilac north-south-trending areas 

(Class 5) generated by the acoustic classification (Figure 52), possibly because 

these channels contain finer sediment than the surrounding area. It is also possible 

that the northern part of the possible wadi extension that was identified in the surface 

model to the east of the Ras ‘Ushayriq  peninsula can start to be discerned in the 

classified data, but as this is the only part of the channel that lay within the area 

covered  by the sidescan sonar survey, there is not enough data to be more positive 

about this.  

 

(m) 
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Figure 52 Surface model with the classified data in Area 2, West of the Ras Ushayriq Peninsula. 

 

The raised area to the west of the reef that is clearly visible in the surface model, is 

equally clearly visible as the lime green area (Class 8) in the classification (Figure 

53). The complexity of the classified data immediately to the north of the reef is not 

really reflected in the topography shown in the surface model, or in the mosaic image 

of the sidescan data. The automated acoustic classification is obviously detecting 

changes in the seabed sediment that are not just a factor of depth in this area, but 

could be influenced by coral formation and differential sediment accumulation around 

the reef.  
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Figure 53 Surface model with the classified data in Area 3, north of the reef. 

 

In Area 1, the large, southwest-northeast trending channel that was identified in the 

surface model is broadly coincident with the large band of mixed salmon and yellow 

(Classes 9 and 4) in the classified data (Figure 54). The smaller linear depressions 

that could be discerned within the bigger channel in the surface model are not readily 

apparent in the classified data, but the gap between survey lines in this area does not 

make interpretation of smaller features like this very easy. However, it is clear from 

this integrated analysis that the yellow and salmon areas correlate closely with the 

deeper areas within the Study Area.  

 

(m) 



127 

 

 

Figure 54 Surface model with the classified data in the deep channel in Area 1. 

 

In the north of Area 1, the classified data consists of a mixed area of blue and lilac 

(class 10 and class 5 respectively). In the surface model, this area shows a very 

clearly-defined area of north-south trending, large scale sand ripples. However, the 

boundary of this area of sand ripples is not clearly-discernible in the classified data.   

 

4.2.3 Discussion 

 

The analysis of the surface model has produced some very promising results through 

the identification of significant landscape features, that will form the basis of future 

marine research frameworks and further investigation. Despite the limitations of the 

data in terms of resolution and coverage, for the purpose of this research, which is to 

identify areas of archaeological and palaeoenvironmental potential at a landscape 

scale, the analysis of this dataset has been crucially important as it has enabled the 

identification of previously unknown landscape features that could be highly 

significant to locating past human settlement in the Late Pleistocene and Early 

(m) 
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Holocene, particularly the putative former shorelines. However, it is necessary to 

examine these shorelines in association with information about Holocene sea level 

change. By applying reconstructions of global sea levels to the surface model 

created from the bathymetry, it is possible to attempt to map the extent of dry land 

that would have been exposed within certain date ranges and reconstruct shorelines.  

 

Accurate sea level curves have to include elevation data and age dates, and also 

require the interpretation of palaeo-bathymetry (Jameson and Strohmenger, 2012). 

However, there are considerable uncertainties and limitations relating both to the 

application of global sea level curves specifically to Qatar, and to the use of 

bathymetric models with sea level curves. These issues have been discussed in 

detail by Lambeck (1996), Rose (2010) and Cuttler (Cuttler and Al-Naimi, 2013; 

Cuttler, 2013; Cuttler, 2014), and have been summarised in section 1.2.6. As long as 

these limitations are acknowledged, applying sea level data to the surface model 

created from the LiDAR bathymetry provides invaluable information about the 

locations of potential former shorelines. A global sea level reconstruction curve was 

produced by Stanford et al. (2011), by undertaking statistical analysis on a range of 

key far-field datasets of relative sea-level change. Even though this model of sea 

level change has been very carefully and substantially researched, and is applicable 

for global and macro-scale studies, it is still necessary to accept that there will be 

limitations in accuracy when applying the model to  more detailed studies of sea 

levels around Qatar. This model gives global sea level ranges (with 99% confidence) 

between 15m and 11m below present day levels for 8,000 BP, and between 9 and 

7.5 m below present day levels for 7,000 BP. Applying these values to the seabed 
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surface model for the Study Area produces interesting results (Figure 55). On the 

basis of these values, virtually the entire Study Area apart from the deeper area at 

the southwest edge, and parts of the deep channel in the north, would still have been 

dry land at 7,000 BP, regardless of whether the lowest or the highest value in the 

range is used. The possibility that most of the Study Area remained as dry land as 

late as 7,000 BP is worth considering, given the theories of Lambeck (1996) and 

Heyvaert and Baeteman (2007) that the present-day coastline was reached at 6,000 

BP, and given the recent evidence dating relic beach terraces at Wadi Debayan to 

6,000 BP (Tetlow et al., Forthcoming). 

 

Figure 55 Postulated extent of dry land at 7,000 BP (based on Stanford et al,. 2011). 
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A Qatar-specific sea level curve was published by Jameson and Strohmenger 

(2012), which was derived from age dating of raised beaches in Qatar. Jameson and 

Strohmenger propose that the Holocene high stand was initially reached at 7,000 BP 

in Qatar, which is considerably earlier than the timescale proposed by Lambeck 

(1996) and Heyvaert and Baeteman (2007). According to Jameson and 

Strohmenger’s curve, the sea level around Qatar at 8,000 BP is placed at 4.3m 

below present day levels, dropping to 4.7m at around 7,800 BP, before rising to 2m 

higher than present day levels at 7,000 BP. 

 

Figure 56 Postulated extent of dry land at 8,000 BP (based on Jameson and Strohmenger, 2012). 
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Applying these values to the surface model of the Study Area produced quite 

different results to the Stanford model. On this basis, the model shows that the 

majority of the Study Area would already have been inundated by 8,000 BP (Figure 

56). The western-most potential former shoreline identified to the north of the Ras 

‘Ushayriq  peninsula fits well with this model, roughly coinciding with the land/sea 

interface at 8,000 BP. Furthermore, applying these values to the surface model 

demonstrates that areas of Qatar that are currently dry-land would have been 

submerged at 7,000 BP (Figure 57). 

 

Figure 57 Postulated extent of dry land at 7,000 BP (based on Jameson and Strohmenger, 2012). 
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The interpretation of the third, west-east orientated potential former shoreline is less 

clear. When the values from both of the sea level curves discussed above were 

applied to the surface model, neither model highlighted this feature as a land-sea 

interface between 8,000 and 7,000 BP. There is no substantial evidence in the 

literature for a still stand at -7m in the Early Holocene, and this feature may represent 

a shoreline that had its origins in the previous interglacial period, the Eemian. 

However, even if this is the case, it would have been a shoreline again at some point 

during the Early Holocene. This could equally apply to the other two putative 

shorelines, since there is also no specific evidence for still stands at -2m or -1m 

either.  

 

The different results obtained for the possible extent of dry land in the Study Area in 

the Early Holocene outlined above demonstrate that these attempts at shoreline 

reconstructions cannot be considered to be definitive due to all the problems 

previously described relating to sea level reconstructions and lack of detailed data. 

However, they do show that although there is still a lot of work to be done in 

establishing more detailed and robust models of sea level change around Qatar, 

there is nothing to conflict with the interpretation of any of these three features as 

former shorelines. 

 

The wide, deep, southwest-northeast aligned channel in the north of the Study Area 

could represent a former river bed. The two linear channels to the east of the reef, 

together with the possible extension of Wadi Debayan to the east, may also be part 

of a former river channel, which possibly forms a tributary of the deep channel to the 
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north. This may explain why the west-east orientated putative former shoreline is less 

distinct at its western end, perhaps displaying estuary-like characteristics where it is 

bisected by the channel running from the south.  

 

As mentioned previously, the hollows identified in the surface model have been 

tentatively identified as solution hollows. However, it is also possible that they could 

be craters that have developed as a result of gas venting from the sea floor. Such 

features, sometimes termed 'pockmarks', have been noted in the Arabian Gulf, 

including off Qatar (Uchupi et al., 1996), and also elsewhere in the world, especially 

in hydrocarbon-bearing areas, such as the North Sea and off Alaska (Ellis and 

McGuinness, 1986).  

 

The integrated analysis of the surface model and the acoustic classification has 

proved to be extremely useful in terms of providing context and character to the 

acoustic classes. One significant result is that in certain parts of the Study Area, 

there is a clear correlation between depth and the reflectivity of the seabed sediment 

type, and therefore by extension, there appears to be a clear correlation between 

depth and sediment texture. The seabed in deeper waters appears to exhibit 

evidence for finer sediments, although this requires further investigation (see Chapter 

7). This is particularly obvious in the case of the deep channel in the north of the 

Study Area, the broad orientation and shape of which is clearly reflected in the 

classified image (see Figure 54). 
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4.3 Ground Truthing 

 

An important component of the seabed characterisation was the validation of the 

acoustic classes, and the calibration and refining of the defined landscape units by 

ground-truthing via direct sampling and visual observation.  

 

4.3.1 Methodology 

 

4.3.1.1 Direct Sediment Sampling 

 

The ground-truthing carried out to validate the sediment classification consisted of 

direct sampling of the seafloor sediment at locations throughout the Study Area. The 

locations were selected on the basis of the landscape units defined after the acoustic 

classification, and 57 sediment samples were collected using a Van Veen grab 

sampler, collecting on average four grabs at each sample site (Figure 58). It was not 

possible to get as many samples as ideally would have been desirable from the 

entire Study Area, especially from the south and east of the Study Area, due to the 

limited time that the survey team had available to go out on the boat, and the bad 

weather encountered during the survey. However, as far as possible, at least one 

sample was taken from every landscape unit that was defined by the acoustic 

classification.  
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Figure 58 Grab samples overlain on Initial Landscape Units. 
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The samples were subject to particle size analysis (granulometry) by specialists from  

the Environmental Studies Centre (ESC), at Qatar University. The samples were 

analysed using a laser diffraction particle size analyser (a Malvern Mastersizer). This 

method requires the samples to be dried, then mixed with distilled water, and passed 

through a laser beam which hits each particle in the sample. The machine measures 

the intensity of the light scattered, and uses this data to calculate the size of the 

particles, and therefore the percentage of each fraction (sand, silt or clay) in the 

sample (Blott and Pye, 2006). Graphs showing the particle size distribution, and 

tables showing the percentage volume of particle sizes were produced for each 

sample, and each sample was then allocated the appropriate sediment type, such as 

sand or silt, based on the statistics generated by the analysis. The complete 

granulometry report as provided by the ESC is included as Appendix 3. The results of 

the granulometry analysis were then used to enhance the acoustic classification 

analysis, and were integrated into the overall characterisation analysis. 

 

In addition to the targeted grab sampling programme, a significant amount of pre-

existing direct sampling data was also available as a result of extensive geotechnical 

investigations that were undertaken for the Qatar-Bahrain Causeway project. Several 

coring programmes were carried out in 2008 in order to provide information on the 

geology and the geotechnical properties of the potential causeway area. 24 

exploratory boreholes were drilled along the Qatari side of the causeway route in July 

2008 (Figure 59) Fugro Peninsular, 2008).  
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Figure 59 Exploratory boreholes drilled in 2008, overlain on Initial Landscape Units. 

 

A separate coring programme, also carried out in July 2008. This focused on 

potential sand traps in Qatari waters, located by earlier geophysical survey, that 

could possibly be suitable for use as borrow areas for the construction of the 

causeway (Figures 60 and 61), and on areas of natural elevation which had the 

potential to be used as embankment areas for the causeway (Figure 62) (QBC 

Consortium, 2009a; 2009b). Two of the potential embankment areas lay in Qatari 

waters, and 12 boreholes were drilled on one of them, an area of coral heads close 

to on the Qit’at ash Shajarah reef. A vibrocore sampling programme was undertaken 

to confirm (or otherwise) the presence of the sand traps and their suitability as 

borrow areas. Vibrocore sampling uses a vibrating motor to liquefy the marine 
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sediments, which can then be retrieved as a core sample. The two areas in Qatari 

waters that were targeted for vibrocoring lay in the north and south of the Study Area, 

with 43 vibrocores taken from the area in the north (Figure 60) and 10 from the area 

in the south (Figure 61). Laboratory analysis was then carried out on the core 

samples. This has provided very useful information about the seafloor and sub-

bottom sediment type at the coring locations, which can be used to inform the 

acoustic classification of sediments in those areas covered by the coring programme.  

 

 

Figure 60 Vibrocores taken in north of the Study Area in 2009, overlain on Initial Landscape Units. 
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Figure 61 Vibrocores taken in south of the Study Area in 2009, overlain on Initial Landscape Units. 

 

Figure 62 Boreholes drilled over the reef in 2009, overlain on Initial Landscape Units. 
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4.3.1.2 Video and Photography 

 

In addition to the grab samples, video and photographic ground-truthing data was 

also available for the Study Area. The main video data available was an underwater 

video-based analysis of the seabed that was carried out by a commercial company 

for the Qatar-Bahrain Causeway project (Creocean, 2008). This survey was focused 

on identifying, characterising and assessing the condition of the different biotopes in 

the area of the proposed causeway. A series of video transects were captured, in 

shallow areas (under 2m in depth) by divers and in deeper areas (over 2m) by an 

ROV towed behind a boat (Creocean, 2008, p.1.) The video footage that lay within 

the Qatar side of the proposed causeway area consisted of 13 transects of 

approximately 1km each in length, resulting in a total of 5 hours and 12 minutes of 

footage of the seabed. Although this survey was aimed at recording the seabed 

habitat, and the video transects only cover the central part of the Study Area, the 

video footage is very useful for providing a picture of the seabed in known locations 

that can then be compared with, and used to help clarify, the other data sets in the 

characterisation, including the sediment classification and the bathymetry.  

 

Some additional photography and video footage was also captured during the grab 

sampling programme, but the area of seabed covered was very small and the 

visibility was generally quite poor, so this footage is not very useful either for 

providing broad-brush landscape information or for providing detailed sediment 

information for small areas.  
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4.3.2 Results 

 

4.3.2.1 Direct Sediment Sampling  

 

The distribution of the grab samples in relation to the different datasets can be seen 

in Figures 58, 63 and 64. The original aim was to try and cover as much of the Study 

Area as possible, and to try, within the limited resources available, to get samples 

from as many of the landscape units as possible. However, as explained previously, 

for practical reasons some areas were not able to be covered as well as others, for 

example there is much more limited coverage in Area 2 than any of the other areas.   

 

Figure 63 Grab sample locations overlain on the surface model. 

(m) 
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Figure 64 Grab sample locations overlain on the classified data. 
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Overall, the granulometry analysis appears to indicate that the grab samples were 

quite homogenous. Out of 57 samples collected, 40 were categorised as sand, and 

17 as silty sand.  

 

The samples, symbolised by sediment type (sand or silt) are shown in Figures 63 and 

64, overlain over the surface model and the classified data respectively, and it can be 

seen from this that the distribution of silty sand appears to be concentrated to the 

northeast of the reef and in the western part of the deep channel in the north of the 

Study Area. 16 of the 17 samples that were categorised as silty sand are located in 

this area, with the other one (sample 49) located to the southwest of the reef. One of 

the samples (43) did not retrieve any sediment at all, as it was located on the coral to 

the west of the reef. Samples categorised as sand predominate in the northeast 

corner of the Study Area, and to the east and south of the reef. 

 

The distribution of sediment types as derived from cores and boreholes from the 

various geotechnical surveys that were undertaken as part of the planning phase for 

the proposed causeway can be analysed in conjunction with the results of the grab 

sampling programme (Figures 65 and 66). It has to be borne in mind that the analysis 

is not a comparison of like with like, as unlike the cores and boreholes, the grab 

samples were solely surface samples, involving a relatively small amount of material. 

It is also worth emphasising when analysing the core and borehole results that these 

surveys were undertaken in targeted locations for specific geotechnical purposes, so 

the distribution plots will display an inherent bias relating to the purpose of the 

surveys. Where the marine sediment type changed with depth, the boreholes and 
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vibrocores have been symbolised in the distribution plots based on the uppermost 

sediment type.  

 

Figure 65 Vibrocores and boreholes overlain on the surface model (grab samples are visible in the 

background). 

(m) 
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Figure 66 Vibrocores and boreholes overlain on the classified data (grab samples are visible in the 

background). 
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The 43 vibrocores in the north of Area 1 were taken specifically in an area that had 

been previously identified as having high potential for sand deposits, as the aim of 

the survey was to confirm locations that could be used as borrow areas for the 

causeway construction. The distribution plot of these vibrocores, as expected, 

therefore, shows a heavy concentration of sand in the survey area. The distribution 

plot shows a band of cores categorised as sand along the north of the deep channel, 

with a few classed as gravel, whereas the grab samples indicate silty sand in the 

areas surrounding the vibrocores. This may be a genuine change in the sediment 

type rather than just a result of the different techniques used, as the grab sample 

distribution does seem to indicate that the sediments in the area along the north of 

the channel are coarser. The logs from the vibrocores indicate that the sand deposits 

in the survey area are thick, mainly over 1m, but extending for more than 3.5 m in 

some places.  

 

Ten vibrocores were also taken in the area to the south of the reef, for the same 

purpose of confirming the location of sand deposits for borrow areas. Again, as 

expected, they show thick sand deposits occurring, which is also consistent with the 

distribution of the grab samples. The sand survey area coincides with two deeper 

areas on either side of the submerged reef area that are visible in the surface model. 

As in the north, the survey areas again correlate with areas that have been classified 

as yellow and salmon (classes 4 and 9 respectively) in the acoustic classification.  

 

Boreholes from the centre of the Study Area were taken specifically for the purpose 

of studying proposed embankment areas for the causeway. They are all located on 
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the reef, as that is the highest land in the Study Area, and therefore they can't 

provide much useful information about acoustic classes, as there was no sidescan 

data for the reef area. Apart from one silt sample, the rest are all composed of sand 

or coral.  

 

The borehole survey carried out along the route line of the proposed causeway in the 

centre of the Study Area encountered marine sediments from seabed level to a 

maximum depth of 6m within the Study Area. (Fugro Peninsular, 2008, p.10-11). 

Marine sediments were generally thicker further westwards, away from the coast and 

towards the reef. The deposits were characterised by silty fine and medium sand or 

sandy gravel, locally with thin to thick beds of sandy silt/clay, variably underlain by 

shelly calcarenite (caprock). The boreholes appear to show a differentiation of 

sediment texture along the route. The boreholes taken from the area stretching from 

the coastline west of the Ras ‘Ushayriq  peninsula to the reef are composed of sand 

and gravel, whereas most of those taken from the area to the west of the reef are 

composed of finer, more silty sediments. There were very few grab samples taken 

from this area so it is difficult to compare them with the borehole data, but the three 

grab samples that were taken to the east of the reef (46, 56 and 95) were all 

categorised as sand.  

 



148 

 

4.3.2.2 Video Transects 

 

Figure 67 Video transects overlain on surface model. 

 

Figure 68 Video transects overlain on the classified data. 

(m) 
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The seabed habitat video survey provided additional optical ground-truthing 

information (Figures 67 and 68). This was concentrated along the route of the 

causeway, and served as a useful addition to the borehole data that was obtained 

along the causeway route. A summary of the seabed descriptions from the video 

transects is provided in Table 3.  

 

Table 3: Seabed descriptions summarised from the video survey information provided by Creocean 

Transect 

No. 

Summary of seabed character Predominant 

Acoustic Class 

Features 

visible in 

Surface Model 

3a Flat, sandy bottom, hard substrate visible beneath 

sand layer 

Class 3 (red)  

3b Sand covering hard substrate, some gravels Class 3 (red)  

8a Flat, sandy bottom, ripple marks Class 3 (red) Linear features 

8b Flat, sandy bottom, hard substrate visible 

underneath, some gravels, some sand 

banks/ripples 

Class 3 (red) Linear features 

13a Sand and gravels, hard substrate visible 

underneath, sand ripples  

Class 5 (lilac) Ridges 

13b Coral/rock on hard substrate, covered in sand, 

sand banks 

Class 5 (lilac) Ridges 

18a Sand and gravels  Class 3 (red)  

18b Sand bank, gravels, some coral  Class 3 (red)  

23a Sand, rock or coral debris  Class 5 (lilac)  

23b Sand, calcareous debris Class 3 (red)  

28a Sand bank, coral, hard calcareous bottom  Class 8 (lime) Edge of reef 
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Transect 

No. 

Summary of seabed character Predominant 

Acoustic Class 

Features 

visible in 

Surface Model 

28b Gravels, sand banks, coral, hard substrate  Class 10 (blue) Edge of reef 

33a Reef No data Reef 

33b Reef No data Reef 

38a Reef Class 8 (lime) Reef 

38b Reef Class 8 (lime) Reef 

103a Sand, seagrass bed Class 3 (red)  

103b Sand, seagrass bed Class 3 (red)  

108a Sand, coral  Mixed Edge of reef 

108b Sand, coral, undulating  Mixed Edge of reef 

113a Coral, some sand  Class 8 (lime) Reef 

113b Coral, some sand  Class 8 (lime) Reef 

118a Flat, sandy bottom, featureless  Class 4 (yellow) 

Class 9 (salmon) 

 

118b Flat, sandy bottom, few gravels, featureless  Class 4 (yellow) 

Class 9 (salmon) 

 

 

The video transects indicate that the seabed west of the Ras ‘Ushayriq  peninsula 

largely consists of a flat sandy bottom, with hard substrate often visible, and some 

ripple marks and sand banks. Moving westwards, coral and rocky debris appear in 

more and more dense concentrations until the reef itself is reached. Away from the 

reef to the southwest, the seabed appears to be flat, sandy and featureless, whilst to 

the north it is sandy with seagrass beds.  
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4.3.3 Discussion 

 

The homogeneity of the grab samples has meant that the distribution of grab 

samples alone is not particularly informative in terms of clarifying the classes that 

were generated by the acoustic classification, as there is not enough differentiation 

between the samples to define patterns. Also, it is clear that all of the direct sediment 

samples display a high sand content. However, integrated analysis of all of the 

ground-truthing information together with the acoustic classification and the surface 

model has provided considerable illumination on the character of certain parts of the 

Study Area. Figure 69 shows a percentage breakdown of sediment types for each 

class, derived from the different types of ground-truthing data obtained - boreholes, 

vibrocores, grab samples and video transects. The predominant sediment type within 

each video transect was allocated to the centre point of each transect location, to 

align the data with the direct sample locations.  

 

In the central part of the Study Area, a comparison of the results from the boreholes 

across the causeway route to the surface model and the classified acoustic data 

shows that the area to the east of the reef, appears to be relatively homogenous in 

terms of depth and topographic features visible in the surface model, and also in 

terms of acoustic classes. The classified acoustic data in this area is predominantly 

class 3 (red), which, as mentioned earlier, roughly corresponded in the mosaic data 

to areas of brighter reflective material forming possible sand ridges. The borehole 

logs of sand and gravel, and occasionally calcarenite (caprock) in this area, all of 

which would be likely to be brighter reflectors than silty sand, would seem to support 
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this interpretation, and the comparison graph (Figure 69) shows that this class has 

the highest proportion of gravel samples out of all the classes.  

 

The identification of the vibrocore survey area in the north of the Study Area as a 

potential sand trap is significant in itself, in that it shows a correlation with the area of 

the deep channel identified in the surface model. In addition, both of the potential 

sand trap areas in the north and south of the Study Area also correlate with areas 

that have been classified as yellow and salmon (classes 4 and 9 respectively), 

probably representing finer sediment, in the acoustic classification. The comparison 

graph (Figure 69) shows that Class 4 has the highest proportion of silt samples (apart 

from the reef), and Class 9 has the smallest proportion of gravel samples apart from 

Class 1 (the latter of which was also interpreted from the original classification as 

possibly representing areas of finer sediment). As has already been noted in the 

integrated analysis of the surface model and the classified data, there seems to be a 

clear correlation between Classes 4 and 9 and areas of deeper sea. The sediment 

sampling evidence has shown that these areas can also be correlated with areas of 

thick sand/silty sand deposits. The single silty sand sample in the southwest of the 

Study Area, lies in an area of deeper water that is coincident with the large area 

classified as Class 4 (yellow), suggesting that it could represent a sediment-filled 

basin. These results show a clear  relationship between sonar reflectivity and seabed 

depth within the Study Area, indicating that finer sediments are occurring in the 

deeper areas. This is a significant finding as both the surface model and the 

sediment samples  provide independent evidence for the type of sediment and 

character of the seabed that is represented by classes 4 and 9.  
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Figure 69 Graph displaying sediment types for each class as derived from ground truthing data (expressed as a percentage of the total number of 

samples/observations recorded for each class).

Class No. 

Sediment 

Type (%) 
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The gravels identified in the southwest-northeast aligned deep channel in the north of 

the Study Area could be related to the coarse-grained sands and gravels identified in 

the boreholes to the west of the Ras' Ushayriq Peninsula. These may be part of the 

Hofuf Formation sands and gravels that are found elsewhere around the western 

side of Qatar, which were continental gravels from Saudi Arabia, laid down during the 

Miocene (Cavalier, 1970, p.32). Sedimentological evidence from the western region 

of Abu Dhabi has demonstrated that there was a large river system in the area in the 

late Miocene (Hill et al., 2012, p.28). The presence of gravels in the Study Area, both 

in the deep channel in the north, and also in the area to the east of the reef, supports 

the theory that a former river bed is present in these parts of the Study Area, possibly 

dating from the Miocene. It is possible that this channel was interrupted by uplift from 

the Bahrain anticline, which could explain why it is so much more distinct in the north 

of the Study Area than in the south.   

 

The video footage has confirmed the overall character of the seabed in the area of 

the causeway, and as far as possible the observations have broadly correlated with 

the classes generated by the acoustic classification procedure. The interpretation of 

Class 3 as representing a relatively highly reflective seabed sediment type is 

supported, in that the seabed character provided by the video transects appears to 

be mostly sand with visible rock (caprock?) substrate.  

 

However, the video footage has proved to be of limited use for distinguishing fine 

detail, as the visibility is not very good in some of the transects, and they were filmed 

relatively quickly, so it is not easy to see the sediment types in detail and establish 
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whether the seabed sediments are coarse or fine-grained. There is not sufficient 

scope or detail in the video footage to be able to draw out some of the differences in 

sediment type that have been identified through the acoustic classification. For 

example, there appears to be no great difference between the observations in 

Transects 8A and 8B, which are predominantly Class 3, and the observations in 

Transects 13A and 13B, which are predominantly Class 5. The comparison graph 

(Figure 69) shows proportionately more gravel samples from Class 3, and more silt 

samples from Class 5.  

 

Also, the transects were not as useful as hoped for in clarifying some of the larger-

scale landscape features that were visible in the surface model and the mosaic of the 

sidescan sonar data, as the field of vision is too narrow. However, it has been 

possible to confirm from the video footage that what had been tentatively interpreted 

from the bathymetry as possible linear reef structures to the west of the Ras 

‘Ushayriq  peninsula are actually sand ripples. More panoramic views of the seabed, 

which could be stitched together to create photo mosaics of large areas would be of 

great benefit for this type of landscape-scale investigation.  
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CHAPTER 5: SECONDARY CHARACTERISATION 

 

The following chapter describes the methodology and results of the secondary 

characterisation. This comprises two different strands - the identification of 

geophysical anomalies within the sidescan sonar data, and the clarification of 

geophysical signatures through diver inspection and high-resolution geophysical 

survey. Each strand has three sections consisting of the detailed methodology, the 

results and a discussion.  

 

5.1. Identification of Geophysical Anomalies 

 

5.1.1 Methodology 

 

A comprehensive and systematic analysis of the entire sidescan sonar dataset for 

the Qatar-Bahrain Causeway was undertaken in order to identify all geophysical 

anomalies that may represent either the remains of shipwrecks, or potential locations 

for archaeological sites and/or palaeoenvironmental remains. As mentioned 

previously (see Chapter 2), a limited analysis of selected geophysical anomalies from 

the dataset was carried out in 2010 (Cuttler et al., 2011a), but the dataset had never 

been systematically assessed in its entirety for archaeological purposes. The files of 

data from the parallel tracks covered by the survey boat, obtained from the survey 

company in xtf format, were batch-imported into a specialist software package called 

SonarWiz 5, produced by Chesapeake Technology Inc. This is a sidescan and sub-

bottom sonar mapping software that is particularly useful for creating mosaic images 
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of the sonar data, and for the logging of anomalies (contacts) detected in the data. 

These files were imported, batch processed and stitched together to create a mosaic 

image of the seabed. Thresholding was set at the import stage, and following import, 

gain processing was applied to all files. The processing was designed to create the 

best possible image for aiding visual interpretation of the data. Testing was carried 

out on a subset of the data in order to ascertain the optimum settings for viewing the 

data without losing any of the information that the data contained. The testing 

established that the best results were obtained by using the Empirical Gain 

Normalization (EGN) function, set to an intensity of 41. The settings and parameters 

used in the final import and processing are included in Appendix 4. 

 

Bottom tracking had already been carried out on the data, but this was checked 

individually before commencing the logging of anomalies for each file, and any 

necessary adjustments were made manually. Every file in the dataset was then 

examined in the digitizing view in Sonarwiz and any anomalies identified were 

recorded using the contact manager. Recording consisted of logging the coordinates 

of each anomaly, recording the measurements (length and width, and also shadow 

and scour where appropriate), and writing an objective, non-interpretational 

description. Finally, two attributes were systematically logged for each anomaly, a 

preliminary interpretation (e.g. debris, buried feature, depression, seabed scar) and a 

confidence level for likely anthropogenic origin. All of the anomalies were graded with 

a confidence level of either high, medium or unknown, apart from those that had 

been ground-truthed during the diver surveys in 2011, which were graded as ‘ground-

truthed’.  
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All anomalies were initially recorded without reference to the previous work carried 

out in 2010 (Cuttler et al., 2011a), or to any other datasets. This was done in order to 

be as objective and consistent as possible, so that it was possible to test how useful 

the recording of anomalies was as a technique for deriving meaningful data at a 

landscape level. The results of the diver inspections carried out in 2011 (Al-Naimi et 

al., 2012) were subsequently used to refine the interpretation and confidence levels. 

The criteria for recording anomalies were not the conventional criteria normally used 

for commercial surveys, where the aim is generally to record potential obstructions on 

the seabed. In this study, any area that looked slightly different to the surrounding 

seabed was logged as an anomaly. Anomalies were graded as high confidence 

where they appeared to be similar in character to those anomalies known from the 

2011 work to be anthropogenic. Anomalies were graded as medium confidence 

where there were reflectors showing in the data, but the signature was less well-

defined, presumably because of the nature of the material or feature causing the 

anomaly, or because the anomaly lay at the far edges of the swath range and was 

therefore more difficult to resolve. Any other type of anomaly was recorded as 

unknown confidence, and these included any areas of seabed that looked different 

from the surrounding area. This grade covered more ephemeral, poorly-defined 

anomalies.  

 

Specifically, anomalies were logged if they could possibly indicate debris of 

anthropogenic origin, if they could indicate buried structures or features such as 

sediment mounds and sand waves, or indicate geological features or other natural 

locations that may have archaeological or palaeoenvironmental potential, such as 
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depressions. Sometimes it was not possible to categorise an anomaly other than that 

it looked different to the surrounding seabed, in which case it was logged as 

'unclassified'. The list of terms used to categorise the anomalies is provided in Table 

4 below. 

 

Table 4: List of terms used for initial categorisation of anomalies. 

Categorisation Term 

Buried Features 

Debris 

Depression 

Disturbed Seabed 

Hole 

Linear Debris 

Mound 

Natural Location 

Partially Buried Object 

Seabed Scar 

Sediment Accumulation 

Unclassified 

 

It should be noted that high confidence does not necessarily mean high 

archaeological potential, as the diver inspections in 2011 showed that the most 

obviously anthropogenic anomalies were most likely to be of recent origin, largely 

caused by dumping of cars, tyres and other objects to create artificial fish reefs (Al-

Naimi et al., 2012). In fact, it was considered that the anomalies that were classified 

as unknown confidence may be of greater archaeological potential. It is these types 

of more ephemeral anomaly that were perceived to be good candidates for further 
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research, as so little was currently known about their character or archaeological 

potential. As a result of this recording policy, a great number of anomalies were 

identified - 795 in Area 1, 184 in Area 2/3, and 118 in Area 4. All of the recorded 

anomalies were reviewed, and a representative range was selected to be further 

clarified and validated via the analysis of other data sets, including bathymetry, and 

through further survey, including high resolution geophysical survey and diver 

inspection. The complete register of all recorded anomalies is provided in Appendix 5 

and the results of the analysis are presented and discussed below. 

 

5.1.2 Results 

 

5.1.2.1 Geophysical Anomalies 

 

As discussed in the methodology section, the criteria for recording anomalies was to 

log any areas that looked slightly different to the surrounding area, and accordingly, a 

complete distribution plot of all recorded anomalies is shown in Figure 70. Most of 

these anomalies do not have a confirmed interpretation, but this figure shows the 

initial distribution of where anomalies were visible in the data. It is immediately clear 

that there is a high concentration in the northwest of the Study Area (the western part 

of Area 1), and a much sparser distribution in the east of the Study Area (Area 2). 

The gap in the southwest is due to the presence of the reef, where no sidescan sonar 

data was available. 
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Figure 70 Distribution of all recorded anomalies within the Study Area. 

 

Figure 71 shows the distribution of all anomalies that were categorised as being 

possible debris (green dots), and therefore of potential anthropogenic origin. The 

differential distribution of these is quite marked - 196 of these were in Area1, 16 were 

in Area 2/3 and only 2 in Area 4. Within Area 1, there is a clear concentration in the 

west of the area. All of the debris anomalies in Areas 2/3 and 4 were classed as 

medium confidence. In Area 1, 112 were classed as medium confidence and 84 were 

classed as high confidence. In addition to these, 13 anomalies in Area 1 (the pink 

crosses) were also logged as debris, and when cross-checked against the work that 
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was done in 2011 (Cuttler et al., 2011a), were found to have been diver-inspected, 

and all proved to be dumped cars and/or tyres and old fishing equipment.  

 

 

Figure 71 Anomalies interpreted as potential debris, and proven to be debris from ground-truthing. 

 

Most of the high confidence anomalies showed up very clearly as modern debris 

during the logging of anomalies. When compared to those that had been ground-

truthed through diver inspection, the signatures were very characteristic. They 

consisted of one or more very bright reflectors (the debris), usually quite sharply 

outlined, with clear acoustic shadows, often lying in a darker area of seabed 
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representing scouring around the debris, and occasionally including brighter patches 

indicating areas of coarse sediment build-up around the debris (Figure 72). 

 

 

Figure 72 Examples of high-confidence anomalies in Area 1: Modern debris relating to artificial reefs 

(cars, tyres etc).Clockwise starting from the top left corner: QBC_Q10126, QBC_Q10270, 

QBC_Q10334, QBC_Q10902. (Each image depicts an area measuring 100m x 100m.) 
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This type of anomaly occasionally generated a slightly different signature when 

located at the outer range of the swath, where the sonar signal was more attenuated. 

In these cases, the bright reflectors were less sharply defined, did not always display 

clear shadows, and usually appeared in a dark area of seabed. However, there were 

a few survey lines running perpendicular to, and overlapping, the main body of 

survey lines through Area 1, and where anomalies could be cross-referenced with 

other survey lines in which they didn't lie in the outer range, it was possible to clarify 

the signature type and apply it to other similar anomalies. Figure 73  shows the same 

anomaly visible in different survey lines. The image on the right shows the anomaly 

lying at the outer range of the swath, where it is brighter but less clearly defined than 

in the image on the left, where the same anomaly lies in the centre of the swath. 

 

Figure 73 The same anomaly (QBC_Q10815) visible in different survey lines: Modern debris relating 

to artificial reefs (each image depicts an area measuring 100m x 100m). 

 

Anomalies like these were not generally selected for further study, as it was clear 

from the ground-truthing work carried out in 2011 that they represent the dumping of 
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modern debris, usually cars and tyres, probably for the creation of artificial reefs (Al-

Naimi et al., 2012).  

 

Figure 74 shows the distribution of anomalies logged as possible depressions. This 

was a very tentative classification, as it was not known how depressions may show 

up in sidescan sonar data in this area, as no one has ever looked for them here 

before. Features were classed as possible depressions if they displayed what 

appeared to be finer seabed material within areas of surrounding coarser material, 

the implication being that this fine material may be sediment that has accumulated in 

hollows or depressions. It is possible that these features may simply represent 

differential sediment accumulation, but if they are sediment-filled depressions, they 

could have the potential to contain palaeoenvironmental remains or buried structures 

and features, and therefore they were recorded as possible depressions so that they 

could be easily selected for further investigation. Depressions may also represent 

locations that were once favourable for human settlement. Some of these anomalies 

are quite large features, ranging in size from around 20m to over 100m in length (see 

Figure 75).  
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Figure 745 Distribution of anomalies that are possibly depressions. 

 

 

Figure 75 A selection of anomalies that were logged as possible depressions. From left to right: 

QBC_Q20071, QBC_Q40064, QBC_Q40119 (each  image depicts an area measuring 100m x 100m). 
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A range of different types of anomaly were selected for more detailed examination, 

either by cross-referencing with other datasets, such as bathymetry, or by higher 

resolution geophysics survey or diver inspection. The range was selected in order to 

try and clarify the signatures of types of anomaly that appeared different to those that 

had been investigated by the work carried out in 2011. As mentioned earlier, 

anomalies representing obvious modern car-related debris were avoided, but some 

anomalies classified as possible debris were selected for further study in case they 

could represent debris from shipwrecks. Other types of anomaly selected included 

locations of possible buried features/objects, and possible depressions, hollows, 

mounds, sediment accumulations and other natural features that may represent 

topographic locations of potential interest for human settlement. Figures 76 to 81 

show representative examples of the types of anomaly that were selected for further 

study, and the full list of selected anomalies is provided in Table 5.  
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Table 5: List of anomalies selected for more detailed examination. 

 

Contact No. Latitude Longitude Confidence Level Preliminary 

Interpretation 

QBC_Q10001 26.1641788483 51.0675086975 High Confidence Debris 

QBC_Q10008 26.1921634674 51.0260429382 Medium Confidence Buried Feature? 

QBC_Q10027 26.1201820374 50.9740638733 Unknown Confidence Buried Feature? 

QBC_Q10098 26.1222991943 50.9296150208 High Confidence Debris 

QBC_Q10099 26.1220684052 50.9299507141 High Confidence Debris 

QBC_Q10126 26.1277561188 50.9390869141 Medium Confidence Buried Feature? 

QBC_Q10159 26.0871925354 51.0052795410 Medium Confidence Buried Feature? 

QBC_Q10173 26.0903301239 51.0237998962 Unknown Confidence Natural Location 

QBC_Q10176 26.0943851471 51.0183601379 Medium Confidence Natural Location 

QBC_Q10195 26.0978145599 51.0285263062 Medium Confidence Buried Feature 

QBC_Q10202 26.1259479523 50.9980239868 Medium Confidence Natural Location 

QBC_Q10235 26.0509109497 50.9292297363 Unknown Confidence Depression? 

QBC_Q10345 26.0795593262 50.9499397278 Unknown Confidence Natural Location 

QBC_Q10362 26.0913200378 50.9708328247 High Confidence Buried Feature? 

QBC_Q10376 26.0902423859 50.9799804688 Unknown Confidence Natural Location 

QBC_Q10574 26.1638336182 50.9941406250 Unknown Confidence Depression? 

QBC_Q10582 26.1781387329 50.9776573181 Unknown Confidence Buried Feature? 

QBC_Q10634 26.1872463226 51.0019569397 Medium Confidence Partially Buried Objects? 

QBC_Q10645 26.1772842407 51.0245933533 Medium Confidence Partially Buried Objects? 

QBC_Q10676 26.2013893127 51.0221672058 Unknown Confidence Buried Feature? 

QBC_Q10702 26.2007694244 51.0457038879 Unknown Confidence Depression? 

QBC_Q10726 26.1942138672 51.0716514587 Unknown Confidence Buried Feature? 

QBC_Q10729 26.0780544281 50.9166069031 Unknown Confidence Buried Feature? 

QBC_Q20008 26.0396232605 50.9539299011 Unknown Confidence Natural Location 
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Contact No. Latitude Longitude Confidence Level Preliminary 

Interpretation 

QBC_Q20032 25.9976711273 51.0048599243 Unknown Confidence Depression? 

QBC_Q20045 26.0156154633 50.9666290283 Medium Confidence Debris 

QBC_Q20046 26.0135402679 50.9689636230 Unknown Confidence Natural Location 

QBC_Q20060 26.0014724731 50.9691925049 Unknown Confidence Mound? 

QBC_Q20066 25.9976844788 50.9691009521 Unknown Confidence Natural Location 

QBC_Q20068 26.0000514984 50.9640655518 Unknown Confidence Debris? 

QBC_Q20071 26.0349769592 50.9097480774 Unknown Confidence Depression? 

QBC_Q20080 26.0018577576 50.9552879333 Unknown Confidence Buried Feature? 

QBC_Q20088 26.0020446777 50.9487915039 Unknown Confidence Depression? 

QBC_Q20093 26.0029048920 50.9438056946 Unknown Confidence Linear Debris? 

QBC_Q20094 25.9825687408 50.9758758545 Unknown Confidence Hole 

QBC_Q20098 25.9928531647 50.9495239258 Unknown Confidence Depression? 

QBC_Q30107 25.9956703186 50.9137268066 Unknown Confidence Unclassified 

QBC_Q30113 25.9930953979 50.9116210938 Unknown Confidence Linear Debris? 

QBC_Q30116 25.9878578186 50.9224739075 Unknown Confidence Depression? 

QBC_Q30117 25.9647445679 50.9630203247 Unknown Confidence Depression? 

QBC_Q30121 25.9924755096 50.8957824707 Unknown Confidence Natural Location 

QBC_Q30124 25.9860668182 50.9170112610 Unknown Confidence Unclassified 

QBC_Q30132 25.9577922821 50.9669189453 Unknown Confidence Depression 

QBC_Q30146 25.9918575287 50.8720436096 Unknown Confidence Linear Debris? 

QBC_Q30147 25.9881267548 50.8642044067 Unknown Confidence Linear Debris? 

QBC_Q30149 25.9908180237 50.8585395813 Unknown Confidence Debris? 

QBC_Q30174 26.0338172913 50.8948898315 Unknown Confidence Buried Feature? 

QBC_Q30175 26.0339908600 50.8949546814 Unknown Confidence Debris? 

QBC_Q30176 26.0340347290 50.8953170776 Unknown Confidence Buried Feature? 

QBC_Q30177 26.0348167419 50.8955154419 Unknown Confidence Linear Debris? 
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Contact No. Latitude Longitude Confidence Level Preliminary 

Interpretation 

QBC_Q30178 26.0456485748 50.8976631165 Unknown Confidence Depression? 

QBC_Q30180 26.0327358246 50.8860626221 Unknown Confidence Debris? 

QBC_Q30183 25.9920825958 50.8459053040 Unknown Confidence Unclassified 

QBC_Q30189 26.0602684021 50.8891639709 Medium Confidence Debris? 

QBC_Q40024 25.9772624969 50.8816719055 Unknown Confidence Natural Location 

QBC_Q40026 25.9844532013 50.8379058838 Unknown Confidence Natural Location 

QBC_Q40031 25.9713287354 50.8812484741 Unknown Confidence Natural Location 

QBC_Q40049 25.9601192474 50.8865165710 Unknown Confidence Natural Location 

QBC_Q40055 25.9574604034 50.8707466125 Unknown Confidence Sediment Accumulation? 

QBC_Q40059 25.9588909149 50.8624877930 Unknown Confidence Depression? 

QBC_Q40064 25.9563694000 50.8669052124 Unknown Confidence Depression? 

QBC_Q40071 25.9561614990 50.8610496521 Unknown Confidence Buried Feature? 

QBC_Q40072 25.9574222565 50.8355674744 Unknown Confidence Unclassified 

QBC_Q40075 25.9515342712 50.8676567078 Unknown Confidence Natural Location 

QBC_Q40089 25.9422588348 50.8270797729 Unknown Confidence Debris? 

QBC_Q40097 25.9399833679 50.8259239197 Unknown Confidence Natural Location 

QBC_Q40100 25.9359226227 50.8315277100 Unknown Confidence Debris? 

QBC_Q40102 25.9289989471 50.8649368286 Unknown Confidence Depression? 

QBC_Q40113 25.9325790405 50.8269119263 Unknown Confidence Unclassified 

QBC_Q40118 25.9579067230 50.8681564331 Unknown Confidence Depression? 
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Figure 76 Anomalies logged as possible debris. From left to right: QBC_Q40089, QBC_Q10001 (each 

image depicts an area measuring 100m x 100m). 

 

 

 

Figure 77 Anomalies logged as areas of possible sediment accumulation. From left to right: 

QBC_Q40055, QBC_Q20060 (each image depicts an area measuring 100m x 100m). 
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Figure 78 Anomalies logged as natural features of potential topographic significance. From left to right: 

QBC_Q40026, QBC_Q20046, QBC_Q10195 (each image depicts an area measuring 100m x 100m). 

 

Figure 79 Anomalies logged as potentially partially-buried objects or features. From left to right: 
QBC_Q10126, QBC_Q10202 (each image depicts an area measuring 100m x 100m). 

 

Two anomalies from this selection were of particular interest, a small, but very 

pronounced hole or crater in the seabed (QBC_Q20094) and the possible linear 

feature (QBC_Q10729). The former looked like it could potentially have been either a 

small limestone sinkhole, or a hole/crater created as a result of gas venting from the 

seabed. The character of the linear feature was difficult to determine, but it appeared 

to be composed of slightly raised, bright linear reflectors lying parallel to, and 

perpendicular to, each other. This anomaly was investigated by diver inspection in 
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2011 (Al-Naimi et al., 2012, p.252) but the divers reported nothing visible on the 

seabed at that location that would explain the anomaly.  

 

Figure 80 A potential seabed crater: QBC_Q20094 (Image depicts an area measuring 100m x 100m). 

 

Figure 81 Long linear anomaly: QBC_Q10729/Bham0028 (Image depicts an area measuring 100m x 

100m). 
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In addition, a high concentration of debris-related anomalies was identified in a 

cluster in the west of Area 1 (Figure 82). This cluster of debris could be indicative of 

the way that debris is spread around the seabed after a shipwreck, and so this area 

was also considered to be of particular interest.  

 

 

Figure 82 Possible debris cluster in Area 1 (the green grid lines represent 500m x 500m squares). 
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5.1.2.2 Geophysical Anomalies and Topography 

 

It was not possible within the timescale of this research, or the resources of the 

QNHER project, to carry out visual observation and/or intensive geophysical survey 

of all of the anomalies selected for further study. However, as part of the integrated 

analysis and testing of methodologies, the topographic surface generated from the 

LiDAR bathymetry was cross-referenced with the selected anomalies to see if they 

could be further clarified. The location of each one of the anomalies selected for 

further study was examined in the surface model, and the results analysed.  

 

Area 1 

 

Out of 23 anomalies selected for further study, nine did not lie within the area 

covered by the surface model, eight did not show up in the surface model at all, and 

five were clearly natural features that did not differ significantly from the surrounding 

seabed. The remaining anomaly from the selected set was the long linear anomaly 

(QBC_Q10729) already investigated in 2011. Examination of the surface model in 

the area of this anomaly does show a feature that could possibly relate to the 

reflective anomaly (Figure 83), but it is not possible to establish conclusively whether 

it represents a natural feature or not.  
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Figure 83 Long linear anomaly (QBC_Q10729/BHAM0028) visible in the sidescan sonar data, and the 

surface model of the seabed from the same location (Both images are at same scale and orientation). 

 

Area 2 

 

Out of 13 anomalies selected for further study, three did not show up in the surface 

model at all, and ten were clearly natural features that did not differ significantly from 

the surrounding seabed. 

 

None of the anomalies that were recorded as possible debris in Area 2 were visible in 

the surface model at all (QBC_Q20012, QBC_Q20045, QBC_Q20063 and 

QBC_Q20074). One of these, QBC_Q20045, although not visible itself in the surface 

model, is surrounded by several other anomalies that were recorded as bright 

reflectors, and all of these can be seen from the surface model to be rocky/coral 

outcrops (Figure 84). 

 

Direction of 

current (swings 

round with tide) 
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Figure 84 Bright reflective anomalies in Area 2, shown in the surface model to be natural outcrops. 

The anomaly that looked like a possible sinkhole or gas vent on the sidescan sonar 

data (QBC_Q20094), did not look particularly different to other possible holes in the 

same area (see QBC_Q20096 to the southwest on Figure 85). This is probably 

because the surface model is not of sufficient resolution to clarify features that are 

this small.  

 

Figure 85 Seabed crater (QBC_Q20094) visible in the sidescan sonar data (image depicts an area 

measuring 100m x 100m), and the surface model of the seabed from the same location, showing 

anomalies QBC_Q20094 and QBC_Q20096. 
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Area 3 

 

Out of 18 anomalies selected for further study, all but two were clearly natural 

features that did not differ significantly from the surrounding seabed. The other two, 

which were initially recorded as possible debris from the sidescan data, could not be 

seen in the surface model.  

 

All of the anomalies that were logged as possible debris in Area 3, including a cluster 

near the reef (Figure 86), could be seen from the surface model to be natural 

features, largely coral heads.  

 

 

Figure 86 Bright reflective anomalies in Area 3, shown in the surface model to be natural coral 

outcrops. 
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Area 4 

 

Out of 16 anomalies selected for further study in Area 4, four did not lie within the 

area covered by the surface model, six did not show up in the surface model at all, 

and six were clearly natural features that did not differ significantly from the 

surrounding seabed.  

 

All of the anomalies that were logged as possible debris in Area 4, mainly in the 

southwest corner of the area, could be shown from the surface model to be rocky 

outcrops (Figure 87). 

 

 

Figure 87 Bright reflective anomalies in the southwest of Area 4, shown in the surface model to be 

natural outcrops. 

 

Many of the anomalies logged as potential depressions appear to be areas that are 

in the acoustic shadow of sand banks, rather than actual seafloor depressions. This 

includes the cluster of potential depressions in Area 4, and that in the north of Area 2.  
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5.1.3 Discussion 

 

Overall, the identification and analysis of the geophysical anomalies in this low-

resolution sidescan sonar dataset has demonstrated that it has limited application as 

a technique for investigating submerged landscapes. It has not proved a suitable 

method for locating, identifying and clarifying large-scale features relevant to the use 

of the former landscape by humans. However, the ability to identify recent debris on 

the sea floor and produce distribution maps of the anomalies at a landscape level 

does provide some useful insights into more recent human exploitation of the marine 

environment, which does have a bearing on seabed characterisation. 

 

It is clear from the distribution of probable debris-related anomalies in Area 1 (Figure 

71) that these occur more densely further out from the shore, in the west of the area. 

This could be due to the increased risks both of causing a shipping hazard, and of 

being caught dumping material illegally, when closer to the shore. It may also be 

related to the fact that areas in the south are further away from the main shipping 

routes around the western Gulf. However, the concentration could also be due to 

environmental factors, such as the need to create artificial reefs in deeper water, or 

even the seafloor conditions in certain areas influencing the visibility of seafloor 

debris in the sidescan sonar data. It may be more difficult, for example, for debris to 

show up well in areas of seabed where there may be a lot of other bright reflective 

material such as rocky outcrops or coral heads. It could also be that in these areas 

the debris gets covered by vegetation and/or sediment more quickly.  
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It was hoped that integrated analysis of the sonar anomalies with the surface model 

would be helpful in clarifying the anomalies, but this proved not to be the case with 

the smaller anomalies. With a few exceptions, the anomalies that were interpreted as 

debris are either not clearly visible, or not visible at all in the surface model. This 

could be because the debris was not present when the LiDAR survey was carried out 

in 2005 (the sidescan sonar data was collected in 2008), or more likely because the 

debris is too small to show up on a surface model created from data at a resolution of 

7m. This is illustrated quite clearly in Figure 88, which shows anomaly QBC_Q10051 

as visible in the sidescan sonar data, the spacing of the LiDAR points in the same 

area, and the surface model created from those points, which does not show the 

anomaly at all.   

 

Figure 88 Anomaly QBC_Q10051 (modern debris): sidescan sonar, LiDAR points and surface model. 
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Another notable example is QBC_Q10128, showing very clearly in the sidescan 

sonar, which diver-inspections in 2011 proved to be a car reef (Bham 0017). This 

anomaly is not visible in the surface model at all, whereas QBC_Q10127 to the north 

(not diver-inspected) is visible in the surface model (Figure 89). The difference in 

visibility of the two anomalies could be due to the difference in size of the debris, or 

the distribution of the LiDAR points, or it could simply be that anomaly QBC-Q10128 

represents debris that was dumped at a later date, after the LiDAR survey was 

undertaken. 

 

Figure 89 Anomaly QBC_Q10128 (car reef) visible in the sidescan sonar but not visible in the surface 

model. 

 

Although, as previously stated, the analysis of the geophysical anomalies has not 

proved useful for landscape-scale investigations, the surface model used in 

conjunction with the sidescan sonar data has been extremely useful for clarifying 

some of the larger and more tentatively-interpreted anomalies, and has largely 

confirmed that most of these are natural features such as sand ridges, reef 
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structures, and rock or coral outcrops, that do not hold particular significance for 

archaeological or palaeoenvironmental potential.  

 

Anomaly QBC_Q10376 is a good example of why it is not suitable to use geophysical 

anomalies, and survey data that contains large gaps, as a method for identifying 

landscape-scale features. When looking at the surface model, it is clear that this 

anomaly is a part of a larger landscape feature, but that wasn't at all obvious when 

analysing the survey line in isolation (Figure 90).  

 

 

Figure 90 Anomaly QBC_Q10376 (topographic location of potential interest for human settlement) in 

the sidescan sonar data (image depicts an area measuring 100m x 100m), and in its landscape 

context in the surface model. 

However, despite the limitations, this analysis has identified two anomalies of 

potential interest which still merit further investigation, the long linear feature 

(QBC_Q10729) and the seabed hole (QBC_Q20094).  
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5.2 Clarification of Geophysical Signatures 

 

5.2.1 Methodology 

 

5.2.1.1 Diver Inspections 

 

The diver inspections carried out on selected geophysical anomalies in 2011 

provided very useful ground-truthing data for the clarification of geophysical anomaly 

signatures in the sidescan sonar data. These diver inspections were targeted on a 

particular type of anomaly, largely the type with well-defined bright reflectors, often 

with associated scour. This type of anomaly was targeted because at the time there 

was no knowledge-base of geophysical signature types for the area, so it was 

thought that these may represent shipwrecks, or debris from shipwrecks. In the 

event, they all proved to be the result of modern dumping of cars, tyres and other 

material in order to create artificial reefs, or fish traps. However, following the 

systematic assessment and recording of anomalies that was undertaken as part of 

this characterisation, and in the light of the information gained from the 2011 diver 

inspections, a different range of anomalies were selected for ground-truthing by diver 

inspection. The selection did not prioritise the well-defined, clearly anthropogenic 

anomalies, instead focusing on the more ephemeral anomalies, such as potential 

depressions, sand waves, areas of differential sediment accumulation and sediment 

mounds. The reasoning for this was that these types of anomalies may indicate 

buried objects and features, such as older shipwreck debris, ballast dumps or even, 

potentially, archaeological sites. Even if these anomalies did not prove to be of 
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archaeological or palaeoenvironmental interest, the diver inspections would help to 

build up the knowledge base of geophysical signature types for the area.  

 

5.2.1.2 High-Resolution Geophysical Survey 

 

Further intensive geophysical survey was carried out at a specific, targeted location 

in order to compare the results with the low-resolution survey, and further clarify 

selected anomalies. Some testing had already been carried out in the Bay of Al-

Zubārah in 2011 using a high-resolution sidescan sonar, and a marine 

magnetometer, which is designed for the detection of ferromagnetic anomalies 

(Cuttler, 2011). Further survey in 2013 was carried out using a Klein Hydroscan, 

which is capable of collecting very high resolution sidescan data over large areas. 

This data was collected at frequencies of 455KHz and 900KHz. The 900KHZ 

frequency provided high resolution images up to 75m (total swath of 150m), while the 

455KHz simultaneously collected data up to 175m (350m total swath). During the 

survey the total swath width was limited to 150m to ensure a high-resolution  dataset. 

 

5.2.2 Results 

 

5.2.2.1 Diver Inspections 

 

Eight of the selected anomalies were subject to ground-truthing via diver inspection. 

These eight were chosen for diver inspection partly because they represented good 

examples of the anomaly signatures that needed to be clarified, and partly because 
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they were situated in the north of the Study Area and were therefore comparatively 

accessible for the survey boat, which was based at the port at Al Ruwais. The results 

can be shown in Table 6 below, and unfortunately, none of the investigated 

anomalies produced useful information. The anomalies either proved to be natural 

features of low archaeological and palaeoenvironmental potential, or no features 

could be observed at the location (Figures 91 and 92). However, those locations 

where nothing was found should not be dismissed as of no interest on the basis of 

these diver inspections, since the divers reported that visibility was extremely poor, 

less than 5m in most cases (see Figure 92), and it is clear that methodologies for 

ground-truthing these types of anomaly need to be improved.  

 

Table 6: Summary of results of diver inspections on selected anomalies. 

Anomaly No. Longitude Latitude 
Preliminary 

Interpretation 

Interpretation Following 

Diver Inspection 

QBC_Q10702 51.0457038333333 26.2013893 Depression? No features observed 

QBC_Q30183 50.845905304 25.9920825958 Sediment 

Accumulation 

No features observed 

QBC_Q40118 50.8681564331 25.957906723 Depression Linear ridges 

QBC_Q10001 51.0675086666667 26.1641788333333 Debris No features observed 

QBC_Q10098 50.929615 26.1222991666667 Debris Natural undulation 

QBC_Q10634 51.0019568333333 26.1872461666667 Partially Buried 

Objects 

Rock outcrop in sediment 

basin 

QBC_Q10645 51.0245933333333 26.1772841666667 Partially Buried 

Objects 

Rock outcrop in sandy 

hollow 

QBC_Q10726 51.0716513333333 26.1942138333333 Buried Feature Sediment basin 
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Figure 91 Anomaly QBC_Q10634 in Area 1: Sediment Basin (Photo by QNHER marine team, 2013). 

 

Figure 92 Anomaly QBC_Q40118 in Area 4: Linear Ridges (Photo by QNHER marine team, 2013). 



188 

 

A further group of anomalies in the vicinity of the long linear anomaly (QBC_Q10729) 

were diver inspected following further intensive geophysical survey, partly to test 

positional accuracy, and these all proved, as expected, to be car reefs (Figure 93). 

The results can be shown in Table 7 below. 

Table 7: Summary of results of diver inspections on anomalies near QBC_Q10729. 

Anomaly No. Longitude Latitude 
Prelim 

Interpretation 

Dive 

Interpretation 

QBC_Q10336 50.92655265 26.0960172 Modern Debris Car reef 

G2/03.05.14/L9/TG1 50.9134333333333 26.0759666666667 Bright reflector Rocks 

G2/20.04.13/L4/TG123 50.919195 26.07834 Modern Debris Car Reef 

G3/07.05.13/L8/TG1 50.9146033333333 26.0806816666667 Modern Debris Car Reef 

 

 

Figure 93 Anomaly G3/07.05.13/L8/TG1:Car reef in Area 1 (Photo by QNHER marine team, 2013). 
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5.2.2.2 High-Resolution Geophysics 

 

High-resolution geophysical survey was carried out in the area of the long, linear 

anomaly (QBC_Q10729) that was previously identified as meriting further 

investigation, in order to see if this type of investigation would be more successful at 

clarifying its nature than the diver inspection in 2011 was (Cuttler, 2014). Although 

the diver inspection in 2011 did not find anything at the location of the anomaly 

(Figure 94), it was thought possible that the anomaly was simply too big (greater than 

90m long and nearly 30m wide) for divers with limited visibility to gain a wide enough 

view of the seabed to be able to distinguish the feature from the surrounding seabed, 

especially as it did not appear to be protruding very high from the seabed.  

 

Figure 94 Long linear anomaly QBC_Q10729/BHAM0028 (Photo by Hampshire and Wight Trust for 

Maritime Archaeology, 2011). 
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The high resolution survey was carried out using a Klein hydroscan sidescan sonar 

at 900KHz. East-west transects were surveyed, at a resolution of 900KHz, in the 

location of the anomaly, and also covering a significant distance to the north and 

south. However, nothing relating to the long linear anomaly could be identified in the 

resulting data. Initially it was thought that there may be a positioning problem, so all 

coordinates and projections were double-checked, but no error was found. The 

conclusion was that the anomaly may have been very ephemeral and had 

disappeared, probably due to the dynamic sedimentation environment of the seabed, 

in the 5 years since the low-resolution survey was carried out. Finally, it was decided 

that a southwest-northeast transect would be surveyed along the exact path of the 

2008 survey transect in which the anomaly was originally recorded. This time, the 

anomaly was identified, as shown in Figure 95.  

 

Figure 95 Long linear anomaly (QBC_Q10729/BHAM0028) surveyed in high resolution (each image 

depicts an area measuring 100m x 100m). 
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5.2.3 Discussion 

 

The absence of the long linear anomaly in the east-west survey lines, and its 

presence in the southwest-northeast survey lines, must be due to the effects of the 

direction of the sonar on the creation of acoustic shadows. This is a significant 

finding, as it clearly demonstrates how important the direction of survey is, and 

consequently how important it is to have overlapping survey lines, preferably 

surveyed from different directions (Cuttler, 2014).   

 

It is also interesting to note that this anomaly did not show up any better in the high-

resolution sidescan data than it did in the low-resolution data. It is not clear why this 

should be the case with this anomaly, as other anomalies were considerably more 

clear in the high resolution data, for example anomaly QBC_Q10815 (see Figure 96).  

 

Figure 96 Anomaly QBC_Q10815 (car reef) surveyed in low resolution (left) and high resolution (right) 

(each image depicts an area measuring 100m x 100m). 

 



192 

 

Unfortunately, after surveying the area around the long linear anomaly with low-

resolution and high-resolution sidescan sonar, examining the seabed topography in 

the surface model generated from the bathymetry, and carrying out a diver 

inspection, we are still no nearer to identifying what the anomaly actually is. The 

suggested next step would be to use extensive optical techniques, such as an ROV 

camera, to try and get photographic images of a wide area of the seabed around the 

anomaly. 

 

Overall, the results of the clarification of geophysical signatures through diver 

inspection clearly show that diver inspection of selected anomalies has not produced 

good results, and that this technique is not appropriate for investigating landscape-

scale anomalies. This is partly down to poor visibility and the lack of wider vision that 

is necessary for the interpretation of large topographic features. It is entirely possible, 

for example, that a diver could actually be in the middle of a feature such as a large 

depression but not even be aware of it due to the lack of panoramic vision. Diver-

inspection is more likely to be successful when targeted at very specific, small-scale 

locations, as with the artificial car reefs that were successfully identified and recorded 

in 2011.  

 

However, the comparison of the low and high-resolution data sets has proved very 

useful for the testing of methodologies, as it demonstrates that the low-resolution 

sidescan sonar is still sufficient to enable the identification of these more ephemeral 

anomalies. This, however, does not remove the need or use for targeted high-

resolution geophysics once areas of potential have been identified. 
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CHAPTER 6: DEFINING CHARACTER AREAS AND ASSIGNING POTENTIAL 

 

6.1 Refining the Initial Landscape Units into Character Areas 

 

The end process of the characterisation was to refine the initial landscape units, and 

designate useable and meaningful Character Areas based on a set of shared 

attributes, which could subsequently be used to generate zones of archaeological 

and palaeoenvironmental potential. The refining of the initial landscape units was 

done by manual cross-correlation of the results of the sediment texture analysis with 

the topographic mapping and the ground-truthing data, supplemented with 

information on more recent maritime exploitation from the secondary characterisation 

process (Figure 97). These factors were used to guide the re-defining of the 

boundaries of the initial landscape units into character areas, simplifying and 

interpreting them using the different datasets, thereby creating more cohesive, 

discrete areas, in order to better represent zones with shared characteristics.  
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Figure 97 Cross-correlation of different input datasets with the Initial Landscape Units. 
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Figure 98 Final Character Areas (labelled with Character Area numbers). 
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The result of this process was a reduction in the number of landscape units, from the 

initial 90 (Figures 29 and 97) down to 37 larger character areas (Figure 98). Figure 

98 shows the final character areas shaded according to their predominant acoustic 

class, and Table 8 provides a description of each character area. Figure 98 shows 

that the overall pattern of the character areas is still heavily based on the acoustic 

classification, as expected since the acoustic data was the primary dataset.  An 

additional character area that lay outside the main Study Areas was added to the 

dataset (Character Area 37), based solely on the information gained from the surface 

model, as there was no sidescan sonar data or ground-truthing data available for 

these area. This was the near-shore zone northwards of the Ras ‘Ushayriq 

Peninsula, which contained a concentration of highly significant topographic features, 

such as possible former shorelines and palaeochannels. 
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Table 8: Summary description of Final Character Areas 

Unit ID 
Acoustic 

Class 
Sediment Type Summary 

Potential for 

Extensive Sediment 

Deposits 

Potential for 

Significant 

Topographic 

Features 

Overall 

Archaeological/ 

Palaeoenvironmental 

Potential 

0 10 Sand Flat, featureless sandy area Medium Low Low 

1 9 Silty Sand Slight depression containing silty material Medium Medium Medium 

2 8 Coral Ridge, with coral/rocky outcrops Low Low Low 

3 5 Sand Slightly elevated area, with north-south trending sand 

ripples 

Medium Medium Medium 

4 3 Coarse Sand Slightly elevated area of coarse sand, with north-south 

trending sand ripples 

Medium Medium Medium 

5 9 Silty Sand Slightly lower, silty area adjacent to the reef, containing 

deep sand deposits 

High Medium Medium 

6 4 Sand Deep area with extensive trawler scars on the seabed Medium Low Low 

7 9 Silty Sand Silty area adjacent to the reef Medium Medium Medium 

8 10 Sand/Coral Coral area adjacent to the reef Low Low Low 
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Unit ID 
Acoustic 

Class 
Sediment Type Summary 

Potential for 

Extensive Sediment 

Deposits 

Potential for 

Significant 

Topographic 

Features 

Overall 

Archaeological/ 

Palaeoenvironmental 

Potential 

9 5 Sand Area of small, east-west trending sand ripples Medium Low Medium 

10 3 Sand Potential former bay/wadi channel, with east-west trending 

small sand ripples 

High High High 

11 6 Sand Area of coarse sand with north-south trending large sand 

ripples 

Medium Low Low 

12 3 Sand Area of coarse sand with north-south trending large sand 

ripples 

Medium Medium Medium 

13 8 Coral Reef Coral reef Low Low Low 

14 3 Sand Area of coarse sand with north-south trending large sand 

ripples 

Medium Medium Medium 

15 5 Sand East-west trending and north-south trending sand ripples Medium Medium Medium 

16 5 Sand/Gravel Flat, featureless area of coarse sand and gravel Medium Low Low 
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Unit ID 
Acoustic 

Class 
Sediment Type Summary 

Potential for 

Extensive Sediment 

Deposits 

Potential for 

Significant 

Topographic 

Features 

Overall 

Archaeological/ 

Palaeoenvironmental 

Potential 

17 3 Sand/Gravel/Coral Area of coarse sand with north-south trending large sand 

ripples 

Medium Low Low 

18 10 Sand North-south trending, very pronounced mega ripples Medium Medium Medium 

19 3 Sand Area of coarse sand, no topographic information available 

but close to area of potential former shoreline 

Medium No DEM Medium 

20 9 Silty Sand Deep southwest-northeast trending channel containing 

depressions, possible solution hollows, and deep sand 

deposits 

High High High 

21 3 Sand Edge of potential former shoreline, with pronounced north-

south trending sand ripples, coarse sand 

Medium High High 

22 10 Silty Sand Edge of potential former shoreline, with depressions and 

potential solution hollows, and a high concentration of 

debris of recent anthropogenic origin 

High High High 
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Unit ID 
Acoustic 

Class 
Sediment Type Summary 

Potential for 

Extensive Sediment 

Deposits 

Potential for 

Significant 

Topographic 

Features 

Overall 

Archaeological/ 

Palaeoenvironmental 

Potential 

23 1 Sand Edge of potential former shoreline, with pronounced north-

south trending sand ripples 

Medium High High 

24 5 Silty Sand East-west trending and north-south trending sand ripples. 

Contains anomaly of potential archaeological interest. 

Medium Medium Medium 

25 5 Sand North-south trending, very pronounced mega ripples, and a 

high concentration of debris of recent anthropogenic origin 

Medium Medium Medium 

26 5 Sand North-south trending, very pronounced mega ripples Medium Medium Medium 

27 9 Silty Sand Edge of potential former shoreline, with potential solution 

hollows, and a high concentration of debris of recent 

anthropogenic origin 

Medium High High 

28 4 Sand Edge of potential former shoreline, with mounds, 

depressions and a high concentration of debris of recent 

anthropogenic origin 

High High High 
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Unit ID 
Acoustic 

Class 
Sediment Type Summary 

Potential for 

Extensive Sediment 

Deposits 

Potential for 

Significant 

Topographic 

Features 

Overall 

Archaeological/ 

Palaeoenvironmental 

Potential 

29 9 Sand Area of sand, no Topographic Information Medium No DEM Medium 

30 4 Sand Northern edge of deep southwest-northeast trending 

channel, with depressions and mounds 

High High High 

31 3 Sand Area of coarse sand, tail of reef Medium Low Low 

32 5 Sand Tail of reef Medium Low Low 

33 5 Sand Area of finer sand containing linear depressions Medium Medium Medium 

34 5 Sand/Gravel Area of patchy, coarse sand and gravel, with rocky 

substrate visible in parts, and small sand ripples 

Low Low Low 

35 3 Sand/Gravel Area of patchy, coarse sand and gravel, with rocky 

substrate visible in parts, and north-south trending large 

sand ripples 

Low Low Low 

36 3 Sand Area of coarse sand with north-south trending large sand 

ripples 

Medium Medium Medium 
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6.2 Assigning Potential 

 

The characterisation of the seabed in the Study Area represents an attempt to zone 

the seabed based on extensive, continuous data sources, using a systematic 

methodology. The character zones provide a broad-brush interpretation of the 

character of the seabed, incorporating every part of the Study Area into the 

characterisation, in accordance with the principles of historic landscape 

characterisation. A fundamental principle of terrestrial historic landscape 

characterisation is that the entire landscape is considered to be significant in its 

entirety, as the whole of the present-day landscape, to a greater or lesser extent, has 

been influenced by, and in turn has influenced, human activity. The landscape 

characterisation data is usually considered to be a means of managing change within 

the landscape in a non-selective, interpretative manner (Dingwall and Gaffney, 2007, 

p.17). The characterisation data, therefore, is not in itself a representation of the 

relative archaeological or historic significance of a particular area of landscape. The 

same can be said of the character areas created by this seabed characterisation 

process. However, characterisation data can be used as the basis for assessing the 

archaeological significance of a landscape. Accordingly, this research aimed to take 

a step beyond initial characterisation, by using the seabed character zones to provide 

a coarse-grained assessment of archaeological and palaeoenvironmental potential.  

 

To do this, the attributes of the character zones were further analysed and used to 

assign levels of potential. The level of potential was assigned on the basis of the 

probability of extensive sedimentary deposits occurring within the character area, and 
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on the presence in the area of topographic features known to have been influential in 

the location of human settlement in the Early-Mid Holocene.  

 

The presence of sedimentary deposits is a fairly rough measure of the potential for 

preservation of archaeological or palaeoenvironmental deposits, working simply on 

the basis that the presence of sediment indicates a greater chance of burial and 

preservation compared to areas of exposed bedrock (Westley et al., 2011b). 

Similarly, the present-day seabed topography is also a relatively rough measure of 

potential, as the seabed surface may have changed considerably since the Early 

Holocene (see Chapter 7 for further discussion on this issue). 

 

The sedimentation rates within the Arabian Gulf as a whole differ markedly 

depending on morphology and sediment type, and localised relief results in complex 

sedimentation patterns. Erosion in the Gulf is focused around the shallow coast and 

the topographic highs, and although the Study Area directly faces the direction of the 

northwesterly 'Shamal' wind, it is also protected from the full-force of the associated 

waves and currents by Bahrain and the Saudi Abrabian coast (KSEPL, 1973). As a 

general figure, the averages of the lowest and highest values of sedimentation rates 

in the different parts of the Gulf are 0.03-2.5 mm per year (Al Ghadban et al., 1998, 

p.25), but more detailed studies on sedimentation rate are required for localised 

areas. Geotechnical survey work has shown that sedimentation smooths out the 

seabed surface, by accumulating in topographic depressions (Marin Mätteknik AB, 

2002, p.17), but according to Kassler (cited in Purser, 1973, p.31) this sediment 

accumulation has not yet completely masked the underlying topography. In order to 
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obtain a more specific assessment of potential we would need more information 

about the sedimentation processes, for example how much the deposits are a result 

of mobile features such as sand ripples. However, despite limitations in our 

knowledge about sedimentation  and erosions rates in specific areas, as a baseline 

assessment at a landscape-scale, these rough measures are a good starting point 

from which to base further work. 

 

In their study of submerged landscapes in the North Sea, Gaffney et al. (2007, p.116) 

used a ranking system to systematically score areas of seabed in their Study Area 

based on potential for preservation. In this case they created two normalised 

datasets with different sets of values, one based on landscape feature potential and 

one based on depth of overlying sediments, and multiplied the two datasets. Areas 

with both a lack of known features and low levels of sedimentation achieved low 

scores, and conversely, areas with archaeologically significant features and 

substantial sediment cover scored highly.  

 

Assigning values for potential to the seabed character areas in Qatar was done on 

similar principles, except that it was done at the polygon level, and a different ranking 

system was used. Each character area polygon was assigned two different scores, 

one for sedimentation potential and one for topographic feature potential. The score 

values were Low (Value=1), Medium (Value=2) or High (Value=3). Topographic 

features that led to a designation of high topographic potential for a character area 

included coastlines, palaeochannels, inlets, spits, promontories and hollows. Other 

topographic features such as raised areas and slight depressions led to a 
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designation of medium topographic potential, and character areas which were 

relatively featureless were assigned a low topographic potential. The combination of 

values for topographic potential and sediment potential generated the overall 

potential score for each character zone, either Low (Combined Value of 2 or 3), 

Medium (Combined Value of 4) or High (Combined Value of 5 or 6). As a result of 

this process, areas of potential were defined and displayed, as shown in Figure 99.  
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Figure 99 Character Areas (labelled with Character Area numbers) showing overall potential. 
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The distribution map of the character areas, shaded by potential, clearly shows that 

the centre of Area 1, and the near-shore zone northwards of the Ras ‘Ushayriq 

Peninsula, are the areas of highest potential, where further investigations should be 

concentrated. The centre of Area 1, where the deep southwest-northeast channel 

occurs, clearly shows a cluster of high potential character areas, based on the 

accumulation of sediment (as evidenced by the vibrocore logs) together with the 

occurrence of topographic features that would have been attractive for human 

settlement, such as channels, hollows and a potential coastline. This combination of 

possible shoreline combined with the indication of extensive sedimentation could 

suggest high potential for the preservation of a palaeo- land surface.  

 

The near-shore Character Area (Area 37) north of the Ras ‘Ushayriq Peninsula has 

been assessed as being of high potential without any other primary or secondary 

characterisation information, apart from Character Area 10 at the north of the 

potential extension of Wadi Debayan, which was covered by the acoustic sediment 

classification. The high potential for these areas is due to the presence of two 

putative former shorelines and a concentration of associated significant topographic 

features, including the possible wadi extension and a cluster of palaeochannels.  

 

The gentle gradient and generally smooth nature of the seabed in the area to the 

north of the deep channel supports sedimentation over that area. However, the 

extensive sand ripples in the north indicate that large quantities of mobile sand 

overlie the substrate, which may have an effect on the preservation potential of such 

sediments. It is also possible, however, based on features visible in the surrounding 
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areas, that these ripples could be infilling and masking other palaeochannels and 

Karst-related depressions.  

 

The area between the deep channel and the reef has largely been deemed to be of 

medium potential, on the basis of the north-south linear depressions in the southeast, 

and the silty material obtained from grab samples in the northwest. However, less 

ground-truthing data is available from this area than from anywhere else in the Study 

Area, so to some extent it is a rather unknown quantity, and would benefit from 

further ground-truthing.  

 

The character areas deemed to be of low potential in the south of Area 2 have been 

designated as such largely due to the paucity of significant landscape features and 

the outcrops of rocky substrate identified in the ground-truthing data (boreholes and 

video footage). The borehole logs interpret this as caprock, formed by submarine 

lithification of the marine deposits, so it does not exclude the possibility that pre-

inundation archaeological and palaeoenvironmental remains could survive beneath 

this caprock, but palaeoenvironmental remains would be more difficult to access, and 

it would be impossible to recover archaeological deposits. 

 

The reef area and its immediate surrounding are not close to high-significance 

landscape features, and there are numerous large coral heads outcropping above 

the sea floor. These areas were therefore assessed and scored as being of low 

archaeological and palaeoenvironmental potential. However, south of the reef, there 

are generally finer-grained silts and muds, and this area of sediment accumulation 
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(character areas 5 and 7) may have greater potential than the immediate environs of 

the reef. There may be greater potential for the occurrence of shipwrecks in this area, 

but any such remains would be likely to be heavily masked by coral growth, and 

therefore difficult to find and survey.  

 

Character areas 3, 4 and 5 at the south of the Study Area have been assessed as of 

medium potential, due to the deep sand deposits and the slightly elevated area at the 

far south. The areas to the east and west are considered to be of low potential due to 

the overall lack of significant topographic features and the limited information about 

sedimentation in these areas. However, it may be that further ground-truthing in 

these areas could change this assessment, since the area to the west (area 6) is one 

of the deepest parts of the Study Area, and the sediment classification indicates that 

there may be finer-grained sediments here. Further information would also be 

needed on the extent of the damage done by the trawler scarring in this character 

area.    

 

As previously mentioned, there are limitations to the measures used for assigning the 

potential scores, but on the basis of the evidence that we have, they provide a 

generalised starting point to begin targeting resources at the areas most likely to 

yield good results. Within these generalised areas it is already possible to pinpoint 

specific areas for further investigation, such as possible solution hollows and 

palaeochannels, and it is expected that as more work is done and the knowledge 

base grows, then more such localised areas of potential will be identified.  
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CHAPTER 7: DISCUSSION 

 

7.1 An Evaluation of the effectiveness of the methodologies, and suggestions 

for further work 

 

It is very important to evaluate how effective this characterisation methodology has 

been, since using this combination of datasets (sidescan sonar, LiDAR bathymetry, 

direct sediment sampling, video footage and diver inspection) together with acoustic 

classification techniques and historic landscape characterisation techniques has 

never been tried before. Furthermore, apart from the grab samples, the research was 

undertaken purely using available data that had not been collected specifically for the 

purposes of archaeological or palaeoenvironmental research. It has clearly raised 

methodological questions and issues which need further exploration, and it is 

necessary to examine those aspects that worked well and those that did not, and to 

assess what datasets should be prioritised for future, research-specific data capture. 

 

Overall, it is important to bear in mind that the value of the seabed characterisation 

lies in its ability to aid understanding of the submerged prehistoric landscape and 

delimit areas with archaeological and palaeoenvironmental potential that can be 

targeted for more intensive investigation, rather than in its ability to identify individual 

archaeological sites and/or shipwrecks, although discovery of the latter still remain a 

possibility. Effectively-targeted surveys can provide a wealth of information about the 

topography, environments and preservation conditions of the submerged landscape 

even if no archaeological sites are discovered (Bailey, 2011, p.327). 
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The use of low-resolution sidescan sonar data in the characterisation allowed 

relatively rapid coverage of large areas of seabed that couldn’t easily have been 

covered using photographic and direct sediment sampling methods. However, this 

sidescan sonar data was never captured with the intention of using it for 

archaeological purposes, and one of the aims of the research was to see how 

effective this low-resolution data could be for landscape-scale studies of the seabed. 

The results clearly show that for seabed classification and landscape characterisation 

purposes, which are inherently coarse-grained analyses, low-resolution data is ideal. 

The data was not so detailed that it provided overly-complex results, and the acoustic 

classification was able to highlight large-scale trends and changes in the seabed 

sediment texture, which is exactly what was required for zoning purposes. Ideally, 

there would have been no gaps between the survey lines in the north of the Study 

Area, but the acoustic classification methods used allowed satisfactory extrapolation 

across the gaps for the purposes of broad-brush classification. Now that there are 

new sonar instruments available that are able to gather high-resolution sidescan 

sonar data much faster than was previously possible, it may be worth collecting some 

high-resolution data from a relatively large sample of the seabed within the Study 

Area - large enough to cover several character areas - and then carrying out acoustic 

classification trials to compare the difference with the classification results obtained 

from the low-resolution data. However, the usefulness of this exercise would have to 

be weighed against the resources required to do it.  

 

The importance of using software specifically designed for acoustic seabed 

classification cannot be stressed enough. The use of Swathview, and its 
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accompanying interpolation software, Clams, made the automated unsupervised 

classification of the sidescan data possible. Without this software, the classification 

would have had to be done manually, as sensible results could not be obtained from 

any of the other software packages that were available at the time. The software was 

very kindly made freely available by the suppliers, Quester Tangent Ltd, for a specific 

trial period for research purposes. If the software had been purchased and therefore 

been available for longer, it would have been ideal to have carried out more testing 

using different parameters. However, even with the amount of testing that was done 

within the time available, very successful results were obtained, and a coherent and 

logical division of the seabed was achieved, which was subsequently validated using 

additional datasets and analysis. There was an element of manual classification in 

the methodology used, in that the initial landscape unit polygons were manually 

digitised from the classified image generated by the automated classification. 

However, the core generation of classes from which the polygons were manually 

created was automated, unsupervised classification, which picked out acoustic 

differences in the data that could not be detected manually. One of the outcomes of 

this research is that successful sediment classification has been carried out using a 

combination of automated techniques and manual polygonisation, with each method 

informing the other. This may not be the most objective and repeatable method, but it 

has certainly been the most practically useful in this context. A possible avenue for 

further research could be to undertake trials of supervised classification, 

incorporating what we know about sediments in the Study Area to create training 

data that can be used to classify the entire dataset, and then comparing this to the 

results of the unsupervised classification. 
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The bathymetric surface model has also proved to be incredibly valuable, as it has 

provided the means to create a seamless surface model of the land/sea interface 

from the very important shallow zone containing significant coastal structures right 

out into the deeper parts of the sea in the west of the Study Area. It has therefore, for 

the first time in this part of the Arabian Gulf, enabled the identification of  significant 

landscape features that could have had considerable influence on the location of 

human settlement in the Late Pleistocene and Early Holocene. However, there are 

significant issues still to be considered, a major one of which is how far we can rely 

on the bathymetry to be representative of the land surface as it was in the Early 

Holocene. We know from research into submerged landscapes elsewhere in the 

world, for example in the North Sea (Fitch et al., 2005, p.185), that bathymetric 

models of the present-day seabed are not necessarily a good reflection of what the 

palaeo-landscape would have been like, as they will, to some extent, be an 

expression of current sedimentary processes. It is possible, for example, that some 

erosional features could have become infilled or buried by sediment, and some 

landscape features that would have been significant for human settlement in the 

Early Holocene could have been eroded away. (Fitch et al., 2005, p.194). This is a 

major part of the reason why significant difficulties have been experienced by 

researchers when applying historic landscape characterisation techniques in areas 

where early features are obscured by later sediments (Gaffney et al., 2007, p.111). 

However, this has been addressed to a limited extent within the characterisation by 

incorporating information about sedimentation from the acoustic classification and the 

ground-truthing, and using it as a criteria to assign values for potential. Whilst this 
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cannot fill the gap in knowledge that exists regarding the palaeo-bathymetry, it can at 

least provide guidance as to the best areas to target for further research. 

 

One analytical technique based on the bathymetry data that would be worth exploring 

in the future is Benthic Terrain Modelling. This technique uses bathymetry data to 

generate models of slope, aspect, rugosity and bathymetric position index (a 

measure of where a referenced location is relative to the locations surrounding it), 

which can be used for examining and classifying seabed characteristics. Tools have 

been developed specifically for undertaking Benthic Terrain Modelling within ArcGIS 

(NOAA, 2014), and a comparison of such analysis with the acoustic classification of 

the sidescan data could potentially produce some very useful results.   

 

As far as can be ascertained, this seabed characterisation is the only example of 

marine historic landscape characterisation that has used acoustic sediment texture 

classification, bathymetry and ground-truthing to determine character and potential 

for archaeological purposes. The combined analysis of the topographic surface 

model with the classified sediment data was pivotal to the success of the research. 

The level of correlation between the acoustic classification and the topography from 

the bathymetric surface model was surprisingly high, and, true to the iterative 

principles of landscape characterisation techniques, each dataset has provided 

valuable information with which to inform and enhance the other, thus increasing the 

value of each dataset, and enabling the refining of the initial seabed zoning into 

character areas.  
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The ground-truthing data, in the form of direct sampling and video transects, whilst 

not without its limitations, has largely supported the character zones generated by 

the combined sediment classification and topographic analysis. However, other than 

the grab samples, this data was not collected specifically for this research and there 

would be clear advantages to carrying out coring and optical surveys specifically for 

archaeological or palaeoenvironmental purposes. This is particularly relevant for 

finding evidence for buried organic deposits in core samples. There was no evidence 

for organic remains in any of the vibrocores or boreholes, probably because they 

were specifically designed to gather information relevant for construction purposes, 

such as rock strength and compaction. Research in other parts of the world has 

shown that direct observations and coring become increasingly useful once the scale 

of the investigation becomes reduced (Faught and Donaghue, 1997). This seabed 

characterisation could certainly be improved by more intensive ground-truthing, but it 

would be very resource-intensive to collect grab samples in sufficient densities over 

the entire Study Area. However, useful results could be obtained by selecting a few 

smaller areas that include the boundaries of several character zones and collecting a 

high density of grab samples in these areas. The results could be further improved by 

extensive photography at each grab sample location.  

 

In terms of optical ground-truthing, rather than narrow video transects or isolated 

individual photographs, a more useful technique would be to create panoramic views 

of the seabed, thus enabling a wider view of the character of the seabed in a 

particular area. This could be done by taking large numbers of photographs in a 

character zone and stitching them together to create photo-mosaics of larger areas. If 
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this could be done within the constraints of the visibility conditions that often occur in 

the Study Area, then it could be of great benefit for this type of landscape-scale 

investigation, as it may provide more diverse ground-truthing data, and could help to 

identify some of the larger anomalies and/or landscape features that could not be 

observed clearly enough during diver inspections. Stereoscopic photography has 

been used very effectively (albeit in very clear conditions) at the submerged Bronze 

Age town of Pavlopetri (Henderson et al., 2013). This technique would be too time-

consuming to undertake over large areas, but as Autonomous Underwater Vehicles 

(AUVs) develop and become cheaper, the creation of underwater photo-mosaics is 

likely to become more cost-effective.  

 

Previous research into classification methods for seabed mapping has suggested 

that the use of continuous data, such as acoustic data, is likely to result in a more 

diverse seabed map than would have been the case if direct sampling or 

photography at discrete locations had been used and extrapolated ( Sutherland et al., 

2007). This certainly appears to be the case with the seabed classification carried out 

in the Study Area, since, if direct sediment sampling alone had been used, the result 

would have been three classes, sand, silty sand and coral, and it would not have 

been possible to generate meaningful character areas on this basis alone. This 

clearly shows that the value of the integrated analysis is greater than the sum of its 

parts, and again validates the use of ideas drawn from historic landscape 

characterisation techniques.  
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The secondary characterisation, in the form of systematic analysis of individual 

geophysical anomalies, was the least successful aspect of the characterisation 

methodology. However, some useful information about future methodologies to use 

was obtained from the work that was carried out. The low-resolution sidescan sonar 

data is clearly perfectly adequate for the initial identification of anomalies caused by 

more recent debris, as many such anomalies were identified in the low-resolution 

data and confirmed by diver inspection. The high resolution sidescan sonar data 

collected using the Klein Hydroscan provided an almost photo-like image of such 

anomalies, so this would be a useful technique to employ where there is a need to be 

more certain of what an anomaly may represent before deciding on the allocation of 

further, possibly expensive, investigative resources. One part of the Study Area 

where this would be of use is the area of concentrated debris in the west of Area 1 

(Figure 82). High resolution sidescan sonar data from this area would probably 

confirm whether this debris is the result of dumping to create artificial reefs, or 

whether it represents a spread of debris from a shipwreck.  

 

However, the more ephemeral types of anomaly that were being targeted as part of 

this landscape-scale analysis did not show up with sufficient clarity in the low 

resolution sidescan sonar data to be informative, and there is currently no evidence 

to suggest that high-resolution data would display such anomalies any more clearly. 

This is evidenced by the fact that the long linear anomaly (QBC_Q10729) did not 

show up any better in the high-resolution sidescan data than it did in the low-

resolution data. However, it should be noted that this is only a single example, and 

further testing by gathering high-resolution sidescan sonar data over other anomalies 
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of a similar ephemeral nature would confirm this. The further high-resolution sidescan 

sonar survey work undertaken by the QNHER project has shown that the direction of 

survey is obviously very important for the identification of more ephemeral anomalies 

(Cuttler, 2014). The results suggest that the most cost-effective and productive 

methodology for initial rapid prospection of large areas would be a low frequency, 

wide swath-width sidescan survey with overlapping survey lines surveyed in a 

minimum of two directions, followed by higher frequency survey in targeted areas 

based on the results provided by the low frequency survey. 

 

The most useful aspect of the secondary characterisation was the information that it 

provided about more recent maritime exploitation, mainly fishing activity, in the form 

of the distribution of modern anthropogenic debris and trawler scarring. A further 

notable result was how useful the topographic surface model was for clarifying the 

more ephemeral anomalies, even if it was largely to confirm that they were not of any 

significance. This enabled the clarification of many of the anomalies that were 

selected for further study without having to carry out further high-resolution 

geophysical survey or diver inspection. This is especially significant as diver-

inspection is a time-consuming and expensive method for exploring the submerged 

landscape. A clear outcome of this research, and the work carried out by the QNHER 

project, is that diver-inspection should be used for very specific, smaller scale 

inspection of clearly-defined targets, but it is not suitable for ground-truthing 

landscape-scale geophysical anomalies. It is clear from the experience of the 

QNHER diving team of diving on known shipwreck locations and not finding anything 

that there are still problems in ground-truthing small-scale anomalies by diver 
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inspection, possibly due to currents, wind and GPS accuracy (Personal 

Communication, Richard Cuttler, 2014). A more robust methodology may be to drop 

a marker down on an identified anomaly, then carry out a sidescan survey over the 

marker before diving, to ensure that the anomaly has been correctly located.  

 

Now that we have areas of potential that can be targeted, there is a clear need to 

collect new data sets in order to improve predictive modelling, and a suite of 

techniques used in combination - multibeam sonar, sub-bottom profiling and 

vibrocoring - is likely to produce the most effective results. Of critical importance  is 

the need for sub-bottom profiling in order to try and trace buried and preserved 

features. Sub-bottom profiling has been successfully used to identify palaeo-features 

in the North Sea (Gaffney et al., 2007), in the Gulf of Mexico, where it was also used 

extensively, in combination with bathymetric enhancement methods, for identifying 

palaeo-drainage patterns, including drowned Karst features such as sinkholes 

(Faught and Donaghue, 1997), and to identify submarine freshwater springs in the 

Baltic Sea (Schlüter et al., 2004; Alfred Wegener Institute, 2012). In the Study Area, 

sub-bottom profiling could be used to confirm, or otherwise, the interpretation of 

significant features identified from the topographic surface model, and also to try and 

identify features that do not have a bathymetric expression, such as buried and 

preserved palaeo-land surfaces, and buried palaeo-drainage features and their 

sediment fills, including Karst-related depressions and solution hollows. This 

technique should be prioritised in the areas along, and inland of, the putative former 

shorelines, and in the areas where the postulated solution hollows are concentrated 

in the northwest of the Study Area. However, the ability to undertake sub-bottom 
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profiling inland of the former shorelines may be limited by the shallow water depths in 

those areas. 

  

In addition to the sub-bottom profiling, targeted core sampling specifically for 

palaeoenvironmental purposes needs to be undertaken to try and identify organic 

material, and to provide further information on the sediment in the character areas. 

As with the sub-bottom profiling, the coring programme should again be concentrated 

along, and inland of the putative former shorelines. In addition, specific features 

identified from the topographic surface model should be core-sampled. These include 

the potential solution hollows in the northwest of the Study Area, the cluster of 

palaeochannels near the possible former shoreline, the possible continuation of Wadi 

Debayan, and the deep southwest-northeast channel in the north of the Study Area. 

If the latter does relate to a large palaeochannel, it would probably be possible to use 

sub-bottom profiling to map the alignment. This information could then be used to 

target a vibrocore strategy aimed at the recovery of both former sub-aerial deposits 

and at deposits associated with marine transgression along the channel.  

 

More detailed bathymetry collected from the areas along and inland of the former 

shorelines, including extensive multibeam survey in the area of the possible east-

west aligned shoreline in the north, integrated with the sub-bottom profiling and the 

coring from these areas, would provide a better understanding of the changes that 

have occurred in the submerged landscape since the marine transgression. This 

work would be improved if more accurate sea level data could be obtained, that takes 

into account regional hydrostatic adjustments. There are probably enough dates from 
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terrestrial areas such as Wadi Debayan to begin developing a more secure sea-level 

curve from around 6,500 BP onwards (Tetlow et al., Forthcoming). The challenge is 

to obtain information from the submerged areas, and a targeted programme of core 

sampling based on this research should provide a starting point for this. More 

detailed bathymetry could also be used to calculate the ‘rugosity’ of the landscape. 

Rugosity can be defined as a measure of terrain complexity or the ‘bumpiness’ of the 

terrain. Rugosity is an important influence on the character of the seabed, and this 

information could be incorporated into the character areas to provide additional 

information for further targeted work.  

 

It would also be worth exploring the potential for using 2D and 3D seismic data to try 

and identify significant buried features from the Early Holocene that do not have any 

bathymetric expression, as was successfully done in the North Sea (Gaffney et al., 

2007). Seismic imaging is a geophysics technique that measures the reflectivity of 

seismic waves, and is used to create sub-surface geological and geomorphological 

maps. This type of survey is very expensive to undertake, but it is being undertaken 

extensively in the Arabian Gulf for oil exploration purposes. Future data mining of 

these datasets may provide a very cost-effective method of interrogating the former 

landscape and developing research frameworks for targeted, higher-resolution 

survey. As the information required for archaeological and palaeoenvironmental 

purposes is limited to relatively shallow depths, it is possible to slice off the top 0.25 

sec of data, thus avoiding any commercially sensitive issues such as the location of 

hydrocarbons. 
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Whilst the research has demonstrated that the combined analysis of the sidescan 

sonar data and the bathymetry provided a robust foundation for the initial seabed 

characterisation, a purpose-designed data capture programme for investigating the 

submerged landscape would give high priority to volumetric data such as sub-bottom 

profiling data and/or 3D seismic data. Analysis of such data in combination with high-

resolution bathymetry could provide vital comparative information between the 

palaeo-topography and the present-day seafloor topography in the Study Area. 

However, as has already been stated, the power of the characterisation approach is 

the iterative combination of datasets and techniques. Although bathymetry and 

volumetric data would be primary datasets for a specifically-designed seabed 

characterisation data-capture programme around Qatar, the results of this research 

clearly demonstrate that acoustic texture classification of sidescan sonar would still 

play an important role in characterising and refining landscape units.  

 

There is great potential for much more work to be undertaken using further aspects 

of terrestrial historic landscape characterisation methodologies, particularly the more 

cultural elements. Understanding how people worked within the marine environment 

in more recent centuries can be investigated via the use of both physical and non-

physical evidence, in order to provide another layer of interpretational information. 

Evidence of more recent use of the maritime environment could provide valuable 

information about the nature of the seabed, preservation potential, tidal and sediment 

regimes and the location of human activity in the present and the more recent past. 

The types of information that could be used, in addition to geophysics and survey 

data, include maritime charts, which can provide evidence of certain types of activity, 
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such as navigation information, trade routes, shipping routes, anchoring, fishing 

exclusion zones, hazards, dumping grounds, place names and other cultural 

information. These information sources can also indicate the absence of certain 

types of activity, which can be just as significant.  

 

It is also worth exploring further how the characterisation could incorporate local 

knowledge from people who live and work on or near the sea, or have done in the 

past. They will have traditions and knowledge drawn from observing the shorelines 

and working on the sea on a daily basis over extended periods, in all sorts of different 

conditions. This type of work has been carried out very effectively by the Outer 

Hebrides Coastal Community Marine Archaeology Pilot Project (Wessex 

Archaeology, 2012), which involved talking extensively to local fishermen in order to 

find out about things that people had noticed in the past but had disregarded as 

unimportant. Interviews with more recent seafarers may well produce anecdotes like 

that related by Cheesman (1923) of boatmen replenishing drinking water from 

submarine freshwater springs off Bahrain. This could be of help in locating present 

day freshwater springs, although extensive pumping since the mid 1920’s suggests 

that groundwater levels have dropped significantly, by as much as 7m, in recent 

times, which will have affected the output from freshwater springs (Macumber, 2011, 

p.11) . 

 

It would also be worth exploring ways of encompassing some of the more subjective 

human aspects into the characterisation, in order to consider the less pragmatic 

aspects of why humans chose certain areas for settlement or other activity. These 

http://blogs.wessexarch.co.uk/ohccmapp/
http://blogs.wessexarch.co.uk/ohccmapp/
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principles have been applied successfully in terrestrial characterisation projects, for 

example the Fort Hood historic landscape characterisation project in Texas (Dingwall 

and Gaffney, 2007), where aspects such as proximity to significant natural features 

known to be of importance to hunter-gatherer groups, such as mesa tops and 

sinkholes, were factored into the classification. Whilst it would be very difficult to 

include the types of visual attributes and perceptions that terrestrial landscape 

characterisations involve, it is important to avoid relying too heavily on environmental 

determinism, and losing the more holistic view of how humans perceived the 

landscape in which they lived.  

 

This type of landscape-scale contextualisation of the seabed can also provide 

opportunities for combined management of the historic and natural environment. The 

ecological character of the seabed can both influence and reflect past and present 

human exploitation, visibility of features and preservation potential. It is likely that the 

datasets derived from the seabed characterisation process could be useful for both 

cultural and natural habitat mapping purposes, thus providing opportunities for inter-

disciplinary working with natural environment researchers. There are clear 

crossovers, for example biodiversity levels and species habitats can be closely 

related to the rugosity of the seabed. Also, integrated analysis of natural habitat data 

with other datasets could potentially provide valuable information for the location of 

submarine freshwater springs, since different flora and fauna may occur in areas 

where there is a higher proportion of fresh water 
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7.2 An evaluation of the archaeological and palaeoenvironmental potential of 

the submerged landscape within the Study Area 

 

The submerged Gulf and its former coastlines have the potential to provide valuable 

new information on a range of important research themes. One of the most obvious 

outcomes of the seabed characterisation is that it has emphasised the critical 

importance of former shorelines, which have an influence on virtually every aspect of 

the significance and potential of the Study Area. 

 

This is particularly pertinent to any study of the Neolithic period in the region, 

especially in relation to the relatively sudden appearance of ʿUbaid -related sites in 

previously-unsettled areas around the shoreline of the Gulf in the Mid-Holocene 

(Rose, 2010). This occurred just after the final phase of marine incursion into the Gulf 

basin, when sea levels rose to approximately 2-3m higher than present-day levels 

(Lambeck, 1996). So far, it has not been possible to firmly establish where these 

communities originated from, but it is possible that they migrated into the area as a 

result of displacement from the Gulf basin by relatively rapid inundation between c. 

8,000BP and 7,500BP (Rose, 2010; Cuttler, 2013).  

 

It is reasonable to propose that there would have been aspects of continuity between 

the human communities that were established in the former Gulf basin prior to the 

final phase of marine transgression, and those communities represented by the 

ʿUbaid-related sites occurring along the eastern coast of the Arabian Peninsula 

(Cuttler, 2013). It is possible to relate the information on known settlement patterns in 
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the Mid-Holocene to pre-transgression settlement patterns, and to establish what 

factors we can draw upon in the submerged landscape that will help to inform this 

theme.  
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Figure 100 Distribution map of major ʿUbaid-related sites in Qatar. 
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It is clear that the sites producing ʿUbaid pottery in the Arabian Peninsula are found 

almost exclusively at locations situated on the coast or on the edge of coastal 

sabkhas, and on islands (Drechsler, 2011). Archaeological evidence shows that 

occupation of ʿUbaid ‐related sites along the Qatar coastline (Figure 100) begins 

during the second half of the 8th millennium BP (Carter, 2010). Although we lack 

detailed information on the topographic locations of ʿUbaid-related sites in Qatar, on 

the basis of the evidence that we do have, they appear to occur on coastal cliff areas, 

overlooking the mid-Holocene shoreline, and are generally above the 2m contour 

(Cuttler and Al-Naimi, 2013). The dating and topographic information for ‘Ubaid-

related sites in Qatar is highly significant in relation to the results obtained from the 

shoreline reconstructions based on Jameson and Strohmenger's sea level curve 

(Jameson and Strohmenger, 2012). The two putative former shorelines that were 

identified running northwards of the Ras ‘Ushayriq  peninsula coincide with the 

predicted extent of dry land at 8,000 BP and 7,500 BP respectively. If people were 

migrating to the higher ground inland of the present-day coastline after 7,500 BP, 

they may well have migrated from settlements that were on these former shorelines 

in 8,000 and 7,500 BP.  

 

Ras Aburuk (Raʾs Abarāq) lies on a low plateau to the west of, and overlooking, an 

oasis depression. It is on a narrow peninsula, which is 1km from the coast on the 

west (De Cardi, 1978, p.82). Bir Zeikrit (Biʾr Zikrīt) lies on a limestone plateau on the 

western edge of an oasis depression and within a kilometre of the present coastline. 

De Cardi (1978, p.115) noted that the site at Bir Zeikrit, unlike modern nomadic 

encampments in the area, is not located directly adjacent to the water hole. Kapel’s 
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Site A4, 7km south of Dukhan, lies on a sandy level about 100 yards from the coast 

(Kapel, 1967, p.37). Al-Dasah (al-Daʿsah) lies on the seaward headland of a low 

terrace, probably an ancient beach, overlooking sabkha (De Cardi, 1978, p.55). De 

Cardi suggested that the site location was mainly influenced by the availability of 

fresh water, but also noted that the site overlooks a protected sandy bay (1978, 

p.72). Al-Khor (al-Khawr) lies on top of fossil cliffs overlooking the sabkha to the north 

(Tixier, 1980). Wadi Debayan (Wādī al-Ḍabaʿyān) lies on the leeward side of a 

peninsula, above the 3m contour. The wadi mouth may once have been navigable, 

providing direct access to the sea. This site is of particular relevance to the seabed 

characterisation since the wadi discharges into the Bay of Al-Zubārah, in close 

proximity to the Study Area (Cuttler et al., 2011a, Tetlow et al., Forthcoming). A 

possible extension to the present-day wadi has been tentatively identified in the 

topographic surface model to the east of the Ras ‘Ushayriq peninsula, again 

emphasising the significance and potential of this area of the submerged landscape.  

 

Outside Qatar, the topographic locations of important ʿUbaid-related sites on the Gulf 

coast generally follow the pattern observed on the sites in Qatar, although there are 

exceptions. The site at al-Markh, currently on the west coast of Bahrain, 1km from 

the present-day coastline and 2m above the current sea level, was an island during 

the ʿUbaid-related occupation period. There are now extensive areas of sabkha to 

the north and east (Roaf, 1976, p.146). Dosariyah (Dawsāriyyah), in Saudi Arabia, is 

located 1.5 km from the present-day coast, within an extensive valley-like trough, and 

it opens towards the south to the sabkhat al‐Ṣumm (Drechsler, 2011, p.71). 

According to Masry (1997) the original ground of the site before occupation would 
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have been an east-facing, gently-sloping hill. As-Sabiyah H3 in Kuwait lies on the 

inland edge of a peninsula close to the coast, the bay between the peninsula and the 

mainland now infilled with sabkha. The geomorphological evidence indicates that the 

sea could be directly accessed from the site during the ʿUbaid-related occupation 

period (Carter and Crawford, 2010). The recently-excavated site at Bahra 1 in Kuwait 

has a less clear relationship with coastal features. It is located in a former active 

dune field and is 8km from the present coastline, although the distance to the coast 

would have been much shorter during the Mid-Holocene sea-level high (Rutkowski, 

2011). 

 

This brief overview of topographic characteristics of a few selected ʿUbaid-related 

sites is far from comprehensive, and needs to be supplemented with detailed, 

localised site topography in order to establish a comprehensive picture. However, 

this emphasises how important it is that potential coastal features such as former 

bays, spits, promontories and drainage channels were identified as part of the 

characterisation, and the critical importance, therefore, of targeting further 

investigations in the area of these putative former shorelines. 

 

The close interaction of environmental and cultural factors in seabed characterisation 

is well demonstrated by the issue of the location of submerged Karst landscapes and 

their relationship to archaeological potential. The QNHER national cultural mapping 

program has demonstrated that the distribution of Karst depressions was a significant 

factor in the location of settlement until very recent times (Breeze et al., 2011). The 

depressions and holes caused by Karst are an important feature of the present day 
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terrestrial northern Qatari landscape, tending to occur as sinkholes, simple 

depressions or compound depressions, some of which can be very large – up to 3km 

across and more than 25m deep (Sadiq and Nasir, 2002). The Misfer cave (Figure 

101), an open cave 40km to the west of Doha, is up to 100m in depth. It is almost 

certain that the submerged areas between Qatar and Bahrain will have contained 

Karst features, since drowned Karst is typical along all carbonate coasts except 

those where there has been rapid tectonic uplift (Ford and Williams, 2007, p.430). 

Research into submerged Karst landscapes in the Gulf of Mexico has indicated that 

as well as isolated depressions, many sinkholes occur in linear clusters, forming 

discontinuous river channel segments (Faught and Donoghue, 1997). Most Karst 

features in Qatar show northeast-southwest and northwest-southeast orientations, 

governed by the joints and fractures formed during periods of uplift (Sadiq and Nasir, 

2002).  

 

 

Figure 101 Misfer Cave, Qatar. 
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The features typical of Karst landscapes, such as springs, sinkholes, depressions 

and caverns, would have provided very attractive habitats for Prehistoric 

communities. These features are likely to have had significance for both pragmatic 

reasons, including access to water and to the more fertile soil (rawdha) that 

accumulated in the depressions caused by the collapsed Karst features, and for 

symbolic reasons such as places to bury the dead, or make ritual deposits. On land, 

these same features tend to preserve and protect evidence for human activity, 

making them highly significant in archaeological and palaeoenvironmental terms. By 

analogy, investigating drowned and sediment filled sinkholes on the seabed should 

substantially increase our chances of finding in situ archaeological and 

palaeoenvironmental deposits (Faught and Donoghue, 1997). 

 

It was considered possible that larger Karst-related features may still be visible on 

the seabed in the Study Area, possibly appearing as depressions or holes, 

depending on the sedimentation regime in particular areas. The identification of 

potential drowned Karst features (the possible solution hollows) in the surface model 

created from the bathymetry during this research is therefore a particularly exciting 

development, since finding features of high archaeological and palaeoenvironmental 

potential such as these was one of the primary aims of the research, and up until 

now, no such features had been identified in this area of the Arabian Gulf. Whilst 

further work is required to establish a firm identification of these hollows as a 

submarine extension of the terrestrial Karst landscape of Northern Qatar, this is 

certainly a very encouraging baseline from which to start working. 
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The location of freshwater springs in the submerged landscape is also closely related 

to cultural factors and archaeological potential. The well-documented occurrence of 

submarine springs in Karst environments may be associated with springs that 

developed during times of lower sea levels (Ford and Williams, 2007, p.141). The 

area around Qatar is the terminus of several aquifers that have a wide catchment 

area across the Arabian Peninsula, emerging as freshwater springs in the Gulf. 

Previous research suggests that there is a direct relationship between sea levels and 

coastal freshwater springs, whereby falling sea levels caused an increase of 

hydraulic pressure within underground aquifers, causing more fresh water to flow 

through them and leading to the creation of springs on the exposed coastal shelf, and 

hence an increase in freshwater at the coast - the 'Coastal Oasis' theory (Faure et al., 

2002; Parker and Rose, 2008). These springs can remain active once sea levels rise 

if there is enough hydraulic pressure from the inland aquifers.  

 

There is plenty of evidence for active submarine freshwater springs in the 

Mediterranean Sea and the Red Sea (Faure), and in the Arabian Gulf off Bahrain. 

Church (1996, p.579) reports anecdotal evidence of ancient seafarers restocking 

their freshwater sources from upwelling plumes that occurred offshore in parts of the 

world that have limestone terrains, including the Arabian Gulf. Cheesman (1923) 

visited Bahrain in the 1920s and noted that boats were able to replenish their drinking 

water from a submarine freshwater spring. As late as the 1950s, a submarine spring 

located a few miles north of Jubail in Saudi Arabia, from which divers would collect 

freshwater in skins, was marked by a spar buoy (Bowen, 1951, p.173-174). 

Submarine freshwater springs are also known from areas of drowned Karst in other 
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parts of the world, including along the Dinaric Coast of the Adriatic Sea and in New 

Zealand (Ford and Williams, 2007, p.434).  

 

Research in the Baltic sea has utilised sub-bottom profiling and sediment analysis to 

understand the formation process of features known as ‘Pockmarks’, or elongated 

depressions approximately 1 to 3 m below adjacent seafloor levels, which could 

potentially be associated with the location of submarine groundwater discharge from 

sub-seafloor aquifers (Schlüter et al., 2004; Alfred Wegener Institute, 2012). The 

location of submarine freshwater springs, whether inactive or current, is a highly 

significant factor when assessing areas of archaeological potential in the submerged 

landscape off Qatar, since a relatively abundant freshwater supply would have been 

critical for human settlement during the Early Holocene. This makes the exploration 

of former shorelines even more significant, given that the evidence suggests that 

freshwater supplies would have been concentrated at the coast during sea level low-

stands. A combination of sub-bottom profiling, and information about water salinity 

targeted around the putative former shorelines provides a promising methodology for 

the location of seabed springs off Qatar. A CTD (conductivity, temperature, depth) 

scanner could provide useful information on water salinity close to the seabed, which 

may help to identify freshwater discharge from submarine aquifers, and possibly the 

locations of former sub-aerial springs. However, this would be a very time-consuming 

method to undertake over large areas, and it may be more useful and cost-effective 

to examine satellite imagery for evidence of sea surface temperature hotspots 

(Personal Communication, Richard Bates, 2015). 
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The levels of potential assigned to most of the character areas relate more to 

palaeoenvironmental potential than to the potential for finding archaeological sites. 

This is because the evidence suggests that the sedimentation is so thick in parts, 

particularly in the deep channel in the north of the Study Area, that there would be no 

prospect of being able to undertake archaeological excavations in those areas. Also, 

the borehole data from the central part of the Study Area demonstrated that there are 

layers of caprock within the marine sediments in this area. Submarine lithification is 

common around shallow sub-tidal rock around the west coast of Qatar (Marin 

Mätteknik AB, 2002, p.42), and although archaeological remains could lie preserved 

underneath this caprock, they could be difficult to locate or investigate further.  

 

Although we don't currently have any evidence for the presence of terrestrial 

sediments in the submerged landscape, it is clear that more needs to be understood 

about the sedimentary processes that occurred during marine transgression, in order 

to ascertain whether these processes would have been likely to have preserved 

rather than eroded the palaeo-landscape (Westley, 2011a). Recent terrestrial coring 

work and excavations at Wadi Debayan, lying inland on a palaeo-shoreline to the 

southeast of the Ras ‘Ushayriq  Peninsula, revealed evidence of marine deposits that 

were laid down after 4,500 BP, when sea levels were higher than present day levels, 

and the site was submerged. These marine deposits were overlying earlier 

archaeological and palaeoenvironmental deposits, and the nature of the marine 

deposits, which included a layer of large beach cobbles, was indicative of a high-

energy marine event (Figure 102).  



236 

 

 

Figure 102 Evidence for archaeological deposits preserved beneath marine deposits at Wadi Debayan 

(Image by Richard Cuttler/Emma Tetlow). 

 

This site clearly demonstrates that there are some environments and conditions 

where rapid inundation has actively preserved archaeological and 

palaeoenvironmental deposits under marine sediments (Tetlow et al., Forthcoming). 

The characterisation has demonstrated that there is significant potential within the 

currently-submerged landscape for targeting analogous locations, with similar 

landscape settings that would have been attractive for human settlement, and similar 

formerly-sheltered situations where protective deposition could have occurred. The 

general paucity of palaeoenvironmental remains from terrestrial sites in Qatar means 

that the palaeoenvironmental potential of the submerged landscape is of huge 

significance for filling the gap in knowledge. 
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The secondary characterisation has enabled issues of cause and effect to be 

explored, for example whether certain geophysical anomalies, or the lack of them, 

are a reflection of the usage of the maritime environment in a particular zone, or 

whether they are simply more, or less, visible because of the seabed type in that 

zone, which in turn provides significant information about archaeological potential. 

The sidescan sonar data shows a very pronounced concentration of geophysical 

anomalies of likely recent anthropogenic origin, probably cars, tyres etc, in the north 

of the Study Area, and the reasons for this could shed useful light on the visibility and 

preservation of certain types of material, and on recent human exploitation of the 

marine environment. 

 

Parallels can be drawn elsewhere in the world, for example with the Red Bird artificial 

reef off the coast of Delaware in the USA. This reef is made up of over 900 New York 

City subway cars, and various other vehicles, decommissioned boats and other 

objects, covering 1.3 square nautical miles, and creating habitat for fish and other 

marine creatures (State of Delaware, 2012). This type of exploitation of the seabed 

has clearly also occurred in the sea off Qatar, although not officially, and not on the 

organised and extensive scale of the Red Bird Reef. The impact of these structures 

on the seabed includes changes to the sediment regime around the structures, and, 

in the case of the Red Bird Reef, increased abundance of marine flora and fauna.  

 

Conversely, an area of extensive trawler-scarring is visible in the mosaic sidescan 

sonar data in the south of the Study Area, and very few geophysical anomalies are 

visible in this area. This also coincides with one of the deepest areas of seabed in the 
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Study Area. It is possible that the depth and character of the seabed in this area has 

influenced its use as trawler-fishing grounds. However, resolution No. 29 of 1994 of 

the Council of Ministers in Qatar prohibits fishing through trawling in Qatar waters, so 

either these scars pre-date 1994, or there has been illicit fishing occurring in this 

area. These different types of relatively recent marine exploitation have a significant 

effect on the seabed character, and possibly also on the archaeological potential of 

the locality.  

 

The seabed characterisation has not really clarified the potential of the Study Area for 

locating shipwrecks, either historic or more recent. None of the geophysical 

anomalies identified and selected for further study could be demonstrated to relate to 

shipwreck debris other than the possibility of the concentration of debris in the west 

of Area 1 (Figure 82). However, expanding the seabed characterisation to 

encompass more cultural aspects, as discussed above (section 7.1), may illuminate 

this aspect of the character of the Study Area.  
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CHAPTER 8: CONCLUSION: IMPLICATIONS FOR RESEARCH AND 

MANAGEMENT OF THE MARINE HERITAGE RESOURCE 

 

Given how difficult and expensive it is to investigate submerged landscapes, it is 

valid to consider whether we should be doing it at all. However, given the significance 

and potential of the submerged landscape of the former Arabian Gulf basin, and of 

the Study Area within it, as emphasised in the discussion above, the question really 

should be how we should be doing it, not whether we should be doing it. Previous 

research has already highlighted the environmental and archaeological importance of 

the submerged landscape around Qatar, as an area that remained free from marine 

influence until relatively late, that had the potential for freshwater supplies in the form 

of coastal springs, and that lay in close proximity to known archaeological sites 

representing new settlements that emerged on the Mid-Holocene coast just after the 

final inundation. However, this landscape was considered to be unknown and 

inaccessible territory, and therefore has been largely unconsidered in the 

archaeological syntheses of the Early Holocene of the region until very recently. This 

seabed characterisation, together with the research carried out to the east of Qatar 

using seismic data (Cuttler, 2014), has demonstrated that the situation does not have 

to remain like this.  

 

The characterisation was undertaken as a response to the need to address the major 

gap in knowledge about this highly significant landscape, and to address the fact that 

previous investigation methods clearly weren't working. One of the most significant 

results of the research is the progress that has been made towards utilising existing 
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datasets to their maximum potential and developing robust methodologies for the 

investigation of submerged landscapes in this region. It has successfully drawn on 

applications of historic landscape characterisation techniques and marine remote 

sensing techniques that have been used for studying submerged landscapes 

elsewhere in the world, as well as trialling new combinations of methodologies and 

datasets. Extensive experimentation and testing was required in order to establish 

which methods worked and which did not, as this particular combination of 

techniques and datasets has not been applied to submerged landscapes for the 

purposes of archaeological research before.  

 

A major outcome from the research is the identification of broad areas of potential 

containing possible significant landscape features and extensive sedimentary 

deposits, indicating that there is potential for finding archaeological and 

palaeoenvironmental remains within the submerged landscape. Another major 

outcome is the provision of a framework within which to begin more detailed 

investigations, by highlighting areas of potential to target, and appropriate techniques 

to use for more detailed, finer-grained investigations. However, it is important to 

recognise that this research represents a very early stage in the investigation of the 

submerged landscape, and it is not expected that archaeological sites will be 

discovered immediately as a result of this research. However, we do know that the 

possibility exists for sites to be preserved, given the right conditions, and this 

research has started the process of maximising our chances of finding them. As has 

been discussed previously, there are limitations to the datasets that have been used, 

and there is considerable scope for further development of methodologies and 
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techniques, particularly as technology improves and more data becomes available. 

The seabed characterisation, like all landscape characterisations, is not a definitive 

statement of archaeological knowledge or potential of the Study Area. Rather, it 

should be treated as a way of representing and mapping broad patterns in the 

landscape based on the best evidence currently available, thus providing a structure 

to inform and stimulate further research. The characterisation model could, for 

example, be refined and improved upon with more datasets and further analysis, and 

used for exploring novel methods of archaeological predictive modelling, such as that 

undertaken in the North Sea by Fitch (2011). Better knowledge of the topography of 

the submerged landscape in the Study Area as a result of the seabed 

characterisation could also be utilised in wider regional studies, such as studies into 

patterns of human migration (Cuttler et al., 2012). 

 

A sound research basis can facilitate informed decision making relating to the 

management of the marine historic environment, which can be applied beyond the 

Study Area. Also, as previously mentioned, landscape characterisation approaches 

lend themselves very well to combined applications for both the historic and the 

natural environment. The seabed character areas, and in particular the information 

about the seafloor topography, could be very useful for studies of the benthic habitat 

in the Study Area, which could feed into practical conservation strategies for the 

natural environment. This is very important in the submerged landscape off the coast 

of Qatar, as there are a range of pressures within this environment, including 

construction development such as the proposed Qatar-Bahrain Causeway, dredging 

for new ports, the creation of new land for tourism developments, and oil and gas 
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exploration. In this respect, the aims and achievements of the seabed 

characterisation fit within the wider context of the pioneering marine research work 

being carried out on behalf of the Qatar Museums Authority by the University of 

Birmingham’s QNHER project.  

 

Further research could lead ultimately to a point where it is realistic to search for 

submerged sites and palaeoenvironmental remains with a reasonable expectation of 

success. This seabed characterisation represents good progress towards this point, 

and it is hoped that it proves to be only the beginning of research into a more 

comprehensive understanding of the submerged landscape of the Arabian Gulf.
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APPENDIX 1: PROCESS AND PARAMETERS USED FOR THE ACOUSTIC 

CLASSIFICATION OF SIDESCAN SONAR DATA 

 

Reference system parameters for original survey data (from GEMS Qatar LLC 
2008)Geodetic parameters 
 

Working Spheroid Working Projection 

Spheroid WGS ‘84 Grid Projection QBC2001 

Datum WGS ‘84 Projection Type Transverse Mercator 

Semi-major Axis (a) 6 378 137.000 Central Meridian 050°49’ 00.000” E 

Semi-minor Axis (b) 6 356 752.314 Latitude of Origin 25°00’ 00.000” N 

Inv. Flattening (1/f) 298.257 223 56 False Easting 400000.00 

First Eccentricity (e2) 0.0066943800 False Northing 500000.00 

 Scale Factor on CM 0.999996 

 
Datum Transformation Parameters from WGS84 To working spheroid 
 

WGS84 Spheroid WGS84 to Working Spheroid 

Spheroid WGS84 X shift (dX): N/A 

Datum WGS84 Y shift (dY): N/A 

Semi-major Axis (a) 6 378 137.000 Z shift (dZ): N/A 

Semi-minor Axis (b) 6 356 752.314 X rotation (Rx): N/A 

Inv. Flattening (1/f) 298.257 223 56 Y rotation (Ry): N/A 

First Eccentricity (e2) 0.006 694 38 Z rotation (Rz): N/A 

Second Eccentricity (e’2) 0.006 739 50 Scale correction (ppm): N/A 

 
Coordinate system used for data analysis 
 
WGS84 UTM39N 
 
Software used: Swathview and CLAMS (Quester Tangent Corporation) 
 
TRIAL CLASSIFICATION 
 
Swathview (classification software) 
 
Batch Processing 

 CLEAN - Sidescan Masking 
 Pick Bottom – None, left as original 
 Mask Water column – offset 5m 
 Angle - Max 90 degrees 
 Range - Relative 80% 
 Preserve Border edits – checked 

 GENERATE RECTANGLES 
 Vessel speed - 4.4 knots 
 Ping rate - 5 

  Width * height (m)  
  Width (samples) - 129 
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  Height (pings) - 17 
  Sample rate - 9600 

 GENERATE FEATURES 
  Process file id 1 
 
Features 
 Merge FFV files 
 Base FFV channel 1  
 Merge channel 1 
 
Create Catalogue 
 FFV file id 1 
 
Auto Cluster 
 Select merged .dat.utm file 
 Number of classes from 5 to 20 
 5 iterations 
 15,000 records per iteration 
 Saved the relevant number of classes as .dat.utm 
 
Clams (Interpolation software) 
 
Interpolation 
 Open the relevant .dat.utm file 
 Check the coordinate system 
 Node spacing = 5 for X and Y (makes it less pixellated the smaller the value) 
 Search radius = 50 (joins up gaps if bigger) 
 Search size = 40 (bigger produces less polygons) 
 Create 
 Save as: surfer 
      Xyz 
      Geotiff 
 
ARGIS 
 
 Open geotiff in ArcGIS (open the _classes.tiff) 
 NB transformation problem – image is flipped and shifted on NW point 
 Resolved by doing a flip to get it on the right orientation and then a shift on the  y 
axis i.e. deducted values from the y coordinates (used data properties - min  and max 
extents - of geotiff and of sonarwiz coverage files to establish  what the shift needed to 
be. Shifted by -33573.69324 in y axis) 
 Go to layer properties, symbology, unique values, build attribute table, alter 
 background colour to clear, use field ‘value’ 
 
FINAL CLASSIFICATION 
 
Swathview (Classification software) 
 
Batch Processing 

 CLEAN - Sidescan Masking 
  Pick Bottom – None, left as original 
  Mask Water column – offset 5m 
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  Angle – 2 degrees min Max 70 degrees 
  Range - Relative 60% 
  Preserve Border edits – checked 

 GENERATE RECTANGLES 
  Vessel speed - 0 knots 
  Ping rate - 0 
  Width * height (m)  
  Width (samples) - 65 
  Height (pings) - 33 
  Sample rate - 9600 

 GENERATE FEATURES 
  Process file id 1 
 
Features 
 Merge FFV files 
 Base FFV channel 1  
 Merge channel 1 
 
Create Catalogue 
 FFV file id 1 
 
Auto Cluster 
 Select merged .dat.utm file 
 Number of classes from 5 to 20 
 5 iterations 
 15,000 records per iteration 
 Saved the relevant number of classes as .dat.utm 
 
Clams (interpolation software) 
 
Interpolation 
 Open the relevant .dat.utm file 
 Check the coordinate system 
 Node spacing = 5 for X and Y (makes it less pixellated the smaller the value) 
 Search radius = 100 (joins up gaps if bigger) 
 Search size = 100 (bigger produces less polygons) 
 Create 
 Save as: Geotiff 
 
Files used for test areas for both trials 
 
Area3 
20080724030952.xtf 
20080724042616.xtf 
20080724055140.xtf 
20080724072234.xtf 
20080724084848.xtf 
20080724101218.xtf 
20080724113257.xtf 
20080724124624.xtf 
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Area4 
20080726100849.xtf 
20080726043129.xtf 
20080726051534.xtf 
20080726055735.xtf 
20080726071558.xtf 
20080726073821.xtf 
20080726082638.xtf 
20080726090147.xtf 
20080726092620.xtf 
20080726105338.xtf 
20080726113249.xtf 
20080726121658.xtf 
20080726130112.xtf 
20080726063909.xtf 
 
Data Issues 
 
Files excluded from classification due to problems in loading into Swathview: 
20080709064910.xtf 
 
Files excluded from classification due to problems in Swathview processing: 
20080703042933.xtf 
20080703121350.xtf 
20080709093527.xtf 
20080709194757.xtf 
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APPENDIX 2: PROCESS AND PARAMETERS USED FOR PROCESSING THE 

LIDAR BATHYMETRY DATA 

 

Datums used for the LiDAR Survey (information provided with the data supply) 
 
Horizontal: WGS84 
Vertical: QCD which lies 0.88m below QVD (MSL at Doha Port) 
 
Coordinate system used for data analysis 
 
WGS84 UTM39N 
 
Software used: ArcGIS (ESRI Inc.) 
 
Step 1: convert ASCII to 3D feature. 
 3D analyst/Conversion/From file 
 Output to point 
 Use -1 to reverse the z values (this is because in xyz data, drying heights are 
 negative and depths below sea level are positive, so both had to be reversed) 
 Projection set as UTM39N 
 
Step 2: append z info 
 3D analyst/3D features/Add Z information. Check output property Z 
 
Step 3: Append Point files together 
 Data management tools/general/append 
 
Step 4: Interpolate surface 
 3D analyst/Raster interpolation/Natural neighbour 
 Select z value field and cell size (Both 7m and 2m resolution) 
 Visualise using Stretch and Invert values 
 
Step 5: Hillshade 
 3D analyst/Raster surface/Hillshade 
 Leave defaults unchanged (model shadows unchecked, azimuth 315 altitude  45) 
apart from set z factor to required exaggeration value 
 



248 

 

Points Used to Shift Bathymetry Data (based on coast shapefile ) 

 

Area Bathy X Coast X Shift X Bathy Y Coast Y Shift Y 

North 499228.175 499307.51 79.335 2873894.052 2873813.575 80.477 

North 499788.509 499867.091 78.582 2873443.491 2873364.116 79.375 

North 508438.557 508523.245 84.688 2883591.301 2883499.971 91.33 

North 503941.48 504021.084 79.604 2880717.915 2880638.314 79.601 

Average 
Shift 
North 
Area 

  
+80.55 

  
-82.69 

Middle 496773.595 496837.095 63.5 2861453.369 2861381.931 71.438 

Middle 495551.764 495635.511 83.747 2857387.52 2857296.296 91.224 

Middle 479798.61 479879.044 80.434 2823655.11 2823581.026 74.084 

Average 
Shift 
Middle 
Area 

 
+75.89 

  
-78.92 

South 476984.466 477062.041 77.575 2822519.302 2822441.727 77.575 

South 475589.916 475673.102 83.186 2810301.592 2810223.525 78.067 

South 475824.075 475907.737 83.662 2803880.432 2803805.67 74.762 

South 478892.997 478981.107 88.11 2774132.514 2774048.409 84.105 

Average 
Shift 
South 
Area 

  
+83.06 

  
-78.62 
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APPENDIX 3: GRAB SAMPLE GRAIN SIZE ANALYSIS REPORT 

 

By Ismail Mahmoud Al-Shaikh, Abdul Rahman Al-Obaidly and Abdel Rahman 

Sorour, Environmental Studies Centre, Qatar University. 
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Particle Size Range and Sediment Type 

Particle Size Range (µm) Sediment Type 

0.02 – 4.0 Clay 

4.0 – 63.0 Silt 

63.0 – 125.0 Very fine sand 

125.0 – 250.0 Fine sand 

250.0 – 500.0 Medium sand 

500.0 – 1000.0 Coarse sand 

1000.0 – 2000.0 Very coarse sand 
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Sample No. 2 
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Sample No. 3 
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Sample No. 4 

 

  Particle Size Distribution
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Sample No. 5 
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Sample No. 6 
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Sample No. 7 
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Sample No. 8 
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Sample No. 9 
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Sample No. 10 
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Sample No. 11 
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Sample No. 12 

 

  Particle Size Distribution

 0.020161  300.02  500.02  700.02  900.02  1100  1300  1500  1700  1900 

Particle Size (µm)

0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

V
o
lu

m
e
 (

%
)

KSB 12, Wednesday, May 01, 2013 10:11:12 AM  

  Particle Size Distribution

 0.01  200.01  400.01  600.01  800.01  1000  1200  1400  1600  1800 

Particle Size (µm)

0 

 5 

 10 

 15 

 20 

 25 

 30 

 35 

V
o
lu

m
e
 (

%
)

KSB 12, Wednesday, May 01, 2013 10:11:12 AM  

Size (µm)

0.010

4.000

63.000

Volume In %

0.00

1.32

Size (µm)

63.000

125.000

250.000

Volume In %

2.57

23.00

Size (µm)

250.000

500.000

1000.000

Volume In %

35.96

27.01

Size (µm)

1000.000

2000.000

Volume In %

10.13

Size (µm) Volume In % Size (µm) Volume In %

 

 



262 

 

Sample No. 13 
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Sample No. 14 
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Sample No. 15 
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Sample No. 16 
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Sample No. 17 
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Sample No. 40 
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Sample No. 41 
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Sample No. 42 

 

  Particle Size Distribution

 0.020161  300.02  500.02  700.02  900.02  1100  1300  1500  1700  1900 

Particle Size (µm)

0 

 0.5 

 1 

 1.5 

 2 

 2.5 

 3 

 3.5 

V
o
lu

m
e
 (

%
)

KSB 42, Wednesday, May 01, 2013 11:22:11 AM  

  Particle Size Distribution

 0.01  200.01  400.01  600.01  800.01  1000  1200  1400  1600  1800 

Particle Size (µm)

0 

 5 

 10 

 15 

 20 

 25 

 30 

 35 

V
o
lu

m
e
 (

%
)

KSB 42, Wednesday, May 01, 2013 11:22:11 AM  

Size (µm)

0.010

4.000

63.000

Volume In %

3.54

32.64

Size (µm)

63.000

125.000

250.000

Volume In %

10.55

13.50

Size (µm)

250.000

500.000

1000.000

Volume In %

13.90

15.45

Size (µm)

1000.000

2000.000

Volume In %

10.42

Size (µm) Volume In % Size (µm) Volume In %

 

 



292 

 

Sample No. 46 

 

  Particle Size Distribution
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Sample No.  47 

 

  Particle Size Distribution

 0.020161  300.02  500.02  700.02  900.02  1100  1300  1500  1700  1900 

Particle Size (µm)

0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

V
o
lu

m
e
 (

%
)

KSB 47, Monday, July 08, 2013 12:58:04 PM  

  Particle Size Distribution

 0.01  200.01  400.01  600.01  800.01  1000  1200  1400  1600  1800 

Particle Size (µm)

0 

 5 

 10 

 15 

 20 

 25 

 30 

 35 

V
o
lu

m
e
 (

%
)

KSB 47, Monday, July 08, 2013 12:58:04 PM  

 

Size (µm)

0.010

4.000

63.000

Volume In %

0.26

6.57

Size (µm)

63.000

125.000

250.000

Volume In %

4.60

13.87

Size (µm)

250.000

500.000

1000.000

Volume In %

31.04

32.61

Size (µm)

1000.000

2000.000

Volume In %

11.06

Size (µm) Volume In % Size (µm) Volume In %

 

 



294 

 

Sample No. 48 
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Sample No.  49 
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Sample No.  50 
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Sample No.  51 
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Sample No.  52 
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Sample No.  53 

 

  Particle Size Distribution

 0.020161  300.02  500.02  700.02  900.02  1100  1300  1500  1700  1900 

Particle Size (µm)

0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

V
o
lu

m
e
 (

%
)

KSB 53, Monday, July 08, 2013 1:25:14 PM  

  Particle Size Distribution

 0.01  200.01  400.01  600.01  800.01  1000  1200  1400  1600  1800 

Particle Size (µm)

0 

 10 

 20 

 30 

 40 

V
o
lu

m
e
 (

%
)

KSB 53, Monday, July 08, 2013 1:25:14 PM  

Size (µm)

0.010

4.000

63.000

Volume In %

0.00

0.62

Size (µm)

63.000

125.000

250.000

Volume In %

0.80

15.79

Size (µm)

250.000

500.000

1000.000

Volume In %

37.64

33.01

Size (µm)

1000.000

2000.000

Volume In %

12.14

Size (µm) Volume In % Size (µm) Volume In %

 

 



300 

 

Sample No.  54 
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Sample No.  55 
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Sample No.  56 
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Sample No. 95 
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Sample No. 96 
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Sample No. 97 
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Grain Size Distribution 

 

Station No. Sand Silt  Clay Sediment type 

KSB1 96.9 3.1 0.00 Sand 

KSB2 98.58 1.42 0.00 Sand 

KSB3 96.5 3.43 0.07 Sand 

KSB4 96.55 3.45 0.00 Sand 

KSB5 98.68 1.32 0.00 Sand 

KSB6 98.15 1.85 0.00 Sand 

KSB7 99.69 0.31 0.00 Sand 

KSB8 96.14 3.8 0.06 Sand 

KSB9 98.19 1.81 0.00 Sand 

KSB10 95.22 4.71 0.07 Sand 

KSB11 98.18 1.82 0.00 Sand 

KSB12 98.68 1.32 0.00 Sand 

KSB13 97.45 2.55 0.00 Sand 

KSB14 93.71 6.23 0.06 Sand 

KSB15 95.91 4.09 0.00 Sand 

KSB16 89.74 9.97 0.29 Silty sand 

KSB17 94.61 5.23 0.16 Sand 

KSB18 93.67 6.17 0.16 Sand 

KSB19 87.38 12.17 0.45 Silty sand 

KSB20 82.45 16.76 0.79 Silty sand 

KSB21 89.98 9.6 0.42 Silty sand 

KSB22 94.15 5.69 0.16 Sand 

KSB23 91.43 8.28 0.29 Sand 

KSB24 95.38 4.55 0.07 Sand 

KSB25 90.06 9.54 0.40 Sand 

KSB26 90.03 9.51 0.46 Sand 

KSB27 91.95 7.78 0.27 Sand 

KSB28 71.98 26.94 1.08 Silty sand 

KSB29 71.95 26.79 1.26 Silty sand 

KSB30 73.02 25.96 1.02 Silty sand 
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Station No. Sand Silt  Clay Sediment type 

KSB31 79.1 20.18 0.72 Silty sand 

KSB32-A 83.79 15.56 0.65 Silty sand 

KSB32-B 86.18 13.13 0.69 Silty sand 

KSB33 88.47 11.15 0.38 Silty sand 

KSB34 92.8 7.05 0.15 Sand 

KSB36 76.98 21.69 1.33 Silty sand 

KSB37 83.66 15.3 1.04 Silty sand 

KSB38 94.85 5.02 0.13 Sand 

KSB39 99.38 0.62 0.00 Sand 

KSB40 94.72 5.12 0.16 Sand 

KSB41 79.23 18.88 1.89 Silty sand 

KSB42 63.82 32.64 3.54 Silty sand 

KSB46 97.34 2.66 0.00 Sand 

KSB47 99.74 6.57 0.26 Sand 

KSB48 99.28 14.74 0.72 Sand 

KSB49 89.59 43.01 10.41 Silty sand 

KSB50 99.93 4.93 0.07 Sand 

KSB51 99.25 13.91 0.75 Sand 

KSB52 98.72 24.05 1.28 Sand 

KSB53 100 0.62 0.00 Sand 

KSB54 97.93 19.96 2.07 Sand 

KSB55 97.87 25.16 2.13 Sand 

KSB56 99.94 4.34 0.06 Sand 

KSB94 96.63 3.3 0.07 Sand 

KSB95 95.86 4.14 0.00 Sand 

KSB96 67.84 30.01 2.15 Silty sand 

KSB97 99.23 0.77 0.00 Sand 
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APPENDIX 4: PARAMETERS USED FOR PROCESSING AND MOSAICING 

SIDESCAN SONAR DATA 

 
Software used: Sonarwiz (Chesapeake Technology Inc.) 
 
Coordinate system used for data analysis 
 
WGS84 UTM39N 
 
Logging Anomalies 
 
Set up Project 
Coordinate source – auto (use fish if valid, otherwise ship) 
Time constant for course smoothing = 300 pings 
Coordinate system – UTM84-39N 
 
Batch import of files 
Course made good -  checked 
No gain applied 
Percentage of sonar range to map - 100% 
Channels 3 and 4 
Thresholding enabled - sniff carried out on 6 files to establish thresholding value of 2231 
 
Batch Processing of files 
EGN applied – intensity=41 
 
Seabed Classification Test 
 
The same settings were used as for logging anomalies except that the files were trimmed 
and split where they overlapped, and the nadir transparency was set to 4. Perpendicular 
survey lines were not included in the mosaic. 
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APPENDIX 5: LIST OF ALL ANOMALIES LOGGED FROM THE SIDESCAN SONAR DATA 

Area 1 

Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10001 45.58 7.91 1.89  Debris? 26.164178 51.067508 

QBC_Q10002 3.39 3.73 0.21  Debris? 26.172531 51.053955 

QBC_Q10003 17.09 1.65 0.17  Seabed Scar? 26.188127 51.033427 

QBC_Q10004 0 0 0  Natural? 26.190223 51.030078 

QBC_Q10005 13.52 1.9 0.14  Debris? 26.190361 51.028873 

QBC_Q10006 10.94 1.54 0.11  Debris? 26.190689 51.028266 

QBC_Q10007 11.62 5.98 0.38  Natural? 26.191166 51.02786 

QBC_Q10008 22.98 13.1 0.15  Buried Feature?   26.192163 51.026041 

QBC_Q10009 4.44 5.14 1.01  Debris? - Modern? 26.198301 51.018376 

QBC_Q10010 21.65 17.38 0.94  Buried Feature?   26.198905 51.016678 

QBC_Q10011 28.72 2.96 0.07  Natural? 26.202091 51.012029 

QBC_Q10012 16.67 3.27 0  Debris? 26.209287 51.004147 

QBC_Q10013 14.95 4.82 0.06  Natural? 26.217675 50.989785 

QBC_Q10014 24.01 8.2 0.34  Debris? 26.140912 50.946437 

QBC_Q10016 53.44 28.49 0.78  Debris? - Modern? 26.132907 50.957824 

QBC_Q10018 1.57 1.57 0.28  Debris? 26.124179 50.968431 

QBC_Q10020 6.53 2.49 0.12  Natural? 26.121128 50.972238 

QBC_Q10021 3.74 4.02 0.29  Unclassified 26.119927 50.973677 

QBC_Q10023 52.26 11.04 0.9  Debris?   26.115726 50.980105 

QBC_Q10024 14.06 2.11 0.1  Natural? 26.113622 50.983122 

QBC_Q10025 11.39 4.22 0.45  Debris - Modern? 26.110508 50.98751 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10026 2.43 3.58 1.49  Natural? 26.066991 50.903244 

QBC_Q10027 17.9 7.71 0.23  Buried Feature?-  26.120183 50.974065 

QBC_Q10030 105.23 5.09 1.2  Seabed Scar? 26.05359 50.922498 

QBC_Q10035 44.6 16.38 1.04  Buried Feature?  26.049929 50.927743 

QBC_Q10037 5.75 3.8 0.56  Buried Feature?  26.10989 50.915878 

QBC_Q10038 20.24 14.35 0.54  Buried Feature?  26.109964 50.916072 

QBC_Q10039 4.19 3.48 0.25  Debris? 26.109416 50.916106 

QBC_Q10044 7.58 7.63 0.51  Debris? 26.105752 50.922107 

QBC_Q10045 4.59 3.04 0.89  Debris? 26.104725 50.923774 

QBC_Q10046 9.64 4.98 0.93  Debris?  26.103701 50.925436 

QBC_Q10047 7.95 1.67 0  Debris? 26.096653 50.93603 

QBC_Q10048 8.47 5.01 0.75  Debris? 26.095658 50.936373 

QBC_Q10049 2.92 2.34 0.43  Natural? 26.092541 50.941048 

QBC_Q10050 9.96 4.09 0.81  Debris? 26.090631 50.944056 

QBC_Q10900 18.32 3.14 0  Duplicate of QBC_Q10050 26.090739 50.944173 

QBC_Q10051 21.16 11.32 0.77  Debris? - Modern? 26.089546 50.943997 

QBC_Q10052 45.47 1.67 0.9  Debris? 26.089965 50.944877 

QBC_Q10053 4.69 3.3 0  Natural?  26.091397 50.943247 

QBC_Q10056 0 0 0  Debris? 26.089551 50.943385 

QBC_Q10057 3.03 1.08 0.3  Debris? 26.088984 50.944446 

QBC_Q10058 8.74 1.92 0  Debris? 26.088443 50.944708 

QBC_Q10059 6.5 5.15 3.48  Debris? 26.083818 50.951767 

QBC_Q10060 7.27 1.28 0.23  Natural? 26.075834 50.964598 

QBC_Q10061 25.94 3.43 0.32  Natural? 26.068163 50.973555 

QBC_Q10062 7.32 2.12 1.14  Debris? 26.111185 50.923062 

QBC_Q10063 5.59 1.77 1  Debris?  26.108357 50.926696 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10064 3.42 1.82 0.2  Natural? 26.107479 50.926505 

QBC_Q10065 4.83 2.32 0.48  Debris? 26.108373 50.927508 

QBC_Q10066 6.05 2.89 0.51  Buried Feature? 26.107364 50.927361 

QBC_Q10067 5.08 4.41 0.09  Buried Feature? 26.107701 50.926639 

QBC_Q10068 3.54 1.12 0.09  Buried Feature? 26.100057 50.939206 

QBC_Q10069a 2.62 2.55 0.99  Unclassified 26.094479 50.94567 

QBC_Q10069b 4.7 2.72 0.41  Buried Feature? 26.094703 50.945614 

QBC_Q10071 3.44 1.99 0.43  Debris? 26.091898 50.948385 

QBC_Q10072 9.34 2.37 0.76  Debris?  26.091842 50.950222 

QBC_Q10073 2.77 0.74 0.49  Debris? 26.089504 50.953108 

QBC_Q10074 2.41 0.74 0.16  Debris? 26.08955 50.953583 

QBC_Q10075 26.41 12.41 0.97  Debris? 26.08889 50.953501 

QBC_Q10076 5.51 2.39 0.76  Buried Feature? 26.082374 50.962397 

QBC_Q10077 15.57 1.55 0  Natural? 26.080693 50.965024 

QBC_Q10078 13.09 21.76 0.41  Natural? 26.084755 50.959102 

QBC_Q10079 4.28 2.2 0.36  Natural? 26.113025 50.927079 

QBC_Q10080 4.21 1.84 0.81  Debris? 26.113302 50.927475 

QBC_Q10081 7.17 5.55 0.72  Debris? 26.112738 50.92822 

QBC_Q10082 23.98 10.99 0  Location? 26.11209 50.928692 

QBC_Q10083 7.52 3.61 1.01  Debris? 26.110706 50.930578 

QBC_Q10084 19.52 2.98 0  Location? 26.104293 50.93928 

QBC_Q10085 17.58 13.28 0.92  Debris? 26.098616 50.947458 

QBC_Q10086 10.05 7.91 0.09  Buried Feature? 26.09642 50.952379 

QBC_Q10087 3.33 0.73 0.13  Debris? 26.095703 50.95399 

QBC_Q10088 1.66 0.94 0.64  Natural? 26.092932 50.956692 

QBC_Q10089 22.08 12.26 0  Unclassified 26.092969 50.957561 



313 

 

Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10090 19.63 19.47 0  Natural? 26.083392 50.969561 

QBC_Q10091 34.48 12.42 0.52  Buried Feature? 26.077678 50.977986 

QBC_Q10092 6.84 6.32 0  Buried Feature? 26.115737 50.931746 

QBC_Q10093 8.57 1.95 0.31  Debris? 26.114192 50.93375 

QBC_Q10094 6.77 4.35 0.41  Debris? 26.108821 50.941569 

QBC_Q10095 6.01 2.99 0  Debris? 26.092568 50.962845 

QBC_Q10096 22.95 4.17 0.11  Buried Feature? 26.092101 50.965949 

QBC_Q10097 98.26 2.28 0  Linear Debris? 26.087507 50.971216 

QBC_Q10098 23.27 6.76 0  Debris? 26.122298 50.929615 

QBC_Q10099 14.99 6.1 0  Debris? 26.122068 50.929949 

QBC_Q10100 3.84 2.77 0  Debris? 26.121916 50.930422 

QBC_Q10101 1.26 0.5 0.16  Debris? 26.120506 50.933141 

QBC_Q10102 1.62 0.75 0.25  Debris? 26.12021 50.933567 

QBC_Q10103 4.42 2.17 0.44  Buried Feature? 26.117515 50.936816 

QBC_Q10104 11.6 5.15 0.69  Debris? 26.116663 50.939105 

QBC_Q10105 4.66 1.89 1.02  Debris? 26.114032 50.942135 

QBC_Q10107 6.12 6.17 1.33  Buried Feature? - Duplicate 26.111764 50.945494 

QBC_Q10106 0 0 0  Duplicate of QBC_Q10107 26.111778 50.945571 

QBC_Q10108 9.08 6.57 0.8  Debris? 26.10403 50.95733 

QBC_Q10109 1.56 1.25 0.37  Debris? 26.103142 50.95729 

QBC_Q10110 16.81 8.48 0.87  Debris? 26.097583 50.9661 

QBC_Q10111 10.64 3.62 0.47  Debris? 26.093648 50.970599 

QBC_Q10112 15.62 10.02 0.73  Debris? 26.092174 50.973257 

QBC_Q10113 16.51 0.85 0  Natural? 26.085384 50.983023 

QBC_Q10114 3.49 1.68 0.27  Natural? 26.125137 50.934866 

QBC_Q10115 6.9 0.68 0.37  Debris? 26.124633 50.936281 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10116 11.24 1.57 0  Buried Feature? 26.12002 50.941669 

QBC_Q10117 34.54 1.34 0  Natural? 26.11693 50.94535 

QBC_Q10118 1.54 1.27 1.18  Natural? 26.111446 50.953896 

QBC_Q10119 26.06 8.07 0  Buried Feature? 26.109767 50.956038 

QBC_Q10120 12.25 3.84 0.58  Buried Feature? 26.102049 50.968652 

QBC_Q10121 1.6 1.02 0.35  Natural? 26.09922 50.971846 

QBC_Q10122 1.22 1.13 0.34  Natural? 26.099352 50.971723 

QBC_Q10123 0.71 0.95 0.43  Natural? 26.099284 50.971785 

QBC_Q10124 7.98 2.54 1.11  Debris? 26.09884 50.972745 

QBC_Q10125 34.3 5.02 0.74  Buried feature? 26.098345 50.974332 

QBC_Q10126 3.98 2.74 1.28  Buried Feature? 26.127756 50.939085 

QBC_Q10127 6 2.75 0.25  Debris? 26.128502 50.939809 

QBC_Q10128 16.21 4.9 0.66  Bham0074 - Cars 26.127721 50.9399 

QBC_Q10129 0 0 0  Debris? 26.127713 50.940492 

QBC_Q10130 6.55 5.48 0  Debris? 26.127253 50.941361 

QBC_Q10131 23.06 1.42 0  Seabed Scar? 26.127141 50.941242 

QBC_Q10132 6.64 5.41 0.89  Debris? 26.126667 50.941273 

QBC_Q10133 0 0 0  Hole? 26.126209 50.94185 

QBC_Q10134 19.17 2.89 0  Debris? 26.1226 50.945164 

QBC_Q10135 24.74 4.12 0  Debris? 26.112494 50.959673 

QBC_Q10136 6.64 4.07 0  Debris? 26.109849 50.962975 

QBC_Q10137 5.22 3.97 0  Debris? 26.109132 50.967272 

QBC_Q10138 7.46 1.37 0.69  Debris? 26.098517 50.979507 

QBC_Q10139 50.05 1.78 0  Natural? 26.095911 50.983161 

QBC_Q10140 1.41 1.08 0.58  Natural? 26.096149 50.983603 

QBC_Q10141 16.18 7.11 0  Debris? 26.130633 50.944689 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10142 3.55 1.79 0.61  Debris? 26.12952 50.944773 

QBC_Q10143 2.54 2.54 0.53  Debris? 26.128734 50.944708 

QBC_Q10144 0 0 0  Debris? 26.128266 50.94669 

QBC_Q10145 3.38 2.34 0.45  Buried Feature? 26.128192 50.947362 

QBC_Q10146 16.76 7.05 0  Debris? 26.126096 50.948485 

QBC_Q10147 2.92 1.71 0  Natural? 26.126761 50.949553 

QBC_Q10148 1.76 0.58 0.23  Natural? 26.12299 50.954576 

QBC_Q10149 3.11 1.8 0  Debris? 26.119636 50.960689 

QBC_Q10150 33.33 3.41 0  Natural? 26.11807 50.961883 

QBC_Q10151 10.15 2.76 0.5  Debris? 26.117805 50.962641 

QBC_Q10152 2.25 1.14 0.62  Debris? 26.116527 50.963562 

QBC_Q10153 31.79 4.59 0  Debris? 26.109352 50.974734 

QBC_Q10155 8.78 3.94 0.52  Debris? 26.104284 50.981682 

QBC_Q10156 3.69 2.14 0  Buried feature? 26.09757 50.989577 

QBC_Q10157 12.02 1.49 0  Natural? 26.091728 50.999054 

QBC_Q10158 3.01 2.77 0.1  Natural? 26.090182 51.000899 

QBC_Q10159 12.43 18.1 0.15  Buried Feature? 26.087193 51.005279 

QBC_Q10160 6.06 1.62 0.99  Debris? - Modern? 26.135037 50.945099 

QBC_Q10161 44.17 13.51 0.88  Debris? - Modern? 26.132914 50.948831 

QBC_Q10162 67.45 2.03 0  Natural? 26.122775 50.961895 

QBC_Q10163 10.03 0.65 0.16  Natural? 26.121548 50.963778 

QBC_Q10164 5.83 2.51 0.91  Debris? 26.12081 50.96621 

QBC_Q10165 1.76 1.47 0  Debris? 26.117534 50.968357 

QBC_Q10166 19.26 11.17 0.67  Debris? 26.117197 50.97072 

QBC_Q10167 0 0 0  Object in Water Column? 26.116877 50.970623 

QBC_Q10168 8.94 2.9 0.79  Debris? - Modern? 26.112267 50.976146 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10169 49.67 1.59 0  Seabed Scar? 26.112176 50.978016 

QBC_Q10170 14.58 2.96 0.78  Buried Feature? 26.105195 50.986914 

QBC_Q10172 58.46 4.21 0  Location? 26.098402 50.996512 

QBC_Q10173 5.4 2.08 0.18  Location? 26.090331 51.023801 

QBC_Q10175 4.92 3.52 0.38  Natural? 26.092546 51.022249 

QBC_Q10176 0 0 0  Location? 26.094385 51.018362 

QBC_Q10177 2.28 2.27 0  Hole? 26.115219 50.989037 

QBC_Q10178 9.81 4.7 0.5  Debris? 26.116643 50.986132 

QBC_Q10179 1.17 1.57 0.44  Debris? 26.116962 50.986285 

QBC_Q10180 30.6 10.05 0  Location? 26.119999 50.983597 

QBC_Q10181 5.11 1.51 0.19  Natural? 26.137381 50.957887 

QBC_Q10182 9.83 3.37 0.52  Debris? - Modern? 26.140096 50.95542 

QBC_Q10184 8.07 4.68 0.82  Debris? 26.122287 50.988372 

QBC_Q10185 7.22 4.84 0.71  Debris? 26.125707 50.981833 

QBC_Q10186 0 0 0  Debris? - Modern? 26.130007 50.976833 

QBC_Q10187 5.59 3.6 0.73  Debris? 26.136482 50.966842 

QBC_Q10188 20.52 6.76 0.3  Debris? - Modern? 26.140766 50.96262 

QBC_Q10189 3.75 2.95 0  Hole? 26.147616 50.952451 

QBC_Q10190 5.1 2.14 0  Debris? - Modern? 26.149583 50.955742 

QBC_Q10191 10.91 7.98 0  Debris? 26.143373 50.967286 

QBC_Q10192 6.99 2.63 0.27  Debris? - Modern? 26.140544 50.968642 

QBC_Q10193 6.85 4.42 0.62  Debris? 26.138977 50.972897 

QBC_Q10194 35.86 2.36 0  Seabed Scar? 26.103934 51.022202 

QBC_Q10195 6.94 3.15 0  Buried Feature? 26.097815 51.028528 

QBC_Q10196 11.03 3.42 0.73  Debris? - Modern? 26.089698 51.039936 

QBC_Q10197 39.71 10.8 0  Natural? 26.098603 51.035768 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10198 87.39 28.38 0  Location? 26.116708 51.012945 

QBC_Q10199 7.28 5.99 1.01  Debris? - Modern? 26.122426 51.002891 

QBC_Q10200 23.65 2.32 0  Natural? 26.123063 51.003561 

QBC_Q10201 0 0 0.8  Unclassified 26.124505 50.999772 

QBC_Q10202 51.84 30.17 0  Location? 26.125948 50.998024 

QBC_Q10203 5.2 2.44 0.68  Debris - Modern? 26.130334 50.993269 

QBC_Q10204 1.69 0.7 0.27  Debris? 26.129516 50.993047 

QBC_Q10205 10.56 5.94 0.13  Buried Feature? 26.140785 50.978639 

QBC_Q10206 2.79 2.37 0.72  Debris? 26.140742 50.978097 

QBC_Q10207 6.04 2.23 0.53  Debris? - Modern? 26.143998 50.972776 

QBC_Q10208 11.67 8.95 0.53  Debris? 26.14765 50.967655 

QBC_Q10209 16.49 6.85 0.81  Debris? 26.15206 50.961337 

QBC_Q10210 11.33 3.38 0  Debris? 26.11286 50.922721 

QBC_Q10211 0 0 0  Location? 26.112947 50.924671 

QBC_Q10213 4.9 5.04 0.53  Debris? 26.103412 50.936359 

QBC_Q10214 5.67 2.52 0.42  Debris? 26.102886 50.936858 

QBC_Q10215 6.05 1.4 0.46  Debris? 26.102337 50.938217 

QBC_Q10216 8.58 4.45 0.75  Bham0073 - Cars 26.101064 50.939624 

QBC_Q10217 15.94 1.05 0  Natural? 26.097927 50.944155 

QBC_Q10218 4.06 2.44 1.25  Debris? 26.095919 50.947739 

QBC_Q10219 0 0 0  Unclassified 26.092693 50.950983 

QBC_Q10220 14.13 8.38 0.95  Debris? 26.090578 50.956323 

QBC_Q10221 0 0 0  Location? 26.089928 50.957252 

QBC_Q10222 2.44 0.83 0.35  Buried Feature? 26.089615 50.956595 

QBC_Q10223 2.86 1.79 0  Debris? 26.088618 50.959718 

QBC_Q10224 52.84 7.75 0  Natural? 26.062097 50.906542 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10225 101.93 12.77 0  Natural? 26.059907 50.909682 

QBC_Q10226 24.58 12.78 0  Natural? 26.068826 50.905008 

QBC_Q10227 30.58 18.43 0  Location? 26.066123 50.909461 

QBC_Q10228 9.65 4.97 1.4  Debris? 26.065381 50.909654 

QBC_Q10229 97.17 4.84 0  Seabed Scar? 26.061457 50.914405 

QBC_Q10230 92.29 6.12 0  Data problem? 26.060353 50.916225 

QBC_Q10231 83.7 2.17 0  Linear Debris? 26.060518 50.91724 

QBC_Q10232 28.89 8.22 0  Depression? 26.060296 50.917675 

QBC_Q10233 84.05 3.61 0  Seabed Scar? 26.055883 50.922871 

QBC_Q10234 0 12.3 0  Depression? 26.052369 50.927506 

QBC_Q10235 0 0 0  Depression? 26.050911 50.929229 

QBC_Q10236 2.87 1.68 0.98  Debris? - Modern? 26.077354 50.901243 

QBC_Q10237 10.11 5.08 1.27  Debris? - Modern? 26.075569 50.903497 

QBC_Q10238 9.08 2.32 0.76  Debris? 26.074429 50.90462 

QBC_Q10239 38.06 21.79 0  Location? 26.070272 50.911597 

QBC_Q10240 10.03 1.9 0.41  Natural? 26.062519 50.922783 

QBC_Q10241 0 0 0.47  Debris? 26.043976 50.948712 

QBC_Q10242 3.83 2.9 1.35  Debris? 26.043286 50.949088 

QBC_Q10243 0 0 0.3  Debris? 26.043442 50.949323 

QBC_Q10244 7.06 5.38 0.96  Natural? 26.054666 50.901281 

QBC_Q10245 2.75 1.86 0.64  Natural? 26.051646 50.899967 

QBC_Q10246 4.23 2.36 0.96  Natural? 26.067749 50.895292 

QBC_Q10247 23.56 15.17 0  Location? 26.066965 50.896625 

QBC_Q10248 55.37 1.44 0  Natural? 26.05887 50.907371 

QBC_Q10249 4.92 2.04 0.71  Debris? 26.063726 50.916268 

QBC_Q10250 2.07 2.07 1.04  Debris? 26.063292 50.917283 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10251 31.51 1.85 0  Natural? 26.06366 50.915651 

QBC_Q10252 16 6.06 0  Location? 26.078566 50.903123 

QBC_Q10253 34.11 30.74 0  Location? 26.069383 50.916591 

QBC_Q10254 23.94 2.24 0  Seabed Scar? 26.068958 50.918444 

QBC_Q10255 99.32 3.45 0  Data problem? 26.06761 50.917947 

QBC_Q10256 5.93 1.84 0  Natural? 26.067568 50.919924 

QBC_Q10257 4.8 1.48 0.71  Natural? 26.045402 50.950653 

QBC_Q10258 8.12 6.24 0  Natural? 26.042201 50.95442 

QBC_Q10259 21.93 12.4 0  Location? 26.069299 50.915386 

QBC_Q10260 49.4 14.2 0  Depression? 26.082551 50.907172 

QBC_Q10261 21.12 4.05 0  Debris? 26.07874 50.912878 

QBC_Q10262 4.65 1.75 0.54  Debris? - Modern? 26.077936 50.912727 

QBC_Q10263 38.51 10.29 0  Depression? 26.078133 50.913414 

QBC_Q10264 12.09 11.9 0  Location? 26.073948 50.917897 

QBC_Q10265 10.44 3.6 0.91  Bham0020 - cars 26.07089 50.922166 

QBC_Q10266 7.75 3.46 0.38  Natural? 26.046325 50.956833 

QBC_Q10267 4.6 2.06 0.26  Natural? 26.042798 50.962266 

QBC_Q10268 7.43 4.27 0.33  Natural? 26.041907 50.96437 

QBC_Q10269 4.65 1.6 0  Natural? 26.044931 50.960365 

QBC_Q10270 10.63 3.41 0.74  Debris? - Modern? 26.085082 50.910245 

QBC_Q10271 37.77 1.79 0  Natural? 26.083989 50.91146 

QBC_Q10272 3.71 0.91 0.57  Natural? 26.08364 50.912842 

QBC_Q10273 10.08 14.29 0.49  Bham0019 - Cars 26.078984 50.918596 

QBC_Q10274 37.24 12.83 0  Location? 26.075106 50.923526 

QBC_Q10275 55.93 45.92 0  Location? 26.064642 50.939217 

QBC_Q10276 5.96 2.28 0.89  Debris? 26.060076 50.94573 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10277 63.21 3.6 0  Depression? 26.060305 50.945978 

QBC_Q10278 7.28 4.72 0.23  Natural? 26.057685 50.950464 

QBC_Q10279 7.35 1.92 0.74  Buried Feature? 26.055975 50.952156 

QBC_Q10280 31.94 1.71 0  Natural? 26.053293 50.955595 

QBC_Q10281 8.35 2.95 0.23  Natural? 26.047329 50.96471 

QBC_Q10282 9.36 0.93 0.2  Natural? 26.046697 50.964255 

QBC_Q10283 35.11 5.12 0.42  Buried Feature? 26.044793 50.966205 

QBC_Q10284 44.75 2.26 0  Natural? 26.08994 50.911351 

QBC_Q10285 4.79 1.94 0.4  Debris? - Modern? 26.086224 50.916698 

QBC_Q10286 12.15 3.36 0.54  Bham0017 - Cars 26.086726 50.917386 

QBC_Q10287 8.29 3.39 0.71  Debris? - Modern? 26.084214 50.918716 

QBC_Q10288 2.61 0.87 0.43  Debris? 26.082951 50.922121 

QBC_Q10289 6.82 1.58 0.11  Natural? 26.080507 50.924306 

QBC_Q10290 8.33 4.56 0  Natural? 26.078858 50.92888 

QBC_Q10291 0 0 0  Location? 26.07881 50.928273 

QBC_Q10292 54.39 32.54 0.74  Natural? 26.076672 50.931454 

QBC_Q10293 3.9 2.29 0.69  Debris? - Modern? 26.074413 50.933972 

QBC_Q10294 12.72 1.97 0.55  Debris? 26.072967 50.934841 

QBC_Q10295 19.62 9.98 0  Buried Feature? 26.070205 50.939847 

QBC_Q10297 0 0 0  Duplicate of QBC_Q10295 26.070232 50.939827 

QBC_Q10298 4.2 2.34 0.79  Debris? - Modern? 26.06983 50.940326 

QBC_Q10299 48.04 1.62 0  Natural? 26.068463 50.941823 

QBC_Q10300 10.49 8.3 0  Location? 26.0641 50.947909 

QBC_Q10301 14.73 10.39 0.36  Natural ? 26.055367 50.959361 

QBC_Q10302 3.02 2.42 0.7  Debris? - Modern? 26.096733 50.910892 

QBC_Q10303 6.4 2.68 0  Debris? 26.092732 50.917014 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10304 23.89 2.62 0.81  Bham0016 - Tyres 26.091109 50.917744 

QBC_Q10305 6.69 3.08 0.53  Debris? 26.089936 50.919292 

QBC_Q10306 4.64 3.57 0  Debris? 26.089514 50.919463 

QBC_Q10307 5.24 1.82 0.72  Debris? - Modern? 26.087683 50.922878 

QBC_Q10308 11.56 3.47 0  Debris? - Modern? 26.087451 50.92484 

QBC_Q10309 4.01 2.67 0.46  Natural? 26.080841 50.933292 

QBC_Q10310 35.32 2.38 0  Natural? 26.076909 50.937072 

QBC_Q10311 4.56 3.65 0.69  Debris? 26.076836 50.938696 

QBC_Q10312 5.59 2.57 0  Natural? 26.071291 50.947673 

QBC_Q10313 41.42 14.3 0.47  Natural? 26.067197 50.951187 

QBC_Q10314 74.78 2.91 0  Seabed Scar? 26.065338 50.954863 

QBC_Q10315 18.32 1.11 0  Natural? 26.062645 50.958109 

QBC_Q10316 4.89 3.06 0.35  Natural? 26.057918 50.964623 

QBC_Q10317 27.29 6.41 0  Buried Feature? 26.056922 50.965199 

QBC_Q10318 3.53 1.13 0  Natural ? 26.101537 50.912217 

QBC_Q10319 3.58 2.22 0  Natural? 26.097268 50.916536 

QBC_Q10320 24.95 10.81 0  Seabed Scar? 26.097572 50.917563 

QBC_Q10321 4.99 2.1 1.1  Debris? 26.093511 50.923065 

QBC_Q10322 13.95 4.36 0.66  Bham0013 - Tyres 26.092083 50.924327 

QBC_Q10323 4.08 1.3 0.58  Debris? 26.091531 50.925976 

QBC_Q10324 23.37 10.23 0  Natural? 26.09102 50.925282 

QBC_Q10325 5.73 3.24 0  Debris? 26.088973 50.927951 

QBC_Q10326 13.12 4.8 0.89  Bham0012 - Cars 26.088844 50.929978 

QBC_Q10327 57.44 19.08 0.63  Buried Feature? 26.083173 50.936775 

QBC_Q10328 6.32 1.71 0  Debris? 26.083721 50.93771 

QBC_Q10329 7.8 2.18 0.87  Debris? - Modern? 26.082836 50.93811 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10330 6.15 3.01 0  Natural? 26.080197 50.940258 

QBC_Q10331 6.44 2.71 0.98  Debris? 26.103053 50.918189 

QBC_Q10332 4.45 2.62 0.83  Debris? - Modern? 26.101257 50.92039 

QBC_Q10333 11.7 8.91 0.17  Natural ? 26.100566 50.920102 

QBC_Q10334 78.8 4.18 0.68  Debris? - Modern? 26.099281 50.921995 

QBC_Q10335 4.09 2.19 0.94  Debris? 26.099227 50.92284 

QBC_Q10336 57.23 34.68 0.62  Debris? - Modern? 26.096039 50.926544 

QBC_Q10337 6.41 2.16 0.94  Debris? 26.095839 50.927719 

QBC_Q10338 17.77 3.66 1.42  Debris? - Modern? 26.092555 50.931337 

QBC_Q10339 5.27 2.1 0.7  Debris? 26.090511 50.93551 

QBC_Q10340 0 0 0  Data problem? 26.090887 50.935667 

QBC_Q10341 5.06 1.86 1.02  Debris? - Modern? 26.088323 50.938225 

QBC_Q10342 7.62 2.53 0.71  Debris? - Modern? 26.086813 50.939104 

QBC_Q10343 0 0 0  Duplicate of QBC_Q10342 26.086859 50.939092 

QBC_Q10344 5.45 1.71 0.47  Debris? 26.087336 50.940866 

QBC_Q10345 51.55 15.54 0  Location? 26.079559 50.949938 

QBC_Q10346 15.94 15.63 0  Natural? 26.075275 50.955642 

QBC_Q10347 15.43 6.64 0  Natural? 26.072676 50.959533 

QBC_Q10349 10.28 1.71 0  Natural ? 26.062442 50.975204 

QBC_Q10350 3.78 3.33 0.65  Debris? 26.114509 50.930767 

QBC_Q10352 66.08 1.53 0  Natural? 26.10597 50.940842 

QBC_Q10353 12.94 3.21 0.37  Debris? 26.10262 50.945964 

QBC_Q10354 34.81 3.58 0  Data problem? 26.10227 50.94849 

QBC_Q10355 5.32 2.3 0.68   Bham0040 - Cars 26.097135 50.954447 

QBC_Q10356 4.62 2.1 0  Natural? 26.092559 50.959382 

QBC_Q10357 12.56 2.52 0.85  Debris? 26.092271 50.962169 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10358 18.5 8.3 0  Buried feature? 26.091498 50.960999 

QBC_Q10359 6.33 3.28 0  Debris? - Modern? 26.114074 50.939762 

QBC_Q10360 6.94 4.88 0.86  Debris? 26.109001 50.946489 

QBC_Q10361 7.83 3.63 0  Debris? 26.104551 50.950737 

QBC_Q10362 14.54 2.91 0.84  Buried Feature? 26.091321 50.970833 

QBC_Q10363 3.44 3.19 1.16  Debris? 26.124418 50.931742 

QBC_Q10364 29.94 1.5 0  Net? 26.118995 50.938643 

QBC_Q10365 1.51 2.23 0.49  Debris? 26.119324 50.93896 

QBC_Q10366 4.2 3.33 1.17  Debris? 26.117135 50.94257 

QBC_Q10367 7.03 3.33 0.95  Debris - Modern? 26.112085 50.948764 

QBC_Q10368 5.47 1.91 0.96  Debris? - Modern? 26.107309 50.957101 

QBC_Q10369 17.69 3.41 0.91  Debris? - Modern? 26.104606 50.959414 

QBC_Q10370 3.53 1.23 0.61  Debris? 26.099705 50.96755 

QBC_Q10371 16.69 3.95 0.96  Debris? - Modern? 26.0983 50.969533 

QBC_Q10372 8.04 4.55 0  Debris? 26.098361 50.969887 

QBC_Q10373 8.61 6.31 0.38  Buried Feature? 26.095926 50.971923 

QBC_Q10374 100.7 1.13 0  Seabed Scar? 26.093658 50.97629 

QBC_Q10375 4.46 2.17 0  Bham0038 - Cars 26.093331 50.976766 

QBC_Q10376 29.13 1.52 0  Location? 26.090243 50.979979 

QBC_Q10377 2.83 3.04 0  Buried Feature? 26.12209 50.944676 

QBC_Q10378 15.37 12.25 0.51  Buried Feature? 26.117737 50.948732 

QBC_Q10379 11.26 4.67 0.31  Natural? 26.115013 50.952333 

QBC_Q10380 12.77 9.72 0.59  Buried Feature? 26.114713 50.952828 

QBC_Q10381 6.54 3.28 0.7  Debris? - Modern? 26.113137 50.955331 

QBC_Q10382 6.61 2.24 0.79  Debris? - Modern? 26.109259 50.960807 

QBC_Q10383 3.51 1.9 0.96  Buried Feature? 26.108103 50.962087 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10384 7.4 2.97 0  Debris? 26.099536 50.973515 

QBC_Q10385 80.89 2.34 0  Natural ? 26.099046 50.976504 

QBC_Q10386 10.38 2.83 0.82  Buried feature? 26.098194 50.977084 

QBC_Q10387 5.4 2.33 0.74  Debris? - Modern? 26.096483 50.979281 

QBC_Q10388 48.43 1.69 0  Natural? 26.092071 50.986189 

QBC_Q10389 29.51 10.77 0  Location? 26.090276 50.989229 

QBC_Q10390 5.75 1.07 0.24  Location? 26.088617 50.990707 

QBC_Q10391 7.26 4.01 0.13  Natural ? 26.088166 50.992154 

QBC_Q10392 38.71 17.8 0  Depression? 26.081654 50.965677 

QBC_Q10393 16.84 7.15 0.42  Debris? 26.082116 50.964915 

QBC_Q10394 25.28 11.11 0  Depression? 26.081151 50.965134 

QBC_Q10395 3.49 1.75 0.48  Natural ? 26.074486 50.959364 

QBC_Q10396 29.57 4.91 0.54  Duplicate of QBC_Q10313 26.067142 50.951194 

QBC_Q10397 7.75 3.57 0.96  Duplicate of QBC_Q10276 26.060116 50.945687 

QBC_Q10398 21.23 3.96 0.28  Debris? 26.132888 50.937619 

QBC_Q10399 8.99 6.81 0  Depression? 26.132258 50.936895 

QBC_Q10400 16.74 3.35 1.11  Debris? 26.131783 50.937512 

QBC_Q10401 10.8 5.03 1.18  Debris? 26.13177 50.938311 

QBC_Q10402 17.03 3.44 0  Debris? 26.130814 50.937899 

QBC_Q10403 6.42 2.2 1.05  Debris? 26.130915 50.939438 

QBC_Q10407 8.55 5.93 0  Debris? 26.130206 50.938566 

QBC_Q10408 24.87 3.09 0.93  Debris? 26.129648 50.9402 

QBC_Q10409 10.53 3.08 1.85  Debris? 26.129444 50.940623 

QBC_Q10410 6.53 3.49 0  Debris? 26.129233 50.940292 

QBC_Q10411 6.08 4.32 1.17  Debris? 26.130272 50.940832 

QBC_Q10412 3.22 3.27 0  Natural? 26.130334 50.939137 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10413 3.28 2.06 0.51  Debris? 26.129181 50.941226 

QBC_Q10414 74.61 2.1 0  Seabed Scar? 26.128383 50.941777 

QBC_Q10415 29.82 1.47 0  Natural? 26.128076 50.942728 

QBC_Q10416 0 0 0  Debris? 26.12765 50.942574 

QBC_Q10417 4.71 1.85 0  Natural? 26.131683 50.936887 

QBC_Q10418 3.61 1.82 0.84  Debris? 26.127657 50.943502 

QBC_Q10419 12.05 7.85 0.94  Debris? 26.119333 50.955536 

QBC_Q10420 66.94 11.25 0.74  Debris? 26.118021 50.956311 

QBC_Q10421 5.94 2.77 0  Natural? 26.112134 50.966925 

QBC_Q10422 4.73 1.94 0.45  Natural? 26.10829 50.971582 

QBC_Q10423 7.27 2.59 0  Natural? 26.097671 50.984475 

QBC_Q10424 7.85 2.53 0.65  Natural? 26.096792 50.987606 

QBC_Q10425 9.63 4.64 0  Natural? 26.08853 50.997432 

QBC_Q10426 2.2 1.47 0.67  Natural? 26.132898 50.944483 

QBC_Q10427 11.02 2.02 0.62  Buried Feature? 26.130293 50.94753 

QBC_Q10428 15.59 5.21 0.57  Debris? 26.129287 50.94973 

QBC_Q10429 12.98 1.83 0  Debris? 26.12179 50.959458 

QBC_Q10430 6.82 6.23 0.8  Debris? 26.121587 50.960683 

QBC_Q10431 12.99 3.59 0  Natural? 26.121122 50.959972 

QBC_Q10432 6.19 2.77 0.77  Natural? 26.120058 50.96336 

QBC_Q10433 8.74 5.66 0  Natural? 26.117114 50.967657 

QBC_Q10434 4.89 3.38 0.83  Debris? 26.113673 50.971041 

QBC_Q10435 5.08 2.5 0.86  Debris - Modern? 26.110855 50.974373 

QBC_Q10436 15.4 8.21 0.34  Natural? 26.088292 51.015315 

QBC_Q10437 49 2.38 0  Natural? 26.093642 51.00693 

QBC_Q10438 13.33 7.38 0  Object in Water Column? 26.107673 50.987568 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10439 14.11 4.58 0  Object in Water Column? 26.109215 50.98577 

QBC_Q10440 10.65 2.94 0  Natural? 26.112253 50.982443 

QBC_Q10441 6.15 2.29 0  Natural? 26.115561 50.9784 

QBC_Q10442 3.85 2.26 0  Debris? 26.119473 50.973045 

QBC_Q10443 37.07 19.91 0  Natural? 26.118104 50.972227 

QBC_Q10444 12.03 9.41 0  Object in Water Column? 26.119496 50.971046 

QBC_Q10445 11.19 3.23 0.94  Debris? 26.119187 50.970769 

QBC_Q10446 7.53 5.78 0.7  Natural? 26.120371 50.96879 

QBC_Q10447 15.25 9 0  Object in Water Column? 26.122053 50.967423 

QBC_Q10448 4.4 1.87 0.24  Natural? 26.133035 50.953097 

QBC_Q10449 8.92 2.97 0  Debris? 26.134125 50.957602 

QBC_Q10450 5.17 1.89 0.23  Natural? 26.128833 50.965904 

QBC_Q10451 13.78 5.18 0.76  Debris? 26.127867 50.96907 

QBC_Q10452 43.53 3.92 0  Natural? 26.122308 50.974889 

QBC_Q10453 11.89 1.8 1.23  Debris? 26.122296 50.975878 

QBC_Q10454 13.81 7.03 0  Debris? 26.120713 50.976605 

QBC_Q10455 27.69 15.84 0  Unclassified 26.12092 50.97602 

QBC_Q10456 21.23 11.37 0  Mound? 26.101249 51.006154 

QBC_Q10457 0 0 0  Depression? 26.0986 51.009047 

QBC_Q10458 25.54 3.82 0  Unclassified 26.090337 51.019905 

QBC_Q10459 11.72 7.85 0.63  Unclassified 26.140022 50.957661 

QBC_Q10460 13.45 15.23 0  Unclassified 26.140349 50.959474 

QBC_Q10461 5.79 1.6 0.9  Buried Feature? 26.137013 50.963788 

QBC_Q10462 1.17 0.57 0  Buried Feature? 26.137314 50.963271 

QBC_Q10463 9.03 2.7 0  Debris? 26.124795 50.978596 

QBC_Q10464 8.43 5.9 0.33  Debris? 26.116303 50.990638 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10465 116.46 35.15 0  Location? 26.098932 51.016057 

QBC_Q10466 14.57 5.64 0.67  Debris? 26.141276 50.965515 

QBC_Q10467 19.38 8.29 0  Depression? 26.122558 50.992131 

QBC_Q10468 16.43 5.65 0.25  Natural? 26.117767 50.997205 

QBC_Q10469 17.16 5.24 0.58  Natural? 26.116921 50.998238 

QBC_Q10470 37.55 1.46 0.27  Natural? 26.095451 51.02946 

QBC_Q10471 30.07 9.78 0  Data problem? 26.142646 50.972823 

QBC_Q10472 54.31 26.26 0  Data problem? 26.142073 50.973382 

QBC_Q10473 2.98 2.1 0.78  Debris? 26.1388 50.977506 

QBC_Q10474 4.25 2.58 0  Debris? 26.138399 50.976924 

QBC_Q10475 8.35 1.52 0.4  Natural? 26.13651 50.980969 

QBC_Q10476 54.89 2.44 0.66  Bham0032 - Cars 26.126558 50.993165 

QBC_Q10477 3.09 1.45 0.15  Natural? 26.12219 51.001116 

QBC_Q10478 8.42 1.85 1.27  Duplicate 26.122387 51.002858 

QBC_Q10479 109.15 31.53 0  Location? 26.100921 51.030072 

QBC_Q10480 7.38 3.77 0.88  Debris - Modern? 26.150078 50.968992 

QBC_Q10481 15.49 5.94 0.55  Debris? 26.145429 50.975783 

QBC_Q10482 9.61 9.62 0  Data problem? 26.141467 50.981648 

QBC_Q10483 6.62 2.9 0  Natural? 26.141977 50.981637 

QBC_Q10484 17.52 6.99 0  Debris? 26.141425 50.982197 

QBC_Q10485 8.03 2.52 0.14  Debris? 26.140669 50.982893 

QBC_Q10486 0 0 0  Location? 26.129037 50.998825 

QBC_Q10487 5.08 4.15 0.62  Debris - Modern? 26.155279 50.964161 

QBC_Q10488 8.02 2.38 0.24  Natural? 26.146583 50.978489 

QBC_Q10489 3.87 3.11 0  Object in Water Column? 26.144162 50.98089 

QBC_Q10490 50.58 1.71 0  Natural? 26.144382 50.981644 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10491 24.74 12.95 0.22  Buried Feature? 26.142245 50.982567 

QBC_Q10492 40.21 2.9 0  Natural? 26.129952 51.000018 

QBC_Q10493 4.99 2.17 0.24  Debris? 26.155025 50.970307 

QBC_Q10494 8.34 4.94 0  Natural? 26.152498 50.974397 

QBC_Q10495 5.29 2.12 0.64  Debris - Modern? 26.150855 50.975168 

QBC_Q10496 11.65 11.06 0  Debris? 26.146534 50.980692 

QBC_Q10497 0.32 1.35 0.75  Natural? 26.146553 50.982844 

QBC_Q10498 39.75 1.78 0  Natural? 26.136876 50.996083 

QBC_Q10499 6.16 6.16 0  Natural? 26.124703 51.013823 

QBC_Q10500 36.82 19.71 0  Depression? 26.114017 51.027796 

QBC_Q10501 2.5 1.5 0  Buried Feature? 26.111836 51.030317 

QBC_Q10502 8.16 3.6 0.59  Debris? 26.166536 50.957756 

QBC_Q10503 9.45 3.69 0  Debris? 26.166218 50.959665 

QBC_Q10504 2.81 2.1 0.65  Debris - Modern? 26.158738 50.968206 

QBC_Q10505 6 4.86 0.39  Debris? 26.147941 50.983211 

QBC_Q10506 22.79 12.87 0.31  Debris? 26.14809 50.983509 

QBC_Q10507 17.52 2.46 0.78  Debris? 26.145884 50.987333 

QBC_Q10508 47.22 2.16 0  Natural? 26.132228 51.005321 

QBC_Q10509 38.78 2.62 0  Depression? 26.121144 51.020555 

QBC_Q10510 8 7.81 0.85  Debris - Modern? 26.166047 50.961688 

QBC_Q10511 5.02 2.36 0.97  Debris? 26.16495 50.964133 

QBC_Q10512 16.62 1.71 0  Natural? 26.159574 50.972543 

QBC_Q10513 64.28 26.03 0  Data problem? 26.11668 51.031117 

QBC_Q10514 1.17 1.03 1.1  Linear Debris? 26.167868 50.964272 

QBC_Q10515 4.13 1.79 0.34  Debris? 26.152482 50.985184 

QBC_Q10516 23.66 15.91 0  Location? 26.150527 50.988769 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10517 11.15 7.75 0.18  Buried Feature? 26.149864 50.988512 

QBC_Q10518 12.56 2.76 0  Natural? 26.148256 50.992184 

QBC_Q10519 37.03 19.75 0  Natural? 26.147807 50.991207 

QBC_Q10520 2.42 2.46 0.5  Debris? 26.140752 51.001409 

QBC_Q10521 72.52 35.64 0  Location? 26.129018 51.019557 

QBC_Q10522 9.98 8.04 0.48  Buried Feature? 26.113749 51.039725 

QBC_Q10523 4.6 3 0  Debris? 26.162758 50.976398 

QBC_Q10524 3.97 1.32 0  Natural? 26.155817 50.985357 

QBC_Q10525 8.06 2.12 0.2  Natural? 26.152347 50.990761 

QBC_Q10526 18.11 8.04 0  Natural? 26.146921 50.996365 

QBC_Q10527 13.65 4.49 0.77  Debris? 26.146352 50.998449 

QBC_Q10528 31.79 3.78 0  Data problem? 26.140886 51.007253 

QBC_Q10529 4.39 1.97 0.25  Debris? 26.131362 51.020367 

QBC_Q10530 15.03 6.97 0.45  Mound? 26.116336 51.043928 

QBC_Q10531 55.84 4 0  Seabed Scar? 26.120435 51.039476 

QBC_Q10532 21.15 7.12 0.31  Mound? 26.123701 51.034668 

QBC_Q10533 0 0 0  Location? 26.1307 51.023848 

QBC_Q10534 41.5 2.24 0  Seabed Scar? 26.132132 51.022748 

QBC_Q10536 5.5 3.92 0  Natural? 26.148023 50.999444 

QBC_Q10537 5.97 3.66 0  Debris? 26.159526 50.982383 

QBC_Q10538 32.13 3.73 0.4  Debris? 26.161349 50.980513 

QBC_Q10539 10.28 4.22 0.32  Debris? 26.162772 50.978272 

QBC_Q10540 9.45 2.46 0  Debris? 26.163896 50.976284 

QBC_Q10541 0 0 0  Seabed Scar? 26.16652 50.975039 

QBC_Q10542 7.74 5.14 0.38  Debris? 26.166842 50.972396 

QBC_Q10543 12.58 3.1 0.46  Debris? 26.171508 50.966158 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10544 28.58 4.57 0  Data problem? 26.174761 50.967491 

QBC_Q10545 7.08 2.15 0.79  Debris? - Modern? 26.166958 50.977564 

QBC_Q10546 2.65 2.51 1.03  Debris? 26.163965 50.981973 

QBC_Q10547 16.97 3.77 0  Debris? 26.159758 50.98872 

QBC_Q10548 6.61 2.02 0.88  Debris? - Modern? 26.170851 50.976167 

QBC_Q10549 15.57 16.41 0  Natural? 26.168964 50.979454 

QBC_Q10550 9.34 4.68 0.52  Debris? 26.167225 50.981809 

QBC_Q10551 10.53 2.82 0.3  Debris? 26.165512 50.981963 

QBC_Q10553 13.34 5.71 0  Depression? 26.1587 50.993389 

QBC_Q10554 27.51 10.63 0  Natural? 26.156295 50.997212 

QBC_Q10555 13.63 3.58 0.23  Natural? 26.154688 50.999428 

QBC_Q10556 20.02 4.54 0.85  Debris? 26.149203 51.005646 

QBC_Q10557 12.46 5.48 0.53  Natural? 26.146558 51.010588 

QBC_Q10558 6.52 3.68 0  Natural? 26.14617 51.011798 

QBC_Q10559 11.92 6.12 0.67  Debris? 26.145515 51.012185 

QBC_Q10560 6.33 4.85 0  Natural? 26.145584 51.010885 

QBC_Q10561 15.57 12.1 0.78  Natural? 26.145229 51.012155 

QBC_Q10562 23.42 4.12 0  Natural? 26.135378 51.024372 

QBC_Q10563 46.61 2.49 0  Location? 26.13448 51.027722 

QBC_Q10564 5.63 3.31 0.42  Natural? 26.170553 50.981335 

QBC_Q10565 8.23 5.33 0  Debris? 26.167984 50.985344 

QBC_Q10566 6.01 1.76 0.89  Debris? 26.166546 50.985764 

QBC_Q10567 114.51 59.16 0  Location? 26.160261 50.995137 

QBC_Q10568 6.24 3.23 0.83  Debris? 26.159135 50.99692 

QBC_Q10569 8.33 4.06 0.51  Debris? 26.147722 51.011473 

QBC_Q10570 1.34 1.04 0.7  Debris? 26.178741 50.972303 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10571 6.01 2.63 0.63  Debris? - Modern? 26.177788 50.974457 

QBC_Q10572 11.51 4.71 0.76  Buried Feature? 26.16657 50.990345 

QBC_Q10573 7.1 5.57 0  Debris? 26.165421 50.990076 

QBC_Q10574 10.28 8.97 0  Depressions? 26.163834 50.994139 

QBC_Q10575 56.51 23.73 0  Location? 26.160125 50.998018 

QBC_Q10576 13.72 7.52 0  Depression? 26.159465 50.999357 

QBC_Q10577 8.7 6.93 1.73  Debris? 26.149734 51.012472 

QBC_Q10578 2.55 0.75 0.31  Debris? 26.141918 51.025165 

QBC_Q10579 11.53 7.56 0  Natural? 26.137986 51.028675 

QBC_Q10580 30.78 11.58 0  Depression? 26.128764 51.043474 

QBC_Q10581 13.38 12.62 0  Hole? 26.184715 50.967615 

QBC_Q10582 0.7 0.7 0.28  Buried Feature? 26.178139 50.977658 

QBC_Q10583 5.85 3.21 0.88  Buried Feature? 26.163234 50.998661 

QBC_Q10584 87.5 37.91 0  Location? 26.137295 51.035618 

QBC_Q10585 6.22 2.84 0.44  Buried Feature? 26.170374 50.991912 

QBC_Q10586 24.98 10.32 0  Depression? 26.168026 50.996343 

QBC_Q10587 23.34 10.27 0  Depression? 26.167003 50.996646 

QBC_Q10588 35.91 28.56 0  Location? 26.159944 51.007962 

QBC_Q10590 5.77 3.69 1.07  Debris? - Modern? 26.182407 50.979411 

QBC_Q10591 25.01 19.16 0  Depression? 26.178901 50.985306 

QBC_Q10592 4.78 2.57 0.58  Debris? - Modern? 26.17788 50.986311 

QBC_Q10593 10.19 2.68 0  Natural? 26.165607 51.002126 

QBC_Q10594 7.85 3.8 0  Natural? 26.131552 51.050247 

QBC_Q10595 5.54 4.69 0.4  Buried Feature? 26.189683 50.974796 

QBC_Q10596 4.98 2.99 1.16  Debris? 26.186551 50.978421 

QBC_Q10597 74.85 16.43 0  Location? 26.186509 50.977432 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10598 5.58 1.58 0  Buried Feature? 26.184185 50.980576 

QBC_Q10599 10.78 3.86 0.87  Buried Feature? 26.17903 50.988005 

QBC_Q10600 6.86 1.59 0.2  Natural? 26.176783 50.990843 

QBC_Q10601 1.64 1.02 0.62  Debris? 26.175218 50.993276 

QBC_Q10602 9.09 5.43 0.22  Natural? 26.152577 51.026579 

QBC_Q10603 12.85 9.62 0.45  Partially Buried Objects? 26.190087 50.979844 

QBC_Q10604 6.61 1.6 0  Debris? 26.18898 50.981179 

QBC_Q10605 3.38 3.14 1  Debris? 26.18466 50.988254 

QBC_Q10607 6.08 5.84 1.01  Buried Feature? 26.183321 50.991329 

QBC_Q10608 9.41 5.47 0  Natural? 26.141162 51.051057 

QBC_Q10609 40.17 3.46 0  Buried Feature? 26.140807 51.050964 

QBC_Q10610 102.16 9.88 0  Location? 26.13782 51.05379 

QBC_Q10611 5.16 2.11 0  Natural? 26.201705 50.971514 

QBC_Q10612 6.91 2.24 0.77  Partially Buried Objects? 26.20069 50.97364 

QBC_Q10613 18.72 1.57 0  Natural? 26.201114 50.972691 

QBC_Q10614 8 2.46 0  Natural? 26.19561 50.982688 

QBC_Q10616 79.28 1.22 0  Seabed Scar? 26.190535 50.989366 

QBC_Q10617 9.95 5.72 0  Buried Feature? 26.186639 50.993278 

QBC_Q10618 4.22 1.05 0.39  Debris? 26.186522 50.995093 

QBC_Q10619 4.24 2.58 0  Debris? 26.180739 51.00083 

QBC_Q10620 8.92 3.44 0  Debris? 26.177484 51.005494 

QBC_Q10621 3.72 1.62 0  Partially Buried Objects? 26.176614 51.007299 

QBC_Q10622 6.26 0.61 0.45  Partially Buried Objects? 26.170585 51.016889 

QBC_Q10623 6.77 1.75 0  Natural? 26.151562 51.042322 

QBC_Q10624 61.39 23.74 0  Data problem? 26.174451 51.019493 

QBC_Q10625 33.99 15.43 0  Natural? 26.161599 51.036097 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10626 3.45 1.13 0.29  Natural? 26.149057 51.05548 

QBC_Q10627 4.87 1.19 0.38  Natural? 26.20637 50.975389 

QBC_Q10628 79.21 2.7 0  Natural? 26.200845 50.983092 

QBC_Q10629 74.16 2.33 0  Seabed Scar? 26.196759 50.988643 

QBC_Q10630 1.99 0.92 0.41  Partially Buried Objects? 26.196139 50.989419 

QBC_Q10631 1.27 0.63 0.4  Debris? 26.190244 50.996395 

QBC_Q10632 4.52 3.91 0  Debris? 26.188869 50.998967 

QBC_Q10633 82.51 13.26 0  Location? 26.186787 51.001022 

QBC_Q10634 11.1 5.94 1.24  Partially Buried Objects? 26.187246 51.001958 

QBC_Q10635 11.01 1.21 0  Natural? 26.184534 51.00623 

QBC_Q10636 5.51 3.26 0.96  Partially Buried Objects? 26.200751 50.990649 

QBC_Q10637 9.59 4.37 0.8  Debris? 26.20047 50.99143 

QBC_Q10638 11.62 9.5 0  Natural? 26.199125 50.9938 

QBC_Q10639 6.57 3.86 0.46  Partially Buried Objects? 26.195732 50.99836 

QBC_Q10640 16.82 9.4 0  Debris? 26.196356 50.997651 

QBC_Q10641 9.02 4.2 0.97  Debris? 26.189589 51.005185 

QBC_Q10642 7.9 2.42 0.56  Debris? 26.185853 51.010229 

QBC_Q10643 7.68 4.57 0.72  BHAM0022 - coral head 26.183558 51.015647 

QBC_Q10644 15.42 4.65 2.44  Debris? 26.177719 51.023168 

QBC_Q10645 7.3 2.66 0  Partially Buried Objects? 26.177284 51.024593 

QBC_Q10646 6.78 4.53 0  Mound? 26.157792 51.050043 

QBC_Q10647 3.09 2.55 0  Natural? 26.153292 51.055598 

QBC_Q10648 16.28 7.55 0  Natural? 26.212976 50.980034 

QBC_Q10649 5.97 2.49 0.57  Natural? 26.213094 50.98174 

QBC_Q10650 6.39 2.66 0.94  Partially Buried Objects? - Asses 26.196144 51.005155 

QBC_Q10651 33.44 7.24 0  Debris? 26.189869 51.012283 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10652 11.53 9.4 0  Debris? 26.18925 51.013595 

QBC_Q10653 7.02 6.09 0  Natural? 26.186561 51.017296 

QBC_Q10654 15.42 10.51 0  Depression? 26.183959 51.021857 

QBC_Q10655 13.32 8.76 0  Depression? 26.16408 51.049672 

QBC_Q10656 5.68 3.03 0  Debris? 26.161197 51.055817 

QBC_Q10657 36.08 2.78 0  Unclassified 26.154432 51.064211 

QBC_Q10658 6.43 4.17 0.59  Natural? 26.219383 50.979669 

QBC_Q10659 9.22 3.21 0  Natural? 26.218145 50.983593 

QBC_Q10660 4.14 2.26 0.79  Debris? 26.21736 50.984428 

QBC_Q10661 7.19 3.27 0.84  Debris? 26.216642 50.98503 

QBC_Q10662 77.74 2.2 0  Seabed Scar? 26.216053 50.985567 

QBC_Q10663 2.01 2.45 0.78  Debris? 26.214963 50.986993 

QBC_Q10664 7.59 3.14 0  Debris? 26.210859 50.990777 

QBC_Q10665 34.55 12.87 0  Debris? 26.210029 50.994777 

QBC_Q10666 5.1 1.47 0.96  Partially Buried Objects? - Asses 26.20775 50.997027 

QBC_Q10667 48.7 2.84 0  Seabed Scar? 26.203179 51.00384 

QBC_Q10668 10.47 7.75 0  Object in Water Column? 26.170889 51.047996 

QBC_Q10669 3.77 3.31 0.27  Partially Buried Objects? 26.171655 51.04787 

QBC_Q10670 88.05 2.73 0  Linear Debris? 26.200506 51.014543 

QBC_Q10671 7.1 8.35 0.73  Bham0003 - 2 cars 26.222486 50.991231 

QBC_Q10672 6.98 4.33 1.08  Partially Buried Objects? 26.217146 50.998854 

QBC_Q10673 4.5 3.06 0.47  Partially Buried Objects? 26.217635 50.999494 

QBC_Q10674 2.65 2.42 1.04  Debris? - Modern? 26.205136 51.017049 

QBC_Q10675 1.81 1.19 0.76  Debris? 26.201617 51.020594 

QBC_Q10676 23.03 17.08 0  Buried Feature? 26.20139 51.022168 

QBC_Q10677 2.33 1.84 0.81  Debris? 26.199145 51.024446 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10678 5.98 2.3 0.85  Partially Buried Objects? 26.196575 51.0279 

QBC_Q10679 1.66 0.67 0.45  Debris? 26.187724 51.040428 

QBC_Q10680 1.8 1.07 0  Debris? 26.18188 51.049147 

QBC_Q10681 4.82 1.92 0.16  Natural? 26.172046 51.062369 

QBC_Q10682 1.18 0.88 0.5  Debris? 26.217385 51.007933 

QBC_Q10683 0.91 0.62 0.34  Debris? 26.215904 51.009766 

QBC_Q10684 0 0 0  Unclassified 26.206748 51.02219 

QBC_Q10685 78.19 1.17 0  Seabed Scar? 26.203884 51.027346 

QBC_Q10686 30.87 4.86 0  Natural? 26.184855 51.05447 

QBC_Q10687 13.34 9.84 0  Depression? 26.175814 51.064984 

QBC_Q10688 0.77 0.78 0.3  Natural? 26.211105 51.024764 

QBC_Q10689 5.69 2.32 1.22  Partially Buried Objects? - Duplicate 26.207801 51.029506 

QBC_Q10690 6.51 4.41 0.52  Natural? 26.204605 51.03247 

QBC_Q10691 0 0 0  Unclassified 26.19526 51.046282 

QBC_Q10692 7.49 5.08 0  Debris? 26.181437 51.067004 

QBC_Q10693 9.18 6.63 0  Location? 26.178017 51.071213 

QBC_Q10694 6.53 2.04 0.57  BHAM0001 - metal angle iron 26.210442 51.032916 

QBC_Q10695 1.38 0.8 0.35  Natural? 26.21056 51.033607 

QBC_Q10696 60.47 14.24 0  Location? 26.20892 51.034508 

QBC_Q10697 62.84 7.46 0  Location? 26.208273 51.035456 

QBC_Q10698 2.79 1.19 0.45  Natural? 26.207628 51.035773 

QBC_Q10699 1.58 0.58 0.25  Natural? 26.206796 51.038223 

QBC_Q10700 24.85 5.03 0  Natural? 26.204538 51.042405 

QBC_Q10701 25.62 1.72 0  Location? 26.204608 51.041937 

QBC_Q10702 101.59 13.77 0  Depression? 26.20077 51.045704 

QBC_Q10703 49.74 2.6 0  Natural? 26.19924 51.048303 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10704 1.28 1.56 0.64  Debris? 26.1932 51.056634 

QBC_Q10705 75.29 3.97 0  Buried Feature? 26.193103 51.057825 

QBC_Q10706 0.84 0.28 0.69  Debris? 26.192831 51.05833 

QBC_Q10707 13.27 1.98 0.25  Natural? 26.192357 51.059489 

QBC_Q10708 1.32 0.64 0.63  Natural? 26.182613 51.072906 

QBC_Q10709 1.12 0.93 0.66  Natural? 26.20862 51.043284 

QBC_Q10710 2.6 1.12 0.53  Natural? 26.208763 51.044473 

QBC_Q10711 1.59 0.85 0.24  Natural? 26.207304 51.046158 

QBC_Q10712 2.26 0.79 0.4  Natural? 26.205436 51.048515 

QBC_Q10713 1.72 1.25 0.47  Natural? 26.204865 51.048351 

QBC_Q10714 0.35 0.35 0.27  Natural? 26.205088 51.048356 

QBC_Q10715 1.29 0.97 0.59  Natural? 26.204389 51.050096 

QBC_Q10716 10.63 8.12 0  Unclassified 26.204007 51.050221 

QBC_Q10717 0 0 0.79  Debris? 26.19546 51.062176 

QBC_Q10718 1.29 1.08 0.29  Natural? 26.19307 51.066298 

QBC_Q10719 6.34 3.35 0  Mound? 26.19078 51.068742 

QBC_Q10720 30.67 24.82 0  Location? 26.201079 51.062081 

QBC_Q10721 0.63 0.38 0.48  Natural? 26.200876 51.063127 

QBC_Q10722 0.88 0.38 0.28  Natural? 26.200962 51.063092 

QBC_Q10723 1.38 0.75 0.39  Natural? 26.200706 51.063513 

QBC_Q10724 1.13 0.92 0.21  Natural? 26.200986 51.06344 

QBC_Q10725 43.15 5.26 0  Buried Feature? 26.194527 51.071913 

QBC_Q10726 19.88 11.89 0  Buried Feature? 26.194214 51.071651 

QBC_Q10727 29.49 2.04 0  Seabed Scar? 26.193718 51.073781 

QBC_Q10728 7.94 3.98 0.21  Buried Feature? 26.192236 51.075747 

QBC_Q10729 86.3 32.31 0  BHAM0028 - NOT PROPERLY LOCATED ? 26.078054 50.916605 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10800 0 0 0  Partially Buried Objects? - Duplicate of QBC_Q100689 26.207795 51.029454 

QBC_Q10801 4.97 2.37 0  Debris? 26.198023 51.021605 

QBC_Q10802 26.77 4.03 0  Debris? - Duplicate of QBC_Q10651 26.189848 51.012473 

QBC_Q10803 10.41 3.4 0  Debris? - Duplicate 26.145484 50.975717 

QBC_Q10804 5.63 2.63 0.68  Debris - Modern? - Duplicate of QBC_Q10207 26.143949 50.972733 

QBC_Q10805 22.25 6.6 0  Debris? 26.140839 50.971974 

QBC_Q10806 16.93 7.01 0  Duplicate of QBC_Q10187 26.136399 50.966768 

QBC_Q10807 19.95 2.69 0  Debris? 26.117499 50.951097 

QBC_Q10809 10.5 6.32 0  Debris? 26.102439 50.938059 

QBC_Q10810 18.23 3.56 0   26.102819 50.936521 

QBC_Q10812 21.17 14.72 1.05  Partially Buried Objects?  26.100444 50.934951 

QBC_Q10813 5.82 2.29 0.51  Partially Buried Objects?  26.089422 50.925223 

QBC_Q10814 8.24 3.33 0.9  Debris - Modern? - duplicate of QBC_Q10308 26.087427 50.924932 

QBC_Q10815 26.34 14.15 0.91  Debris - Modern? 26.085005 50.92127 

QBC_Q10816 0 0 0  Disturbed seabed ?  26.073977 50.913471 

QBC_Q10817 57.5 9.44 0   26.074453 50.91239 

QBC_Q10818 12.8 5.17 0  Unclassified 26.073308 50.910517 

QBC_Q10819 15.65 6.53 0  Unclassified 26.07261 50.909795 

QBC_Q10820 30.8 16.32 0  Depression? 26.066651 50.905448 

QBC_Q10821 0 0 0  Duplicate of QBC_Q10729 26.077841 50.916601 

QBC_Q10822 11.24 6.24 0.96  Partially Buried Objects? 26.084648 50.921714 

QBC_Q10824 7.42 2.78 0.85  Duplicate of QBC_Q1807 26.117655 50.951166 

QBC_Q10825 0 0 0  Debris - Modern? Duplicate of QBC_Q10806 and QBC_Q10187 26.136519 50.966809 

QBC_Q10826 0 0 0  Debris - Modern? Duplicate of QBC_Q10804 26.143991 50.972805 

QBC_Q10827 0 0 0  Duplicate of QBC_Q10803 26.145584 50.975927 

QBC_Q10829 6.76 2.48 0.7  Debris - Modern? 26.148292 50.977067 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10830 19.74 4.38 0  Depression? 26.169129 50.996058 

QBC_Q10831 0 0 0  Duplicate of QBC_Q10651 26.189858 51.012523 

QBC_Q10832 6.52 5.22 0  Debris? 26.19204 51.0143 

QBC_Q10833 0 0 0  Duplicate of QBC_Q100689 26.207859 51.029534 

QBC_Q10834 0 0 0  Duplicate of QBC_Q10816 26.07404 50.913514 

QBC_Q10835 0 0 0  Duplicate of QBC_Q10815 26.08498 50.921268 

QBC_Q10836 0 0 0   duplicate of QBC_Q10308 26.087481 50.925022 

QBC_Q10837 0 0 0  Duplicate of QBC_Q10813 26.089259 50.925087 

QBC_Q10838 0 0 0  Duplicate of QBC_Q10812 26.100483 50.934926 

QBC_Q10839 0 0 0  Duplicate of QBC_Q10107 26.111848 50.945664 

QBC_Q10840 3.89 2.8 0.86  Debris - Modern? 26.064826 50.936662 

QBC_Q10841 2.47 1.05 0.38  Partially Buried Objects? 26.068584 50.940235 

QBC_Q10842 0 0 0  Duplicate of QBC_Q10298 26.069907 50.940324 

QBC_Q10843 6.83 2.52 0.43  Debris - Modern? 26.088594 50.956422 

QBC_Q10844 1.01 0.6 0.45  Debris? 26.089272 50.95716 

QBC_Q10845 6.21 2.36 1.01  Debris - Modern? 26.090141 50.958149 

QBC_Q10846 1.43 0.41 0.54  Debris? 26.090735 50.959415 

QBC_Q10847 0 0 0  Duplicate of QBC_Q10110 26.097505 50.96587 

QBC_Q10848 3.63 1.17 0.53  Debris? 26.181361 51.037826 

QBC_Q10849 5.33 1.66 0.56  Debris? 26.146677 51.00794 

QBC_Q10850 0 0 0  Duplicate of QBC_Q10203 26.130408 50.993318 

QBC_Q10851 0 0 0  Duplicate of QBC_Q10023 26.115736 50.979872 

QBC_Q10852 0 0 0  Duplicate of QBC_Q10168 26.112219 50.976101 

QBC_Q10853 0 0 0  Duplicate of QBC_Q10120 26.102052 50.968747 

QBC_Q10854 10.85 1.42 0.76  Duplicate of QBC_Q10840 26.064851 50.936623 

QBC_Q10855 4.41 2.3 0.76  Duplicate of QBC_Q10298 26.069825 50.940309 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q10856 11.42 3.45 0.68  Duplicate of QBC_Q10843 26.088514 50.956385 

QBC_Q10857 4.73 2.02 0  Duplicate of QBC_Q10221 26.089954 50.957033 

QBC_Q10858 9.3 5.48 0.69  Duplicate of QBC_Q10845 26.09017 50.958092 

QBC_Q10859 0.37 0.18 0  Debris? 26.090517 50.958006 

QBC_Q10860 3.81 1.44 0.41  Duplicate of QBC_Q10846 26.0908 50.959455 

QBC_Q10861 39.99 1.31 0  Linear Debris? 26.099693 50.966635 

QBC_Q10862 4.42 2.36 0.55  Debris - Modern? 26.102055 50.968746 

QBC_Q10863 4.93 3.01 0.49  Duplicate of QBC_Q10023 26.115733 50.979878 

QBC_Q10864 0 0 0  Duplicate of QBC_Q10203 26.130369 50.993332 

QBC_Q10865 0 0 0   26.097435 50.964845 

QBC_Q10866 0 0 0  Duplicate of QBC_Q10849 26.146739 51.007851 

QBC_Q10867 0 0 0  Duplicate of QBC_Q10848 26.181363 51.037869 

QBC_Q10869 6.04 5.96 1.28  Natural? 26.049892 50.892192 

QBC_Q10901 6.6 3.55 0.72  Debris - Modern? 26.089642 50.942611 

QBC_Q10902 5.96 3.54 1.05  Debris - Modern? 26.089445 50.941131 

QBC_Q10903 0 0 0  Duplicate of QBC_Q10344 26.087449 50.940918 

QBC_Q10904 7.42 4.05 0  Debris? 26.08548 50.939336 

QBC_Q10905 0 0 0  Duplicate of QBC_Q10327 26.083135 50.936817 

QBC_Q10906 27.85 15.69 0  Disturbed seabed ?  26.077989 50.931212 

QBC_Q10907 8.85 5.52 0.48  Debris? 26.072828 50.928273 

QBC_Q10908 0 0 0  Duplicate of QBC_Q10231 26.060548 50.917317 

QBC_Q10909 3.98 1.87 0.98  Debris? 26.059662 50.916193 

 



340 

 

Area 2 and 3 

Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q20001 17.45 7.88 0.35  Natural? 26.034871 50.969744 

QBC_Q20002 3.78 2.09 0.26  Natural? 26.022824 50.989369 

QBC_Q20003 28.81 14.45 0  Location? 26.015682 51.00121 

QBC_Q20004 11.15 4.29 0  Natural? 26.029393 50.975943 

QBC_Q20005 18.62 1.64 0  Debris? 26.021609 50.985721 

QBC_Q20006 5.74 1.49 0.38  Natural? 26.037301 50.961285 

QBC_Q20007 5.41 2.96 1.32  Debris? 26.043259 50.949102 

QBC_Q20008 32.26 5.33 0  Location? 26.039622 50.953929 

QBC_Q20009 7.58 4.17 0  Natural? 26.031682 50.966108 

QBC_Q20010 15.52 5.42 0.59  Location? 26.023692 50.980616 

QBC_Q20011 30.22 20.9 0  Depression? 26.021348 50.985627 

QBC_Q20012 3.79 2.23 0.61  Debris? 26.039721 50.949273 

QBC_Q20013 10.91 6.17 0  Hole? 26.028365 50.969804 

QBC_Q20014 10.83 3.15 0.74  Natural? 26.038261 50.95344 

QBC_Q20015 89.29 1.93 0  Linear Debris? 26.035609 50.953278 

QBC_Q20016 3.41 1.81 0.62  Natural? 26.028178 50.966301 

QBC_Q20017 0.79 19.91 0  Location? 26.018519 50.982515 

QBC_Q20018 16.84 2.11 0.53  Natural? 26.012999 50.991011 

QBC_Q20019 3.25 0.96 0.32  Natural? 26.037128 50.946973 

QBC_Q20020 47.18 7.05 0  Natural? 26.031579 50.957676 

QBC_Q20021 2.87 1.73 0.64  Debris? 26.03056 50.958093 

QBC_Q20022 47.36 4.22 0.37  Unclassified 26.01596 50.983347 

QBC_Q20023 13.55 3.34 0.88  Natural? 26.014797 50.983851 

QBC_Q20024 49.06 33.56 0  Location? 26.047384 50.92857 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q20025 13.9 2.44 0  Debris? 26.040639 50.937346 

QBC_Q20027 6.8 4.71 0  Natural? 26.032283 50.950897 

QBC_Q20028 35.31 1.64 0  Natural? 26.012014 50.98432 

QBC_Q20029 27.21 5.3 0  Unclassified 26.008609 50.989855 

QBC_Q20030 0 0 0  Unclassified 25.999482 51.005706 

QBC_Q20031 27.53 7.47 0  Depression? 25.997185 51.006401 

QBC_Q20032 30.63 22.52 0  Depression? 25.997672 51.004862 

QBC_Q20033 16.23 11.15 0  Hole? 26.025869 50.960361 

QBC_Q20034 96.04 52.54 0  Location? 26.026234 50.957138 

QBC_Q20035 8.44 1.56 0.3  Natural? 26.030321 50.94946 

QBC_Q20036 12.37 2.67 0.61  Debris? 26.023908 50.95936 

QBC_Q20037 41.82 4.7 0  Seabed scar? 26.008555 50.983086 

QBC_Q20038 18.73 0.9 0  Natural? 26.015007 50.970753 

QBC_Q20039 74.1 41.85 0  natural 26.018131 50.963395 

QBC_Q20040 52.45 34.27 0  natural 26.019713 50.962363 

QBC_Q20041 8.53 5.19 1.3  Debris? 26.032559 50.938596 

QBC_Q20043 37.41 15.23 0.58  location 26.017383 50.963429 

QBC_Q20044 12.12 1.04 0  hole? 26.016424 50.962491 

QBC_Q20045 16.75 2.18 0  Debris? 26.015616 50.966629 

QBC_Q20046 65.8 20.3 0  location 26.013541 50.968965 

QBC_Q20047 25.21 4.29 0  Seabed scar? 26.012459 50.969711 

QBC_Q20048 113.87 53.67 0  location 26.011772 50.967575 

QBC_Q20049 14.69 3.27 0.34  Natural? 26.012287 50.968259 

QBC_Q20050 17.63 4.01 0.49  Natural? 26.024893 50.943524 

QBC_Q20051 13.86 8.25 0  Hole? 26.023127 50.945239 

QBC_Q20052 96.86 71.72 0  Natural? 26.011805 50.964874 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q20053 33.67 12.93 0  Depression? 26.005168 50.970761 

QBC_Q20054 23.18 3.95 1.56  Natural? 26.006324 50.970422 

QBC_Q20055 12.64 4.84 0.74  Natural? 26.00827 50.967464 

QBC_Q20056 9.27 5.01 0.61  Natural? 26.008231 50.96518 

QBC_Q20057 29.83 4.27 0  Natural? 26.008954 50.963154 

QBC_Q20058 18.91 5.53 0  Depression? 26.003936 50.968802 

QBC_Q20059 3.18 1.41 0.73  Debris? 25.993794 50.985838 

QBC_Q20060 61.18 37.13 0  Mound? 26.001472 50.969192 

QBC_Q20061 15.49 7.51 0  Hole? 26.007525 50.961633 

QBC_Q20062 48.69 21.63 0  Sediment accumulation? 26.000014 50.970078 

QBC_Q20063 8.69 7.28 2.16  Debris? 25.998462 50.971358 

QBC_Q20064 5.64 3.33 1.31  Debris? 25.987718 50.986676 

QBC_Q20065 40.74 12.06 0  Depression? 25.98895 50.983912 

QBC_Q20066 8.35 3.79 1.35  Natural? 25.997685 50.969099 

QBC_Q20067 31.05 6.36 1.03  Natural? 25.998971 50.968183 

QBC_Q20068 19.12 4.65 0.59  Debris? 26.000052 50.964064 

QBC_Q20069 32.09 3.03 0  Natural? 26.003802 50.960695 

QBC_Q20070 2.73 2.49 0.64  Debris? 26.010633 50.949374 

QBC_Q20071 38.32 12.2 0  Depression? 26.034977 50.909748 

QBC_Q20072 25.21 2.98 0  Natural? 26.036274 50.907219 

QBC_Q20073 11.59 3.98 0.31  Debris? 25.99973 50.963871 

QBC_Q20074 4.68 2.29 1.19  Debris? 25.985496 50.986134 

QBC_Q20075 0 0 0  Debris? 25.985699 50.986791 

QBC_Q20076 11.24 4.75 0  Debris? 25.98548 50.987437 

QBC_Q20077 8.89 2.96 1.24  Debris? 25.990019 50.974952 

QBC_Q20078 8.85 2.56 0.37  Debris? 25.998364 50.959999 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q20079 10.35 3.01 0.58  Debris? 26.000616 50.957843 

QBC_Q20080 25.93 31.87 1.21  Buried features? 26.001858 50.955288 

QBC_Q20081 5.82 1.45 0.34  Debris? 26.026197 50.916223 

QBC_Q20082 7.22 3.47 1.5  Debris? 26.032657 50.906264 

QBC_Q20083 57.88 9.44 0  Depression? 26.009534 50.938401 

QBC_Q20084 11.87 2.69 0.55  Debris? 26.007582 50.941897 

QBC_Q20085 12.36 6.1 0.29  Debris? 26.008765 50.942045 

QBC_Q20086 82.15 25.16 0  Depression? 25.999753 50.956708 

QBC_Q20087 10.92 9 0.65  Debris? 25.985574 50.977561 

QBC_Q20088 24.61 12.44 0  Depression ? 26.002045 50.94879 

QBC_Q20089 3.01 2.26 1.16  Buried features? 26.005229 50.943802 

QBC_Q20090 21.7 6.03 0  hole? 26.026321 50.903746 

QBC_Q20091 20.52 7.04 0  Depression? 26.025408 50.9074 

QBC_Q20092 29.71 1.61 0  Hole? 26.005373 50.940511 

QBC_Q20093 43.41 3.94 0.5  Linear Debris? 26.002905 50.943807 

QBC_Q20094 7.71 4.32 0  Hole? 25.982569 50.975877 

QBC_Q20096 14.9 12.33 1.22  Debris? 25.981652 50.973519 

QBC_Q20097 4.06 2.65 0.66  Debris? 25.974627 50.978978 

QBC_Q20098 31.37 17.29 0  Depression? 25.992853 50.949522 

QBC_Q20099 19.87 3.64 0  Natural? 26.01989 50.904247 

QBC_Q20100 68.85 2.53 0  Natural? 26.010368 50.913935 

QBC_Q20101 31.91 3.37 0  Location? 26.007956 50.912479 

QBC_Q20102 17.88 5.05 0.56  Debris? 25.993403 50.932861 

QBC_Q20103 6.38 3.6 1.1  Debris? 26.003767 50.913513 

QBC_Q20104 24.32 1.36 0  Seabed scar? 26.003197 50.913515 

QBC_Q30105 11.35 4.4 0  Debris? 25.977768 50.960233 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q30106 11.83 10.31 0.87  Debris? 25.977577 50.960399 

QBC_Q30107 29.3 4.84 0  Unclassified 25.995671 50.913725 

QBC_Q30108 3.88 1.51 1.15  Debris? 25.958976 50.986071 

QBC_Q30109 10.7 6.9 0  Natural? 25.986144 50.934308 

QBC_Q30110 55.23 4.81 0.98  Natural? 25.975427 50.955838 

QBC_Q30111 34.99 3.32 0  Seabed scar? 25.988777 50.923005 

QBC_Q30112 8.24 3.96 0.46  Debris? 25.992048 50.91507 

QBC_Q30113 47.15 3.1 0  Linear Debris? 25.993095 50.911622 

QBC_Q30114 15.49 4.05 0.46  Natural? 25.998981 50.897624 

QBC_Q30115 20.51 8.26 0  Hole? 25.988612 50.917231 

QBC_Q30116 33.68 12.91 0  Depression? 25.987858 50.922473 

QBC_Q30117 46.89 23.3 0  Depression? 25.964744 50.963022 

QBC_Q30118 23.42 9.08 0  Depression? 25.992698 50.904102 

QBC_Q30120 19.72 2.98 0  Linear Debris? 25.992489 50.902197 

QBC_Q30121 103.01 3 0  Natural? 25.992475 50.895784 

QBC_Q30122 5.1 3.82 0  Hole? 25.990982 50.902169 

QBC_Q30123 88.19 7.71 0  Unclassified 25.987257 50.915365 

QBC_Q30124 96.05 4.07 0  Unclassified 25.986066 50.917011 

QBC_Q30125 11.56 3.37 0  Debris? 25.977564 50.93689 

QBC_Q30126 33.12 3.09 0  Seabed scar? 25.977464 50.937645 

QBC_Q30127 17.39 3.98 0  Depression? 25.960588 50.966248 

QBC_Q30128 93.87 4.71 0  Natural? 25.99261 50.890159 

QBC_Q30129 98.22 2.98 0  Seabed scar? 25.979662 50.927369 

QBC_Q30130 12.46 4.36 0.46  Debris? 25.975852 50.936445 

QBC_Q30131 34.51 1.81 0  Natural? 25.960882 50.96314 

QBC_Q30132 33.38 8.95 0  Depression? 25.957793 50.96692 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q30133 63.54 2.97 0  Seabed scar? 25.978715 50.926276 

QBC_Q30134 5.47 1.47 0.22  Debris? 25.986519 50.892238 

QBC_Q30135 8.73 2.17 0.57  Debris? 25.962336 50.950633 

QBC_Q30136 96.79 1.7 0  Natural? 25.985557 50.893222 

QBC_Q30137 20.36 3.14 0  Depression? 25.948145 50.969633 

QBC_Q30138 37.3 7.62 0  Depression? 25.969652 50.930996 

QBC_Q30139 80.15 26.76 0  Location? 25.955473 50.956545 

QBC_Q30140 34.58 27.58 0  Natural? 25.975749 50.91299 

QBC_Q30141 95.65 6.02 0.86  Natural? 25.975314 50.916018 

QBC_Q30142 6.77 3.28 0.4  Debris? 25.990113 50.866632 

QBC_Q30143 3.48 3.01 0  Debris? 25.990316 50.866171 

QBC_Q30144 14.79 3.79 0  Unclassified 25.989013 50.86602 

QBC_Q30145 36.85 8.08 0  Natural? 25.991626 50.867082 

QBC_Q30146 24.46 1.22 0  Linear Debris? 25.991857 50.872043 

QBC_Q30147 31.23 1.05 0  Linear Debris? 25.988126 50.864203 

QBC_Q30148 30.6 3.16 0  Natural? 25.991997 50.86839 

QBC_Q30149 6.09 3.72 0.6  Debris? 25.990818 50.858539 

QBC_Q30150 5.3 3.32 1.37  Debris? 25.990016 50.860044 

QBC_Q30151 7.02 4.33 0  Natural? 25.995585 50.863937 

QBC_Q30152 9.04 3.89 0  Unclassified 25.991102 50.856636 

QBC_Q30153 5.16 5 0  Unclassified 25.989567 50.856227 

QBC_Q30154 9.38 2.91 0  Unclassified 25.990474 50.856215 

QBC_Q30155 7.88 2.85 0  Unclassified 25.990071 50.857458 

QBC_Q30156 6.12 4.87 1.1  Unclassified 25.988864 50.856032 

QBC_Q30157 5.05 2.64 0  Unclassified 25.99027 50.855844 

QBC_Q30158 10.77 3.02 0  Natural? 25.993669 50.856892 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q30159 18.33 5.78 1.16  Debris? 25.997508 50.860406 

QBC_Q30160 11.21 1.55 0  Linear Debris? 25.992489 50.850839 

QBC_Q30161 20.77 10.97 0.93  Debris? 25.993421 50.851087 

QBC_Q30162 4.4 3.46 1.67  Debris? 26.026144 50.891788 

QBC_Q30163 5.67 2.27 2.22  Debris? 26.025856 50.89145 

QBC_Q30164 6.33 3.85 0.59  Debris? 26.025013 50.891097 

QBC_Q30165 5.21 5.2 1.13  Debris? 26.025462 50.890914 

QBC_Q30166 5.18 3.5 0.88  Debris? 26.025673 50.890524 

QBC_Q30167 4.16 3.35 0.71  Debris? 26.025872 50.890714 

QBC_Q30168 6 5.38 0.88  Debris? 26.026389 50.891085 

QBC_Q30169 3.24 1.36 0.37  Debris? 26.025976 50.891257 

QBC_Q30170 6.81 2.48 0.53  Debris? 26.028128 50.89273 

QBC_Q30171 5.31 4.04 0.47  Debris? 26.030331 50.894548 

QBC_Q30172 5.17 2.79 0.91  Debris? 26.032058 50.895138 

QBC_Q30174 38.24 3.32 0.44  Buried features? 26.033817 50.894891 

QBC_Q30175 5.59 2.57 0.55  Debris? 26.033991 50.894954 

QBC_Q30176 33.97 3.82 0.21  Buried features? 26.034035 50.895316 

QBC_Q30177 47.63 1.4 0.49  Linear Debris? 26.034817 50.895515 

QBC_Q30178 42.05 10.3 0  Depression? 26.045648 50.897662 

QBC_Q30179 7.8 4.83 2.18  Debris? 26.044424 50.895195 

QBC_Q30180 6.12 1.43 1.02  Debris? 26.032736 50.886064 

QBC_Q30181 8.29 7.15 1.49  Debris? 26.044475 50.895084 

QBC_Q30182 7.69 2.49 0  Debris? 26.04388 50.894803 

QBC_Q30183 45.21 40.42 0  Unclassified 25.992082 50.845904 

QBC_Q30184 41.06 19.18 0  Unclassified 25.992179 50.845926 

QBC_Q30185 8.07 7.23 0  Unclassified 25.993254 50.843139 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q30186 5.97 2.61 0  Natural? 25.996373 50.843966 

QBC_Q30187 28.63 2.77 0  Linear Debris? 25.992991 50.841089 

QBC_Q30188 23.14 7.49 2.36  Natural? 26.053965 50.884765 

QBC_Q30189 7.86 3.06 1.89  Debris? 26.060268 50.889165 

 

Area 4 

Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q40001 9.17 6.3 0.32  Buried feature? 25.932107 50.861681 

QBC_Q40002 94.47 1.96 0  Seabed scar? 25.924947 50.858498 

QBC_Q40003 8.64 6.75 0  Natural? 25.926054 50.858424 

QBC_Q40004 99.51 2.43 0  Seabed scar? 25.931503 50.861094 

QBC_Q40005 33.62 2.36 0  Seabed scar? 25.938567 50.862092 

QBC_Q40006 22.84 5.17 0  Disturbed Seabed 25.940958 50.862832 

QBC_Q40008 13.98 5.53 0.3  Natural? 25.986061 50.873693 

QBC_Q40009 66.13 2.08 0  Seabed scar? 25.987743 50.869673 

QBC_Q40010 3.58 1.53 1.53  Debris? 25.988274 50.8648 

QBC_Q40011 2.66 1.92 0.64  Debris? 25.987836 50.86551 

QBC_Q40012 4.28 1.54 0.22  Natural? 25.989284 50.85452 

QBC_Q40013 23.67 1.01 0  Natural? 25.991374 50.839758 

QBC_Q40014 2.77 1.67 0.91  Buried feature? 25.990097 50.837026 

QBC_Q40015 7.69 2.02 0  Natural? 25.990882 50.840948 

QBC_Q40016 8.94 3.36 0  Natural? 25.987067 50.857546 

QBC_Q40017 71.48 1.94 0.29  Linear Debris? 25.980771 50.88926 

QBC_Q40018 74.73 3.13 0  Seabed scar? 25.986048 50.849994 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q40019 61.72 1.26 0  Seabed scar? 25.987655 50.846209 

QBC_Q40020 70.44 0.55 0  Unclassified 25.987127 50.842702 

QBC_Q40021 31.21 1.23 0  Seabed scar? 25.988522 50.841997 

QBC_Q40022 3.95 1.99 0  Natural? 25.987938 50.838971 

QBC_Q40023 49.01 26.34 0  Location? 25.977381 50.884258 

QBC_Q40024 97.43 0 0  Location? 25.977262 50.88167 

QBC_Q40025 4.47 3.12 0  Unclassified 25.981833 50.854398 

QBC_Q40026 104.92 0 0  Location? 25.984453 50.837905 

QBC_Q40027 99.93 0 0  Location? 25.981649 50.85249 

QBC_Q40028 67.49 2.02 0  Seabed scar? 25.977321 50.865097 

QBC_Q40029 6.26 4.05 0  Natural? 25.978028 50.851914 

QBC_Q40030 4.76 3.8 0  Natural? 25.977766 50.852149 

QBC_Q40031 77.92 7.31 0.84  Location? 25.971329 50.88125 

QBC_Q40032 9.23 5.44 1.07  Natural? 25.973929 50.863919 

QBC_Q40033 0 0.74 0  Linear Debris? 25.97656 50.847923 

QBC_Q40034 8.29 5.27 1.2  Debris - modern? 25.972184 50.860145 

QBC_Q40035 0 0.76 0  Linear Debris? 25.973636 50.83635 

QBC_Q40036 9.03 3.45 0  Unclassified 25.972746 50.838404 

QBC_Q40037 7.31 2.76 0  Unclassified 25.969904 50.848385 

QBC_Q40038 126.85 17.28 0  Depression? 25.964237 50.887264 

QBC_Q40039 48.53 12.33 0  Depression? 25.962862 50.887205 

QBC_Q40040 0 0 0  Unclassified 25.961924 50.887342 

QBC_Q40041 7.92 3.96 0  Natural? 25.963152 50.880036 

QBC_Q40042 6.94 4.41 0  Unclassified 25.964352 50.875995 

QBC_Q40044 92.28 0.73 0  Seabed scar? 25.966476 50.85934 

QBC_Q40045 4.48 1.59 0  Debris? 25.969016 50.839139 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q40046 7.15 1.12 0.1  Natural? 25.967363 50.850407 

QBC_Q40047 4.65 2.85 0  Unclassified 25.965044 50.857902 

QBC_Q40048 32.07 1.21 0  Seabed scar? 25.960408 50.886675 

QBC_Q40049 49.03 12.43 0  Natural? 25.960118 50.886517 

QBC_Q40050 19.89 16.94 0  Depression? 25.961303 50.867656 

QBC_Q40051 4 2 0  Unclassified 25.966443 50.843104 

QBC_Q40052 23.52 6.94 0  Depression? 25.960415 50.868114 

QBC_Q40053 32.63 13.84 0  Depression? 25.960072 50.871546 

QBC_Q40054 8.62 5.25 0  Hole? 25.957434 50.875804 

QBC_Q40055 40.62 19.22 0  Sediment accumulation? 25.957461 50.870748 

QBC_Q40056 44.65 13.59 0  Depression? - Duplicate 25.958747 50.869402 

QBC_Q40057 45.78 15.97 0  Depression? - Duplicate 25.957867 50.86819 

QBC_Q40058 5.99 3.25 0.32  Debris? 25.958019 50.866742 

QBC_Q40059 97.61 20.33 0  Depression? 25.95889 50.862487 

QBC_Q40060 4.52 3.19 0.85  Debris? 25.964182 50.834745 

QBC_Q40061 11.63 3.42 0  Unclassified 25.963187 50.832818 

QBC_Q40062 30.29 1.39 0  Seabed scar? 25.963085 50.829337 

QBC_Q40063 7.75 2.89 0  Unclassified 25.96245 50.832142 

QBC_Q40064 47.34 13.77 0  Depression? 25.956369 50.866906 

QBC_Q40065 32.36 10.82 0  Depression? 25.956751 50.869363 

QBC_Q40066 20.95 12.78 0  Sediment accumulation? 25.955581 50.876598 

QBC_Q40067 64.96 1.67 0  Seabed scar? 25.953895 50.882226 

QBC_Q40068 30.47 2.92 0  Hole? 25.955256 50.867615 

QBC_Q40069 22.05 6.03 0  Hole? 25.955473 50.867196 

QBC_Q40070 4.2 2.42 0  Unclassified 25.95574 50.861931 

QBC_Q40071 79.69 20.53 0  Buried features? 25.956161 50.86105 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q40072 9.8 6.67 0.42  Unclassified 25.957421 50.835568 

QBC_Q40073 11.25 8.02 0  Debris? 25.950385 50.878201 

QBC_Q40074 19.91 15.89 0  Sediment accumulation? 25.951354 50.879572 

QBC_Q40075 23.81 6.86 0  Natural? 25.951534 50.867655 

QBC_Q40076 19.47 3.33 0  Natural? 25.951729 50.86673 

QBC_Q40077 78.28 1.86 0  Seabed scar? 25.953003 50.848071 

QBC_Q40078 50.42 3.32 0  Seabed scar? 25.948526 50.866514 

QBC_Q40079 11.63 12.86 0  Unclassified 25.948783 50.87525 

QBC_Q40080 0 0 0  Location? 25.947379 50.878228 

QBC_Q40081 11.1 7.62 0  Unclassified 25.945731 50.874101 

QBC_Q40082 98.21 1.23 0  Seabed scar? 25.950966 50.840941 

QBC_Q40083 10.14 5.53 0  Buried features? 25.949666 50.837692 

QBC_Q40084 9.75 5.07 0  Debris? 25.941409 50.874538 

QBC_Q40085 71.09 1.34 0  Seabed scar? 25.94 50.863017 

QBC_Q40086 8.37 4.83 0  Debris? 25.944913 50.841861 

QBC_Q40087 6.43 4.66 0  Debris? 25.945882 50.825839 

QBC_Q40088 7.21 2.61 0  Debris? 25.937896 50.87336 

QBC_Q40089 44.6 6.21 0  Debris? 25.942259 50.82708 

QBC_Q40090 37.83 3.31 0  Seabed scar? 25.94043 50.827707 

QBC_Q40091 10.14 9.68 1.35  Debris? 25.93982 50.830971 

QBC_Q40092 6.63 2.66 1.37  Debris? 25.939852 50.832139 

QBC_Q40093 46.63 1.72 0  Seabed scar? 25.936133 50.861157 

QBC_Q40094 7.19 3.42 0  Natural? 25.932808 50.874257 

QBC_Q40095 5.18 2.73 0  Debris? 25.939733 50.82807 

QBC_Q40096 5.71 3.23 0  Debris? 25.94 50.826521 

QBC_Q40097 29.24 8.5 0  Natural? 25.939984 50.825925 
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Contact No Length(ft) Width(ft) Height(ft) Preliminary Interpretation Lat(WGS84) Lon(WGS84) 

QBC_Q40098 88.18 2.99 0  Unclassified 25.938848 50.826256 

QBC_Q40099 38.71 24.66 0  Unclassified 25.936521 50.828418 

QBC_Q40100 14.26 7.67 0  Debris? 25.935923 50.831528 

QBC_Q40101 92.46 1.46 0  Seabed scar? 25.935402 50.836563 

QBC_Q40102 104.76 17.6 0  Depression? 25.928998 50.864938 

QBC_Q40103 116.89 0.71 0  Seabed scar? 25.93095 50.85438 

QBC_Q40104 8.05 4.27 0.9  Natural? 25.934183 50.83233 

QBC_Q40105 16.52 5.05 1.35  Natural? 25.934876 50.827527 

QBC_Q40106 5.72 4.98 0.38  Natural? 25.932611 50.829857 

QBC_Q40107 6.86 2.26 0.75  Natural? 25.933705 50.830691 

QBC_Q40108 26.86 3.4 0  Natural? 25.932396 50.831335 

QBC_Q40109 10.55 3.43 0.45  Natural? 25.932459 50.832626 

QBC_Q40110 62.63 2.12 0  Seabed scar? 25.924592 50.869542 

QBC_Q40111 107.23 1.55 0  Seabed scar? 25.925479 50.869238 

QBC_Q40112 14.75 10.57 1.02  Natural? 25.930967 50.827903 

QBC_Q40113 99.32 26.23 0  Unclassified 25.93258 50.826912 

QBC_Q40114 6.68 3.82 0.21  Natural? 25.98773 50.857431 

QBC_Q40116 12.88 7.83 0  Unclassified 25.963887 50.850258 

QBC_Q40117 40.44 8.35 0  Sediment accumulation? 25.952159 50.846663 

QBC_Q40118 59.29 15.25 0  Depression? - Duplicate 25.957907 50.868155 

QBC_Q40119 44.47 14.35 0  Depression? - Duplicate 25.958824 50.869361 

QBC_Q40120 3.8 1.79 0.26  Natural? 25.967127 50.871502 

QBC_Q40121 28.05 4.68 0.32  Natural? 25.985138 50.875706 
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APPENDIX 6: DERIVED DATA INCLUDED ON ACCOMPANYING CD 

 

The data created during the research is included on an accompanying data CD. The data 

included is purely derived data, and no original survey data has been included due to data 

ownership/copyright reasons. The exception to this is the grab sample locations and 

granulometry report, which was undertaken specifically for this research. 

 

The data can either be opened as a map package or a map document in ArcGIS, or the data 

files can be imported into other compatible GIS packages. 

 

ArcGIS Map Package 
DataCD.mpk 

 
ArcGIS Project 
DataCD.mxd 
 

Shapefiles (In folder called DataForCD) 
(NB layer files (.lyr) for each shapefile/grid are also included) 
 
Background Mapping: 
 Coast_UTM39N.shp 
 SurveyArea.shp 
 Qatar_UbaidSites.shp 
 
Acoustic Classification 
 Classes (Raster grid File) 
 
Topographic Mapping 
 TopographicFeatures.shp 
 
Ground Truthing 
 GrabSamples.shp (shapefile contains hyperlinks to granulometry report: 
     ../hyperlinks/GranulometryReport.pdf) 
 
Geophysical Anomalies: 
 Area1AllContacts.shp 
 Area3AllContacts.shp 
 Area4AllContacts.shp 
 Area1Debris.shp 
 Area3Debris.shp 
 Area4Debris.shp 
 Area1Depressions.shp 
 Area3Depressions.shp 
 Area4Depressions.shp 
 Area1GroundTruthed.shp 
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 Area1LongLinearFeature.shp 
 
Seabed Characterisation 
 InitialLandscapeUnits.shp 
 FinalCharacterAreas.shp (by acoustic class) 
 FinalCharacterAreas.shp (by overall potential) 
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