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The other piece of work was Horn's (1975) analysis of shape from 
shading, which was the first in what was to become a distinguished series 
of articles on the formation of images. By carefully analyzing the way in 
which the illumination, surface geometry, surface reflectance, and view- 
point conspired to create the measured intensity values in an image, Horn 
formulated a differential equation that related the image intensity values 
to the surface geomeuy. If the surface reflectance and illumination are 
known, one can solve for the surface geometry (see also Horn, 1977). Thus 
from shading one can derive shape. 

The message was plain. There must exist an additional level of under- 
standing at which the character of the information-processing tasks carried 
out during perception are analyzed and understood in a way that is inde- 
pendent of the particular mechanisms and structures that implement them 
in our heads. This was what was missing-the analysis of the problem as 
an information-processing task. Such analysis does not usurp an under- 
standing at the other levels-of neurons or of computer programs-but 
it is a necessary complement to them, since without it there can be no real 
understanding of the function of all those neurons. 

This realization was arrived at independently and formulated together 
by Tomaso Poggio in Tiibingen and myself (Marr and Poggio, 1977; Marr, 
197%). It was not even quite new-Leon D. Harmon was saying something 
similar at about the same time, and others had paid lip service to a similar 
distinction. But the important point is that if the notion of different types 
of understanding is taken very seriously, it allows the study of the infor- 
mation-processing basis of perception to be made n&rous. It becomes 
possible, by separating explanations into different levels, to make explicit 
statements about what is being computed and why and to construct theo- 
ries stating that what is being computed is optimal in some sense or is 
guaranteed to function correctly The ad hoc element is removed, and 
heuristic computer programs are replaced by solid foundations on which 
a real subject can be built. This realization-the formulation of what was 
missing, together with a clear idea of how to supply it-formed the basic 
foundation for a new integrated approach, which it is the purpose of this 
book to describe. 

1.2 UNDERSTANDING COMPLEX 
INFORMATION-PROCESSING SYSTEMS 

Almost never can a complex system of any kind be understood as a simple 
extrapolation from the properties of its elementary components. Consider, 
for example, some gas in a bottle. A description of thermodynamic effects- 
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temperature, pressure, density and the relationships among these fac- 
tors-is not formulated by using a large set of equations, one for each of 
the particles involved. Such effects are described at their own level, that of 
an enormous collection of particles; the effort is to show that in principle 
the microscopic and macroscopic descriptions are consistent with one 
another. If one hopes to achieve a full understanding of a system as com- 
plicated as a nervous system, a developing embryo, a set of metabolic 
pathways, a bottle of gas, or even a large computer program, then one must 
be prepared to contemplate different kinds of explanation at different lev- 
els of description that are linked, at least in principle, into a cohesive whole, 
even if linking the levels in complete detail is impractical. For the specific 
case of a system that solves an information-processing problem, there are 
in addition the twin strands of process and representation, and both these 
ideas need some discussion. 

Representation and Description 

A representation is a formal system for making explicit certain entities or 
types of information, together with a specification of how the system does 
this. And I shall call the result of using a representation to describe a given 
entity a damption of the entity in that representation (Marr and Nishihara, 
1978). 

For example, the Arabic, Roman, and binary numeral systems are all 
formal systems for representing numbers. The Arabic representation con- 
sists of a string of symbols drawn from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), 
and the rule for constructing the description of a particular integer n is 
that one decomposes n into a sum of multiples of powers of 10 and unites 
these multiples into a string with the largest powers on the left and the 
smallest on the right. Thus, thirty-seven equals 3 x 10' + 7 x lo0, which 
becomes 37, the Arabic numeral system's description of the number. What 
this description makes explicit is the number's decomposition into powers 
of 10. The binary numeral system's description of the number thirty-seven 
is 100101, and this description makes explicit the number's decomposition 
into powers of 2. In the Roman numeral system, thirty-seven is represented 
as XXXVII. 

This definition of a representation is quite general. For example, a 
representation for shape would be a formal scheme for describing some 
aspects of shape, together with rules that specify how the scheme is applied 
to any particular shape. A musical score provides a way of representing a 
symphony; the alphabet allows the construction of a written representation 
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of words; and so forth. The phrase "formal scheme" is critical to the defi- 
nition, but the reader should not be frightened by it. The reason is simply 
that we are dealing with information-processing machines, and the way 
such machines work is by using symbols to stand for things-to represent 
things, in our terminology. To say that something is a formal scheme means 
only that it is a set of symbols with rules for putting them together-no 
more and no less. 

A representation, therefore, is not a foreign idea at all-we all use 
representations all the time. However, the notion that one can capture 
some aspect of reality by making a description of it using a symbol and 
that to do so can be useful seems to me a fascinating and powerful idea. 
But even the simple examples we have discussed introduce some rather 
general and important issues that arise whenever one chooses to use one 
particular representation. For example, if one chooses the Arabic numeral 
representation, it is easy to discover whether a number is a power of 10 
but difficult to discover whether it is a power of 2. If one chooses the binary 
representation, the situation is reversed. Thus, there is a trade-off; any 
particular representation makes certain information explicit at the expense 
of information that is pushed into the background and may be quite hard 
to recover. 

This issue is important, because haw information is represented can 
greatly affect how easy it is to do different things with it. This is evident 
even from our numbers example: It is easy to add, to subtract, and even to 
multiply if the Arabic or binary representations are used, but it is not at all 
easy to do these things-especially multiplication-with Roman numerals. 
This is a key reason why the Roman culture failed to develop mathematics 
in the way the earlier Arabic cultures had. 

An analogous problem faces computer engineers today. Electronic 
technology is much more suited to a binary number system than to the 
conventional base 10 system, yet humans supply their data and require the 
results in base 10. The design decision facing the engineer, therefore, is, 
Should one pay the cost of conversion into base 2, carry out the arithmetic 
in a binary representation, and then convert back into decimal numbers 
on output; or should one sacrifice efficiency of circuitry to carry out oper- 
ations directly in a decimal representation? On the whole, business com- 
puters and pocket calculators take the second approach, and general pur- 
pose computers take the first. But even though one is not restricted to 
using just one representation system for a given type of information, the 
choice of which to use is important and cannot be taken lightly It deter- 
mines what information is made explicit and hence what is pushed further 
into the background, and it has a far-reaching effect on the ease and 
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difficulty with which operations may subsequently be carried out on that 
information. 

Process 

The termprocess is very broad. For example, addition is a process, and so 
is takmg a Fourier transform. But so is making a cup of tea, or going 
shopping. For the purposes of this book, I want to restrict our attention to 
the meanings associated with machines that are carrying out information- 
processing tasks. So let us examine in depth the notions behind one simple 
such device, a cash register at the checkout counter of a supermarket. 

There are several levels at which one needs to understand such a 
device, and it is perhaps most useful to think in terms of three of them. 
The most abstract is the level of what the device does and why. What it 
does is arithmetic, so our first task is to master the theory of addition. 
Addition is a mapping, usually denoted by + , from pairs of numbers into 
single numbers; for example, + maps the pair (3,4) to 7, and I shall write 
this in the form (3 + 4) + 7. Addition has a number of abstract properties, 
however. It is commutative: both (3 + 4) and (4 + 3) are equal to 7; and 
associative: the sum of 3 + (4 + 5) is the same as the sum of (3 + 4) 
+ 5. Then there is the unique distinguished element, zero, the adding of 
which has no effect: (4 + 0) 4. Also, for every number there is a unique 
"inverse," written ( - 4) in the case of 4, which when added to the number 
gives zero: [4 + ( - 4)] += 0. 

Notice that these properties are part of the fundamental theory of 
addition. They are true no matter how the numbers are written-whether 
in binary Arabic, or Roman representation-and no matter how the addi- 
tion is executed. Thus part of this first level is something that might be 
characterized as what is being computed. 

The other half of this level of explanation has to do with the question 
of why the cash register performs addition and not, for instance, multipli- 
cation when combining the prices of the purchased items to arrive at a 
final bill. The reason is that the rules we intuitively feel to be appropriate 
for combining the individual prices in fact define the mathematical oper- 
ation of addition. These can be formulated as ~01?sdaint.. in the following 
way: 

1. If you buy nothing, it should cost you nothing; and buying nothing 
and something should cost the same as buying just the something. (The 
rules for zero.) 
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2. The order in which goods are presented to the cashier should not 
affect the total. (Commutativity) 

3. Arranging the goods into two piles and paying for each pile sepa- 
rately should not affect the total mount you pay (Associativity; the basic 
operation for combining prices.) 

4. If you buy an item and then return it for a refund, your total expen- 
diture should be zero. (Inverses.) 

It is a mathematical theorem that these conditions define the operation of 
addition, which is therefore the appropriate computation to use. 

This whole argument is what I call the conlputational theory of the 
cash register. Its important features are (1) that it contains separate argu- 
ments about what is computed and why and (2) that the resulting operation 
is defined uniquely by the constraints it has to satisfy In the theory of visual 
processes, the underlying task is to reliably derive properties of the world 
from images of it; the business of isolating constraints that are both pow- 
erful enough to allow a process to be defined and generally true of the 
world is a central theme of our inquiry. 

In order that a process shall actually run, however, one has to realize 
it in some way and therefore choose a representation for the entities that 
the process manipulates. The second level of the analysis of a process, 
therefore, involves choosing two things: (1) a representation for the input 
and for the output of the process and (2) an algorithm by which the 
transformation may actually be accomplished. For addition, of course, the 
input and output representations can both be the same, because they both 
consist of numbers. However this is not true in general. In the case of a 
Fourier transform, for example, the input representation may be the time 
domain, and the output, the frequency domain. If the first of our levels 
specifies what and why, this second level specifies how. For addition, we 
might choose Arabic numerals for the representations, and for the algo- 
rithm we could follow the usual rules about adding the least significant 
digits first and "carrying" if the sum exceeds 9. Cash registers, whether 
mechanical or electronic, usually use this type of representation and algo- 
rithm. 

There are three important points here. First, there is usually a wide 
choice of representation. Second, the choice of algorithm often depends 
rather critically on the particular representation that is employed. And 
third, even for a given fixed representation, there are often several possible 
algorithms for carrying out the same process. Which one is chosen will 
usually depend on any particularly desirable or undesirable characteristics 
that the algorithms may have; for example, one algorithm may be much 
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more efficient than another, or another may be slightly less efficient but 
more robust (that is, less sensitive to slight inaccuracies in the data on 
which it must run). Or again, one algorithm may be parallel, and another, 
serial. The choice, then, may depend on the type of hardware or machinery 
in which the algorithm is to be embodied physically 

This brings us to the third level, that of the device in which the process 
is to be realized physically The important point here is that, once again, 
the same algorithm may be implemented in quite different technologies. 
The child who methodically adds two numbers from right to left, carrying 
a digit when necessary, may be using the same algorithm that is imple- 
mented by the wires and transistors of the cash register in the neighbor- 
hood supermarket, but the physical realization of the algorithm is quite 
different in these two cases. Another example: Many people have written 
computer programs to play tic-tac-toe, and there is a more or less standard 
algorithm that cannot lose. This algorithm has in fact been implemented 
by W. D. Hillis and B. Silverman in a quite different technology, in a com- 
puter made out of Tinkertoys, a children's wooden building set. The whole 
monstrously ungainly engine, which actually works, currently resides in a 
museum at the University of Missouri in St. Louis. 

Some styles of algorithm will suit some physical substrates better than 
others. For example, in conventional digital computers, the number of 
connections is comparable to the number of gates, while in a brain, the 
number of connections is much larger ( x lo4) than the number of nerve 
cells. The underlying reason is that wires are rather cheap in biological 
architecture, because they can grow individually and in three dimensions. 
In conventional technology, wire laying is more or less restricted to two 
dimensions, which quite severely restricts the scope for using parallel 
techniques and algorithms; the same operations are often better carried 
out serially 

The Three Levels 

We can summarize our discussion in something like the manner shown in 
Figure 1-4, which illustrates the different levels at which an inforrnation- 
processing device must be understood before one can be said to have 
understood it completely At one extreme, the top level, is the abstract 
computational theory of the device, in which the performance of the device 
is characterized as a mapping from one kind of information to another, the 
abstract properties of this mapping are defined precisely, and its appro- 
priateness and adequacy for the task at hand are demonstrated. In the 
center is the choice of representation for the input and output and the 
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Computational theory 

What is the goal of the 
computation, why is it 
appropriate, and what 
is the logic of the strat- 
egy by which it can be 
carried out? 

Representation and Hardware 
algorithm implementation 

How can this computa- How can the represen- 
tional theory be imple- tation and algorithm be 
mented? In particular, realized physically? 
what is the representa- 
tion for the input and 
output, and what is the 
algorithm for the trans- 
formation? 

Figure 14. The three levels at which any machine carrying out an information- 
processing task must be understood. 

algorithm to be used to transform one into the other. And at the other 
extreme are the details of how the algorithm and representation are real- 
ized physically-the detailed computer architecture, so to speak. These 
three levels are coupled, but only loosely The choice of an algorithm is 
influenced for example, by what it has to do and by the hardware in which 
it must run. But there is a wide choice available at each level, and the 
explication of each level involves issues that are rather independent of the 
other two. 

Each of the three levels of description will have its place in the eventual 
understanding of perceptual information processing, and of course they 
are logically and causally related. But an important point to note is that 
since the three levels are only rather loosely related, some phenomena 
may be explained at only one or two of them. This means, for example, 
that a correct explanation of some psychophysical observation must be 
formulated at the appropriate level. In attempts to relate psychophysical 
problems to physiology, too often there is confusion about the level at 
which problems should be addressed. For instance, some are related 
mainly to the physical mechanisms of vision-such as afterimages (for 
example, the one you see after staring at a light bulb) or such as the fact 
that any color can be matched by a suitable mixture of the three primaries 
(a consequence principally of the fact that we humans have three types of 
cones). On the other hand, the ambiguity of the Necker cube (Figure 1-5) 
seems to demand a different kind of explanation. To be sure, part of the 
explanation of its perceptual reversal must have to do with a bistable neural 
network (that is, one with two distinct stable states) somewhere inside the 
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Figure 1-5. The so-called Necker illusion, named after L. A. Necker, the Swiss 
naturalist who developed it in 1832. The essence of the matter is that the two- 
dimensional representation (a) has collapsed the depth out of a cube and that a 
certain aspect of human vision is to recover this missing third dimension. The 
depth of the cube can indeed be perceived, but two interpretations are possible, 
(b) and (c). A person's perception characteristically flips from one to the other. 

brain, but few would feel satisfied by an account that failed to mention the 
existence of two different but perfectly plausible three-dimensional inter- 
pretations of this two-dimensional image. 

For some phenomena, the type of explanation required is fairly 
obvious. Neuroanatomy, for example, is clearly tied principally to the third 
level, the physical realization of the computation. The same holds for syn- 
aptic mechanisms, action potentials, inhibitory interactions, and so forth. 
Neurophysiology, too, is related mostly to this level, but it can also help us 
to understand the type of representations being used, particularly if one 
accepts something along the lines of Barlow's views that I quoted earlier. 
But one has to exercise extreme caution in making inferences from neu- 
rophysiological findings about the algorithms and representations being 
used, particularly until one has a clear idea about what information needs 
to be represented and what processes need to be implemented. 

Psychophysics, on the other hand, is related more directly to the level 
of algorithm and representation. Different algorithms tend to fail in radi- 
cally different ways as they are pushed to the limits of their performance 
or are deprived of critical infornlation. As we shall see, primarily psycho- 
physical evidence proved to Poggio and myself that our first stereo-match- 
ing algorithm (Marr and Poggio, 1976) was not the one that is used by the 
brain, and the best evidence that our second algorithm (Marr and Poggio, 
1979) 13 roughly the one that is used also comes from psychophysics. Of 
course, the underlying computational theory remained the same in both 
cases, only the algorithms were different. 




