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Null Hypothesis Significance Testing: A Review of an Old and
Continuing Controversy

Raymond S. Nickerson
Tufts University

Null hypothesis significance testing (NHST) is arguably the mosl widely used

approach to hypothesis evaluation among behavioral and social scientists. It is also

very controversial. A major concern expressed by critics is that such testing is

misunderstood by many of those who use it. Several other objections to its use have

also been raised. In this article the author reviews and comments on the claimed

misunderstandings as well as on other criticisms of the approach, and he notes

arguments that have been advanced in support of NHST. Alternatives and supple-

ments to NHST are considered, as are several related recommendations regarding

the interpretation of experimental data. The concluding opinion is that NHST is

easily misunderstood and misused but that when applied with good judgment it can

be an effective aid to the interpretation of experimental data.

Null hypothesis statistical testing (NHST1) is argu-

ably the most widely used method of analysis of data

collected in psychological experiments and has been

so for about 70 years. One might think that a method

that had been embraced by an entire research com-

munity would be well understood and noncontrover-

sial after many decades of constant use. However,

NHST is very controversial.2 Criticism of the method,

which essentially began with the introduction of the

technique (Pearce, 1992), has waxed and waned over

the years; it has been intense in the recent past. Ap-

parently, controversy regarding the idea of NHST

more generally extends back more than two and a half

centuries (Hacking, 1965).

Raymond S. Nickerson, Department of Psychology, Tufts

University.

I thank the following people for comments on a draft of

this article: Jonathan Baron, Richard Chechile, William Es-

tes, R. C. L. Lindsay, Joachim Meyer, Salvatore Soraci, and

William Uttal; the article has benefited greatly from their

input. I am especially grateful to Ruma Falk, who read the

entire article with exceptional care and provided me with

detailed and enormously useful feedback. Despite these

benefits, there are surely many remaining imperfections,

and as much as I would like to pass on credit for those also,
they are my responsibility.

Correspondence concerning this article should be ad-

dressed to Raymond S. Nickerson, 5 Gleason Road, Bed-

ford, Massachusetts 01730. Electronic mail may be sent to

rnickerson@infonet.tufts.edu.

The purpose of this article is to review the contro-

versy critically, especially the more recent contribu-

tions to it. The motivation for this exercise comes

from the frustration I have felt as the editor of an

empirical journal in dealing with submitted manu-

' Null hypothesis statistical significance testing is abbre-

viated in the literature as NHST (with the 5 sometimes

representing statistical and sometimes significance), as

NHSTP (P for procedure), NHTP (null hypothesis testing

procedure), NHT (null hypothesis testing), ST (significance

testing), and possibly in other ways. I use NHST here be-

cause I think it is the most widely used abbreviation.
2One of the people who gave me very useful feedback on

a draft of this article questioned the accuracy of my claim

that NHST is very controversial. "I think the impression that

NHST is very controversial comes from focusing on the

collection of articles you review—the product of a batch of

authors arguing with each other and rarely even glancing at

actual researchers outside the circle except to lament how

little the researchers seem to benefit from all the sage advice

being aimed by the debaters at both sides of almost every

issue." The implication seems to be that the "controversy" is

largely a manufactured one, of interest primarily—if not

only—to those relatively few authors who benefit from

keeping it alive. I must admit that this comment, from a
psychologist for whom I have the highest esteem, gave me

some pause about the wisdom of investing more time and

effort in this article. I am convinced, however, that the

controversy is real enough and that it deserves more atten-

tion from users of NHST than it has received.
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scripts, the vast majority of which report the use of

NHST. In attempting to develop a policy that would

help ensure the journal did not publish egregious mis-

uses of this method, I felt it necessary to explore the

controversy more deeply than I otherwise would have

been inclined to do. My intent here is to lay out what

I found and the conclusions to which 1 was led.3

Some Preliminaries

Null hypothesis has been defined in a variety of

ways. The first two of the following definitions are

from mathematics dictionaries, the third from a dic-

tionary of statistical terms, the fourth from a dictio-

nary of psychological terms, the fifth from a statistics

text, and the sixth from a frequently cited journal

article on the subject of NHST:

A particular statistical hypothesis usually specifying the
population from which a random sample is assumed to
have been drawn, and which is to be nullified if the
evidence from the random sample is unfavorable to the
hypothesis, i.e., if the random sample has a low prob-
ability under the null hypothesis and a higher one under
some admissible alternative hypothesis. (James &
James, 1959, p. 195)

1. The residual hypothesis that cannot be rejected unless
the test statistic used in the hypothesis testing problem
lies in the critical region for a given significance level. 2.
in particular, especially in psychology, the hypothesis
that certain observed data are a merely random occur-
rence. (Borowski & Borwein, 1991, p. 411)

A particular hypothesis under test, as distinct from the
alternative hypotheses which are under consideration.
(Kendall & Buckland, 1957)

The logical contradictory of the hypothesis that one
seeks to test. If the null hypothesis can be proved false,
its contradictory is thereby proved true. (English & En-
glish, 1958, p. 350)

Symbolically, we shall use H0 (standing for null hypoth-
esis) for whatever hypothesis we shall want to test and
HA for the alternative hypothesis. (Freund, 1962, p. 238)
Except in cases of multistage or sequential tests, the
acceptance of H0 is equivalent to the rejection of HA, and
vice versa, (p. 250)

The null hypothesis states that the experimental group
and the control group are not different with respect to [a
specified property of interest] and that any difference
found between their means is due to sampling fluctua-
tion. (Carver, 1978, p. 381)

It is clear from these examples—and more could be

given—that null hypothesis has several connotations.

For present purposes, one distinction is especially im-

portant. Sometimes null hypothesis has the relatively

inclusive meaning of the hypothesis whose nullifica-

tion, by statistical means, would be taken as evidence

in support of a specified alternative hypothesis (e.g.,

the examples from English & English, 1958; Kendall

& Buckland, 1957; and Freund, 1962, above). Of-

ten—perhaps most often—as used in psychological

research, the term is intended to represent the hypoth-

esis of "no difference" between two sets of data with

respect to some parameter, usually their means, or of

"no effect" of an experimental manipulation on the

dependent variable of interest. The quote from Carver

(1978) illustrates this meaning.

Given the former connotation, the null hypothesis

may or may not be a hypothesis of no difference or of

no effect (Bakan, 1966). The distinction between

these connotations is sometimes made by referring to

the second one as the nil null hypothesis or simply the

nil hypothesis; usually the distinction is not made ex-

plicitly, and whether null is to be understood to mean

nil null must be inferred from the context. The dis-

tinction is an important one, especially relative to the

controversy regarding the merits or shortcomings of

NHST inasmuch as criticisms that may be valid when

applied to nil hypothesis testing are not necessarily

valid when directed at null hypothesis testing in the

more general sense.

Application of NHST to the difference between two

means yields a value of p, the theoretical probability

that if two samples of the size of those used had been

drawn at random from the same population, the sta-

tistical test would have yielded a statistic (e.g., t) as

large or larger than the one obtained. A specified sig-

nificance level conventionally designated a (alpha)

serves as a decision criterion, and the null hypothesis

3Since this article was submitted to Psychological Meth-

ods for consideration for publication, the American Psycho-

logical Association's Task Force on Statistical Inference

(TFSI) published a report in the American Psychologist

(Wilkinson & TFSI, 1999) recommending guidelines for the

use of statistics in psychological research. This article was

written independently of the task force and for a different

purpose. Having now read the TFSI report, I like to think

that the present article reviews much of the controversy that

motivated the convening of the TFSI and the preparation of

its report. I find the recommendations in that report very

helpful, and I especially like the admonition not to rely too

much on statistics in interpreting the results of experiments
and to let statistical methods guide and discipline thinking

but not determine it.
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is rejected only if the value ofp yielded by the test is

not greater than the value of a. If a is set at .05, say,

and a significance test yields a value of p equal to or

less than .05, the null hypothesis is rejected and the

result is said to be statistically significant at that level.

According to most textbooks, the logic of NHST

admits of only two possible decision outcomes: rejec-

tion (at a specified significance level) of the hypoth-

esis of no difference, and failure to reject this hypoth-

esis (at that level). Given the latter outcome, one is

justified in saying only that a significant difference

was not found; one does not have a basis for conclud-

ing that the null hypothesis is true (that the samples

were drawn from the same population with respect to

the variable of interest). Inasmuch as the null hypoth-

esis may be either true or false and it may either be

rejected or fail to be rejected, any given instance of

NHST admits of four possible outcomes, as shown in

Table 1.

There are two ways to be right: rejecting the null

hypothesis when it is false (when the samples were

drawn from different populations) and failing to reject

it when it is true (when the samples were drawn from

the same population). There are also two ways to be

wrong: rejecting the null hypothesis when it is true

and failing to reject it when it is false. The first of

these two ways to be wrong is usually referred to as a

Type I error, and the second as a Type II error, after

Neyman and Pearson (1933a).

By definition, a Type I error can be made only

when the null hypothesis is true. The value ofp that is

obtained as the result of NHST is the probability of a

Type I error on the assumption that the null hypoth-

esis is true. The unconditional probability of the oc-

currence of a Type I error is the product ofp and the

probability that the null hypothesis is true. Failure to

make this distinction between the probability of a

Type I error conditional on the null being true and the

unconditional probability of a Type I error has been

the basis of some confusion, which I discuss further

below.

Similarly, by definition, a Type II error can be

Table 1

The Four Possible Combinations of Reality and Results of

Null Hypothesis Statistical Testing

Decision

regarding H0

Truth state of

False True

Rejected Correct rejection Type I error

Not rejected Type 11 error Correct nonrejection

made only when the null hypothesis is false. The

probability of occurrence of a Type II error—when

the null hypothesis is false—is usually referred to as

p (beta). The unconditional probability of occurrence

of a Type II error is the product of p and the prob-

ability that the null hypothesis is false, p is generally

assumed to be larger than p but not known precisely.

Closely related to the concept of statistical signifi-

cance is that of power (Chase & Tucker, 1976; Cohen,

1977, 1988; Rossi, 1990), which is defined as 1 - p.

Power is the probability of rejecting the null hypoth-

esis conditional on its being false, that is, the prob-

ability of detecting an effect given that there is one, or

the probability of accepting the alternative hypothesis

conditional on its being true. It is possible to compute

power to detect an effect of a hypothesized size, and

this is what is typically done: One determines the

probability that a specified sample size would yield

significance at a specified alpha level given an effect

of a hypothesized magnitude.

The use of NHST in psychology has been guided

by a greater tolerance for failing to reject the null

hypothesis when it is false (Type II error) than for

rejecting it when it is true (Type I error). This pref-

erence is reflected in the convention of selecting a

decision criterion (confidence level) such that one will

reject the hypothesis of no difference only if the ob-

served difference would be theoretically unlikely—a

probability of, say, less than .05 or less than .01—to

be obtained by chance from samples drawn from the

same population. A decision criterion of .05 is in-

tended to represent a strong bias against the making of

a Type I error, and a criterion of .01 is an even stron-

ger one. (The assumption that the intention has been

realized to the extent generally believed has been

challenged; I return to this point below.) The ap-

proach of biasing against Type I error is intended to

be conservative in the sense of beginning with an

assumption of no difference and giving up that as-

sumption only on receipt of strong evidence that it is

false. This conservativeness can be seen as in keeping

with the spirit of Occam's razor, according to which

entities (theories, effects) should not be multiplied

unnecessarily (Rindskopf, 1997).

The rationale for conservatism in statistical testing

for sample differences is strikingly similar to the one

that guides the proceedings in a U.S. court of law. The

rule in a criminal trial is that the defendant is to be

presumed innocent and can be judged guilty only if

the prosecution proves guilt beyond a reasonable

doubt. Furthermore, the trial can yield one of only two
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possible verdicts: guilty or not guilty. Not guilty, in

this context, is not synonymous with innocent; it

means only that guilt was not demonstrated with a

high degree of certainty. Proof of innocence is not a

requirement for this verdict; innocence is a presump-

tion and, like the null hypothesis, it is to be rejected

only on the basis of compelling evidence that it is

false. The asymmetry in this case reflects the fact that

the possibility of letting a guilty party go free is

strongly preferred to the possibility of convicting

someone who is innocent. This analogy has been dis-

cussed by Feinberg (1971).

Statistical significance tests of differences between

means are usually based on comparison of a measure

of variability across samples with a measure of vari-

ability within samples, weighted by the number of

items in the samples. To be statistically significant, a

difference between sample means has to be large if

the within-sample variability is large and the number

of items in the samples is small; however, if the

within-sample variability is small and the number of

items per sample is large, even a very small difference

between sample means may attain statistical signifi-

cance. This makes intuitive sense. The larger the size

of a sample, the more confidence one is likely to have

that it faithfully reflects the characteristics of the

population from which it was drawn. Also, the less the

members of the same sample differ among each other

with respect to the measure of interest, the more im-

pressive the differences between samples will be.

Sometimes a distinction is made between rejection-

support (RS) and acceptance-support (AS) NHST

(Binder, 1963; Steiger & Fouladi, 1997). The distinc-

tion relates to Meehl's (1967, 1997) distinction be-

tween strong and weak uses of statistical significance

tests in theory appraisal (more on that below). In RS-

NHST the null hypothesis represents what the experi-

menter does not believe, and rejection of it is taken as

support of the experimenter's theoretical position,

which implies that the null is false. In AS-NHST the

null hypothesis represents what the experimenter be-

lieves, and acceptance of it is taken as support for the

experimenter's view. (A similar distinction, between a

situation in which one seeks to assert that an effect in

a population is large and a situation in which one

seeks to assert that an effect in a population is small,

has been made in the context of Bayesian data analy-

sis [Rouanet, 1996].)

RS testing is by far the more common of the two

types, and the foregoing comments, as well as most of

what follows, apply to it. In AS testing. Type I and

Type II errors have meanings opposite the meanings

of these terms as they apply to RS testing. Examples

of the use of AS in cognitive neuroscience are given

by Bookstein (1998). AS testing also differs from RS

in a variety of other ways that will not be pursued

here.

The Controversial Nature of NHST

Although NHST has played a central role in psy-

chological research—a role that was foreshadowed by

Fisher's (1935) observation that every experiment ex-

ists to give the facts a chance of disproving the null

hypothesis—it has been the subject of much criticism

and controversy (Kirk, 1972; Morrison & Henkel,

1970), In a widely cited article, Rozeboom (1960)

argued that

despite the awesome pre-eminence this method has at-
tained in our journals and textbooks of applied statistics,
it is based upon a fundamental misunderstanding of the
nature of rational inference, and is seldom if ever appro-
priate to the aims of scientific research, (p. 417)

The passage of nearly four decades has not tempered

Rozeboom's disdain for NHST (Rozeboom, 1997). In

another relatively early critique of NHST, Eysenck

(1960) made a case for not using the term significance

in reporting the results of research. C. A. Clark (1963)

argued that statistical significance tests do not provide

the information scientists need and that the null hy-

pothesis is not a sound basis for statistical investiga-

tion.

Other behavioral and social scientists have criti-

cized the practice, which has long been the conven-

tion within these sciences, of making NHST the pri-

mary method of research and often the major criterion

for the publication of the results of such research (Ba-

kan, 1966; Brewer, 1985; Cohen, 1994; Cronbach,

1975; Dracup, 1995; Falk, 1986; Falk & Greenbaum,

1995; Folger, 1989; Gigerenzer & Murray, 1987;

Grant, 1962; Guttman, 1977, 1985; Jones, 1955; Kirk,

1996; Kish, 1959; Lunt & Livingstone, 1989; Lykken,

1968; McNemar, 1960; Meehl, 1967, 1990a, 1990b;

Oakes, 1986; Pedhazur & Schmelkin, 1991; Pollard,

1993; Rossi, 1990; Sedlmeier & Gigerenzer, 1989;

Shaver, 1993; Shrout, 1997; Signorelli, 1974; Thomp-

son, 1993, 1996, 1997). An article that stimulated

numerous others was that of Cohen (1994). (See com-

mentary in American Psychologist fBaril and Cannon,

1995; Frick, 1995b; Hubbard, 1995; McGraw, 1995;



NULL HYPOTHESIS SIGNIFICANCE TESTING 245

Parker, 1995; Svyantek and Ekeberg, 1995] and the

response by Cohen, 1995.)

Criticism has often been severe. Bakan (1966), for

example, referred to the use of NHST in psychologi-

cal research as "an instance of a kind of essential

mindlessness in the conduct of research" (p. 436).

Carver (1978) said of NHST that it "has involved

more fantasy than fact" and described the emphasis on

it as representing "a corrupt form of the scientific

method" (p. 378). Lakatos (1978) was led by the read-

ing of Meehl (1967) and Lykken (1968) to wonder

whether the function of statistical techniques in the so-
cial sciences is not primarily to provide a machinery for
producing phony corroborations and thereby a sem-
blance of "scientific progress" where, in fact, there is
nothing but an increase in pseudo-intellectual garbage,
(p. 88)

Gigerenzer (1998a) argued that the institutionalization

of NHST has permitted surrogates for theories (one-

word explanations, redescriptions, vague dichoto-

mies, data fitting) to flourish in psychology:

Null hypothesis testing provides researchers with no in-
centive to specify either their own research hypotheses
or competing hypotheses. The ritual is to test one's un-
specified hypothesis against "chance," that is, against the
null hypothesis that postulates "no difference between
the means of two populations" or "zero correlation." (p.
200)

Rozeboom (1997) has referred to NHST as "surely the

most bone-headedly misguided procedure ever insti-

tutionalized in the rote training of science students"

(p. 335).

Excepting the last two, these criticisms predate the

ready availability of software packages for doing sta-

tistical analyses; some critics believe the increasing

prevalence of such software has exacerbated the prob-

lem. Estes (1997a) has pointed out that statistical re-

sults are meaningful only to the extent that both au-

thor and reader understand the basis of their

computation, which often can be done in more ways

than one; mutual understanding can be impeded if

either author or reader is unaware of how a program

has computed a statistic of a given name. Thompson

(1998) claimed that "most researchers mindlessly test

only nulls of no difference or of no relationship be-

cause most statistical packages only test such hypoth-

eses" and argued that the result is that "science be-

comes an automated, blind search for mindless tabular

asterisks using thoughtless hypotheses" (p. 799).

Some critics have argued that progress in psychol-

ogy has been impeded by the use of NHST as it is

conventionally done or even that such testing should

be banned (Carver, 1993; Hubbard, Parsa, & Luthy,

1997; Hunter, 1997; Loftus, 1991, 1995, 1996;

Schmidt, 1992, 1996). A comment by Carver (1978)

represents this sentiment: "[NHST] is not only use-

less, it is also harmful because it is interpreted to

mean something it is not" (p. 392). Shaver (1993) saw

the dominance of NHST as dysfunctional "because

such tests do not provide the information that many

researchers assume they do" and argued that such test-

ing "diverts attention and energy from more appro-

priate strategies, such as replication and consideration

of the practical or theoretical significance of results"

(p. 294). Cohen (1994) took the position that NHST

"has not only failed to support and advance psychol-

ogy as a science but also has seriously impeded it"

(p. 997). Schmidt and Hunter (1997) stated bluntly,

"Logically and conceptually, the use of statistical sig-

nificance testing in the analysis of research data has

been thoroughly discredited," and again, "Statistical

significance testing retards the growth of scientific

knowledge; it never makes a positive contribution"

(p. 37).

Despite the many objections and the fact that they

have been raised by numerous writers over many

years, NHST has remained a favored—perhaps the

favorite—tool in the behavioral and social scientist's

kit (Carver, 1993; Johnstone, 1986). There is little

evidence that the many criticisms that have been lev-

eled at the technique have reduced its popularity

among researchers. Inspection of a randomly selected

issue of the Journal of Applied Psychology for each

year from its inception in 1917 through 1994 revealed

that the percentage of articles that used significance

tests rose from an average of about 17 between 1917

and 1929 to about 94 during the early 1990s (Hubbard

et al., 1997). The technique has its defenders, whose

positions are considered in a subsequent section of

this review, but even many of the critics of NHST

have used it in empirical studies after publishing cri-

tiques of it (Greenwald, Gonzalez, Harris, & Guthrie,

1996). The persisting popularity of the approach begs

an explanation (Abelson, 1997a, 1997b; Falk &

Greenbaum, 1995; Greenwald et al., 1996). As Rind-

skopf (1997) has said, "Given the many attacks on it,

null hypothesis testing should be dead" (p. 319); but,

as is clear from to the most casual observer, it is far

from that

Several factors have been proposed as contributors
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to the apparent imperviousness of NHST to criticism.

Among them are lack of understanding of the logic of

NHST or confusion regarding conditional probabili-

ties (Berkson, 1942; Carver, 1978; Falk & Green-

baum, 1995), the appeal of formalism and the appear-

ance of objectivity (Greenwald et al., 1996; Stevens,

1968), the need to cope with the threat of chance (Falk

& Greenbaum, 1995), and the deep entrenchment of

the approach within the field, as evidenced in the

behavior of advisors, editors, and researchers

(Eysenck, 1960; Rosnow & Rosenthal, 1989b). A

great appeal of NHST is that it appears to provide the

user with a straightforward, relatively simple method

for extracting information from noisy data. Hubbard

et al. (1997) put it this way:

From the researcher's (and possibly journal editor's and
reviewer's) perspective, the use of significance tests of-
fers the prospect of effortless, cut-and-dried decision-
making concerning the viability of a hypothesis. The role
of informed judgment and intimate familiarity with the
data is largely superseded by rules of thumb with di-
chotomous, accept-reject outcomes. Decisions based on
tests of significance certainly make life easier, (p. 550)

In the following two major sections of this article,

I focus on specific criticisms that have been leveled

against NHST. I first consider misconceptions and

false beliefs said to be common, and then turn to other

criticisms that have been made. With respect to each

of the false beliefs, I state what it is, review what

various writers have said about it, and venture an

opinion as to how serious the problem is. Subsequent

major sections deal with defenses of NHST and rec-

ommendations regarding its use, proposed alterna-

tives or supplements to NHST, and related recom-

mendations that have been made.

Misconceptions Associated With NHST

Of the numerous criticisms that have been made of

NHST or of one or another aspect of ways in which it

is commonly done, perhaps the most pervasive and

compelling is that NHST is not well-understood by

many of the people who use it and that, as a conse-

quence, people draw conclusions on the basis of test

results that the data do not justify. Although most

research psychologists use statistics to help them in-

terpret experimental findings, it seems safe to assume

that many who do so have not had a lot of exposure to

the mathematics on which NHST is built. It may also

be that the majority are not highly acquainted with the

history of the development of the various approaches

to statistical evaluation of data that are widely used

and with the controversial nature of the interactions

among some of the primary developers of these ap-

proaches (Gigerenzer & Murray, 1987). Rozeboom

(1960) suggested that experimentalists who have spe-

cialized along lines other than statistics are likely to

unquestioningly apply procedures learned by rote

from persons assumed to be more knowledgeable of

statistics than they. If this is true, it should not be

surprising to discover that many users of statistical

tests entertain misunderstandings about some aspects

of the tests they use and of what the outcomes of their

testing mean.

It is not the case, however, that all disagreements

regarding NHST can be attributed to lack of training

or sophistication in statistics; experts are not of one

mind on the matter, and their differing opinions on

many of the issues help fuel the ongoing debate. The

presumed commonness of specific misunderstandings

or misinterpretations of NHST, even among statistical

experts and authors of books on statistics, has been

noted as a reason to question its general utility for the

field (Cohen, 1994; McMan, 1995; Tryon, 1998).

There appear to be many false beliefs about NHST.

Evidence that these beliefs are widespread among re-

searchers is abundant in the literature. In some cases,

what I am calling a false belief would be true, or

approximately so, under certain conditions. In those

cases, I try to point out the necessary conditions. To

the extent that one is willing to assume that the es-

sential conditions prevail in specific instances, an oth-

erwise-false belief may be justified.

Belief That p is the Probability That the Null
Hypothesis Is True and That l-p Is the
Probability That the Alternative Hypothesis
Is True

Of all false beliefs about NHST, this one is argu-

ably the most pervasive and most widely criticized.

For this reason, it receives the greatest emphasis in the

present article. Contrary to what many researchers

appear to believe, the value of p obtained from a null

hypothesis statistical test is not the probability that H0

is true; to reject the null hypothesis at a confidence

level of, say, .05 is not to say that given the data the

probability that the null hypothesis is true is .05 or

less. Furthermore, inasmuch as p does not represent

the probability that the null hypothesis is true, its

complement is not the probability that the alternative

hypothesis, HA, is true. This has been pointed out

many times (Bakan, 1966; Berger & Sellke, 1987;
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Bolles, 1962; Cohen, 1990, 1994; DeGroot, 1973;

Falk, 1998b; Frick, 1996; I. J. Good, 1981/1983b;

Oakes, 1986). Carver (1978) referred to the belief that

p represents the probability that the null hypothesis is

true as the " 'odds-against-chance' fantasy" (p. 383).

Falk and Greenbaum (1995; Falk, 1998a) have called

it the "illusion of probabilistic proof by contradic-

tion," or the "illusion of attaining improbability"

(Falk & Greenbaum, 1995, p. 78).

The value of p is the probability of obtaining a

value of a test statistic, say, D, as large as the one

obtained—conditional on the null hypothesis being

true—p (D I //0): which is not the same as the prob-

ability that the null hypothesis is true, conditional on

the observed result, p(H0 I D). As Falk (1998b)

pointed out, p(D I #0) and p(H0 I D) can be equal, but

only under rare mathematical conditions. To borrow

Carver's (1978) description of NHST,

statistical significance testing sets up a straw man, the
null hypothesis, and tries to knock him down. We hy-
pothesize that two means represent the same population
and that sampling or chance alone can explain any dif-
ference we find between the two means. On the basis of
this assumption, we are able to figure out mathematically
just how often differences as large or larger than the
difference we found would occur as a result of chance or
sampling, (p. 381)

Figuring out how likely a difference of a given size is

when the hypothesis of no difference is true is not the

same as figuring out how likely it is that the hypoth-

esis is true when a difference of a given size is ob-

served.

A clear distinction between p(D I H0) nndp(H0 I D),

or between p(D I H) and p(H I D) more generally,

appears to be one that many people fail to make (Bar-

Hillel, 1974; Berger & Berry, 1988; Birnbaum, 1982;

Dawes, 1988; Dawes, Mirels, Gold, & Donahue,

1993; Kahneman & Tversky, 1973). The tendency to

see these two conditional probabilities as equivalent,

which Dawes (1988) referred to as the "confusion of

the inverse," bears some resemblance to the widely

noted "premise conversion error" in conditional logic,

according to which IfP then Q is erroneously seen as

equivalent to IfQ then P (Henle, 1962; Revlis, 1975).

Various explanations of the premise conversion error

have been proposed. A review of them is beyond the

scope of this article.

Belief that p is the probability that the null hypoth-

esis is true (the probability that the results of the ex-

periment were due to chance) and that \—p represents

the probability that the alternative hypothesis is true

(the probability that the effect that has been observed

is not due to chance) appears to be fairly common,

even among behavioral and social scientists of some

eminence. Gigerenzer (1993), Cohen (1994), and Falk

and Greenbaum (1995) have given examples from the

literature. Even Fisher, on occasion, spoke as though

p were the probability that the null hypothesis is true

(Gigerenzer, 1993).

Falk and Greenbaum (1995) illustrated the illusory

nature of this belief with an example provided by

Pauker and Pauker (1979):

For young women of age 30 the incidence of live-born
infants with Down's syndrome is 1/885, and the majority
of pregnancies are normal. Even if the two conditional
probabilities of a correct test result, given either an af-
fected or a normal fetus, were 99.5 percent, the prob-
ability of an affected child, given a positive test result,
would be only 18 percent. This can be easily verified
using Bayes' theorem. Thus, if we substitute "The fetus
is normal" for Ha, and "The test result is positive (i.e.
indicating Down's syndrome)" for D, we have p(D I Ha)
= .005, which means D is a significant result, while
p(H0 I D) = .82 (i.e., 1-.18). (p. 78)

A similar outcome, yielding a high posterior probabil-

ity of H0 despite a result that has very low probability

assuming the null hypothesis, could be obtained in

any situation in which the prior probability of H0 is

very high, which is often the case for medical screen-

ing for low-incidence illnesses. Evidence that physi-

cians easily misinterpret the statistical implications of

the results of diagnostic tests involving low-incidence

disease has been reported by several investigators

(Cassells, Schoenberger, & Graboys, 1978; Eddy,

1982; Gigerenzer, Hoffrage, & Ebert, 1998).

The point of Falk and Greenbaum's (1995) illus-

tration is that, unlike p(HQ I D), p is not affected by

prior values of p(H0); it does not take base rates or

other indications of the prior probability of the null (or

alternative) hypothesis into account. If the prior prob-

ability of the null hypothesis is extremely high, even

a very small p is unlikely to justify rejecting it. This is

seen from consideration of the Bayesian equation for

computing a posterior probability:

p(H0\D) =
p(D I H0)p(H0)

p(D I 0) +p(D I
(1)

Inasmuch as p(HA) = 1 - p(HQ), it is clear from this

equation that p(H0 I D) increases with p(H0) for fixed

values of p(D I H0) and p(D I HA) and that as p(HQ)

approaches 1, so does p(H0 I D).

A counter to this line of argument might be that
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situations like those represented by the example, in

which the prior probability of the null hypothesis is

very high (in the case of the example 884/885), are

special and that situations in which the prior probabil-

ity of the null is relatively small are more represen-

tative of those in which NHST is generally used. Co-
hen (1994) used an example with a similarly high

prior p(H0)—probability of a random person having
schizophrenia—and was criticized on the grounds that

such high prior probabilities are not characteristic of

those of null hypotheses in psychological experiments

(Baril & Cannon, 1995; McGraw, 1995). Falk and

Greenbaum (1995) contended, however, that the fact
that one can find situations in which a small value of

p(D I H0) does not mean that the posterior probability

of the null, p(Ha I £>), is correspondingly small dis-

credits the logic of tests of significance in principle.

Their general assessment of the merits of NHST is

decidedly negative. Such tests, they argued, "fail to

give us the information we need but they induce the
illusion that we have it" (p. 94). What the null hy-

pothesis test answers is a question that we never ask:
What is the probability of getting an outcome as ex-

treme as the one obtained if the null hypothesis is

true?

None of the meaningful questions in drawing conclu-
sions from research results—such as how probable are
the hypotheses? how reliable are the results? what is Ihe
size and impact of the effect that was found?—is an-
swered by the test. (Falk & Greenbaum, 1995, p. 94)

Berger and Sellke (1987) have shown that, even

given a prior probability of H0 as large as .5 and

several plausible assumptions about how the variable

of interest (D in present notation) is distributed, p is

invariably smaller than p(H0 I D) and can differ from

it by a large amount. For the distributions considered

by Berger and Sellke, the value of p(H0 I D) foip =

.05 varies between .128 and .290; for p = .001, it

varies between .0044 and .0088. The implication of

this analysis is that p — .05 can be evidence, but

weaker evidence than generally supposed, of the fal-
sity of Ha or the truth of HA. Similar arguments have
been made by others, including Edwards, Lindman,
and Savage (1963), Dickey (1973, 1977), and Lindley
(1993). Edwards et al. stressed the weakness of the

evidence that a small p provides, and they took the

position that "a r of 2 or 3 may not be evidence against
the null hypothesis at all, and seldom if ever justifies
much new confidence in the alternative hypothesis"
(p. 231).

A striking illustration of the fact that p is not the
probability that the null hypothesis is true is seen in

what is widely known as Lindley's paradox. Lindley

(1957) described a situation to demonstrate that

if H is a simple hypothesis and x the result of an experi-
ment, the following two phenomena can occur simulta-
neously: (i) a significance test for H reveals that x is
significant at, say, the 5% level; (ii) the posterior prob-
ability of H, given x, is, for quite small prior probabilities
of//, as high as 95%. (p. 187)

Although the possible coexistence of these two

phenomena is usually referred to as Lindley's para-

dox, Lindley (1957) credited Jeffreys (1937/1961) as
the first to point it out, but Jeffreys did not refer to it

as a paradox. Others have shown that for any value of

p, no matter how small, a situation can be defined for

which a Bayesian analysis would show the probability

of the null to be essentially 1. Edwards (1965) de-

scribed the situation in terms of likelihood ratios (dis-
cussed further below) this way:

Name any likelihood ratio in favor of the null hypoth-
esis, no matter how large, and any significance level, no
matter how small. Data can always be invented that will
simultaneously favor the null hypothesis by at least that
likelihood ratio and lead to rejection of that hypothesis at
at leas! that significance level. In other words, data can
always be invented that highly favor the null hypothesis,
but lead to its rejection by an appropriate classical test at
any specified significance level, (p. 401)

The condition under which the two phenomena

mentioned by Lindley (1957) can occur simulta-

neously is that one's prior probability for H be con-

centrated within a narrow interval and one's remain-

ing prior probability for the alternative hypothesis be

relatively uniformly distributed over a large interval.

In terms of the notation used in this article, the prob-
ability distributions involved are those of (D i H0) and

(D I //A), and the condition is that the probability

distribution of (D I H0) be concentrated whereas that

of (D I HA) be diffuse.

Lindley's paradox recognizes the possibility of
p(H0 I D) being large (arbitrarily close to 1) even
when p(D I H0) is very small (arbitrarily close to 0).
For present purposes, what needs to be seen is that it
is possible for p(D I //A) to be smaller than p(D I H0)

even when p(D I H0) is very small, say, less than .05.

We should note, too, that Lindley's "paradox" is para-

doxical only to the degree that one assumes that a
small p(D I H) is necessarily indicative of a small
p(H \ D),
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Perhaps the situation can be made clear with a re-

lated problem. Imagine two coins, one of which, F, is

fair in the sense that the probability that it will come

up heads when tossed, pF, is constant at .5 and the

other of which, B, is biased in that the probability that

it will come up heads when tossed, pB, is constant at

some value other than .5. Suppose that one of the

coins has been tossed n times, yielding k heads and

n-k tails, and that our task is to tell which of the two

coins is more likely to have been the one tossed.

The probability of getting exactly k heads in n

tosses given the probability p of heads on each toss is

the binomial

where

denotes the number of combinations of n things taken

k at a time. Suppose, for example, that the coin was

tossed 100 times and yielded 60 heads and 40 tails.

Letting pdooOfjo ! HF) represent the probability of

getting this outcome with a fair coin, we have

The probability that 100 tosses of a fair coin would

yield 60 or more heads is

100

HF) s .028.

Thus, by the conventions of NHST, one would have a

result that would permit rejection of the null hypoth-

esis at the .05 level of significance with a one-tailed

test.

The Bayesian approach to this problem is to com-

pare the posterior odds ratio, which takes into account

for each coin the probability that it would produce the

observed outcome (60 heads in 100 tosses) if selected

and the probability of it being selected:

The ratio to the left of the equal sign is the posterior

odds ratio (expressed in this case as the odds favoring

HF) and is usually represented as Oposl. The ratio of

conditional probabilities,

P( 100^60 I tff)

pdoAo I HB)'

is referred to as the Bayes factor or the likelihood

ratio and is commonly denoted by X; the ratio of the

two prior probabilities,

P(HF\F /prior

P(HB\

is the prior odds and may be represented as nprior. So

the equation of interest is more simply expressed as

flpos, = Xflprior. The posterior odds, the odds in view

of the data, are simply the prior odds multiplied by the

Bayes factor. If the prior odds ratio favoring one hy-

pothesis over the other is very large, even a large

Bayes factor in the opposite direction may not suffice

to reserve the direction of the balance of evidence,

and if only the Bayes factor is considered, this fact

will not be apparent. (This is the point of Falk and

Greenbaum's, 1995, illustration with Down's syn-

drome births.)

In our coin-tossing illustration, we are assuming

that the coins had equal probability of being selected,

so the prior odds ratio is 1 and the posterior odds ratio

is simply the Bayes factor or likelihood ratio:

^ P<.100L>60 ' HB> (1<X)\ 60,. ,40'
( 60 )Pa (>--PB>

We have already found the numerator of this ratio

to be approximately .011, but to determine the value

of X we also need to be able to compute the denomi-

nator of the likelihood ratio. If we knew the value of

pB, the probability of heads for the biased coin, we

could compute this easily. Suppose, for example, we

knew pB to be .6. Then we would have

= -081-

So, for a coin with a bias of .6 for heads and an

outcome of 60 heads in 100 tosses, the likelihood ratio

(dis)favoring HF is approximately .010844/.081219 —

about .134, or better than a 7:1 ratio in favor of HB.

However, suppose the biased coin were biased for

tails, with, say, a probability of .4 of producing heads.

In this case the probability of an outcome of 60 heads

given the biased coin would be

= 2.44249 x 10~
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Table 2

Likelihood Ratio, X, for Values ofpg Ranging From .05

to.95

PD

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

(IOCK 60,1 ylO
\ 60 №B \ 1 PB)

1.53 x 10~51

2.03 x 1Q-34

1.37X10-25

2.11 xlO-1 8

1.37 x 10~14

3.71 x 10-'°

1.99xlO~7

2.44 x 10~5

8.82 x 10-4

.0108

.0488

.0812

.0474

.0085

.0004

2.32x10-"

8.85 x 1(T1U

2.47 x lO'15

5.76 x 10~26

X

7.08 xlO 4 8

5.34 x 1031

7.89 x 1022

5.15 x 1015

7.89x10"

2.92 x 107

5.45 x 104

443.97

12.30

1.00

0.22

0.13

0.23

1.28

29.90

4,681.68

1.23x 107

4.39 x l O 1 2

1.88 x 1023

Note. \ = p (10(>D«i I #jO/P(i<xAo I HB). F = fair; B = biased.

and the likelihood ratio favoring HF would be X =

0.108447(2.44249 x 10~5) = 444.

Suppose the biased coin had a very strong bias for

heads, say, .8. In this case, the probability that it

would produce 60 heads in 100 tosses would be

= 2.3 1624 xlO'6,

so the likelihood ratio in favor of HF would be X =

.010844/(2.31624 x W6) s 4682.4

Table 2 shows X for values of pB ranging from .05

to .95, given 60 heads in 100 tosses. (The middle

column is />(10n£>6o I HB), the probability of getting 60

heads in 100 tosses given the associated bias for heads

indicated in the left column.) HK is favored over HF

(i.e., X < 1) only when the bias on HR is between

slightly more than .5 and a little less than .7. Inasmuch

as we are assuming that the fair and biased coins are

equally likely to have been tossed, the likelihood ratio

is also the posterior odds ratio: so, given an outcome

of 60 heads in 100 tosses, the posterior odds ratio

favors Hfi over HF for a bias for heads between about

.5 and .7, and it favors HF over Hs otherwise.

Suppose we know nothing about pK. To be able to

compute X we would have to assume something. We

could make any assumption we want but would have

to recognize that any conclusions drawn would be

valid only if that assumption were true. In the absence

of any basis for believing otherwise, one might feel

that the default assumption should be that all possible

biases are equally likely. Inasmuch as there are infi-

nitely many possibilities, the probability associated

with any one of them must be infinitely small. How-

ever, for purposes of this illustration, let us assume

that only integer multiples of .01 are allowed; that is,

the bias could be .34, .55, or .74, but not .342, .551, or

.7436. So, disallowing 0 and 1 (to preclude having to

divide by 0) and reserving .50 for the fair coin, we

allow 98 different biases, each with equal probability.

(It will simplify things and do no violence to the

discussion if we approximate this probability with

.01.)

The situation is analogous to one in which we know

that the coin that was tossed was either (a) with prob-

ability .50, the fair coin, or (b) with probability .50, a

randomly selected 1 of 98 coins, each with a different

bias equal to some integer multiple of .01 between .01

and .99, excluding .50. The prior probability of selec-

tion of the fair coin is .50, and that of the selection of

a specific biased coin is .50 x (1/98), or approximately

.005. The posterior probability that the coin selected

was the fair one given the outcome D is

p(HF I D) =
p(D \ H,)p(HF)

p(D I HF)p(HF)+p(D I HB)p(HB)"

where

p(D I HB) p(HB) = 2>(D I HB)p(HB)
i=\

99

+ ^p(D I HB)p(HB)
i=51

andpB = .Oil.

Inasmuch as p(HF) = .5 and p(HB) = .005 for all

i, we can write

p(HF I D)

P(D I HF)

p(D I //,,) + .01

~T

Hs)
' J

4 It is not necessary to calculate p(D I Hr) and p(D I HH}

in order to find the value of X. Because (") is a factor com-

mon to both numerator and denominator, it can be cancelled
out and the ratio easily found with the use of logarithms.
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If we apply this equation to the case of 60 heads in

100 losses, we get p(HF I 100 D&,) = .525 and its

complement, p(HB 1 I00 Z)^) = .475, which makes the

posterior odds in favor of HF 1.11.

What the coin-tossing illustration has demonstrated

can be summarized as follows. An outcome—60

heads in 100 tosses—that would be judged by the

conventions of NHST to be significantly different (p

< .05) from what would be produced by a fair coin

would be considered by a Bayesian analysis either

more or less likely to have been produced by the fair

coin than by the biased one, depending on the specif-

ics of the assumed bias. In particular, the Bayesian

analysis showed that the outcome would be judged

more likely to have come from the biased coin only if

the bias for heads were assumed to be greater than .5

and less than .7. If the bias were assumed equally

likely to be anything (to the nearest hundredth) be-

tween .01 and .99 inclusive, the outcome would be

judged to be slightly more likely to have been pro-

duced by the fair coin than by the biased one. These

results do not depend on the prior probability of the

fair coin being smaller than that of the biased one.

Whether it makes sense to assume that all possible

biases are equally likely is a separate question. Un-

doubtedly, alternative assumptions would be more

reasonable in specific instances. In any case, the pos-

terior probability of HF can be computed only if what-

ever is assumed about the bias is made explicit. Other

discussions of the possibility of relatively large p(H0

I D ) in conjunction with relatively small p(D I H0) may

be found in Edwards (1965), Edwards et al. (1963),

I. J. Good (1956, 1981/1983b), and Shafer (1982).

Comment. The belief that p is the probability that

the null hypothesis is true is unquestionably false.

However, as Berger and Sellke (1987) have pointed

out,

like it or not, people do hypothesis testing to obtain
evidence as to whether or not the hypotheses are true,
and it is hard to fault the vast majority of nonspecialists
for assuming that, if p — .05, then //„ is very likely
wrong. This is especially so since we know of no el-
ementary textbooks that teach thatp = .05 is at best very
weak evidence against H0. (p. 114)

Even to many specialists, I suspect, it seems natural

when one obtains a small value of p from a statistical

significance test to conclude that the probability that

the null hypothesis is true must also be very small. If

a small value of p does not provide a basis for this

conclusion, what is the purpose of doing a statistical

significance test? Some would say the answer is that

such tests have no legitimate purpose.

This seems a harsh judgment, especially in view of

the fact that generations of very competent research-

ers have held, and acted on, the belief that a small

value of p is good evidence that the null hypothesis is

false. Of course, the fact that a judgment is harsh does

not make it unjustified, and the fact that a belief has

been held by many people does not make it true.

However, one is led to ask, Is there any justification

for the belief that a small p is evidence that the null is

unlikely to be true? I believe there usually is but that

the justification involves some assumptions that, al-

though usually reasonable, are seldom made explicit.

Suppose one has done an experiment and obtained

a difference between two means that, according to a t

test, is statistically significant at p < .05. If the ex-

perimental procedure and data are consistent with the

assumptions underlying use of the / test, one is now in

a position to conclude that the probability that a

chance process would produce a difference like this is

less than .05, which is to say that if two random

samples were drawn from the same normal distribu-

tion the chance of getting a difference between means

as large as the one obtained is less than 1 in 20. What

one wants to conclude, however, is that the result

obtained probably was not due to chance.

As we have noted, from a Bayesian perspective

assessing the probability of the null hypothesis con-

tingent on the acquisition of some data, p(H0 I />),

requires the updating of the prior probability of the

hypothesis (the probability of the hypothesis before

the acquisition of the data). To do that, one needs the

values of p(D I H0), p(D I //A), p(H0), and p(#A).

However, the only term of the Bayesian equation that

one has in hand, having done NHST, is p(D I //0). If

one is to proceed in the absence of knowledge of the

values of the other terms, one must do so on the basis

of assumptions, and the question becomes what, if

anything, it might be reasonable to assume.

Berger and Sellke (1987) have argued that letting

p(H0) be less than .5 would rarely be justified: "Who,

after all, would be convinced by the statement 'I con-

ducted a Bayesian test of H0, assigning a prior prob-

ability of . 1 to HQ, and my conclusion is that H0 has

posterior probability .05 and should be rejected' " (p.

115). I interpret this argument to mean that even if

one really believes the null hypothesis to be false—as

I assume most researchers do—one should give it at

least equal prior standing with the alternative hypoth-

esis as a matter of conservatism in evidence evalua-
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tion. One can also argue that in the absence of com-

pelling reasons for some other assumption, the default

assumption should be that p(H0) equals p(HA) on the

grounds that this is the maximum uncertainty case.

Consider again Equation 1, supposing that/)(f/0) =

p(HA) = .5 and that/)(D I Hn) = .05, so we can write

p(H0 I D) =
.05

.05+p(D\HA)'

From this it is clear that with the stated supposition,

p(HQ I D) varies inversely with p(D I HA), the former

going from 1 to approximately .048 as the latter goes

from 0 to 1.

Table 3 shows p(H0 I £>) for values of p(D I #A)

ranging from 0 to 1 for p(D I H0) = .05 (left column),

.01 (center column), and .001 (right column). As is

clear from the table, increasing or decreasing the

value of p(D I HA) while holding everything else con-

stant changes the value of p(H0 I D) in the opposite

direction. In general, the larger the value o(p(D I HA),

the better proxy p(D I H0) is for p(H0 I D). For p(D I

HA) - .5, p(H0 I D) is about twice the value of p(D

I H0). Even for relatively small values of p(D I HA), a

p(D I H0) of .01 or .001 represents fairly strong evi-

dence against the null: For example, if p(D I HA) =

.2, a p(D I H0) of .01 is equivalent to a p(H0 I D) of

.048 and a p(D I H0) of .001 is equivalent to a p(H0 I

D) of .0050.

In short, although p(D I H0) is not equivalent to

p(H0 I D), if one can assume that p(HA) is at least as

large as p(H0) and that p(D I #A) is much larger than

p(D I //0), then a small value of p, that is, a small value

Table 3

Values ofp(H0 I D) for Combinations of p(D I HA)

and pi D I H0j

P(D I H0)

P(D \ HA)

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

.05

1.000

.333

.200

.144

.111

.091

.077

.067

.059

.053

.048

.01

1.000

.091

.048

.032

.024

.020

.016

.014

.012

.011

.010

.001

1.0000

.0099

.0050

.0033

.0025

.0020

.0017

.0014

.0012

.0011

.0010

Note, The prior probabilities, p(Ha) and p(HA), are assumed to

be .5.

of p(D I //0), can be taken as a proxy for a relatively

small value of p(H0 I D). There are undoubtedly ex-

ceptions, but the above assumptions seem appropriate

to apply in many, if not most, cases. (For related

analyses, see Baril & Cannon, 1995, and McGraw,

1995.) Usually one does not do an experiment unless

one believes there to be a good chance that one's

hypothesis is correct or approximately so, or at least

that the null hypothesis is very probably wrong. Also,

at least for the majority of experiments that are pub-

lished, it seems reasonable to suppose that the results

that are reported are considered by the experimenter

to be much more likely under the alternative hypoth-

esis than under the null. The importance of the latter

assumption is recognized in the definition of null hy-

pothesis given by James and James (1959) quoted at

the beginning of this article, which explicitly de-

scribes evidence as unfavorable to a null hypothesis

"if the random sample has a low probability under the

null hypothesis and a higher one under some admis-

sible alternative hypothesis" (p. 195, emphasis

added). DeGroot (1973) made the same point in not-

ing, in effect, that a small p may be considered strong

evidence against H0 presumably because one has in

mind one or more alternative hypotheses for which

the obtained result is much more probable than it is

under the null.

In a defense of the use of classical statistics for

hypothesis evaluation, W. Wilson, Miller, and Lower

(1967) conceded that,

under special conditions, including presumably a speci-
fiable alternative distribution, blind use of a classical
analysis might result in a rejection of the null when a
defensible Bayesian analysis, considering only the speci-
fiable alternative, might show that the data actually sup-
port the null. (p. 192)

They were quick to add that they know of no real-life

instance in which this has been demonstrated. It is

also important to note that with all the distributions of

D considered by Berger and Sellke (1987), p(H0 I D)

varies monotonically with p; so the smaller the value

of p, the stronger the evidence against H0 and for HA.

As a general rule, a small p, say, p < .001, is reason-

ably strong evidence against H0, but not as strong as

is usually assumed. Lindley (1993) also made the

point that the significance level is typically smaller

than the posterior probability of the null hypothesis as

calculated with Bayes' s rule and that if a small value,

say, .05, suffices to cast doubt on the null, "it follows

that null hypotheses will be more easily discounted
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using Fisher's method rather than the Bayesian ap-

proach" (p. 25). (This puts Melton's, 1962, well-

publicized refusal to publish results with/j < .05 while

editor of the Journal of Experimental Psychology in a

somewhat more favorable light than do some of the

comments of his many critics.)

The numbers in Table 3 represent the condition in

which p(HQ) = p(HA) = .5. We should note that

when everything else is held constant, p(H01 D) varies

directly with p(H0) and of course inversely with

p(HA). We can also look at the situation in terms of

the Bayes factor or likelihood ratio (I. J. Good, 19817

1983b) and ask not what the probability is of either

HA or H0 in view of the data, but which of the two

hypotheses the data favor. This approach does not

require any knowledge or assumptions about p(HA) or

p(H0), but it does require knowledge, or an estimate,

of the probability of the obtained result, conditional

on the alternative hypothesis, p(D I #A). Whenever

the probability of a result conditional on the alterna-
tive hypothesis is greater than the probability of the

result conditional on the null, X > 1, the alternative

hypothesis gains support. The strength of the support

is indicated by the size of X. (I. J. Good, 1981/1983b,

pointed out that the logarithm of this ratio was called

the weight of evidence in favor of //A by C. S. Peirce,

1878/1956, as well as by himself [I. J. Good, 1950]

and others more recently.)
The fact that evaluating hypotheses in terms of the

Bayes factor alone does not require specification of

the prior probabilities of the hypotheses is an advan-

tage. However, it is also a limitation of the approach

inasmuch as it gives one only an indication of the

direction and degree of change in the evidence favor-

ing one hypothesis over the other but does not provide

an indication of what the relative strengths of the

competing hypotheses—in view of the results—are.

In my view, the most important assumption re-
quired by the belief that p can be a reasonable proxy

for p(H0 I D) is that p(D I HA) is much greater than

p(D I H0). It seems likely that, if asked, most experi-

menters would say that they make this assumption.

But is it a reasonable one? I find it easier to imagine
situations in which it is than situations in which it is

not. On the other hand, it is not hard to think of cases

in which the probability of a given result would be

very small under either the null or the alternative hy-
pothesis. One overlooks this possibility when one ar-
gues that because the prior probability of a specified

event was small, the event, having occurred, must
have had a nonchance cause.

Essentially all events, if considered in detail, are

low-probability events, and for this reason the fact

that a low-probability event has occurred is not good

evidence that it was not a chance event. (Imagine that

10 tosses of a coin yielded a tails [T] and heads [H]

sequence of TTHTHHHTHT. The probably of getting

precisely this sequence given a fair coin, p(D I

chance), in 10 consecutive tosses is very small, less

than .001. However, it clearly does not follow that the

sequence must have been produced by a nonchance

process.) I. J. Good (1981/1983b) applied this fact to
the problem of hypothesis evaluation this way:

We never reject a hypothesis H merely because an event
£ of very small probability (given H) has occurred al-
though we often carelessly talk as if that were our reason
for rejection. If the result £ of an experiment or obser-
vation is described in sufficient detail its probability
given H is nearly always less than say one in a million,

(p. 133)

I. J. Good (1981/1983b) quoted Jeffreys (1961) on the

same point: "If mere probability of the observation,
given the hypothesis, was the criterion, any hypoth-

esis whatever would be rejected" (p. 315). What one
needs to know is how the probability of the event in

question given the null hypothesis compares with the
probability of the event given the alternative hypoth-

esis.

Usually p(D I HA) is not known—often the exact

nature of f/A is not specified—and sometimes one

may have little basis for even making an assumption

about it. If one can make an assumption about the

value of p(D I HA), one may have the basis for an

inference from p to p(H0 I D), or at least from p to X,

that will be valid under that assumption. It is desir-

able, of course, when inferences that rest on assump-
tions are made that those assumptions be clearly iden-

tified. It must be noted, too, that, in the absence of

knowledge, or some assumption, about the value of

p(D I HA), p does not constitute a reliable basis for
making an inference about either p(H0 I D) or X. We

can say, however, that in general with other things
being equal, the smaller the value of p, the larger the

Bayes factor favoring #A. The claim that p is likely
to be smaller than p(H0 I D) is not necessarily an

argument against using NHST in principle but only a
basis for concluding that a small p is not as strong
evidence against the null hypothesis as its value sug-

gests, and it is obviously a basis for not equating p

with p(H0 I D).
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Belief That Rejection of the Null Hypothesis
Establishes the Truth of a Theory That Predicts
It to Be False

Sometimes researchers appear to assume that rejec-

tion of the null hypothesis is by itself an adequate

basis for accepting a theory that implies the null hy-

pothesis is false. The line of reasoning from "the null

hypothesis is false" to "the theory is therefore true"

involves the logical fallacy of affirming the conse-

quent: "If the theory is true, the null hypothesis will

prove to be false. The null hypothesis proved to be

false; therefore, the theory must be true"—if P then

Q:Q, therefore P.

Most researchers would probably agree that rejec-

tion of the null hypothesis does not prove a theory that

predicts its rejection, but would hold that it constitutes

evidence in favor of the theory. Lykken (1968) has

challenged the notion that experimental confirmation

of a theoretically derived prediction or hypothesis

should increase one's confidence in the theory by a

nontrivial amount, especially when one's prior confi-

dence is low: "[This rule] is wrong not only in a few

exceptional instances but as it is routinely applied in

the majority of experimental reports in the psycho-

logical literature" (p. 152). Lykken's justification for

this position is the claim that predictions in psychol-

ogy often specify only the direction of a difference or

correlation and the assumption that statistically sig-

nificant differences or correlations are likely to be

found for reasons unrelated to the theoretical hypoth-

esis, especially if the sample size is large. In other

words, prediction of a directional effect of unspecified

size is not very precise, and having the prediction

prove to be correct is not very surprising whether the

theory from which it was made is true or false.

Lykken (1968) argued for acceptance of the harsh

conclusion

that a single experimental finding of this usual kind
(confirming a directional prediction), no matter how
great its statistical significance, will seldom represent a
large enough increment of corroboration for the theory
from which it was derived to merit very serious scientific
attention, (p. 153)

Theory corroboration requires the testing of multiple

predictions because the chance of getting statistically

significant results for the wrong reasons in any given

case is surprisingly high. The finding of statistical

significance, Lykken concluded

is perhaps the least important attribute of a good experi-
ment; it is never a sufficient condition for concluding
that a theory has been corroborated, that a useful em-
pirical fact has been established with reasonable confi-
dence—or that an experiment report ought to be pub-
lished, (p. 158)

According to this view, even if one interprets sta-

tistical significance as evidence against the hypothesis

that an observed effect was due to chance, statistical

significance by itself does not warrant concluding that

a specific nonchance explanation of the effect is true.

The latter step also requires ruling out other plausible

nonchance explanations (Erwin, 1998; Snow, 1998).

Whether the "nonchance" mechanism producing a re-
search result (i.e., one that yields a nonzero effecl) is the
one proposed by the investigator can only be determined
by good research design—namely the elimination of
competing explanations through proper control of poten-
tial confounds and a convincing translation of the sub-
stantive question into an empirical hypothesis. (Hayes,
1998, p. 203)

Comment. The claim that interpreting the verifica-

tion of a prediction as supportive of the predicting

theory involves committing the logical fallacy of af-

firming the consequent may be applied to much of

theory testing in science generally. The preeminent

way of testing any scientific theory is to see whether

its predictions prove to be true, and a theory gains

credence to the extent that they do. Although the logic

has the technically fallacious form of affirming the

consequent, it is nevertheless used with great success.

Showing a specific prediction of a theory to be true

does not prove the theory of course, but it does add to

its credence. How much support the verification of a

theory's prediction provides for the theory depends on

a variety of factors, such as the relative uniqueness of

the prediction to the theory (is it made by competing

theories as well?), how surprising the prediction is,

the preciseness of the prediction, the degree of corre-

spondence between the prediction and the observa-

tion, and so on. An extended discussion of this topic

may be found in Polya (1954a, 1954b). The idea of

the relative uniqueness of a prediction is found also in

the Bayesian notion of diagnosticity: Data are said to

be the more diagnostic with respect to competing hy-

potheses, say, HA against H0, the larger the ratio of the

conditional probabilities of the data given the hypoth-

eses (the likelihood ratio) when the larger of the con-

ditional probabilities is the numerator of the ratio. For
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the case of p(D I H A ) > p(D I #„), the diagnosticity of

the data is reflected in the size of the ratio

P(D I HA)

p(D I H0Y

In light of the widespread use of prediction verifica-

tion as a method of theory corroboration in science, I

see the objection expressed by Lykken (1968) and

others as concern that psychologists often take rejec-

tion of the null hypothesis to be stronger support for

a theory that predicted it than it really is.

Arguing that the corroboration that a theory re-

ceives from a predicted fact is weak unless the fact

has low prior probability and there are few alternative

theories, Meehl (1997) pointed out that "the fact of a

nonzero difference or correlation, such as we infer by

refuting the null hypothesis, does not have such a low

probability because in social science everything cor-

relates with almost everything else, theory aside" (p.

393). Meehl (1997) also stressed the importance of

distinguishing clearly between the substantive theory

of interest and the statistical hypothesis that is de-

duced from it, and he contended that it is a distinction

that generally is not made: "Hardly any statistics text-

books and, so far as I have been able to find out,

hardly any statistics or psychology professors lectur-

ing on this process bother to make that distinction, let

alone emphasize it" (p. 401).

Chow (1996, 1998a) has made the distinction

sharply in a treatment of NHST that presents the sta-

tistical hypothesis as the major premise of the inner-

most of a nested sequence of conditional syllogisms,

beginning with a major premise containing the sub-

stantive hypothesis and ending with one containing a

statistical hypothesis. In this representation, each syl-

logism has the invalid form of affirming the anteced-

ent: If P then Q; Q, therefore P. Chow (1998a) ac-

knowledged the logical invalidity of this form but

contended that its use is justified "by virtue of experi-

mental controls" (p. 174).

If I understand Chow's claim, it is that the experi-

mental controls assure that if Q occurs, P is the cause

of it, which is to say that the controls rule out other

possible causes of Q. In other words, given adequate

experimental controls, ifP then Q can be treated more

or less as the biconditional if-and-only-if P then Q,

which in combination with Q justifies the conclusion

P. To emphasize the tentativeness of this, Chow

(1998a) qualified the conclusion drawn from this form

by adding "in the interim (by virtue of experimental

controls)" (p. 174). Chow (1998a) argued too, that

inasmuch as one has control of extraneous variables in

experimental studies but not in nonexperimental stud-

ies, data from the latter are more ambiguous than data

from the former. However, as Erwin (1998) has

pointed out, although the "in the interim" qualifica-

tion may render the syllogism innocent of the charge

of affirming the consequent, it does not guarantee

validity; furthermore, in the absence of specification

of what constitutes adequate experimental control,

Chow's formalism does not help one determine when

experimental data are supportive of a hypothesis.

All this being said, given the premise if the theory

is true, the null hypothesis will prove to be false,

evidence that the null hypothesis is false usually con-

stitutes inductive support of the hypothesis that the

theory is true, or so it seems to me. How much support

falsification of the null hypothesis provides for the

theory depends on a variety of factors, just as in the

case of prediction verification more generally. How-

ever, high confidence in theories is established in the

social sciences, as in the physical sciences, as the

consequence of converging evidence from many quar-

ters and never by the observation that a single predic-

tion has proved to be true within some statistical cri-

terion of acceptance (Garner, Hake, & Eriksen, 1956);

verification of the single prediction can constitute one

of the bits of converging evidence.

Meehl (1967, 1990a, 1997) distinguished between

strong and weak uses of statistical significance tests in

theory appraisal:

The strong use of significance tests requires a strong
theory, one capable of entailing a numerical value of the
parameter, or a narrow range of theoretically tolerated
values, or a specific function form (e.g., parabola) relat-
ing observables. Statistically significant deviation from
the predicted point value, narrow interval, or curve type
acts as a falsifier of the substantive theory.... In the
weak use, the theory is not powerful enough to make a
point prediction or a narrow range prediction; it can say
only that there is some nonzero correlation or some non-
zero difference and, in almost all cases, to specify its
algebraic direction. (1997, p. 407)

According to this distinction, which is essentially the

distinction between acceptance-support (AS) and re-

jection-support (RS) NHST mentioned earlier, rejec-

tion of the null hypothesis is taken as evidence against

the theory with the strong use and as evidence for the

theory with the weak use. What makes the weak use

weak is the difficulty of ruling out factors other than

the theorized one as possible determinants of statisti-

cally significant effects that are obtained.
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Meehl (1997) cautioned that both the strong and

weak uses are subject to misinterpretation or abuse.

The strong use risks rejection of a theory when in fact

a significant difference from a prediction could have

been due to any of a variety of reasons other than that

the theory was incorrect. The weak use is abused

when rejection of the null hypothesis is interpreted as

powerful support for a weak theory. Moreover, al-

though most researchers would undoubtedly agree

that strong theories are much to be preferred over

weak ones, Meehl (1997) expressed some reserva-

tions about the strong use of NHST:

Even when the theory is so strong as to permit point

predictions . . . the uncertainty of the auxiliaries, the

doubtfulness of the ceteris paribus clause, the unreliabil-

ity of measuring instruments, and so on, leave us won-

dering just what we should say when what appears to be
a strong Popperian test is successfully passed or—even

more so—is failed, (p. 411).

Meehl (1997) noted the possibility that, especially in

the early stages of theory construction, an outcome

that could be taken literally as a falsification of the

theory could equally well be seen as an encouraging

sign:

The history of science shows that—even for the most
powerful of the exact sciences—numerical closeness to a

theoretically predicted observational value is commonly

taken as corroborative of a strong theory even if, strictly

speaking, it is a falsifier because the observed value

deviates "significantly" from the value predicted, (p.

411)

It seems there is no escaping the use of judgment in

the use and interpretation of statistical significance

tests.

Belief That a Small p Is Evidence That the
Results Are Replicable

Often statistical significance is taken as evidence of

the replicability (or reliability) of the obtained experi-

mental outcome; a small value of p is considered to

mean a strong likelihood of getting the same results

on another try (Coleman, 1964; Evans, 1985; R. J.

Harris, 1997a; Levy, 1967; Melton, 1962; Reaves,

1992; Shaughnessy & Zechmeister, 1994). In some

cases, the complement of p appears to be interpreted

as an indication of the exact probability of replication.

Nunnally (1975), for example, has said that statistical

significance at the .05 level can be taken to mean that

the odds are 95 out of 100 that the observed difference

will hold up in future investigations. A survey of aca-

demic psychologists by Oakes (1986) revealed that

60% of the participants held essentially this belief.

Carver (1978) referred to this belief as the "repli-

cability or reliability fantasy," inasmuch as "nothing

in the logic of statistics allows a statistically signifi-

cant result to be interpreted as directly reflecting the

probability that the result can be replicated" (p. 386).

Several other writers have noted that a small p value

does not guarantee replicability of experimental re-

sults (Bakan, 1966; Falk, 1998b; Falk & Greenbaum,

1995; Gigerenzer, 1993; Lykken, 1968; Rosenthal,

1991; Sohn, 1998b; Thompson, 1996), but the belief

that it does appears to be very common among psy-

chologists. (Sohn, 1998b, pointed out that even the

fact that a hypothesis is true does not guarantee the

replication of an experimental finding.)

Comment. It is important to distinguish different

connotations that replication can have in this context.

It can mean getting exactly, or almost exactly, the

same effect—direction and size—in a repetition of an

experiment in which conditions are as nearly the same

as those of the original as they can be made, or it can

mean getting a result that will support the same con-

clusion (reject or nonreject) regarding the null hypoth-

esis. Finer distinctions can be made within the latter

category (Lykken, 1968; Sidman, 1960). A small p

does not guarantee replicability in either of the two

senses mentioned. Definitely, p does not represent the

complement of the probability that a result will rep-

licate in either of these senses.

An argument can be (and has been) made, however,

that a small p does constitute a reasonable basis for

expectation with respect to the latter sense—that hav-

ing obtained a statistically significant result, the

smaller the value of p, the more likely it is that a

replication of the experiment would again produce a

statistically significant result (Greenwald et al., 1996;

Rosnow & Rosenthal, 1989b; Scarr, 1997). Other

things equal, in this sense a bet on replicability of a

result that yielded p < .001 would be safer than a bet

on the replicability of a result that yielded p < .05; p

< .001 tells one that the result obtained would be

expected less than 1 time in a thousand when the null

hypothesis is true, whereas p < .05 tells one the result

would be expected less than 1 time in 20 when the

null is true. The evidence that the result is real (non-

chance) is stronger in the former case and thus pro-

vides a firmer basis for the expectation of replication

(in the sense of another statistically significant result).

Schmidt and Hunter (1997) contended that "repro-

ducibility requires high statistical power. Even if all
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other aspects of a study are carried out in a scientifi-

cally impeccable manner, the finding of statistical sig-

nificance in the original study will not replicate con-

sistently if statistical power is low" (p. 44). It needs to

be noted, however, that this observation pertains spe-

cifically to the statistical power of the experiment that

constitutes the replication attempt. It can be argued

that the smaller the sample and the smaller the a of

the original experiment, the larger the effect size must

have been to yield a significant result, and that the

larger the effect size, the more likely it should yield

significance on subsequent experimentation. Inas-

much as the effect size in the population does not

change as a consequence of experimental procedure,

the probability of getting a significant result in a rep-

lication study can be increased by increasing the

power of that study relative to that of the original by

increasing the sample size.

Discussions of replicability usually do not consider

the replicability of nonsignificant results. However, it

should be noted that if the results of an experiment

yield a large p, it seems likely that a repetition of the

experiment would again yield a nonsignificant value

of p. So, if obtaining nonsignificant results a second

time is considered a replication, a case might be made

for the claim that a large p suggests the likelihood of

replicability, but in this case of a nonsignificant result.

Whether nonsignificance tends to replicate more con-

sistently than significance is an empirical question;

Schmidt and Hunter (1997) have suggested that it

does not.

.06. This is not unusual, in my experience. Undoubt-

edly, such language often gets modified as a conse-

quence of the editorial review process, but certainly

not all of it does; and the fact that it appears in un-

edited manuscripts indicates the need for greater

awareness of the problem.

Comment. The value ofp is not a reliable indication

of the magnitude of an effect (Bracey, 1991; Cohen,

1994; Rosenthal, 1993); as Sohn (1998b) has said,

"There is no guarantee, from SS [statistical signifi-

cance], that the mean difference is greater than infini-

tesimal" (p. 299). On the other hand, p and effect size

are not completely independent, and belief that one

can be an indication of the other has some foundation.

For fixed sample size and variability, the larger an

effect, the smaller that p is likely to be, and vice versa.

The proviso is important, however, because with a

large sample or small variability, even a very small

effect can prove to be statistically significant (yield a

small p), and with a small sample or large variability

even a large effect can fail to attain a conventional

level of significance. Parenthetically, we should also

note that a large effect is not a guarantee of impor-

tance, any more than a small p value is; although, as

a general rule, a large effect seems more likely to be

important than a small one, at least from a practical

point of view.

Belief That Statistical Significance Means
Theoretical or Practical Significance

Belief That a Small Value of p Means a
Treatment Effect of Large Magnitude

It is difficult to know how common this belief is.

My guess is that, if asked, most researchers would

judge it to be false, but this is just a guess. In reporting

results of experiments, however, researchers often use

language that lends itself to this type of misinterpre-

tation. Reference to effects as "significant" rather than

as "statistically significant" invites such misinterpre-

tation, unless the context makes it clear that the latter

connotation is intended; and often the context does

not rule out the less restrictive meaning.

Other ways of qual i fy ing "significant"—

"extremely," "barely," "marginally"—can also con-

vey inappropriate meanings. For example, I recently

reviewed a manuscript that described a response time

that was about 16% slower than another as being

"marginally slower" than the latter, because .05 < p <

Confusion between statistical and theoretical or

practical significance (or what is sometimes called

substantive significance, or in clinical contexts, clini-

cal significance) appears to be a continuing problem,

despite warnings against it by many writers over

many years (Berkson, 1938, 1942; Cohen, 1965,

1994; Grant, 1962; Guttman, 1977; Hays, 1994; Ja-

cobson, Follette, & Revenstorf, 1984; Rosenthal,

1993; Shaver, 1985, 1993; Tyler, 1931). When one

concludes on the basis of a statistical test that the

difference between two means is statistically signifi-

cant, one is saying only that a difference of the ob-

served magnitude is unlikely to be obtained between

two samples drawn at random from the same popula-

tion. Even assuming that one has a basis for going

beyond this and concluding that the difference is

real—caused by something other than chance—it

does not follow that it is either interesting or impor-

tant. Rosenthal (1983) has argued that because of the
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lack of correspondence between statistical and prac-

tical significance, investigators who are interested pri-

marily in the practical implications of their results

may find NHST to be of limited use.

A special case of failing to distinguish between

statistical and substantive significance is the uncritical

acceptance of correlations that are significantly dif-

ferent from zero as necessarily worthy of attention.

Because there is little reason to expect correlations

between uncontrolled variables to be exactly zero in

general, it can be argued that testing the hypothesis of

no correlation makes little sense in most situations

(Cohen, 1994). Abelson (1997a), who also noted that

the fact that a correlation is different from zero is not

interesting, described the declaring of a reliability co-

efficient to be nonzero as "the ultimate in stupefyingly

vacuous information" (p. 13).

Although it is less frequently discussed than the

problem of confusing statistical significance with

theoretical or practical significance, there is the op-

posite problem of confusing lack of statistical signifi-

cance with lack of theoretical or practical importance.

Many would argue that this problem is of little con-

cern, on the grounds that if a result has not been

shown to be statistically significant it should be dis-

missed without further consideration. A major pur-

pose of NHST, the argument goes, it precisely to de-

termine which results are worthy of attempts at causal

explanation and which should be dismissed as plau-

sibly due to chance (Gold, 1969; Winch & Campbell,

1969).

Comment. The above may be the majority opinion,

but there is an opposing one. Carver (1978) has ar-

gued, persuasively in my view, that making statis-

tical significance the criterion for deciding whether

to think further about the implications of experi-

mental results is putting the cart before the horse.

A better way to proceed is to first consider whether

the data in hand are generally supportive of the

hypothesis of interest and, only if they are, to con-

sider candidate hypotheses, including the null hypoth-

esis, that might account for them. If one's research

hypothesis predicts a substantial effect of an experi-

mental manipulation on the mean of a specific vari-

able, observation of an effect of negligible size may

be considered not sufficiently supportive of the hy-

pothesis to be worth subjecting to a statistical test;

whereas it may be worth trying to replicate what ap-

pears to be a large effect, as well as testing to see if

random variation is among the plausible explanations

for it.

Belief That Alpha Is the Probability That if
One Has Rejected the Null Hypothesis One
Has Made a Type I Error

This belief appears to be very common among psy-

chologists. Oakes (1986) and Pollard and Richardson

(1987) have gathered evidence to this effect, and the

literature provides many illustrations of it even among

outstanding researchers. Grant (1962), for example,

claimed that "rejection of Ha permits [one] to assert,

with a precisely defined risk of being wrong, that the

obtained differences were not the product of chance

variation" (p. 54). The "precisely defined risk of being

wrong" is, I assume, ct. If so, the claim, in effect, is

that a is the probability of being wrong in rejecting

H0. Carver (1978) quoted a similar claim by Hebb

(1966). The probability of having made a Type I error,

given that one has rejected the null hypothesis, may

be represented as p(H0 I /?„). However, a is the prob-

ability that one will reject the null hypothesis, given

that it is true: p(R0 I H0); andp(/?0 I H Q ) is not the same

as p(H0 I R0). The confusion between p(R0 I H0) and

p(H0 I R0) is analogous to the confusion between p(D

I H0) and p(H0 I D).

Anastasi (1988) made a claim that appears to be

similar to Grant's (1962) and Hebb's (1966) at first

glance but is more difficult to understand on more

careful consideration:

To say that the difference between two means is signifi-

cant at the .01 level indicates that we can conclude, with

only one chance out of 100 of being wrong, that a dif-

ference in the obtained direction would be found if we
tested the whole population from which our samples

were drawn, (p. 115)

This claim appears to assume that the samples were

drawn from the same population, but this is not a

reasonable assumption to make in most experimental

situations. Further (assuming the two samples were

indeed drawn from the same population) it is not clear

what is meant here by testing that entire population. If

the entire population were measured with respect to

the variable of interest, one would have the mean of

that variable; there would be no difference about

which to be concerned. A claim that is correct is that

if one repeatedly took two random samples from the

same population and tested the differences between

their means, one would expect to get a difference that

proved to be significant at the .01 level about one time

in 100, but this is quite different from that claim that

Anastasi makes.

Falk and Greenbaum (1995; Falk, 1986) have noted
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that discussions of Type I error are often couched in

language that is sufficiently informal to admit of more

than one interpretation. Reference to a simply as the

probability of Type I error, for example, is a case in

point. It is not the absolute probability of Type I error,

which as noted earlier is the product of a and the

probability that the null is true; nor is it the probability

of Type I error conditional on obtaining a p in the a

region—instead it is the probability of rejecting H0

conditional on its being true.

Belief That the Value at Which Alpha Is Set for
a Given Experiment Is the Probability That a
Type I Error Will Be Made in Interpreting the
Results of That Experiment

This belief is illustrated by the following comment:

"In a directional empirical prediction we can say that

1 or 5% of the time (as we choose) we will be wrong

in rejecting the null hypothesis on the basis of such

data as these" (W. Wilson & Miller, 1964b, p. 242).

Referring to this comment and others by the same

authors (W. Wilson & Miller, 1964a), W. Wilson et

al. (1967) said, "These writers pointed out that while

the probability of rejecting the null hypothesis

wrongly is held constant, for example, at the .05 level,

the probability of accepting the null hypothesis

wrongly varies with the precision of the experiment"

(p. 188). Another illustration comes from a comment

by Chow (1988) regarding the arbitrariness of the

"choice of the alpha level (i.e., the probability of

Type-I error)" (p. 105).

The value of a is the theoretical probability that the

null hypothesis will be rejected if the null hypothesis

is true; it does not guarantee that the probability of

rejecting the null hypothesis will be held constant,

unless one assumes that the null is always true. In any

given experiment, the null hypothesis may be either

true or false, and a Type I error is possible only in the

former case, so the value of cc sets an upper bound on

the probability of a Type I error. If in a typical ex-

periment the null hypothesis is at least as likely to be

false as it is to be true, the probability that the experi-

ment will result in the commission of a Type I error

will be considerably less than a. It appears that con-

fusion on this point is very common, and not only

among researchers who use statistics only occasion-

ally and in cookbook fashion. Pollard and Richardson

(1987) quoted five textbooks on experimental design

and statistics that equate a with the probability of

making a Type I error.

Belief That the Value at Which Alpha Is Set Is
the Probability of Type I Error Across a Large
Set of Experiments in Which Alpha Is Set at
That Value

According to this belief, Type I error would be

expected to occur in about 5% of all statistical sig-

nificance tests in which a is set at .05. The argument

is a generalization of the preceding one, and the same

counterargument pertains. Pollard and Richardson

(1987) referred to the probability of Type I error over

a large set of experiments as the "overall prior prob-

ability" of making a Type I error. As they note, this

can equal a only if the overall probability that the null

hypothesis is true, p(H0), is 1. Although the value of

p(Hu) generally is not known, there is little reason to

believe that it is close to 1. Presumably experimenters

usually believe the null hypothesis they are testing is

false, and it seems reasonable to assume that they are

at least as likely to be right about this as to be wrong.

It follows that in a sizable proportion of the experi-

ments that are done, the null hypothesis is false. This

being the case, the probability of Type I error across

a large set of experiments in which a has been set at

x is likely to be considerably less than jc.

Comment. The several beliefs mentioned about the

probability of Type I error are unquestionably incor-

rect. Both p and a are conditional probabilities—the

probability of incorrectly rejecting the null hypoth-

esis, conditional on its being true. The fact that faulty

beliefs about p and a are held by some researchers

points to the need for efforts to correct them, but it

does not invalidate the use of NHST in data analysis

and interpretation.

Bothp and a represent bounds on the probability of

Type I error. Inasmuch as p is the probability of a

Type I error resulting from a particular test if the null

hypothesis is true, we know that the unconditional

probability of Type I error resulting from that test

cannot be larger than p. Similarly, setting a at a spe-

cific value, say, x, ensures that only about x percent of

the times that this criterion is applied to situations in

which the null is true will result in a Type I error. So,

again, inasmuch as the null presumably is not always

true and a Type I error cannot be made when it is

false, use of an a of x puts an upper bound on the

probability of Type I error for all cases in which an a

of x is used.

The situation is complicated, however, by selectiv-

ity in the publication of experimental results. It seems

a safe assumption (and there is evidence to the effect)

that results that prove to be statistically significant are



260 NICKERSON

more likely to be published than those that do not. The

fact that many researchers believe this to be the case

(Kupfersmid & Fiala, 1991) is probably enough to

ensure that studies that yield statistically significant

results are more likely than those that do not to be

submitted to journals for consideration. Assumptions

that are valid when applied to all tests of a given type

may not be valid when applied to a subset that has

been selected on the basis of the test outcomes. I

return to this issue in a later section on the possibility

of inflation of Type I error in the literature.

Beliefs About Beta and Type II Error

Faulty beliefs about a have counterparts in faulty

beliefs about p. Sometimes, for example, p is taken to

mean the probability that the null hypothesis is false,

conditional on having failed to reject it (the probabil-

ity that the alternative hypothesis is true, conditional

on having rejected it). Sometimes it is taken as the

absolute probability of making a Type II error.

Comment, p is neither of these; it is the probability

of failing to reject the null hypothesis, given that it is

false. The absolute probability of making a Type II

error is the product of p and the probability that the

null is false, p(HA). Letting p(Et), p(E2), and />(£)

represent, respectively, the absolute probabilities of

Type I error, Type II error, and error irrespective of

type, what has been said or implied about these vari-

ables may be summarized as follows: p(E,) —

ap(H0),p(E2) = p/>(«A), and/>(£) = p(E,) + p(E2).

The fact that p, like many of the other probabilities

associated with NHST, is a conditional probability is

easily ignored, even by experts on occasion. Schmidt

and Hunter (1997), for example, claimed that "with a

power of .50, half of all tests in a research literature

will be nonsignificant" (p. 40). Recall that power is 1

- P, so power is .50 only when p = .50. Power of .50

means that half of all tests with that power performed

on samples drawn from different populations will be

nonsignificant. The statement would be true of all

tests only on the assumption that all tests involve

samples drawn from different populations. As I have

noted, some writers (including, if I understand their

position, Schmidt & Hunter) appear to be willing to

make that assumption, but not all are. If we assume

that some of the tests are performed on samples drawn

from the same population (that the null is sometimes

true), then a power of .50 would lead us to expect

more than half of all tests performed to be nonsignif-

icant (half of those for which the null was false and

well more than half of those for which the null was

true). I note that shortly following the statement

quoted above, Schmidt and Hunter (1997) made a

similar observation, but this time with implicit recog-

nition of its conditionality:

In a research area in which there really is a difference or

relation, when the significance test is used to determine

whether findings are real or just chance events, the null

hypothesis significance test [with power of .5] will pro-

vide an erroneous answer about 50% of the time. (p. 40)

Belief That Failing to Reject the Null
Hypothesis Is Equivalent to Demonstrating It
to Be True

Some researchers interpret the absence of a statis-

tically significant effect as strong evidence that the

null hypothesis is true (Harcum, 1990; Schmidt,

1996). Furthermore, whether or not they believe that

failing to reject the null hypothesis is equivalent to

demonstrating it to be true, many researchers make

decisions regarding experimental procedures and data

analysis as though they believed so. Malgady (1996,

1998) noted that this is often the case in clinical re-

search. In testing the effectiveness of a new drug, for

example, failure to reject the hypothesis of no differ-

ence between the effect of the drug and that of a

placebo may ensure that the drug will not be ap-

proved, at least not without further testing. Levin

(1993) appeared to take this position in arguing that

NHST should precede any discussion of effect sizes:

"To talk of effect sizes in the face of results that are

not statistically significant does not make sense . . . If

it's not real, call it zero" (p. 379).

One is, in effect, accepting the null hypothesis as

true when one takes the failure of p to reach a con-

ventional level of significance as evidence that prior

to experimental treatment an experimental group and

a control group were equivalent with respect to some

measure of interest. The same observation pertains to

the common practice of pooling data across specific

conditions for subsequent analyses after a test has

failed to show the difference between those conditions

to be statistically significant.

Failure to reject the null hypothesis could be be-

cause the null hypothesis is true; however, in many

cases this seems unlikely to be the reason for rejec-

tion. If a is set at .05, any p value larger than this

constitutes failure to reject the null hypothesis; but

one that is close to it, say, .06 or even .10, is hardly

compelling evidence that the null hypothesis is true.

Moreover, there are many possible reasons for failure

to reject the null hypothesis in addition to the null
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hypothesis being true (Cook & Campbell, 1979;

Lakatos, 1970), faulty experimental design and lack

of adequate control of extraneous variables being only

two of them; so one is not justified in concluding from

failure to reject the null hypothesis that it is true.

Statistical significance tests are structured so that the

probability that a real effect of a given size will prove

to be significant increases with sample size. This be-

ing so, it is possible that a result that failed to provide

a basis for rejecting the null hypothesis would have

succeeded with a larger sample.

The tendency among psychologists to equate fail-

ure to reject the null hypothesis with evidence of no

difference or of no effect is seen by some critics of

NHST as a major deterrent to progress in the field

(Hunter, 1997; Schmidt, 1996). More is said on this

subject later in the context of discussion of the pre-

sumed frequency of Type II error.

Comment. Most psychologists would take the Fish-

erian position, I believe, that it is never appropriate to

speak of accepting the null hypothesis as opposed to

failing to reject it (Fisher, 1935). There is the contrary

opinion, however, that a conclusion in favor of the

null hypothesis can be useful and warranted on some

occasions (Binder, 1963; Frick, 1995a; Greenwald,

1975, 1993; Rogers, Howard, & Vessey, 1993; Yea-

ton & Securest, 1986).

Frick (1995a) argued that under certain conditions

the null hypothesis should be accepted. The condi-

tions are that (a) it is possible (as many would believe

it to be, e.g., if the alternative hypothesis were that

people can transmit thoughts by mental telepathy), (b)

the results in hand are consistent with it, and (c) the

effort to find grounds for rejecting it was a good one.

The last condition is reminiscent of Popper's (1959)

position that the strongest confirmatory evidence for a

scientific hypothesis is failure of concerted efforts of

competent researchers to falsify it. Some evidence of

a good effort in the context of a psychological experi-

ment, Frick (1995a) suggested, is a confidence inter-

val (which I discuss further below) of small range,

because a confidence interval takes into account

sample size and variability; thus, the smaller the con-

fidence interval that includes 0, the stronger the evi-

dence for the null hypothesis.

I. J. Good (1981/1983b) argued that if HA is non-

specific—representing only the complement of a

point null hypothesis—compelling evidence of H0

cannot be obtained even if true because there will

always be components of HA that are close enough to

be indistinguishable from it. On the other hand, if HA

is expressed as a specific alternative to H0 (not just as

its complement) with a specified mean and distribu-

tion or a set of means and distributions, then evidence

can be obtained to show //„ to be more probable than

the alternative. I.J. Good (1981/1983b) noted, too,

that if H0 is defined to include a small neighborhood

of the point null, evidence favoring it can be obtained

even in the absence of assumptions regarding the dis-

tribution of HA or its components. He made an anal-

ogy between the null hypothesis and Newtonian me-

chanics:

If by the truth of Newtonian mechanics we mean that it
is approximately true in some appropriate well-defined
sense we could obtain strong evidence that it is true; but
if we mean by its truth that it is exactly true then it has
already been refuted, (p. 135)

Belief That Failure to Reject the Null
Hypothesis Is Evidence of a Failed Experiment

The word significant, Eysenck (1960) has argued,

"has become a shibboleth which divides the success-

ful from the unsuccessful research" (Eysenck, 1960,

p. 269). The tendency to regard failure to reject the

null hypothesis as tantamount to having conducted a

failed experiment is reinforced by the general reluc-

tance of advisors to accept as good science experi-

ments that did not yield statistically significant results

and of editors to publish reports of such experiments.

Comment. Failure to reject the null hypothesis can

indeed be the result of a failed experiment in the sense

of an experiment that, because of some aspect(s) of its

design or implementation, did not yield statistically

significant evidence of an important effect that a bet-

ter-designed or executed experiment would have

yielded, but it can also be the result of the absence of

any substantive effect to be found.

Misconceptions and Linguistic Ambiguity

It is very easy to use language that reflects one or

another of the false beliefs mentioned above. Even

experts, including people who have been highly criti-

cal of NHST because of the prevalence of misunder-

standings of it, sometimes do it. (Examples are given

in Gigerenzer, 1993, and Falk & Greenbaum, 1995).

Cohen (1994) noted that it is not uncommon to find

both correct, p(D I H0), and incorrect, p(H0 I D), in-

terpretations of p in the same textbook. He noted hav-

ing given the incorrect interpretation himself and be-

ing called on it by Oakes (1986).

Consider the following comment by Carver (1978):
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Properly interpreted, statistical significance testing pro-
vides a p value or the probability of obtaining mean
differences of given sizes under the null hypothesis.
Thus, the p value may be used to make a decision about
accepting or rejecting the idea that chance caused the
results. (Carver, 1978, p. 387)

The first of these statements equates p with p(D I H0);

the second seems to imply that p can be used to infer

the probability that the null is true. As pointed out in

the foregoing, without a knowledge of p(D I H/J or of

some assumption regarding its value, the value of p

does not constitute an adequate basis for inferring

whether a particular result was obtained by chance.

The value of p tells us the probability that a chance

process would have yielded such a result, but without

knowing the probability that a nonchance process

would have yielded it and without knowing the prior

probabilities, p(HQ) andp(HA), we do not have what is

needed to compute the probability that this particular

result was produced by chance.

Falk and Greenbaum (1995) pointed to verbal am-

biguity as a major factor contributing to widespread

misconceptions about NHST, especially confusions

involving conditional probabilities. Linguistic ambi-

guity and unstated assumptions have been noted as

problematic to the understanding of probabilistic re-

lationships more generally (Bar-Hillel & Falk, 1982;

Falk, 1992; Gillman, 1992; Margolis, 1987; Nicker-

son, 1996). The distinction between p(D I H) andpfH

I D) appears to be one that is especially easily ob-

scured by casual language use.

Consider the expressions "the probability of obtain-

ing D by chance" and "the probability that D was

obtained by chance." It would hardly be surprising if

these expressions were taken by most people to have

the same referent. However, if what is meant by the

first is "the probability that a process known to be a

chance process, call it H, will produce D" and what is

meant by the second is "the probability that a known

event, D, was produced by a chance process, H" they

are quite different. The first is a reference to p(D I H),

and the second to p(H I D).

It is also easy to find casual expressions of proba-

bilistic relationships that lend themselves to more than

one interpretation. "The probability that a chance pro-

cess will produce D," for example, can be taken to

mean "given a chance process, the probability that it

will produce D"; but it could also mean "the prob-

ability that a chance process will occur and will pro-

duce D." Again, letting H represent the chance pro-

cess, the first expression can be represented as p(D I

H), and the second as p(H & D) or p(H)p(D I H).

Alternatively, consider the definition of power as "the

probability of correctly rejecting the null hypothesis"

(Harlow, 1997, p. 6). Power is the probability of re-

jecting the null hypothesis, given that it is false. "The

probability of correctly rejecting the null hypothesis"

might be interpreted to mean this, but it could also be

taken to mean the absolute probability of correctly

rejecting the null hypothesis, which is to say the joint

probability of the null hypothesis being false and it

being rejected. (In the context of computer simulation

research, this ambiguity is sometimes avoided by re-

ferring to power as the proportion of false null hy-

potheses rejected [Lashley & Bond, 1997].)

I believe that much of the confusion about NHST

and about what p values mean derives from such am-

biguities in casual language, some of which can be

quite subtle. Although I have tried not to make state-

ments in this article that are ambiguous or that reflect

the beliefs that I am claiming are incorrect, I am far

from confident that I have been successful in this

regard.

Summary Regarding Misconceptions

The burden of the present article to this point has

been to argue that there are many ways in which

NHST can be, and is, misunderstood. Most, if not all,

of the false beliefs mentioned here have been noted

before, in some cases by many writers (e.g., Carver,

1978; Oakes, 1986; Schmidt, 1996). Investigators

have documented misinterpretations in numerous

published research articles (Dar, Serlin, & Omer,

1994) and in widely used texts as well (Cohen, 1994;

Huberty, 1993).

Many of the conceptual difficulties that people

have with NHST have their roots, I believe, in a fail-

ure to distinguish between absolute and conditional

probabilities and, in particular, in failure to under-

stand that the value of p produced by conventional

tests of statistical significance is a conditional prob-

ability—the probability of getting the obtained statis-

tical result on the assumption that the null is true. A

further source of confusion is failure to distinguish

between the two conditional probabilities p(D I H0)

and p(Ha I D), and treatment of the former as though

it were the latter. Similar confusions pertain to a,

which is often treated as the absolute probability of a

Type I error, or as the conditional probability of a

Type I error given that the null has been rejected,

when in fact it is the probability of a Type I error
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conditional on the null being true. Comparable points

can be made regarding fj.

If there is an additional key insight in understand-

ing what NHST does and does not do, I think it is

recognition that p(D I H0) tells us nothing about the

value oip(D I HA) and, in particular, that p(D I #A) is

not the complement of p(D I H0). If p(H0) andp(HA)

are complements, then p(//A) = 1 - p(Ha) and p(HA

I D) — 1 - p(Ha I D). However, it is not necessarily

the case \haip(D I HA) = 1 -p(D I H0). Theoretically,

both p(D I HA) and p(D I H0) can vary from 0 to 1

independently. In particular, both p(D I H0) and p(D I

Hf) can be very small, and it is possible forp(D I HA)

to be smaller than p(D I H 0 ) when they are both small.

The latter possibility is the basis of Lindley's paradox,

described above.

I strongly suspect that many people believe that

p(D I H0) and p(D I HA) are complements, or at least

that if p(D I Hu) is small, p(D I HA) must be large. If

either of these relationships pertained, many of the

beliefs that I have described as false would be true.

Neither of these relationships necessarily pertains; in

many cases of interest, it may be reasonable to assume

that p(D I Hf) is greater than p(D I H0) or even that

p(D I Hf) is much greater thas\p(D I H0), but this is an

assumption; seldom is it possible to specify p(D I HA)

precisely. Moreover, as Edwards (1965) has pointed

out, typically in classical statistics the alternative to

the null hypothesis is undefined, and attaching a prob-

ability conditional on an undefined hypothesis is sel-

dom easy to do.

Lindley (1977) argued that when the probability of

the data is small under both hypotheses under consid-

eration, it makes sense to wonder whether perhaps

some other hypothesis should be considered. DeGroot

(1982) also noted that making an observation that is

improbable under both hypotheses is likely to cause

one to feel that there may be a good explanation of the

observation other than those considered and to rethink

one's prior distribution of probabilities. On the other

hand, in another context Lindley (1982) pointed out

that "the comparison of small probabilities is the usual

situation because most things that happen to us have

low probability; we go through life experiencing rare

events" (p. 335). In isolation, the fact that an event has

low probability tells us very little about the nature of

its cause.

To say that a result is statistically significant is to

say that the probability of obtaining that result if there

were no factors operating but chance is small. How-

ever, because the probability of obtaining that result

in any case—by chance or otherwise—could be small,

to say that a result is statistically significant is to say

nothing conclusive about the probability that particu-

lar result was produced by chance. If one is willing to

make the assumption thatp(D I HA) is large relative to

p(D I H0), then one has a legitimate basis for inter-

preting a small p as evidence for increasing the like-

lihood of HA relative to that of H0. Perhaps this as-

sumption underlines many applications of NHST, but

seldom does one see an explicit acknowledgment

of it.

Other Criticisms of NHST

Not all the criticisms that have been directed at

NHST have focused on false beliefs about what it

means, although many of them have. We turn now to

some of the criticisms of other types that have been

made.

A Priori Unlikelihood That the Null Hypothesis
Is True

The reasonableness of NHST has been challenged

by many writers on the grounds that the null hypoth-

esis is very unlikely ever to be true and that statisti-

cally significant (though not necessarily large) differ-

ences (from 0 or any other hypothesized value) are

almost assured on practically any dimension if one

uses sufficiently large samples (Bakan, 1966; Berk-

son, 1938; Cohen, 1990; Grant, 1962; Hodges &

Lehmann, 1954; Lindgren, 1976; Meehl, 1967, 1978;

Murphy, 1990; Neyman & Pearson, 1928a, 1928b;

Nunnally, 1960). The claim is that generally when an

experiment yields data that do not permit the rejection

of the null hypothesis at a prescribed level of statis-

tical significance, it can be assumed that a significant

difference would be obtained simply by increasing the

sample size (Hays, 1994; Nunnally, 1960; Oakes,

1986). Thompson (1998) characterized the situation

this way: "Statistical testing becomes a tautological

search for enough participants to achieve statistical

significance. If we fail to reject, it is only because

we've been too lazy to drag in enough participants"

(p. 799). Meehl (1990b, 1997) argued that the finding

of significant correlations of nontrivial size between

arbitrary variables with large data sets should not be

surprising because everything really is related, to

some degree, to everything else.

Not all psychologists agree with the claim that the

null hypothesis is never true. Some have argued that

demonstrating the tenability of the null hypothesis is
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as legitimate a goal of research, though not necessar-

ily as easily attained, as is demonstrating the tenabil-

ity of any alternative hypothesis (Chow, 1996; Prick,

I995a), Frick (1995a), for example, argued that the

null hypothesis can be true and should sometimes be

accepted as such: "The null hypothesis is a valuable

claim that psychology should want to accept, not

merely fail to reject" (p. 132). Frick (1995a) conceded

that there are instances in which the null hypothesis

must be considered impossible but argued that this

should not preclude its use in cases for which it is

appropriate.

A context in which the possibility of obtaining evi-

dence that the null hypothesis is true or nearly so is of

considerable interest is medicine, as well as closely

related areas (Malgady, 1998). Bartko (1991) gave

several references in the biostatistics literature about

"proving" the null hypothesis. Statistical approaches

designed to establish the approximate equality (equal-

ity for practical purposes) of methods (as distinct from

establishing the superiority of one over the other) that

are based on classical NHST have been developed

(Hauck & Anderson, 1986; Rogers et al., 1993; West-

lake, 1988). These approaches are intended especially

for use in the context of pharmaceutical research,

where it is often important to establish that a new drug

does not have undesirable side effects or to determine

whether one drug or treatment is as clinically effective

as another (despite, say, differences in cost, conve-

nience, or other factors).

Hagen (1997) countered the claim that the null hy-

pothesis is almost always false by contending that it is

based on a misinterpretation of the null hypothesis.

The null hypothesis says nothing about samples being
equal, nor does the alternative hypothesis say that they
are different. Rather, when addressing group differences,
the null hypothesis says that the observed samples, given
their differences, were drawn from the same population,
and the alternative hypothesis says that they were drawn
from different populations, (p. 20)

Samples will always (or very nearly always) differ

with respect to any measurable variable of interest,

but this is true even of samples drawn from the same

population; so the fact that they differ with respect to

a specific measure in any particular instance is not

evidence that they were drawn from different popu-

lations. Only if the magnitude of the difference is

sufficiently great relative to the standard error of the

difference to meet a conventional criterion will the

conclusion that the samples are from different popu-

lations be drawn, and when samples really are drawn

from the same population the likelihood that the null

hypothesis will be rejected does not go to 1 as sample

size increases. As Hagen said:

We have been taught that a sufficiently large N will
detect differences no matter how tiny they may be. But
what we may forget is that small differences will always
be detected by a large A^ only under the alternative hy-
pothesis, not under the null. When samples are drawn
from the same population, the variance of absolute dif-
ferences between or among such samples will become
smaller as N becomes larger. This diminishing variance
is reflected in a decrease in the variance of the particular
test statistic from which we draw our sample statistic.
Accordingly, Type-I error remains roughly constant no
matter how large N becomes, (p. 20)

Another interpretation of the claim that the null

hypothesis is almost always false is that any experi-

mental manipulation—for example, differential treat-

ment of two groups—is bound to have some effect,

however small (Tukey, 1991). Hagen's counter to this

claim is that although it may be that differential treat-

ment will always have some effect, it may not have an

effect on the dependent variable of interest, and it is

only such an effect that will lead to rejection of the

null hypothesis.

Another response to the claim that the null hypoth-

esis is always or almost always false is that indepen-

dent of the validity or invalidity of the claim, what is

true of point null hypotheses need not be true of

"small interval" hypotheses that can be approximated

realistically by point nulls (Berger & Sellke, 1987;

Hodges & Lehmann, 1954; Serlin & Lapsley, 1985;

Wilson et al., 1967). More specifically, the argument

is that even if the probability of a true point null were

vanishingly small, something close to a null result—

an almost-null result—would not be impossible a

priori and for many purposes the null may serve as a

useful proxy for an almost-null hypothesis:

Although we may specify a point null hypothesis for the
purpose of our statistical test, we do recognize a more or
less broad indifference zone about the null hypothesis
consisting of values which are essentially equivalent to
the null hypothesis for our present theory or practice.
(Binder, 1963, p. 110)

Alternatively, as Meehl (1997) has said:

In practical contexts, when we have sufficient power (1
- p) so that there is not too big an asymmetry in the
values of error rates « and p, we do want to make the
"quasi-null" inference, not that H0 as a precise point
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value is literally true, but that something close to it is. (p.
395)

It has been argued that in most experiments in

which the null hypothesis is tested the investigator is

not really interested in the possibility of precisely zero

effect but rather in whether whatever effect there

might be is close enough to zero to be of no interest

(Rindskopf, 1997). As to why, if this is the case,

experimenters do not regularly test composite or

range null hypotheses rather than point nulls, Rind-

skopf surmised that testing a point null is the much

simpler process; although efforts to facilitate testing

range nulls, which require assumptions about the dis-

tribution of a statistic when the null is false, have been

made (e.g., Serlin & Lapsley, 1985, 1993). In the

meantime, if sample size is not so large as to ensure

detection of even negligibly small effects, testing of a

point null hypothesis is likely to yield roughly the

same result as would the testing of a small-range null.

Sensitivity ofNHST to Sample Size

Although the likelihood that a true null hypothesis

will be rejected does not increase with the sizes of the

samples compared, the likelihood that a real differ-

ence of a given magnitude will result in rejection of

the null hypothesis at a given level of confidence

does. It is also the case that the smaller a real differ-

ence is, the larger the samples are likely to have to be

to provide a basis for rejecting the null. In other

words, whether or not one assumes that the null hy-

pothesis is always or almost always false, when it is

false the probability that a statistical significance test

will lead to rejection increases with sample size.

This sensitivity to sample size has been the focus of

some of the sharpest criticisms of NHST (Bakan,

1966; McNemar, 1960; Nunnally, 1960; Thompson,

1998). It means that conclusions drawn from experi-

ments often depend on decisions experimenters have

made regarding how many participants to run. Also,

inasmuch as even very small real differences will be

detected by sufficiently large samples, it is possible

with very large samples to demonstrate statistical sig-

nificance for differences that are too small to be of

any theoretical or practical interest.

Because of the sensitivity of statistical significance

to sample size, the practice of increasing the size of

one's sample after performing an experiment that

yielded a difference that failed to attain significance is

generally considered poor form. As several writers

have pointed out, if one is permitted to use an optional

stopping rule, one can be quite certain of rejecting

even a true null hypothesis if one goes on sampling

for a sufficiently long time (I.J. Good, 1981/1983b;

Greenwood, 1938; Robbins, 1952). The experimenter

in this situation is somewhat like the gambler who is

free to specify the size of the wager on every bet and

to terminate the betting whenever he or she likes,

thereby being effectively assured of winning.

The importance of being specific about the

sample(s) one intends to use for experimental pur-

poses is illustrated by the following situation, adapted

from Berger and Berry (1988). Suppose an experi-

menter were to say, "I have just tossed a coin 17

times, obtaining 13 heads and 4 tails. Should I reject

the null hypothesis (of an unbiased coin), and if so at

what level of confidence?" One cannot answer this

question without knowing the experimenter's original

intent. If the intent were to toss the coin 17 times and

make a statistical decision on the basis of the out-

come, the answer provided by the standard approach

to NHST is that the null hypothesis should be rejected

at a confidence level of approximately .05. If, on the

other hand, the experimenter had intended to toss the

coin until 4 heads and 4 tails had been obtained, and

the 4th tail happened to occur on the 17th toss, the

null hypothesis should be rejected at a confidence

level of .02.

The reason one gets two results from the sample is

that although the sample is the same, it is drawn from

two different populations. In the first case the popu-

lation is all possible sets of 17 coin tosses; in the

second the population is all possible sequences of

tosses that are terminated on the first toss for which it

is true that at least 4 of each possible outcome (heads

or tails) have occurred. This population includes se-

quences ranging in number from 8 to infinity. Berger

and Berry (1988) argued that standard statistical

methods, which include NHST, "depend on the inten-

tions of the investigator, including intentions about

data that might have been obtained but were not" (p.

159).

Lindley (1993) made a similar point with respect to

a modified form of Fisher's (1935) famous tea-tasting

experiment. Suppose a tea taster, who claims to be

able to tell by tasting a cup of tea with milk whether

the tea or milk was put in the cup first, is tested six

times and is right on the first five tries and wrong on

the sixth: RRRRRW. The usual way of judging

whether performance this good is likely on the basis

of chance is to ask what the probability of getting five

or more correct in six tries is; the answer, as conven-
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tionally calculated, is .109, which assumes a sample

space that includes all possible outcomes of 6 tests.

However, suppose the experimenter's intent was to

continue the trials as long as the tea taster's answers

were correct—to terminate it after the first wrong re-

sponse. In this case the sample space includes infi-

nitely many sequences, and the probability of getting

five or more correct responses before the first error is

.031.

Lindley (1993) used this illustration of the ambi-

guity of the concept of outcomes that are more ex-

treme than a specified outcome as a basis for arguing

for the abandonment of the use of more extreme out-

comes in statistical analyses—as when in NHST one

considers the probability of obtaining a result equal to

or more extreme than the one obtained. Inasmuch as

he had already argued that considering only the prob-

ability of the exact outcome obtained is unsatisfactory

because in some experiments the probability of every

possible outcome is small, he then went on to argue

that the better way to evaluate an outcome is the

Bayesian approach of considering its probability con-

ditional on the null hypothesis relative to its probabil-

ity conditional on one or more alternative hypoth-

eses—which is to say, likelihood ratios. Unlike the

use of NHST, however, the use of the Bayesian ap-

proach requires that one or more alternatives to the

null hypothesis and the probability of the data condi-

tional on it (them) be specified. As Lindley (1993)

said:

The Bayesian method is comparative. It compares the
probabilities of the observed event on the null hypothesis
and on the alternatives to it. In this respect it is quite
different from Fisher's approach which is absolute in the
sense that it involves only a single consideration, the null
hypothesis, (p. 25; see also Lindley, 1984)

Perhaps in part to preclude the use of strategies that

permit an experimenter to decide on sample size on

the basis of how an experiment in progress was turn-

ing out, some have argued that an investigator must

specify experimental details—sample size, statistical

tests, significance levels, interpretations of possible

outcomes—in advance of collecting data. Fisher

(1935/1956) expressed this idea as follows:

In considering the appropriateness of any proposed ex-
perimental design, it is always needful to forecast all
possible results of the experiment, and to have decided
without ambiguity what interpretation shall be placed
upon each one of them. Further, we must know by what
argument this interpretation is to be sustained, (p. 1512)

I. J. Good (1976/1983a) has challenged this posi-

tion:

Many elementary textbooks recommend that test criteria
should be chosen before observations are made. Unfor-
tunately this could lead to a data analyst missing some
unexpected and therefore probably important feature of
the data. There is no existing substitute for examining
the original observations with care. This is often more
valuable than the application of formal significance tests.
If it is easy and inexpensive to obtain new data, then
there is little objection to the usual advice, since the
original data can be used to formulate hypotheses to be
tested on later samples. But often a further sample is
expensive or virtually impossible to obtain, (p. 51) It's
misleading to tell a student he must decide on his sig-
nificance test in advance, although it is correct according
to the Fisherian technique, (p. 54)

I. J. Good (1981/1983b) argued that "one cannot al-

ways sensibly determine a significance test in advance

because, heretical though it may be in some quarters,

sometimes the data overwhelmingly suggest a sen-

sible theory after the data are examined" (p. 145).

There are techniques for analyzing data sequen-

tially that are widely recognized to be legitimate that

do not require the advance specification of sample

size (Wald, 1945, 1947/1974). Bayesian approaches

to belief revision are in this category. For the most

part, such techniques are alternatives to NHST, but

some work on application of sequential stopping rules

to NHST has been done (Frick, 1998).

It can be argued that the question of the extent to

which the details of a null hypothesis test should be

specified in advance is beside the point. If, as some

believe, we know before collecting data that the null

hypothesis is false and that a sufficiently large sample

would show it to be so in any particular case, what is

the purpose of doing a test at all (Cohen, 1990; Ney-

man & Pearson, 1928a, 1928b; Nunnally, I960)? If

the null hypothesis is never true, then evidence that it

should be rejected in any particular instance is neither

surprising nor useful.

I. J. Good's (1956/1983c) answer to the question of

why one would want to do a significance test is, 'That

we wish to test whether the hypothesis is in some

sense approximately true, or whether it is rejectable

on the sort of size of sample that we intend to take" (p.

62). This point, he noted, is not usually made clear in

textbooks on statistics, and in any event never formu-

lated precisely. A similar answer has been given by

Mulaik, Raju, and Harshman (1997):
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It doesn't matter if the null hypothesis is always judged
false at some sample size, as long as we regard this as an
empirical phenomenon. What matters is whether at the
sample size we have we can distinguish observed devia-
tions from our hypothesized values to be sufficiently
large and improbable under a hypothesis of chance that
we can treat them reasonably but provisionally as not
due to chance error, (p. 80)

However, the more compelling response to the

question of why to do a statistical significance test is

denial of the claim that we know before doing an

experiment that the outcome will be rejection of the

null, if only the sample is sufficiently large. The ar-

gument, noted in the preceding section, that if the

samples being compared are drawn from the same

population with respect to the parameter of interest,

the probability of getting a significant difference with

respect to that parameter does not go to 1 as the

sample size increases, seems to me conclusive.

Faulty Logic

Berkson (1942) criticized NHST on the grounds

that it is illogical. Commenting on a textbook presen-

tation of the null hypothesis procedure in which it was

argued that the observation of a difference that would

seldom occur by chance casts much doubt on the hy-

pothesis of no difference, he described the case this

way:

Consider [the argument] in syllogistic form. It says "If A
is true, B will happen sometimes; therefore if B has been
found to happen, A can be considered disproved." There
is no logical warrant for considering an event known to
occur in a given hypothesis, even if infrequently, as dis-
proving the hypothesis, (p. 326)

In fairness to the textbook writer, the claim was not

that the observed result proved the null hypothesis to

be false, but only that it cast much doubt on it. And in

fairness to Berkson (1942), it needs to be said that his

major complaint against NHST was that the logic of it

"does not seem to accord with what would be the

mode of reasoning in ordinary rational discourse, nor

with the rationale of usual procedures as they are ob-

served in the scientific laboratory" (p. 326). Berkson

(1942) proposed the following principle as generally

operative in scientific inquiry:

The finding of an event which is frequent under a hy-
pothesis H, can be taken as evidence in favor of H,. If
H0 is a contradictory alternative to H, for which the
event would not be frequent, then per corollary the find-
ing of the event is, in so far, evidence in disfavor of Hu.
(p. 327)

As applied to NHST, the principle means

If an event has occurred, the definitive question is not,
"Is this an event which would be rare if H0 is true?" but
"Is there an alternative hypothesis under which the event
would be relatively frequent?" If there is no plausible
alternative at all, the rarity is quite irrelevant to a deci-
sion, and if there is such an alternative, the decisive
question is, "Would the event be relatively frequent?" (p.
327)

This is similar to the claim that p(D I HQ) tells us

nothing about p(H0 I D) in the absence of knowledge

or of an assumption about p(D I #A). (Berkson, 1942,

also developed an argument for being willing to ac-

cept—as distinct from failing to reject—the null hy-

pothesis under specific conditions).

Cohen (1994) and Falk and Greenbaum (1995) con-

tended more generally that the modus tollens form of

argument—"If P then Q; not Q, therefore not P"—

which is valid with categorical premises, is invalid

when the premises are probabilistic: "If P then prob-

ably Q; not Q; therefore probably not P" ("If H0 is

true then probably p > .05;p< .05; therefore probably

HQ is false"). Again, the point is that in order to say

anything about the probability of H0 given the occur-

rence of an event that has low probability if H0 is true,

we need to know, or to assume something about, the

probability of the event if Hn is false.

McDonald (1997) also considered statistical tests to

be patterned after modus tollens: "If null hypothesis

(HQ) then not-these-data (not-D), but D, therefore not-

H0, [which in the statistical context becomes] if Hn

then D improbable (< a), therefore either not-//0 or

the improbable has occurred" (p. 200). McDonald

agreed with others who have pointed out that this does

not justify the conclusion that H0 is improbable or

unlikely, but he did allow that it may be rational

(though possibly erroneous) to conclude not-//0 rather

than to conclude that the improbable has occurred; the

choice here is between nol-H0 (the probability of

which is unknown) and an event whose probability is

known to be low.

Cortina and Dunlap (1997) acknowledged that mo-

dus tollens does not have the force with probabilistic

premises that it has with categorical ones, but they

argued that it can be used to good effect under certain

conditions. They contended that it is approximately

correct when the truth of the first premise's anteced-

ent is positively related to the truth of its consequent.

The claim is that the more nearly correct it is to con-

sider the antecedent of the conditional probabilistic
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premise to be a cause or reason for the consequent, the

more sense it makes to apply modus tollens. If the

consequent of the conditional premise is very likely to

be true, independent of the truth or falsity of the an-

tecedent, the form has little force. "If X, then that

person is probably not a member of Congress" seems

likely to be true, almost independently of what is sub-

stituted for X, so X cannot be considered a reason for

expecting the consequent to be true. This stands in

contrast to the statement "If the experimental manipu-

lation did not work, then p would probably be greater

than .05," which seems to be offering the experimen-

tal manipulation not working as a reason for getting a

value ofp greater than .05. Cortina and Dunlap argued

that the application of modus tollens is justified in the

latter case but not in the former; they suggested that

the latter case is the more representative than the

former of the conditions under which NHST is usually

done and concluded that "the typical approach to hy-

pothesis testing does not violate the relevant rule of

syllogistic reasoning to any great degree" (p. 166).

Hagen's (1997, 1998) position with respect to the

argument that NHST lacks logical validity is that "ar-

guments can be reasonable and defensible even when

they are not logically valid in a formal sense" (1997,

p. 22). I. J. Good (1982) also considered classical

NHST to be useful, despite being logically flawed:

"Logically there is something wrong with the use of

tail-area probabilities, but I still find them useful be-

cause of the well-known difficulties about priors in

the Bayesian position" (p. 342).

Noninformativeness of Test Outcomes

Another objection to NHST is that such tests pro-

vide relatively little information about the relationship

between the dependent and independent variables.

They do not, as we have seen, provide a measure of

the size of an effect, nor do they reveal the strength of

the relationship between dependent and independent

variables. They give evidence only of whether a sta-

tistically significant effect has been obtained and, if

so, of the direction of the effect. At least when the null

hypothesis is the hypothesis of zero difference (zero

effect, zero correlation), statistical significance pro-

vides at best evidence against the hypothesis of no

difference (effect, correlation), which is very little in-

formation indeed. As Abelson (1997b) has said,

"Typically, mere difference from zero is totally unin-

teresting" (p. 121).

In contrast, a regression analysis gives an indica-

tion of the degree of relatedness of variables (Cohen,

1977; Cohen & Cohen, 1983). The ratio of between-

treatments variance to total variance—the proportion

of total variance in a dependent variable that can be

attributed to treatments—has also been suggested as

an indication of strength of relationship between in-

dependent and dependent variables (R. Good &

Fletcher, 1981; Hays, 1994; Stocks, 1987). A Bayes-

ian analysis can provide a posterior probability for

each of a set of hypotheses of interest (Bakan, 1966;

Cronbach & Snow, 1977; but only, of course, if the

values of the variables required by the computation

are known or assumed).

Inappropriateness of All-or-None Decisions
Regarding Significance

Many writers object to the sharpness of the distinc-

tion that is made between significant and nonsignifi-

cant results (Eysenck, 1960; Frick, 1996; Glass,

McGaw, & Smith, 1981; Grant, 1962; Nunnally,

1960; Rossi, 1997; C. D. Wickens, 1998). According

to some interpretations of the conventional rules of

application of NHST, a result that yields a p value

only slightly greater than the a level is to be given the

same treatment as one that is much greater. Many

researchers find it very difficult to follow this prin-

ciple, however, and insist on distinguishing between

"marginally significant" and "nonsignificant" results.

It does seem a little strange to consider a difference

with a p of .05 to represent something real while

dismissing one with a p of .06 as due to chance.

Nevertheless, several inquiries into how psychologists

interpret the results of statistical significance tests

have shown a "cliff characteristic" at .05, according to

which reported confidence in a finding drops abruptly

when p becomes larger than this value (Beauchamp &

May, 1964; Rosenthal & Gaito, 1963, 1964); cliff

characteristics of lesser magnitude have also been

found for/; values of .01 and .10 (Minturn, Lansky, &

Dember, 1972; Nelson, Rosenthal, & Rosnow, 1986).

Rozeboom (1960) objected to NHST on the

grounds that it treats acceptance or rejection of a hy-

pothesis as though this were a decision one makes on

the basis of the experimental data; the experimenter's

task, he argued, is not that of making a binary decision

either to accept or to reject a tested hypothesis, but

rather that of determining how the experimental out-

come changes the probability that the hypothesis is

true. The scientist "is fundamentally and inescapably

committed to an explicit concern with the problem of

inverse probability" (p. 422). As a matter of fact, Ro-

zeboom (1960) contended, researchers do not apply
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the principles of NHST in forming and refining their

own beliefs about the tenability of hypotheses. 1. J.

Good (1981/1983b) made a similar point in contend-

ing that it is not always sensible either to accept or to

reject a hypothesis in a sharp sense. Rosnow and

Rosentbal (1989b) maintained that dichotomous sig-

nificance testing has no ontological basis and that the

strength of evidence for or against the null hypothesis

must be considered a fairly continuous function of the

magnitude of p.

The dichotornization of experimental results into

those that prove to be statistically significant and

those that do not, and the attendant strong bias for

publishing only the former, are seen by some critics of

NHST as very detrimental to the advance of psychol-

ogy as a science. Essentially ignoring null findings,

they argue, inhibits the accumulation of knowledge

across studies (Meehl, 1978; Rossi, 1997).

Arbitrariness of the Decision Criterion

Closely associated with the objection regarding the

sharp distinction between significance and nonsignifi-

cance is concern about the arbitrariness of the a cri-

terion (Glass et al., 1981; Rozeboom, 1960). The a

criterion that is most widely recommended is .05

(Cowles & Davis, 1982). The grip that this number

has had on the research community for decades has

been parodied by Rosnow and Rosenthal (1989b):

It may not be an exaggeration to say that for many Ph.D.

students, for whom the .05 alpha has acquired almost an

ontological mystique, it can mean joy, a doctoral degree,

and a tenure-track position at a major university if their

dissertation/? is less than .05. However, if the/) is greater

than .05, it can mean ruin, despair, and their advisor's

thinking of a new control condition that should be run.

(p. 1277)

My experience suggests that .05 is treated by many

researchers today as an upper bound on what should

be considered statistically significant, but relatively

few specify it as « in advance of collecting (or re-

porting) data and then report all results relative to that

criterion. More commonly, researchers report a vari-

ety of p values in the same study, although they typi-

cally refer only to those that are less than .05 as sta-

tistically significant.

The guidance provided to authors by the Publica-

tion Manual of the American Psychological Associa-

tion (4th ed.; American Psychological Association

[APA], 1994) allows considerable latitude in the se-

lection (or not) of an a level and the reporting of p

values. Whether this is a good idea has been a topic of

debate (Labovitz, 1968). Some writers have urged

that, at least when the results of statistical significance

tests are to be used as a basis for decisions that matter,

the costs and benefits associated with the various

ways of being right and wrong should be considered

in deciding what the null hypothesis should be and in

setting the a level (Cox, 1958; Neyman, 1942; Oakes,

1986; Skipper, Guenther, & Nass, 1967).

In contrast, others believe that freedom to select

one's own a level adds an undesirable element of

subjectivity to the process of hypothesis evaluation

(Frick, 1996) and permits different investigators to

draw conflicting conclusions from the same data

(Cox, 1977). Rozeboom (1960) captured this concern

this way: "Surely the degree to which a datum cor-

roborates or impugns a proposition should be inde-

pendent of the datum-assessor's personal temerity"

(p. 420). The establishment of a widely adhered-to

criterion, say, an a of .05, is seen by some as an

attempt at standardization in the interest of objectiv-

ity, as "an admittedly arbitrary attempt to standardize

a bias against alternative hypotheses ... a deliberate

attempt to offer a standardized, public method for

objectifying an individual scientist's willingness to

make an inference" (W. Wilson et al., 1967, p. 191).

W. Wilson et al. contended that this approach is more

objective and less subject to variability deriving from

individual differences in belief states among experi-

menters than a Bayesian approach that requires the

assignment of personal probabilities would be. Chow

(1998a) defended the use of a strict a criterion by

arguing that it is analogous in importance to the main-

tenance by a teacher of a passing grade.

Test Bias

The question of bias in NHST is an interesting one,

in part because the convention of selecting a small a

is generally viewed as reflective of a strong bias

against rejection of a true null hypothesis. It has been

argued, however, that classical NHST (in contrast to

Bayesian tests) is in fact strongly biased against ac-

ceptance (or nonrejection) of the null hypothesis (Ed-

wards, 1965; Edwards et al., 1963; Lindley, 1993):

"Classical procedures quite typically are, from a

Bayesian point of view, far too ready to reject null

hypotheses" (Edwards et al., 1963, p. 225).

The bias against acceptance of the null hypothesis

of which Edwards and his colleagues (Edwards, 1965;

Edwards et al., 1963) spoke has been noted in this

article in the context of the discussion of the false
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belief that p is the probability that the null hypothesis

is true. As was pointed out there, given p(H0) = .5

and certain assumptions about how D is distributed, p

is invariably smaller than p(H0 I D) and in extreme

cases can differ from it by a large amount. A conse-

quence of this difference between p and p(H0 I D),

from a Bayesian point of view, is that when H0 is

rejected at some significance level, say, x, p(H0 I D)

may be much larger than x. As also noted, it is even

possible for HQ to be rejected at an arbitrarily small

value of p under conditions in which a Bayesian

analysis would show p(//0 I D) to be close to 1 (Lind-

ley's paradox), although the conditions under which

this happens do not seem likely to often characterize

psychological experiments.

Many opponents of NHST have argued against it

on the grounds that it biases the reporting of results of

experimentation: Because of the general practice of

not publishing results that did not attain statistical

significance at at least the .05 level, many real effects

are not reported, according to this argument. (More on

this point later.) As W. Wilson et al. (1967) have

pointed out, bias is a relative term, and the same test

can be biased in more than one way. In particular, as

compared with a Bayesian analysis, a classical analy-

sis can be biased against the null, whereas as com-

pared with a sensitive experiment an insensitive ex-

periment can be biased for the null.

Possible Inflation of Type I Errors in
the Literature

Nearly 90% of the respondents (all active social-

psychological researchers) to a survey conducted by

Greenwald (1975) reported being less likely to submit

for publication failures to reject the null hypothesis

than successes in doing so. This reluctance to report

null results could be due at least in part to the assump-

tion—undoubtedly valid—that editors are generally

not enthusiastic about publishing such results. It may

also be due in part to a tendency of researchers to

interpret failure to reject the null hypothesis as unin-

formative and perhaps the result of flawed methods

(Greenwald et al., 1996).

With an ct of .05 we expect about 5% of those

instances in which the null hypothesis is true to yield

a "statistically significant" effect, that is, in reality, a

Type I error. If statistically significant effects (rejec-

tions of the null) are much more likely to be published

than failures to attain statistical significance (failures

to reject the null), this means that when the null is true

only those analyses that have produced Type I errors

are likely to be published. It has been proposed that

this can lead to "a inflation," which is to say that as

that are reported in the literature can be spuriously

small and can understate the probability of reporting

chance effects as real, because they do not take the

incidence of unpublished null results into account.

To understand and evaluate this concern, we need

to distinguish eight conditions defined by the combi-

nations of (a) the null hypothesis actually being true

or false, (b) it being judged to be true or false, and (c)

whether the outcome of the test was published. The

situation may be represented as in Table 4. By defi-

nition Type I error is rejecting the null hypothesis

when it is true, represented by cells B and D in the

table. Theoretically the probability of a Type I error

conditional on the null being true is the ratio of the

total number of times a true null is rejected to the total

number of times the null is true, which, letting the

letters in the cells of Table 4 represent the numbers of

events in those cells, is (B+D)/(B+D+F+H). If we

knew the number (or percentage) of cases in each of

these cells, we would expect this ratio to be close to

the indicated value of a (in this case .05), if the as-

sumptions of the statistical test that was used were

always met. We do not know the numbers in these

cells, but concern about the "file-drawer" problem, as

Rosenthal (1979) has called it, rests on the assumption

that tests that yield statistical significance are more

likely to be represented by the first row of the table

than by the second and that those that fail to yield

significance are more likely to be represented by the

Table 4
Eight Combinations of Truth States of H0 and Reporting Possibilities

Truth state of H0

Publication False

HO rejected (p < .05) and published A
H0 rejected (p < .05) and not published C

H0 not rejected (p > .05) and published E
Ha not rejected (p > .05) and not published G

True

B

D

F

H
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fourth row than by the third, and more specifically

that H is large relative to both D and F. If the latter

assumption is valid, then B/(B+F) > (B+D)/

(B+D+F+H ); which is to say that if both of these

ratios were known the first, which reflects the pub-

lished literature, would overstate the actual probabil-

ity of Type I error conditional on the null hypothesis

being true, relative to what is likely to be the case

when all published and unpublished tests are taken

into account.

Of course, none of the numbers (or percentages) of

all null hypothesis test outcomes that fall within any

of these cells is known. Conceivably we could know

the sum of A and B and the sum of £ and F. However,

if we knew the sum of A and B, we would not know

how to partition it between A and B, and the same

holds for E and F. It is not the case that A and 8 could

be inferred from a knowledge of A+B and application

of the relationship a = B/(A+B) because, even in

theory, a is not intended to represent the relative fre-

quency of Type I error in published work only.

In fact, it is not possible to determine die frequency

with which Type I errors are made relative to the

frequency with which the null hypothesis is true—the

probability of Type I error conditional on the null

being true—but if one is willing to assume that most

of the experiments that end up in file drawers are

represented by the last row of the table (G and H), one

can develop a plausible scenario for how this might

generate concern for the effect of the file-drawer

problem on beliefs about the incidence of Type I error

and how it relates to a.

Imagine, for the sake of an extreme illustration, that

100 experiments were conducted and that in each case

the null hypothesis was true. About 5 of these would

be expected to yield differences significant at the .05

level. If only the experiments yielding significant dif-

ferences were published and the other 95 were not, the

likelihood that the differences reported as significant

were actually Type I error would be grossly underes-

timated by p.

Despite the foregoing, I do not believe a inflation

to be a problem, for the following reasons. First, as

already noted, p is not an estimate of the probability

that if one has rejected the null hypothesis one has

made a Type I error, nor is a the probability of mak-

ing a Type I error in a particular experiment or across

a set of experiments; p is the probability of obtaining

a specified result if the null hypothesis is true, Type I

error is rejection of the null hypothesis if it is true, and

a is the risk that one is willing to take of making a

Type I error when the null hypothesis is true.

Second, there is good reason to believe that in gen-

eral, worry about a inflation notwithstanding, the

probability of Type I error is considerably less than a.

I believe the following assumptions would be gener-

ally accepted by most parties in the debate about

NHST, whatever their position regarding its merits:

(a) For a large majority of psychological experiments,

the null hypothesis is false; (b) considering all experi-

ments done, published and unpublished. Type II error

is more common than Type I error; and (c) experi-

ments that yield statistically significant results are

much more likely to be published than experiments

that do not.

The implications of these assumptions are illus-

trated in Table 5. For simplicity, suppose that an ex-

periment is published if and only if it yields a result

that is statistically significant at the .05 level. For

purposes of the illustration, it is assumed that the null

hypothesis is five times as likely to be false as to be

true and that the probability that the null will be re-

jected at the .05 level if it is false is .5. Given these

assumptions (plus the probability of .05 of a Type I

error, given that the null is true), the probability that

a statistically significant result is a Type I error, given

that it is published, is 5/255, or about .02. Readers

who find the assumptions of the illustration implau-

sible may wish to substitute others more in keeping

with their intuitions. 1 find it difficult to imagine a

plausible set of values that would result in the relative

frequency of Type 1 errors in published experiments

Table 5

The Four Possible Combinations of Truth Suites ofH0 and Decision Regarding H0, and Hypothetical Frequencies of

Each Occurrence

Truth state of #0

Decision regarding H0

Rejected (p < .05) and published
Nol rejected (p > .05) and not published

Total

False

Correct rejection

Type II error

Frequency

250

250

500

True

Type I error

Correct nonrejection

Frequency

5

95

100

Total

255

345

600
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being much larger than a. Of course, if one believes

that the null hypothesis is always false then a inflation

is not a worry, because Type I errors cannot occur.

However, those who believe the null hypothesis is

always false do not favor NHST in any case.

Presumed Frequency of Type H Error

As already noted, Type II error is defined as failure

to reject a null hypothesis that is false. The convention

of adopting a strict criterion for rejecting the null

hypothesis, say, an a of .05, especially when coupled

with statistical significance testing with low power

because of small sample sizes, is assumed to mean

that this type of error occurs frequently (Clark-Carter,

1997; Hunter, 1997; Rosnow & Rosenthal, 1989b;

Sedlmeier & Gigerenzer, 1989). This can be espe-

cially problematic in situations in which a Type II

error is likely to be as costly as, or even more costly

than, a Type I error, and this may often be the case in

applied settings (C. D. Wickens, 1998).

Power is difficult if not impossible to determine

exactly in many cases, but several investigators have

estimated that it typically is low—in the .4 to .6 range

(Cohen, 1965, 1988; Schmidt, Hunter, & Urry,

1976)—and that this has been the case since it was

first pointed out by Cohen (1962; Rossi, 1990;

Sedlmeier & Gigerenzer, 1989). Belief that power is

typically low and that the null hypothesis is nearly

always false leads to the conclusion that the absolute

probability of Type II error could be as high as .50

(Cohen, 1962; Schmidt, 1992).

This reasoning has been criticized on the grounds

that it fails to distinguish between power to detect

effects of hypothetical magnitude and power to detect

actual effects and that it is based on the former, which

could be quite different from the latter (Mulaik et al.,

1997). By definition a Type II error is committed only

when an actual effect does not yield a statistically

significant outcome; the fact that a test had low power

does not mean that a real effect has gone undetected

if one recognizes the possibility that there was no

effect to detect (Erwin, 1998). Moreover, estimates of

average power are based on hypothetical effect sizes

that are assumed to be equal; Abelson (1997a) pointed

out not only that true effect sizes vary, but also that

the hypothesis that they do not is itself a null hypoth-

esis, and if—as some critics of NHST claim—all null

hypotheses are false, it is therefore self-defeating.

Such considerations speak to the tentativeness of es-

timates of the frequency of Type II errors, but they do

not rule out the possibility that it is substantial.

Because of the bias against publishing results yield-

ing p values greater than .05 (Atkinson, Furlong, &

Wampold, 1982; Greenwald, 1975), results that are

actually Type II errors, which conceivably could in-

clude potentially important and interesting findings,

are often buried along with true null effects without

ever being published. One proposal for addressing

this problem has been to publish the results of all

experiments, whether they attain statistical signifi-

cance or not, and rely on meta-analyses to draw con-

clusions on the basis of large bodies of results in the

aggregate (Schmidt & Hunter, 1997).

Making statistical significance a requirement for

publication may create a biased literature in at least

three ways: (a) Because failures to replicate (failures

to get statistically significant effects in attempts to

replicate previous results) are seldom published, Type

I errors are likely to go undetected (H. H. Clark, 1976;

Greenwald, 1975); (b) because the criterion is gener-

ally set fairly high (at least .05), many real effects are

not reported, which is to say the Type II error is

frequently made; (c) because, other things equal

(sample sizes and within-sample variance), large dif-

ferences are more likely than small ones to yield p <

.05, the differences that are reported in the literature

may be larger on average than the population effects

they ostensibly represent.

One concern relating to the last problem is that,

with rare exceptions, only studies that have obtained

statistically significant results are represented in re-

view articles intended to summarize findings in spe-

cific areas of research. Such "nose counting" (Meehl,

1978) has been criticized for two different reasons: (a)

It overlooks many experiments that failed to attain

statistically significant results (possibly because of

small sample sizes) and therefore may underestimate

the strength of the aggregate evidence that exists for a

finding (Cooper & Rosenthal, 1980; Hedges & Olkin,

1980); and (b) inasmuch as it attends only to effects

that were large enough to attain statistical significance

even sometimes with small samples, it can overesti-

mate the size of a population effect (Abelson, 1997a;

R. J. Harris, 1997a; Lane & Dunlap, 1978; Schmidt,

1992, 1996). Ironically both aspects of the problem

can be exacerbated by the use of statistical procedures

designed to correct for multiple applications of a test

statistic (Cohen, 1994). However, this may not be a

worry, because although the need to make such cor-

rections has been argued for a long time (B. Wilkin-

son, 1951) and several techniques are available for

doing so (Dunn, 1961; Hayter, 1986; Holm, 1979;
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Shaffer, 1979), it is often—perhaps more often than

not—ignored in the reporting of statistical signifi-

cance levels.

R. J. Harris (1997a) pointed out that overestimation

of effect sizes in the literature could conceivably in-

fluence researchers to design replication experiments

with too little power. If they believe an effect to be

larger than it actually is and design an experiment that

has sufficient power to detect an effect of the believed

size, it may not have enough power to detect an effect

of the actual size. An example of harm that can be

done by disregarding the problem of Type II error has

been given by Freiman, Chalmers, Smith, and Kue-

bler (1978), who demonstrated the ease with which

therapeutically effective interventions can be missed

in clinical trials with too few participants. Recogni-

tion of the often overlooked cost of Type D errors

would seem to dictate the use of criteria that are not so

extremely protective against errors of Type I. More

generally, decision criteria should be set so as to take

into account the consequences of the various possible

ways of being wrong and with recognition that the

relative costs of Type I and Type II errors can vary

considerably from situation to situation.

Ease of Violating Assumptions of

Statistical Tests

Statistical tests, at least parametric statistical tests,

invariably rest on certain assumptions. Student's t test

and the analysis of variance (ANOVA) involve as-

sumptions regarding how the variables of interest are

distributed. Student's t, for example, tests the hypoth-

esis that two samples of measures of interest were

randomly drawn from the same normally distributed

population with a specific variance. Generally, how-

ever, neither the shape of the population of interest

nor its variance is known; its distribution is assumed

to be normal and its variance is estimated from the

variances of the samples. For application of the test to

be legitimate, the samples should be normally distrib-

uted and they should have roughly equal variances.

Procedures have been developed for determining

whether samples meet the requirements and for trans-

forming the raw data in certain ways when they do not

meet them so they will. The degree to which research-

ers ensure that data satisfy all the assumptions under-

lying the significance tests they apply to them is not

known; my guess is that it is not high.

Random sampling from a population and random

assignment to experimental treatment groups are im-

portant assumptions underlying ANOVA and similar

statistical significance tests, and violation of one or

both of these assumptions can invalidate the results of

such tests (Winer, Brown, & Michels, 1991). This is

a point that gets little, if any, attention in many sta-

tistical texts (Shaver, 1993). Sampling issues have

been discussed by Lindquist (1940), Selvin (1957),

and Edgington (1966, 1995). The problem of failing

to satisfy assumptions underlying statistical tests is a

complicated one because tests differ considerably in

their sensitivity to violations of assumptions, and the

extent to which specific tests are affected by viola-

tions of specific types is sometimes a subject of de-

bate (Thompson, 1993).

Influence on Experimental Design

Carver (1978) argued that the preeminence of

NHST as the method of data analysis in psychology

encourages the design of experiments that lend them-

selves to this type of analysis. Some believe that re-

liance on NHST promotes the development of weak

theories thai are incapable of supporting bold and pre-

cise predictions (Dar, 1987, 1998). Gigerenzer

(1998b) made the point this way:

The single roost important problem with null hypothesis
testing is that it provides researchers with no incentive to
develop precise hypotheses. To perform a significance
test, one need not specify the predictions of either one's
own research hypothesis or those of alternative hypoth-
eses. All one has to do is test an unspecified hypothesis
(H,) against "chance" (H0). In my experience, the rou-
tine of testing against chance using NHSTP [the null
hypothesis test procedure] promotes imprecise hypoth-
eses. . . . Testing an unspecified hypothesis against
chance may be all we can do in situations where we
know very little. But when used as a general ritual, this
method ironically ensures that we continue to know very
little, (p. 200)

Yates (1951) has suggested that the emphasis that has

been put on statistical significance has promoted con-

centration on problems that have little or no practical

significance. The types of questions that drive re-

search are always determined, to some extent, by

methodological considerations as well as by the theo-

retical or practical importance that researchers attach

to them. There is little point, for scientific purposes, in

asking questions that are beyond available method-

ologies to answer. However, if NHST is as flawed as

its most severe critics suggest, letting its availability

and use dictate the design of experiments seems un-

fortunate at best.
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Defenses of NHST and Recommendations
Regarding Its Use

The abundance of criticisms notwithstanding,

NHST is not without its defenders (Baril & Cannon,

1995; Chow, 1987, 1988, 1989, 1991, 1996, 1998a,

1998b; Cortina & Dunlap, 1997; Cox, 1977; Dixon,

1998; Frick, 1996; Giere, 1972; R. J. Harris, 1997a,

1997b; Kalbfleisch & Sprott, 1976; Mulaik et al.,

1997; Robinson & Levin, 1997; Sohn, 1998b; W.

Wilson et al., 1967; Winch & Campbell, 1969). Pro-

ponents of NHST generally acknowledge that it has

limitations, and few if any argue that it should be the

only analytic tool in the researcher's repertoire. Some

point out that many of the criticisms of NHST are not

so much criticisms of NHST per se but criticisms of

some of its users and misuses. It is not the fault of the

process, they contend, if some of its users misunder-

stand it, expect more from it than it promises to de-

liver, or apply it inappropriately.

Abelson (1995, 1997a, 1997b) has defended NHST

when used judiciously, not as an unequivocal deter-

minant of what is worth reporting but as a means of

helping to justify claims that specific effects were

unlikely to have been obtained by chance. He argued

that the noteworthiness of an experimental finding is

determined by a variety of criteria, including the mag-

nitude, generality, and interestingness of the effect.

All statistics, in his view, should be treated as aids to

principled argument. He saw NHST as not the only,

but an essential, tool in the researcher's kit: "Signifi-

cance tests fill an important need in answering some

key questions, and if they did not exist they would

have to be invented" (1997b, p. 117). Dixon (1998)

contended that despite justified claims of the limita-

tions of NHST and misinterpretations of test results, p

values can convey useful information regarding the

strength of evidence: "Although p values are not the

most direct index of this information, they provide a

reasonable surrogate within the constraints posed by

the mechanics of traditional hypothesis testing" (p.

391).

Macdonald (1997) described both the Fisherian and

Neyman-Pearson approaches to statistical inference

as being "concerned with establishing that an ob-

served effect could not plausibly be accounted for by

sampling error" (p. 334). When an achieved signifi-

cance level—the probability of obtaining an effect as

extreme as the one observed—is sufficiently low, me

hypothesis that the obtained effect could plausibly be

due to sampling error is rejected, and rejection of this

hypothesis entails also rejection of the hypothesis of a

true effect opposite in direction to that observed. Mac-

donald defended the Fisherian approach but con-

tended that acquired significance levels should be

seen as a guide to whether an effect has been dem-

onstrated and not taken as the sole criterion.

Frick (1996) suggested that NHST is ideal for sup-

porting ordinal claims but not for evaluating models

that make quantitative predictions. By an ordinal

claim, he meant a claim that does not specify the size

of an effect but that specifies "only the order of con-

ditions, the order of effects, or the direction of a cor-

relation" (p. 380). Tukey (1991) contended that it is

really the direction of an effect rather than the exis-

tence of one that the t test helps decide. Others have

argued that if the question of interest is whether a

difference is positive or negative, NHST is a suitable

approach to finding out (Abelson, 1997b; R. J. Harris,

1997a, 1997b; W. Wilson et al., 1967).

Chow (1987,1988, 1989,1991,1996) has defended

NHST as a means of evaluating hypotheses, which he

noted are usually expressed in the form of an ordinal

relation such as a statement that performance is better

(or worse) under an experimental condition than un-

der a control condition. He made a distinction, how-

ever, between the problem of testing a hypothesis and

that of evaluating a theory. In his view, statistical

significance is relevant to hypothesis testing, but

theory evaluation requires integration of the results of

tests of many hypotheses that are deducible from the

theory in question and of other relevant information as

well. Hypothesis testing appropriately ends in a bi-

nary decision as to whether the data in hand are con-

sistent with the hypothesis or not; a theory is corrobo-

rated incrementally by the accumulation of evidence

from converging operations designed to test a variety

of hypotheses that are deducible from it. Chow (1989)

distinguished too, between the support a theory re-

ceives from a particular experiment and the theory's

overall status, the latter being determined "by how

often it has withstood attempts to falsify it, how well

it fares when compared to contending theories, how

extensive the converging operations in its support are"

(p. 164).

In his defense of NHST, Chow (1996, 1998a,

1998b) distinguished hypotheses at several levels of

abstraction—from lowest to highest: statistical, ex-

perimental, research, and substantive—and argued

that some of the criticisms that have been leveled at

NHST are based on failure to recognize the difference

between statistical hypotheses and higher level hy-

potheses. Other criticisms of NHST, he contended,
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are not appropriately aimed at NHST per se but at

inferential processes that are outside the domain of

statistics. It is especially important to recognize,

Chow (1998b) argued, that testing a statistical hypoth-

esis is not tantamount to testing a substantive (ex-

planatory, theoretical) hypothesis. Corroboration

(refutation) of a substantive hypothesis involves

showing that evidence (e.g., experimental data) is

consistent (inconsistent) with that hypothesis; show-

ing that a statistical hypothesis is or is not tenable can

be a factor in that process, but only one among many.

The limited but essential role of NHST, in Chow's

view, is that of ruling out chance (at a specified level

of strictness) as an explanation of data:

A significant result indicates a discernible effect in the
sense that chance influences are excluded with reference
to a well-defined criterion. By the same token a signifi-
cant effect is a genuine effect in the sense that it is not
brought about by chance factors. NHSTP is the indis-
pensable tool for assessing whether or not chance influ-
ences can be excluded as an explanation of the data.
(1998b, pp. 327-329)

The claim that the role of NHST is to rule out

chance as an explanation of data is easily interpreted

as supportive of the belief that p represents the prob-

ability that chance is the operative factor given the

data, p(H0 I D); and we have already seen that this

belief is false, although p can be a reasonable proxy

for p(HQ I D) given certain assumptions that appear to

often be plausible. Furthermore, psychologists use

NHST to test substantive hypotheses in theory-

corroborating studies whether or not it is adequate to

that task. Dar (1998) spoke to the latter point this way:

"The move from the substance to the statistical hy-

pothesis is a swift one: researchers interpret statistical

significance as confirming the substantive hypothesis

and therefore as corroborating the theory from which

the hypothesis was derived" (p. 196). This, of course,

is a criticism of the behavior of researchers and not of

NHST per se.

In an attempt to account for the popularity of

NHST, Greenwald et al. (1996) argued that it provides

a dichotomous outcome that can be used for decision

making, that/7 is a common-language translation for a

variety of statistics (having one measure of how sur-

prising a result should be under the hypothesis of no

effect makes it unnecessary to deal with many such

indicants), and that p also constitutes a measure of

confidence in the replicability of null hypothesis re-

jection. (As noted in the foregoing, the question of

whether p is a justified measure of confidence in rep-

licability is a contested one.) These are all desirable

properties in the eyes of NHST users.

Mulaik et al. (1997) argued that much of the oppo-

sition to NHST stems from confusion on a variety of

subjects. They noted several beliefs, including some

of those mentioned in the first part of this article, all

of which they considered to be incorrect. They con-

tended that many of the criticisms of NHST really

pertain to misconstruals or misuses of significance

tests and thus may speak to the incompetence of the

misusers, but do not demonstrate the invalidity of the

approach per se. Criticisms of "abusive misconcep-

tions of the use and interpretation of significance test-

ing," Mulaik et al. insisted, "can hardly be regarded as

criticisms of significance testing properly understood

and applied" (p. 74). The fact that there are arsonists

in the world does not make fire a bad thing. A similar

position has been taken by Rossi (1997).

A common misuse of significance tests is to con-

clude that a difference due to two treatments, A and B,

is statistically significant on the grounds that the ef-

fect of A is significantly different from zero and that

of B is not. Regarding whether this type of confusion

should be held against the test per se, Abelson

(1997b) had this comment: "If a legal case were being

brought against the significance test, the charge here

would be that the test is an 'attractive nuisance,' like

a neighbor's pond in which children drown. It tempts

you into making inappropriate statements" (p. 120).

As for the contention that NHST should be banned,

Mulaik et al. (1997) took the opposite position:

We cannot get rid of significance tests because they
provide us with the criteria by which provisionally to
distinguish results due to chance variation from results
that represent systematic effects in data available to us.
As long as we have a conception of how variation in
results may be due to chance and regard it as applicable
to our experience, we will have a need for significance
tests in some form or another, (p. 81)

Calls for the banning of NHST, Mulaik et al. argued,

stem from a conception of NHST that overlooks the

provisional nature of conclusions that result from it.

In addition to defending the use of NHST, propo-

nents of it have offered several suggestions regarding

how it might be use more effectively. I turn next to a

consideration of some of these suggestions.

Make Greater Use of Non-Nil Null Hypotheses

Some of the problems associated with NHST dis-

appear or at least diminish if the null hypothesis is
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defined as something other than a hypothesis of zero

difference, zero effect, or zero correlation (the nil null

hypothesis). Ideally one would like to be able to make

precise quantitative predictions of the effects of ex-

perimental manipulations, but most areas of psychol-

ogy do not permit a high degree of precision at their

present level of development. It does not follow that

one must settle for the nil null hypothesis in all cases,

however. Quasiquantitative predictions, of rough

magnitudes of effects, could help advance the field

(Blaich, 1998).

Mulaik et al. (1997) distinguished between the

problem of deciding what hypothesis one should test

and that of applying NHST procedures appropriately

to whatever that hypothesis is. The same writers sug-

gested that one way to facilitate knowledge accumu-

lation in psychology is to use what is learned in ex-

periments to establish values for non-nil null

hypotheses in subsequent experiments: "A hypothesis

one ought to test is that the effect is equal to the value

estimated in the previous study, which one judged to

be significantly different from a zero effect" (p. 98).

This possibility has also been pointed out by Green-

wald et al. (1996). Mulaik et al. noted that with ex-

isting ANOVA methods and programs it is not easy to

specify hypotheses in terms of previously found ef-

fects, and they suggested the desirability of some

modernization of ANOVA in this regard. Some will

see this suggestion as an argument for applying a

Bayesian approach to data analysis.

Use Range Null Hypotheses

An alternative to the use of the point null hypoth-

esis that has been urged by several writers is the use

of a range null hypothesis, which involves designating

a range of values that will be considered effectively

null (Hodges & Lehmann, 1954; Meehl, 1967; Serlin,

1993; Serlin & Lapsley, 1985, 1993; Yeaton &

Sechrest, 1986). Serlin (1993) argued that how wide

the range should be depends on the state of the theory

of interest but that, in any case, it should be specified

in advance of an experiment. Some writers have taken

the position that when testing a point null hypothesis

researchers typically mean to treat it as a proxy for a

range hypothesis anyway, which is to say that they

usually do not seriously consider a difference of ex-

actly zero to be probable, but they use zero to repre-

sent anything close (without specifying how close) to

it. Cortina and Dunlap (1997) surmised that although

it would be better if researchers specified the range of

values they would consider within the "good-enough

belt" described by Serlin and Lapsley (1985), "the

vast majority of research that has focused on the nil

would have been very much the same even if an al-

ternative null value had been used" (p. 167).

Be Specific About the Alternative(s) to the
Null Hypothesis

The predominant NHST paradigm leaves the alter-

native to the null hypothesis unspecified beyond "dif-

ferent from zero," or in the case of one-tailed tests,

"less (greater) than zero." It is possible, however, to

have a specific alternative to a null hypothesis, which

can be composite with as many independent compo-

nents as one likes. Expression of a specific alternative

hypothesis moves one in the direction of using Bayes-

ian statistics, and some researchers object to this on

the grounds that it usually requires the introduction of

subjectivism because of the need to assign prior prob-

abilities to the hypotheses and a probability to the data

conditional on the alternative hypothesis. A counter to

this argument is that subjective judgment is required

in conventional non-Bayesian hypothesis testing as

well, but in this case it is not quite so apparent.

I. J. Good (1981/1983b), who sees himself as nei-

ther a Bayesian nor an anti-Bayesian, argued this way

for making the alternative hypothesis precise and ex-

plicit:

I believe it is a feature of all sensible significance-test
criteria that they are chosen with either a precise or,
more often, a vague non-null hypothesis, in mind. In this
respect "non-Bayesians" act somewhat like Bayesians. //
a tail-area probability is small enough then it is worth
while to try to make the non-null hypothesis less vague
or even to make it precise, and the smaller the tail-area
probability, the more worth while it is to make this at-
tempt. . . . It is sometimes stated by Fisherians that the
only hypothesis under consideration is the null hypoth-
esis, but I am convinced that this is only a way of saying
that the non-null hypothesis is vague, not that it does not
exist at all. (pp. 138-140)

A similar point has been made by Rogers et al.

(1993), who argued that it is not a small p value alone

that determines a researcher's postexperiment belief

about the null hypothesis, but "a small p value with a

known experimental manipulation after random as-

signment" (p. 560) that does so. As a rule (though not

always), an experimenter has a definite idea of how a

planned manipulation will affect the dependent vari-

able(s) of interest, at least to the extent of the direction

of the anticipated effect. Rogers et al.'s point is that

this idea, along with the value of p, determines the
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experimenter's interpretation of the outcome, which

from a Bayesian point of view is as it should be.

The overarching issue here is that what constitutes

appropriate statistical treatment of the data obtained in

an experiment and justified interpretation of the out-

come depends to no small degree on the experiment-

er's preexperiment intentions and expectations. For

this reason, experimenters should make explicit their

preexisting expectations—alternative hypothesis(es)

and its (their) predictions regarding data. This is not to

suggest that unexpected patterns in data cannot be

informative and should be ignored. However, what

they provide are generally better viewed as clues to

possible relationships that should be explored in fur-

ther experimentation, not statistical justification for

firm conclusions that such relationships exist.

Report p Values

Several writers, including Fisher (1956/1990), have

advocated the reporting of actual p values as an alter-

native or complement to classifying results as either

significant or not significant relative to a given a

criterion (Abelson, 1995; Eysenck, 1960; Gibbons &

Pratt, 1975; I. J. Good, 1981/1983b; Greenwald et al.,

1996; Huberty, 1993; Schafer, 1993; Upton, 1992;

Wang, 1993). Especially bothersome is the practice of

reporting only whether the outcomes of tests attained

statistical significance and not giving the values of the

test statistics or, in some cases, means and standard

deviations on which they were based (Meehl, 1978,

1997).

The reporting of p values makes the reporting of

results a more objective process: When an investiga-

tor reports thatp = .045 in one case andp = .055 in

another, the reader can decide whether to consider one

significant and the other not. On the other hand, re-

porting p values is not necessarily inconsistent with

using an ce criterion. There is the view that p values

should be reported so readers can draw their own

conclusions but that the conclusions drawn by experi-

menters should be based on their predetermined cri-

teria; Cortina and Dunlap (1997) expressed this view

and argued that the latter restriction follows from the

logic of theory testing, which involves determining

whether predicted results are obtained.

Another argument for reporting actual p values is

that it facilitates the aggregation of evidence across

experiments by the use of meta-analyses. The practice

is simplified by the fact that widely used statistical

software packages yield specific values of p.

A minor problem associated with reporting actual p

values is the fact that some software data-analysis

packages return such values as .0000. Presumably this

means that p = 0 to four decimal places; however,

many readers object to the representation. A compro-

mise is to revert to p < .0001 for all values of p less

than .0001.

Summary of Defenses of NHST and
Recommendations Regarding Its Use

Several writers have defended the use of NHST as

an aid to the interpretation of experimental results and

have argued that most if not all of the criticisms of it

are more appropriately directed at ways in which it is

sometimes misapplied and are not justified criticisms

of NHST per se. Some defenders of NHST acknowl-

edge that many users have misconceptions of it and

consequently misapply it, but they argue that many of

the criticisms that are leveled against the procedure

are based on misconceptions or false beliefs as well.

Proponents of the use of NHST have also suggested

several ways in which the effectiveness of its use

might be enhanced. These suggestions include mak-

ing greater use of non-nil null hypotheses, including

range null hypotheses; being specific about alterna-

tives to the null hypothesis; and reporting of actual p

values rather than only classifying outcomes as either

statistically significant or not statistically significant

relative to a prespecified criterion.

Alternatives or Supplements to NHST

As noted early in this article, some of the NHST's

critics argue that this method of data analysis should

be abandoned. Nobody, to my knowledge, even

among its staunches! defenders has argued that NHST

is the only type of analysis of data that one needs to

do. In what follows, I note a variety of suggestions

that have been made of ways either to supplement

NHST or to replace it with alternative methods for

evaluating the results of research.

Provide Some Indication of Variability or
Precision of Measurement

Although variability due to measurement error is

widely recognized as an important consideration in

the evaluation of data obtained in nearly all psycho-

logical experiments, indications of it are lacking in

many published reports of experimental results, and

especially on the figures appearing in those reports.

Estes (1997a) argued strongly for the inclusion of

indications of variability on graphical representations
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of data but cautioned that such indications should be

accompanied by information regarding what data they

are based on and how they were computed.

Some measures of variability (e.g., standard devia-

tions, interquartile ranges) are simply descriptive of

the data in hand and say nothing directly regarding the

populations from which samples have been drawn.

Others (e.g., standard errors of means and confidence

intervals) are used to make inferences about the vari-

ability of populations and are subject to misconcep-

tions and confusions not unlike those that pertain to

the p values of NHST.

The standard error of the mean is an estimator of

the standard deviation of sample means around a

population mean, and when used to bracket the popu-

lation mean it indicates the range around the true

mean within which about two thirds of the means of

replicated random samples would be expected to fall.

In actual experiments (simulations aside) population

means are not known and standard error bars are usu-

ally drawn around sample means, and here they invite

misinterpretation. They do not indicate the range

around a sample mean within which about two thirds

of the means of replicated random samples would fall.

Given reasonable assumptions about the relationship

between the standard error of the mean and the stan-

dard deviation of the population of sample means,

about two thirds of the means of replicated random

samples would fall within a range of about 1.4 times

the standard error on either side of the sample mean

(Estes, 1997a). Estes explained the common misinter-

pretation of standard errors and gave guidelines for

computing and communicating measures of variabil-

ity based on sample data for both independent-group

and repeated-measures experimental designs.

Report Confidence Intervals Around

Point Estimates

Among the indications of variability that might be

used, confidence intervals deserve special attention

because the reporting of them around point estimates

has been advocated as an alternative, or adjunct, to

NHST by many writers, including both critics and

proponents of NHST (Bailer & Hosteller, 1988;

Bolles & Messick, 1958; Cohen, 1990, 1994; Gardner

& Altaian, 1986; Gonzalez, 1994; Grant, 1962;

Hunter, 1997; Jones, 1995; Loftus, 1991; Loftus &

Masson, 1994; Meehl, 1997; Mulaik et al., 1997; Ro-

zeboom, 1960; Schmidt, 1996; Serlin, 1993; Steiger

& Fouladi, 1997; Tukey, 1991).

Although confidence intervals are probably most

commonly reported for means or for differences be-

tween means, they can be computed for other statis-

tics as well. Usually upper and lower interval bounds

are equidistant from the estimated point value, but

they are not always so (Darlington & Carlson, 1987).

Steiger and Fouladi (1997) made a strong case for the

advantages of confidence intervals and described a

general method for computing them for variables for

which they are seldom reported. Techniques for com-

puting confidence intervals around means for be-

tween-subjects experimental designs are readily avail-

able; recently Loftus and Masson (1994) have

described procedures for computing such intervals for

within-subject designs. The fact that these cases re-

quire different computations suggests the need for

care in reporting computational approaches along

with the intervals computed (Estes, 1997a).

An attraction that is claimed for point estimates

bracketed with confidence intervals is that confidence

intervals are more informative than significance tests.

One gets both an estimate of effect size and an indi-

cation of uncertainty as to its accuracy. These esti-

mates can be especially helpful when there is interest

in showing that the effect of some experimental treat-

ment is nonexistent or small (e.g., an unwanted side

effect of a new drug). Reichardt and Gollob (1997)

suggested that attaching more importance to precision

of estimates (e.g., narrowness of confidence intervals)

in publication decisions could help address problems

stemming from the overriding importance now at-

tached to statistical significance. Hedges (1987) ar-

gued that something equivalent to the determination

of confidence intervals is typically done in the physi-

cal sciences. (See also Meehl, 1967, in this regard.)

Mulaik et al. (1997) noted that one reason that physi-

cal scientists do not use NHST so much is that they

are not always testing hypotheses but rather trying to

improve estimates of physical constants.

Some writers have cautioned that although confi-

dence intervals can be very effective aids to the in-

terpretation of data, they are subject to the some of the

same types of misconceptions and misuses as is

NHST (Abelson, 1997a; Cortina & Dunlap, 1997;

Frick, 1995b, 1996; Hayes, 1998). As Abelson

(1997a) said: "Under the Law of Diffusion of Idiocy,

every foolish application of significance testing will

beget a corresponding foolish practice for confidence

limits" (p. 13). Steiger and Fouladi (1997) warned that

the proper use of confidence intervals requires as-

sumptions about distributions, just as NHST does, and
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that if the assumptions are not met the resulting in-

tervals can be inaccurate. In particular, they noted that

"the width of a confidence interval is generally a ran-

dom variable, subject to sampling fluctuations of its

own, and may be too unreliable at small sample sizes

to be useful for some purposes" (p. 254). Cortina and

Dunlap (1997) argued that simply replacing NHST

with the use of confidence intervals could create the

illusion that all the problems associated with NHST

have thereby been solved when many of them may not

even have been addressed.

Essential to an understanding of confidence inter-

vals is the distinction between an interval around a

population parameter and one around a sample statis-

tic. These do not have the same meaning (Estes,

1997a). The theory underlying the use of confidence

intervals is based on repeated random sampling from

a known population and supports conclusions about

confidence intervals drawn around that population's

parameters. However, with rare exceptions, popula-

tion parameters are not known in empirical research—

the point of the research generally is to provide a basis

for estimating them—and confidence intervals are

drawn around the sample statistics.

A common misinterpretation of a confidence inter-

val of x% around a statistic (e.g., sample mean) is that

the probability is x that the parameter of interest (e.g.,

population mean) lies within the interval, or more

operationally that it is the interval around the statistic

within which x% of measures of the same statistic on

additional samples drawn in the same way would fall.

It is easy to find discussions of confidence intervals

that convey just this idea, which would be true if the

first measure of the statistic happened to coincide with

the population parameter and all subsequent samples

were randomly drawn from the same population, but

not otherwise. This misinterpretation may be rein-

forced by language such as the following that is some-

times found in statistics texts: "An alternative ap-

proach to estimation is to extend the concept of error

bound to produce an interval of values that is likely to

contain the true value of the parameter" (Bhat-

tacharyya & Johnson, 1977, p. 243). The authors of

this comment went on to point out that it is not correct

to interpret a confidence interval of, say, 95% as an

indication that the probability that the parameter of

interest lies within the specified interval is .95, but it

would not be surprising if the above comment itself is

interpreted by readers in that way.

Another example comes from Elifson, Runyon, and

Haber (1990), who after computing upper and lower

limits for the 95% confidence interval for a sample

mean of 108 and sample standard deviation of 15 said,

Having established the lower and upper limits as 101.82
and 114.18, respectively, we may now conclude: On the
basis of our obtained mean and standard deviation,
which were computed from scores drawn from a popu-
lation in which the true mean is unknown, we assert that
the population mean probably falls within the interval
that we have established, (p. 367)

These authors went on to caution, "Since the popula-

tion mean is a fixed value and does not have a distri-

bution, our probability statements never refer to u,." I

find it difficult to see these two assertions as consis-

tent.

Bhattacharyya and Johnson (1977) contended that

given an appropriately computed confidence interval

of x% it is correct to say that one is x% confident that

the parameter of interest lies within the interval, but it

is not correct to say that the probability is x that the

parameter lies within the interval. The statement of

confidence, in this view, rests on the expectation that

for 95% of the samples of the same size drawn at

random from the same population, confidence inter-

vals computed in the same way will contain the value

of the parameter, which is different from the belief

that the probability is .95 that the parameter lies

within the particular interval computed. (See also

Darlington & Carlson, 1987; Elifson et al., 1990;

Pruzek, 1997, regarding the same distinction.) This is

a subtle distinction, even discounting the thorny ques-

tion of what probability really means, and it is not

hard to understand that with respect to the interpreta-

tion of confidence intervals confusion appears to

reign.

Inasmuch as reporting confidence intervals has

been urged by many parties on both sides of the de-

bate about NHST, the infrequency of their appearance

in published articles (Kirk, 1996) begs an explanation.

The question is the more puzzling in view of the fact

that the use of point estimates and confidence inter-

vals ("error bands") predates the development of

NHST (Oakes, 1986; Schmidt & Hunter, 1997). Co-

hen's (1994) surmise is that the reason they are not

reported is that, at least when set at 95% to correspond

to a .05 a level, they typically are embarrassingly

large.

Reichardt and Gollob (1997) ventured several "po-

tential sources of resistance to the use of confidence

intervals" (p. 277), which in abbreviated form are as

follows: (a) convention (strength of tradition); (b) lack
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of recognition of conditions in which confidence in-

tervals are preferable to significance tests; (c) relative

paucity of computer programs and formulas for com-

puting confidence intervals; (d) the often disappoint-

ingly small size of parameter estimates—confidence

intervals reveal this whereas significance tests do not;

(e) the often disappointingly wide range of confidence

intervals; (f) the absence of unique confidence inter-

vals when no uniquely defined parameter is associated

with a statistical test, which means computing a con-

fidence interval may mean choosing among candidate

indexes and defending the choice; (g) arguments

against significance testing recognized to be falla-

cious that may, in some cases, damage the credibility

of claims of the superiority of confidence intervals;

and (h) some researchers' rejections of recommenda-

tions to abandon NHST (which sometimes accom-

pany promotion of the use of confidence intervals)

because they interpret them to be recommendations to

abandon hypothesis testing more generally and they

do not consider that to be desirable.

Estes (1997a) cautioned that because confidence

intervals can be computed in different ways, the

method of computation must be known in any par-

ticular case if confusion is to be avoided. (Methods of

computation depend on such considerations as sample

size, whether the standard deviation of the population

is known, whether the distribution of interest is sym-

metric, and so on.) He recommended against showing

"quasi" confidence intervals (intervals calculated

from interaction terms rather than from within-cell

mean squares) on figures, on the grounds that show-

ing them could invite misinterpretation. He noted, too,

the importance of consistently using intervals of the

same width (percentage) within a given research re-

port.

Report Effect Size

Many writers have recommended that researchers

standardly provide some indication of effect size ei-

ther along with or in place of the results of statistical

significance tests (Abelson, 1995; Carver, 1978,

1993; Cohen, 1988; Cook & Campbell, 1979; Fisher,

1925; Fleiss, 1969; Folger, 1989; Friedman, 1968;

Glass, 1976; Guttman, 1981; M. J. Harris, 1991; M. J.

Harris & Rosenthal, 1985; Hurlburt, 1994; Katzer &

Sodt, 1973; Loftus, 1993; Nelson et al., 1986; Scha-

fer, 1993; Schmidt, 1996; Snyder & Lawson, 1993;

Thompson, 1994a, 1996). The reporting of effect size

is required by some journal editors (Murphy, 1997;

Thompson, 1994a); it is encouraged but not required

by the Publication Manual of the American Psycho-

logical Association (4th ed., APA, 1994, p. 16).

The term effect size has an unfortunate ambiguity as

applied to the results of experimentation. Its most

straightforward connotation is that of the magnitude

of some measure, such as the size of the difference

between two means or the degree of association (co-

variation) between two variables. It can also suggest,

however, the theoretical or practical impact of a find-

ing. The former connotation is intended here and, I

believe, in most discussions of effect size in the psy-

chological literature, but the ambiguity is a source of

confusion. (Sometimes a distinction is made between

measures of effect size and measures of strength of

relationship [e.g., Kirk, 1996], but for present pur-

poses it will suffice to let the meaning of effect size be

sufficiently broad to encompass both.) As Maher

(1998) noted it is unfortunate that the word effect is

used to denote a computation "that tells us nothing

about the concrete effects produced by an interven-

tion" (p. 211). Shaver (1991, 1993), who argued for

another reason that the term should be result size,

contended that this should always be reported and that

the results of statistical significance tests and of power

analyses should never be.

A variety of indicants of effect size have been pro-

posed (Cliff. 1993; Cohen, 1962, 1977; Cohen & Co-

hen, 1983; Fleiss, 1969; Friedman, 1968; Hays, 1994;

Hedges, 1981; Judd, McClelland, & Culhane, 1995;

Maxwell, Camp, & Arvey, 1981; Rosenthal & Rubin,

1982; Snyder & Lawson, 1993; Tatsuoka, 1993). Sev-

eral, including the actual magnitude of the observed

effect (e.g., difference between means), a standard-

ized magnitude (the actual magnitude normalized by

the within-groups standard deviation), Pearson's r and

r2, and a measure of "causal efficacy" (the raw mag-

nitude of effect divided by the magnitude of the varia-

tion in the independent variable) are discussed by

Abelson (1995). The Publication Manual of the

American Psychological Association (4th ed.; APA,

1994) mentions as common measures "r2, T|2, to2, R2,

4>2, Cramer's V, Kendall's W, Cohen's d and K, Good-

man and Kruskal's \ and -y, Jacobson and Truax's

(1991) proposed measure of clinical significance, and

the multivariate Roy's 0 and the Pillai-Bartlett V" (p.

18). Kirk (1996) listed almost all of these plus several

others; however, on the basis of a survey of four APA

journals, he noted that most of these measures are

seldom if ever found in published reports.

Among the more widely used indicants is r2 (some-

times called the coefficient of determination), which
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shows the percentage of variance in a dependent vari-

able accounted for by variance in an independent vari-

able. Some writers have argued that r is a better in-

dicant than r2, however, for many practical purposes

(Nelson et al., 1986). Rosenthal and Rubin (1982)

believed that the importance of effects are often un-

derestimated when the value of r2 is small especially

perhaps in biomedical or clinical contexts.

Another widely used indicant of effect size is Co-

hen's (1962, 1988) d, which is the difference between

means divided by the pooled within-groups standard

deviation. Like the familiar z score, d expresses a

difference in standard-deviation units. Such a measure

has the advantage of facilitating comparisons of effect

sizes across studies involving measurements on dif-

ferent scales.

Pointing out that statistical significance is a func-

tion of two factors—effect size and sampling error—

Carver (1993) argued that reporting each of these

measures is preferable to reporting a statistic such as

t that combines them.

Statistical significance tells us nothing directly relevant

to whether the results we found are large or small, and it

tells us nothing with respect to whether the sampling

error is large or small. We can eliminate this problem by

reporting both effect size and standard errors, (p. 291)

The reporting of effect size, however, is not totally

free of problems. Which one of various possible ef-

fect-size estimates is most appropriate in a given con-

text is not always apparent (Rosenthal, 1991), and

opinions differ regarding the merits of specific possi-

bilities (Crow, 1991; Gorsuch, 1991; McGraw, 1991;

Parker, 1995; Rosenthal, 1991; Strahan, 1991). More-

over, the implications of effect-size estimates, like

those of other statistics, need to be interpreted care-

fully. It is not safe to assume, for example, that the

size of an effect obtained with one population, such as

college students, will generalize readily to other

populations, such as nonstudents (Sears, 1986).

Furthermore, a large effect is no more of a guaran-

tee of the theoretical or practical importance of a

finding than is a small p value resulting from a sig-

nificance test (Chow, 1991; Shaver, 1985); a small

effect may be very important in some contexts and a

large one of little interest in others (Lewandowsky &

Maybery, 1998; Prentice & Miller, 1992; Rosenthal,

1990; Rosenthal & Rubin, 1979). Finally, effect size

should not be confused with strength of belief; as

Abelson (1995) has pointed out, one may have a

strong belief in a small effect or a weak belief in a

large one.

The reporting of effect size may be seen as consis-

tent with the use of NHST and an important comple-

ment to it (Hagen, 1998; Thompson, 1993). Robinson

and Levin (1997) recommended the policy of first

determining whether an effect is statistically improb-

able and then, only if it is, including in the reporting

an indication of its size. Alternatively, as already

noted, one may decide first the minimum effect size

that would be large enough to be of interest and then

use NHST to test the hypothesis that the effect is

statistically significant only if it meets the size test

(Fowler, 1985).

Rosnow and Rosenthal (1989b) maintained mat ef-

fect sizes should be calculated whether or not/? values

reach conventional levels of statistical significance.

They noted that effect size tells the experimenter

something that a p value does not, and they suggested

that such computations can be useful in determining

sample sizes for subsequent experimentation. The

standard reporting of effect size has the added attrac-

tion for some analysts of facilitating the use of meta-

analytic techniques (Asher, 1993; Glass et al., 1981;

M. J. Harris & Rosenthal, 1985; Mullen, 1989; Rosen-

thai, 1984). Despite urgings for the consistent report-

ing of effect size, it appears not to have become stan-

dard practice yet (Kirk, 1996; Thompson & Snyder,

1997, 1998). One practical impediment to the use of

effect-size indicants as well as of confidence intervals

may be poor understanding of them among research-

ers (Svyantek & Ekeberg, 1995).

A contrary view regarding the importance of re-

porting effect sizes has been given by Chow (1988,

1996), who argued that it can be important when an

experimenter is interested in an experimental effect

per se and the purpose of an experiment is to deter-

mine whether that effect is of sufficient size to have

practical importance (utilitarian experiment), but that

it is not relevant when the purpose of the experiment

is to test an implication of an explanatory theory

(theory-corroboration experiment). In the latter case,

Chow (1996) claimed, the only relevant consideration

is whether the obtained result is consistent with that

predicted by the theory, within the criterion repre-

sented by the a level, and that an emphasis on effect

size in this context can be misleading. Chow (1996)

stressed that obtaining a result that is consistent in this

statistical sense with the implications of a theory does

not prove the theory true, but he argued that it does

add incrementally to the theory's tenability.
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Use Power Analyses

It is widely agreed, I believe, that when one wants

to conclude from the failure of a test to establish

statistical significance that there is no effect or that

any effect there might be is probably negligibly small,

a power analysis should be done if possible (Meehl,

1991; Robinson & Levin, 1997; Schafer, 1993). Only

if the power of the test was high should one treat the

null hypothesis as true (or approximately true), and

then only with sensitivity to the fact that even a test of

great power does not prove it to be so.

One hypothesized reason for lack of attention to

power by experiments is the difficulty of doing power

analyses. This problem has been addressed by R. J.

Harris and Quade (1992; R. J. Harris, 1997a) in their

development of "minimally important difference sig-

nificance," a method for calculating the sample size

"that would be barely sufficient to yield statistical

significance if your sample effect size is 'minimally

important,' that is, right on the borderline between

having and not having practical or theoretical impor-

tance" (R. J. Harris, 1997a, p. 166). Tables for deter-

mining sample sizes that are appropriate for detecting

effects of specified magnitude at specified levels of

significance are given also by Cohen (1977) and

Kraemer and Thiemann (1987). The burden is on the

researcher, of course, to specify what constitutes a

minimally important sample effect size.

Most of the discussion of power in the psychologi-

cal literature has focused on the question of how large

a sample must be in order for a given effect size to be

likely to yield statistically significant results and on

the researcher's problem of selecting a sufficiently

large sample to detect an effect if there is one to

detect. However, some writers have also argued the

importance of ensuring that power is not so great that

effects too small to be of interest will prove to be

statistically significant: "It is important for research-

ers to consider the power of their experiments not

only to detect the effects they seek, but also to avoid

detecting trivially small effects" (Rossi, 1997, p. 184).

If an experimenter is in the position of being inter-

ested in an effect only if it is relatively large and

robust—which is to say, an effect that would be likely

to be detected even with a relatively small sample—

then high power is not a requirement and could even

be undesirable. As is the case with so many aspects of

the use of statistics in hypothesis testing or decision

making more generally, the importance of power

analysis depends on the experimenter's intentions,

and its use requires some judgment.

Shaver (1993) has challenged the use of power

analysis on the grounds that its primary purpose is to

determine the sample size that is needed to yield sta-

tistically significant evidence of an effect of a given

magnitude, and that this is pointless if statistical sig-

nificance has little meaning, as he assumes.

If effect sizes are important because statistical signifi-
cance (probability) is not an adequate indicator of mag-
nitude of result (or much of anything else), why play the
game of adjusting research specifications so that a sta-
tistically significant result can be obtained if a prespeci-
fied effect size is obtained? (p. 309)

Schmidt and Hunter (1997; Schmidt, 1996) have also

argued that requiring researchers to use large enough

samples to ensure high power is neither a practical nor

desirable solution to the problems of NHST.

Like all tools in the statistical analyst's kit, power

analysis has its limitations. How likely an experiment

is to yield statistically significant results depends not

only on the size of the effect (assuming one exists)

and the size of the sample but also on the within-

condition variability of the data. Within-condition

variability can be influenced by many factors, but the

more it can be limited by careful experimental control

of extraneous variables, the more likely an effect of a

given size is to show up as statistically significant,

other things being equal; and power analysis is not

sensitive to this fact. It should be borne in mind, how-

ever, that attempts to minimize within-group variabil-

ity can have the effect of limiting the generality of

findings (Prazek, 1997); findings obtained with rela-

tively homogeneous samples (e.g., college sopho-

mores) do not necessarily generalize readily to more

heterogeneous populations (e.g., the general public).

Use Three-Outcome Tests

Some researchers have argued that the traditional

one- and two-tailed significance tests should be re-

placed with three-outcome tests (Bohrer, 1979; R. J.

Harris, 1994, 1997a, 1997b; Kaiser, 1960). One-tailed

tests do not permit one to determine that an effect is

statistically significant in the direction opposite that

hypothesized, and two-tailed tests do not justify a

conclusion about the direction of an effect (although

R. J. Harris, 1997a, pointed out that this does not stop

users of two-tailed tests from drawing such conclu-

sions). Some investigators have proposed modifica-

tions of conventional NHST (e.g., split-tailed tests)

that would permit rejection of the null hypothesis as a

consequence of a difference in the direction opposite
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the predicted one (Braver, 1975; Nosanchuk, 1978),

but such tests appear not to be widely used.

A three-alternative test can be thought of as equiva-

lent to two one-tailed tests (one in each direction) in

combination (Kaiser, 1960; Shaffer, 1972). With such

a test an experiment can lead to the decision that

mean, is smaller than mean2, that mean, is larger than

mean2, or that the direction of the difference (if any)

between their sizes is indeterminate.

R. J. Harris (1997a, 1997b) argued that many of the

misinterpretations of NHST are fostered by its pre-

sentation as allowing a choice between two hypoth-

eses and that those misinterpretations could be ad-

dressed by the use of three-alternative tests. One

conjecture, for example, is that people who are ex-

posed to three-alternative NHST will be less likely to

treat nonrejection of H0 as acceptance of it. Unlike

two-valued tests, a three-valued test makes it possible

for one to obtain statistically significant evidence

against one's research hypothesis.

Three-alternative tests provide a finer grained par-

titioning of outcomes than do two-alternative tests,

but they do not avoid most of the problems associated

with the latter. Moreover, despite the fact that their

use was promoted as early as 1960, they have not

gained much popularity among researchers (R. J. Har-

ris, 1997a; Hunter, 1997).

Use Parameter-Estimation and
Model-Fitting Techniques

Among alternatives to NHST are those of param-

eter estimation and model fitting. In these cases, one

is not asking whether two samples differ statistically

in some specified way or by more than some specified

amount; rather, one is attempting to estimate the value

of some parameter of a population or to determine

how well a model predicts the value of one or more

experimental variables.

One can argue that parameter estimation should be

a method of choice if one's objective is, to use a

distinction made by Grant (1962), not that of deciding

whether to accept or reject a finished theory but that

of working, long-term, on the improvement of theory.

Given the latter objective, "our statistical tactics can

be greatly improved by shifting emphasis away from

over-all hypothesis testing in the direction of statisti-

cal estimation" (p. 57).

Granaas (1998) argued that model fitting is not only

more powerful than NHST but also simpler to learn

and to use. An attractive feature of the approach is

that model fitting can proceed in a closed-loop fash-

ion: An existing model is retained until one that fits

the data better comes along, at which point it is re-

placed by the better fitting one. A variety of measures

for evaluating goodness of fit have been developed,

including measures of "error" between predicted and

obtained results and percentage of variance accounted

for by a model. (Aldiough parameter estimation and

model fitting are often seen as alternatives to NHST,

it should be noted that a form of NHST plays a role in

some measures of goodness of fit [T. D. Wickens,

1989].)

Goodness of fit is not the only criterion for evalu-

ating a model. One can always define a model that fits

a set of data perfectly by giving it a sufficiently large

number of parameters, but the more parameters a

model has, the less generalizable it is likely to be; and

other things being equal, the simpler the model, the

better from a scientific point of view. Other criteria

that should be taken into consideration in evaluating a

model or selecting among competing ones include

explanatory power, plausibility, and internal consis-

tency (Myung & Pitt, 1997).

Demonstrate Replicability by Replicating

Replicability is generally recognized as the sine qua

non of an experimental finding that is to be considered

scientific. However, as already noted, replication has

more than one connotation. Lykken (1968) distin-

guished three: exact, or literal, replication of the con-

ditions of an earlier study to the degree possible; op-

erational replication, in which an attempt is made to

reproduce what the experimenter perceives to be the

main aspects of the earlier experimental situation; and

constructive replication, in which the same constructs

or relationships are investigated in a procedurally dif-

ferent way.

Experiments that are literal replications of previ-

ously published experiments are very seldom pub-

lished—I do not believe I have ever seen one. Others

who have done systematic searches for examples of

them confirm that they are rare (Mahoney, 1976; Ster-

ling, 1959). It is easy to identify factors that could

contribute to the paucity of exact replication studies.

Most researchers would probably not find experi-

ments designed only to replicate either their own re-

sults or those of other researchers especially challeng-

ing or interesting. PhD committees generally expect

more from dissertations than the replication of some-

one else's findings. Evidence suggests that manu-

scripts that report only replication experiments are
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likely to get negative reactions from journal reviewers

and editors alike (Neuliep & Crandall, 1990, 1993).
Despite these, and perhaps other, inhibiting factors,

replication of results has been urged by some as a
good, perhaps the best, alternative to NHST (Carver,

1978,1993; Cohen, 1994; Falk, 1998b; Falk & Green-

baum, 1995; Hubbard, 1995; Lindsay & Ehrenberg,

1993; Rosenthal, 1993; Thompson, 1993, 1994b,
1996). Carver (1993), for example, contended that the

best research articles are those that include no tests of

statistical significance, and that all statistical signifi-

cance testing could be replaced by replication of re-

sults. Steiger (1990) described the preference for rep-
lication over NHST somewhat hyperbolically: "An

ounce of replication is worth a ton of inferential sta-

tistics" (p. 176); Rozeboom (1997) quoted Steiger ap-

provingly. Shaver (1993) argued that editors should

encourage replication and in some cases demand it

before publishing. Lykken (1968) saw the demand for
replication before publication as an ideal but imprac-
tical policy.

Replication, in the sense of again obtaining a sta-
tistically significant result, is important also as a safe-
guard against Type I error. A single instance of a
result that proves to be statistically significant at the
.05 level could easily have been obtained by chance;
however, the likelihood that one would repeatedly get
significance at this level if the effect were really due
to chance is small. Fisher's idea of solid evidence of

an effect was not a single demonstration of signifi-
cance at the .05 level but the ability to obtain this level
of significance repeatedly (Tukey, 1969). Greenwald
et al. (1996) have emphasized especially the impor-
tance of seeking further support for a hypothesis by
replication when an experiment has yielded a p no

smaller than approximately .05. It has been pointed
out, too, that even a failure to replicate a result in the
sense of failing to again get a statistically significant
effect can decrease the probability that the original
finding was a Type I error, provided the outcome of
the attempted replication is ordinally similar to the
original experiment (i.e., the nonsignificant effect is
in the same direction as that of the original experi-
ment; Humphreys, 1980).

Ways of obtaining evidence of the reliability of
results short of conducting separate replication experi-
ments have been proposed. These typically involve
partitioning data sets in one or more ways and com-
paring the results of analyses on the resulting data
subsets (Efron, 1979; Huck, Cormier, & Bounds,
1974; Thompson, 1993, 1994b, 1997). Of course, suc-

cessful replication of an effect does not prove that the
next attempt at replication will be successful also, nor
does it prove the theory that predicted the effect is
necessarily true; it does justifiably increase one's con-
fidence that further replication is obtainable, however,

and lends some credence to theories that predict the

effect as well.

Use the Bayesian Approach to

Hypothesis Evaluation

The replacement or complementation of NHST

with the use of likelihood ratios and the estimation of
posterior probabilities by application of Bayes's rule

has been proposed by many writers (Edwards, 1965;
Edwards et al., 1963; Gelman, Carlin, Stern, & Rubin,

1995; I. J. Good, 1981; Greenwald, 1975; Lindley,
1984; Rindskopf, 1997; Rouanet, 1996; Rozeboom,

1960; Rubin, 1978). In theory, this possibility has
much to recommend it. A strong argument in favor of
Bayesian hypothesis evaluation is that it permits evi-

dence to strengthen either the null hypothesis or its
alternative(s). Moreover, as Rouanet (1996) has said,
a Bayesian analysis can lead either to the conclusion
that the probability is high that a population effect is
large or to the conclusion that the probability is high
that a population effect is small, either of which could
be of theoretical interest. (Rouanet, 1996, 1998, sup-

ported the idea of using Bayesian procedures to
complement rather than replace NHST.)

These advantages are in contrast to classical NHST
as conventionally used, which in Edwards et al.'s
(1963) view, leaves the null hypothesis when it is not
rejected "in a kind of limbo of suspended disbelief
(p. 235). Given a set of competing models of some
process of interest, if one can specify for each model
in the set a prior probability and the probability of the
experimental outcome conditional on that model be-
ing true, then one can use Bayes's rule to compute the
probability of each model conditional on the outcome
and determine the one for which the (posterior) prob-
ability is the largest.

Another major advantage of a Bayesian approach to
data evaluation is that it constitutes a procedure for
cumulating the effects of evidence across studies over
time. In particular, the formalism allows for the pos-
terior probabilities of one set of studies to be the
priors for a subsequent one; at least in theory the
process can be iterated indefinitely. As Pruzek (1997)
pointed out, because of this fact sequences of studies
analyzed within a Bayesian framework could some-
times obviate the need for meta-analysis. Classical
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statistical methods do not provide for the incorpora-

tion of prior information in analyses; they generally

treat the data from each experiment in isolation.

Perhaps many investigators who use classical

NHST would hold that a Bayesian approach to hy-

pothesis evaluation is to be preferred when the infor-

mation that is necessary to apply Bayes's rule is

known or can be plausibly assumed, but would con-

tend that this condition is seldom met. The most com-

mon problem that arises is the difficulty of specifying

prior probabilities (Frick, 1996). A standard default

assumption in Bayesian analysis is that the hypotheses

under consideration are all equally probable a priori.

Although less often discussed, estimating a value

for p(D \ HA) is also a problem. As we have noted, a

criticism of NHST is that it considers only the prob-

ability of the observed result given the distribution of

possibilities assumed by the null hypothesis and that it

does not consider the likelihood of the result given the

distribution assumed by a specific alternative hypoth-

esis. W. Wilson et al. (1967) acknowledged the pref-

erability of the use of likelihood ratios when the in-

formation needed to apply them—in particular the

value of p(D I #A)—is available, but they defended

the use of NHST when it is not:

If we have a clearly defined alternative, and we can say

that "reality" must be one or the other, then we can

justify a likelihood ratio or some similar procedure. If we

do not have such alternative models, we cannot invent

them to avoid a theoretical bias. (p. 191)

Palm (1998) took a similar position.

Many researchers have objected to the use of a

Bayesian approach to hypothesis evaluation on philo-

sophical grounds. Fisher (1935), for example, rejected

it on the grounds that it (sometimes) regarded math-

ematical probability as a reflection of psychological

tendencies—beliefs—as opposed to an objective mea-

sure derived from observable frequencies, and he con-

sidered theorems involving such subjective entities to

be useless for scientific purposes. This opinion repre-

sents one side of a long-standing controversy about

what probability "really means." Opponents of the use

of Bayesian analysis when there is no objective basis

for assigning prior probabilities point out that differ-

ent people will arrive at different conclusions, reflect-

ing differences in their individual prior beliefs. They

note, too, that when priors must be produced subjec-

tively it is not always clear that they are any more

credible than subjectively estimated posterior prob-

abilities would be (Oakes, 1986). The application of

Bayesian techniques to the analysis of experimental

data has proved to be at least as controversial among

researchers and analysts as has NHST.

NHST and Bayesian analysis are sometimes con-

trasted as mutually exclusive approaches to the evalu-

ation of evidence, and arguments are couched in such

a way as to suggest that any positive (negative) state-

ment that can be made with respect to one is neces-

sarily a negative (positive) reflection on the other. In

truth, it is not necessary to see the situation this way.

It is possible to believe that each has strengths and

limitations, and that which is preferred depends on the

specifics of the situation in which one or the other is

to be applied. Recent tutorial presentations of Bayes-

ian methods include Lewis (1993), Winkler (1993),

Bernado and Smith (1994), and Robert (1994).

Summary of Alternatives or Supplements
to NHST

Each of the suggested alternatives or complements

to NHST mentioned above has its proponents. Expo-

sitions and defenses of many of them can be found in

a recent collection of articles on the subject (Harlow,

Mulaik, £ Steiger, 1997; for a review, see Nickerson,

1999). In an overview chapter Harlow (1997) listed

eight practices of scientific inference suggested by the

contributors to the collection. One of the practices

(the least strongly endorsed by the contributors in the

aggregate) was the making of dichotomous decisions

with NHST; each of the following additional seven

could be considered an alternative or complement to

NHST: (a) Assess strong theories with careful think-

ing and sound judgment; (b) focus on estimation and

the width of an appropriate confidence interval; (c)

calculate effect sizes and power; (d) evaluate how

well a model approximates the data, without neces-

sarily attending to issues of statistical significance; (e)

make null and alternative hypotheses very specific

(i.e., a particular nonzero value) and realistic; (f) rep-

licate results in independent studies or quantitatively

summarize using meta-analysis; (g) use Bayesian

methods of inference.

As to how NHST compares with the other seven

practices, Harlow (1997) had this to say:

This method of focusing on a dichotomous decision:

would contribute little to the development of strong
theories or sound judgment; lacks the precision of either

confidence intervals, effect sizes, or power calculations;

is less informative than goodness of approximation as-
sessment or the use of specific, realistic, and nonzero

hypotheses; and is less thorough than either replication,
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meta-analysis, or Bayesian inference... In sum, the
overriding view on this issue is that NHST may be over-
used and unproductive, particularly when used as simply
a dichotomous decision rule. (p. 12)

There can be little doubt that NHST has many crit-

ics and that there is general agreement among them

that the method, especially when used as the only

indicant of scientific credibility, is seriously flawed.

Harlow's (1997) negative summary of its weaknesses

was intended, I assume, to represent the overriding,

though not unanimous, view among the contributors

to Harlow et al.'s (1997) volume. The extent to which

that view prevails among the research community

more generally is not so clear.

Other Recommendations

In addition to recommendations pertaining directly

to the use of NHST or regarding specific alternative or

complementary approaches to data analysis, a number

of more general recommendations have been made or

could be made. I mention a few here that I think are

especially noteworthy.

Make a Clear Distinction Between the
Substantive Questions) of Interest and the
Statistical Hypothesis(es) to Be Tested

Researchers should distinguish statistical from epistemic
questions, that is, when they are making an inference
concerning a parameter (point value, range, slope, sign)
from a statistic versus when they are appraising the veri-
similitude of a substantive theory (causal, compositional,
or historical) on the basis of the inferred parameters.
(Meehl, 1997, p. 422)

It seems to me that this recommendation by Meehl, if

followed carefully, would go a long way toward solv-

ing many of the problems associated with NHST. This

surmise is based on the assumption that at the root of

many of these problems is either a confusion between

epistemic and statistical hypotheses or a focus on the

latter type to the neglect of the former.

Make NHST Subsidiary to Other
Considerations in Evaluating Data

Carver (1978, 1993) argued that testing for statis-

tical significance before considering whether the data

are generally supportive of the experimental hypoth-

esis of interest is a corruption of the scientific method

and that the rule should be to always interpret the

results with respect to the data first and do statistical

significance testing only secondarily. As to the argu-

ment that one may have to test for statistical signifi-

cance in order to see whether there is any effect worth

further consideration, Carver had little patience with

it: "A study with results that cannot be meaningfully

interpreted without looking at the p values is a poorly

designed study" (1978, p. 394).

A not dissimilar sentiment has been expressed by I.

J. Good (1981/1983b): "Personally I think that Rule 1

in the analysis of data is 'look at the data' " (p. 138).

Rozeboom (1997) encapsulated a closely related idea

in what he called "the statistical relevance precept,"

according to which one should think through what one

would want to make of a finding if one could obtain

data with no sampling error. "You have nothing to

gain from concern for a statistics sampling uncer-

tainty (save to oblique colleagues who want it) if you

have little idea of what to do with its population value

were you to know that" (p. 385). Rouanet (1996), who

argued strongly for the use of a Bayesian approach to

data analysis, also contended that one should consider

first whether an effect is sufficiently large (or suffi-

ciently small) to be of interest if it held for the rel-

evant population as well as for the sample before

doing any statistical analyses. "If this is not the case,

no corresponding inferential conclusion is reachable.

If this is the case, the aim ascribed to inferential pro-

cedures should be to extend descriptive conclusions to

the population, allowing for sampling fluctuations"

(p. 150).

Sohn (1998b) recommended that, at least in the

case of atheoretical research, findings should be taken

seriously only when they can be obtained consistently

with individuals. In effect this means they should be

discernible without the help of inferential statistics:

In the context of atheoretical research... effects need to
be so robust that they are discernible in the individual
organism so consistently that there is general agreement
that the treatment is producing an effect. In such a case,
significance tests are supererogatory. (Sohn, 1998b, p.
307)

Sohn (1998a) expressed the opinion that in psychol-

ogy "findings that are not obviously discernible in

nearly every instance are likely to be ignored. And if

they are not ignored, they typically become a source

of controversy" (p. 334).

What makes an experimental result worth publish-

ing is a matter of opinion. I suspect there are few

researchers who would argue that statistical signifi-

cance alone suffices, but one must wonder about the

extent to which fixation on NHST to the exclusion of
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other considerations has contributed to the "indis-

criminate cataloguing of trivial effects," which W.

Wilson et al. (1967) referred to 30 years ago as "a

major problem in psychology today" (p. 195). More

recently, Abelson (1997a, 1997b) has noted that sig-

nificance tests are sometimes applied in unthinking

ways to test differences that have little or no relevance

to the question of interest or that are apparent without

the benefit of the test.

The indiscriminate use of NHST has been criticized

in even stronger terms by Edwards (1965), who has

commented on what he considers to be the violent

bias of classical hypothesis testing against the null

hypothesis:

This violent bias of classical procedures is not an un-

mitigated disaster. Many null hypotheses tested by clas-

sical procedures are scientifically preposterous, not wor-
thy of a moment's credence even as approximations. If a

hypothesis is preposterous to start with, no amount of

bias against it can be too great. On the other hand, if it

is preposterous to start with, why test it? (p. 402)

Sometimes statistics are used to compensate for

poorly controlled experimentation. Variables are var-

ied unsystematically, and little attention is given to

the possibility of artifactual effects, the assumption

being that statistical analyses will sort everything out.

However, it is precisely where statistics are most

needed to make sense of noisy data that significance

tests lend themselves most readily to misinterpretation

and misuse. As W. Wilson et al. (1967) said: "It

makes relatively little difference which approach you

use in precise experimentation. With great precision,

you cannot go too far wrong" (p. 194). Conversely,

given sloppy experimentation statistics are at least as

likely to obfuscate as to clarify.

To keep NHST and other statistical procedures in

perspective, it is well to also bear in mind that much

scientifically solid and exceptionally influential psy-

chological research has been done with relatively

little, if any, use of statistics. The names of James,

Bartlett, Piaget, Skinner, and Wertheimer come im-

mediately to mind. Moreover, even effects that are

statistically significant at a small value of p—and are

large—are not guaranteed to be interesting and im-

portant; these aspects can be determined only relative

to some value system that is beyond the province of

statistics. A single-minded concern for statistical sig-

nificance untempered by other considerations does

not serve the best interests of any scientific field.

Consider the Intended User of the
Research Findings

I have appropriated this recommendation from C.

D. Wickens (1998) because it seems to me an obvi-

ously correct and important but neglected point. I sus-

pect that most participants in the debate about NHST

assume that the primary audience for research reports

is other researchers, but potential users of the results

of applied research include people other than re-

searchers. What is most helpful by way of statistical

analyses and statistical reporting for researchers may

not necessarily be what is most helpful for practitio-

ners. For example, while the conservative policy of

guarding against Type I error at the expense of allow-

ing a high incidence of Type II error may be in keep-

ing with the idea that novel hypotheses should not be

accepted or old ones discarded except on "beyond-a-

reasonable-doubt" evidence, when a decision must be

made between two possible approaches to a practical

problem and the costs of both possible errors are com-

parable, a "preponderance-of-evidence" criterion may

be more appropriate.

Understand (Perhaps Even Explain) Statistical
Approach and Rationale for It

Whatever approach one takes to hypothesis evalu-

ation, it seems a good idea to understand why one is

taking that approach. It is at least a plausible conjec-

ture that many users of statistical tests lack a deep

conceptual grasp of the logic of those tests, the con-

ditions that legitimize their use, and the conclusions

they justify. The main effects of such lack of under-

standing are likely to be misapplication of tests and

the drawing of unsubstantiated conclusions from their

outcomes; and they can only be magnified by the

ready availability of software that makes statistical

tests—whether appropriate or not—trivially easy to

perform.

Not only is understanding of the statistical tests one

uses important, sometimes it may be desirable to ex-

plain the rationale for one's statistical approach. This

may mean stating any important assumptions that will

not be obvious to the reader. If, for example, one is

using a point null hypothesis as a convenient proxy

for a range null, it would help to make this clear and

to specify the range. It also means being explicit about

how a statistic was computed when more than one

method is possible and the different methods yield

different results.
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Choose Language Carefully

Undoubtedly some of the misconceptions about

NHST are maintained and reinforced by the use of

less-than-precise language in discussions of NHST

and the results of such testing. The word significance

invites misconception in the statistical context be-

cause of its everyday connotation of importance.

Some writers have suggested discontinuing use of the

word to convey statistical meaning—Chow (1996),

for example, suggested replacing it with nonchance—

but it seems unlikely that the term will disappear from

psychologists' vocabularies anytime soon. Some writ-

ers use reliable in lieu of statistically significant, but

this could be interpreted as assuredly replicable.

Reporting statistical significance as simply "signifi-

cance" undoubtedly contributes to the confusion be-

tween statistical significance and importance from a

theoretical or practical point of view. This is not to

suggest that one needs slavishly to qualify every in-

stance of reporting the results of a statistical signifi-

cance test with the word statistical, which can become

tediously repetitive in some cases, but it is to suggest

that one should be careful to make it clear that statis-

tical significance—as opposed to theoretical or prac-

tical significance—is intended whenever there is a

good chance of misinterpretation.

Careful use of language is especially important

when speaking of conditional probabilities having to

do with NHST. Reference to the a level as "the prob-

ability of Type I error" without making clear that it is

the probability of rejecting H0 conditional on H0 be-

ing true illustrates the point, as does reference to |J as

"the probability of Type II error" without explicitly

noting that |3 is the probability of failing to reject HQ

conditional on H0 being false. There are many other

possibilities for confusion arising from failure to note

the conditional status of probabilities, some of which

have been mentioned in preceding sections of this

article.

After writing the preceding paragraph, I checked

some definitions in the fifth edition of a statistics text

of some longevity (Witte & Witte, 1997) that hap-

pened to be within reach. I found the following state-

ments: "Alpha (a): The probability of a type I error,

that is, the probability of rejecting a true null hypoth-

esis" (p. 251). "Beta ((B): The probability of a type II

error, that is, the probability of retaining a false null

hypothesis" (p. 253). "Power (l-p5): The probability

of detecting a particular effect" (p. 258). Each of the

probabilities mentioned is a conditional probability. 1

am sure that Witte and Witte understand this and per-

haps a careful reading of the entire presentation in the

text would make the conditionality clear, but the defi-

nitions lend themselves to misinterpretation.

Consider Aggregate Evidence

NHST is usually done with respect to the outcome

of a single experiment or the manipulation of a single

experimental variable. As has been pointed out many

times, few psychologists would be willing to decide

on the truth or falsity or general tenability of a hy-

pothesis of nontrivial interest on the basis of the out-

come of a single experiment. What seems to happen is

that researchers are persuaded of the tenability or un-

tenability of a hypothesis by the accumulation of evi-

dence for or against it over many different experi-

ments. The impact of the outcome of a single

experiment depends in part on the prior tenability of

the hypothesis because of evidence in hand before the

experiment was done. According to a Bayesian view,

this is as it should be.

The use of meta-analytic techniques has been urged

by many as a structured method for considering the

implications of the results of sets of experiments in

the aggregate (Cooper, 1979; Cooper & Rosenthal,

1980; Eddy, Hasselblad, & Shachter, 1992; Glass,

1976; Glass & Kliegl, 1983; Hunter & Schmidt, 1990;

Hunter, Schmidt, & Jackson, 1982; Schmidt, 1992,

1996). Meta-analysis has the advantage, its propo-

nents argue, that it provides a means of extracting

useful information even from the results of experi-

ments that have not been statistically significant on

their own. Even Mulaik et al. (1997), who strongly

defended the use of NHST, recommend that in evalu-

ating studies journal editors consider the potential of

their data being useful in combination with those of

other studies in meta-analyses. Schmidt and Hunter

(1997) argued that single studies do not contain

enough information to be decisive with respect to hy-

potheses and that it is only by combining the findings

of individual studies through the use of meta-analysis

that dependable scientific conclusions can be reached.

They went so far as to suggest that

from the point of view of the goal of optimally advanc-

ing the cumulation of scientific knowledge, it is best for

individual researchers to present point estimates and

confidence intervals and refrain from attempting to draw
final conclusions about research hypotheses. These will

emerge from later meta-analyses. (p. 52)

Without denying the importance of analytic tech-

niques for aggregating the results of a large number of
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experiments, I believe that individual experiments and

their stand-alone results will continue to play a critical

role in the advance of psychological knowledge. I can

do no better than quote Abelson (1997b) on this point:

"Even though a single study cannot strictly prove any-

thing, it can challenge, provoke, irritate, or inspire

further research to generalize, elaborate, clarify, or to

debunk the claims of the single study" (p. 124). We

need to also bear in mind that it is possible for knowl-

edge to cumulate without the aid of specific meta-

analytic techniques; it has done so in the physical

sciences quite effectively for a long time. Moreover,

meta-analysis is not entirely free of problems and of-

fers its own set of possibilities for misuse (Chow,

1996; Erwin, 1997; Gallo, 1978; Knight, Fabes, &

Higgins, 1996; Lepper, 1995; Leviton & Cook, 1981;

Shapiro, 1997; Sohn, 1996: G. T. Wilson & Rachman,

1983).

Recognize the Provisional Nature
of Hypotheses

In their defense of NHST, Mulaik et al. (1997)

emphasized—following Fisher (1935)—the impor-

tance of recognizing the tenability or defeasibility of

scientific hypotheses or generalizations. All hypoth-

eses, no matter what the evidence respecting them at

any given time, are subject to modification as a con-

sequence of further information that is relevant to

them.

Conclusion

NHST has been and is a controversial method of

extracting information from experimental data and of

guiding the formation of scientific conclusions. As

Meehl (1997) said:

Competent scholars persist in strong disagreement, rang-
ing from some who think W0-testing is pretty much all
right as practiced, to others who think it is never appro-
priate. Most critics fall somewhere between these ex-
tremes, and they differ among themselves as to their
main reasons for complaint, (p. 421)

"Strong disagreement" does not quite capture the

intensity of some of the contributions to the debate.

Although many of the participants have stated their

positions objectively and gracefully, I have been

struck with the stridency of the attacks by some on

views that oppose their own. NHST has been de-

scribed as "thoroughly discredited," a "perversion of

the scientific method," a "bone-headedly misguided

procedure," "grotesquely fallacious," a "disaster," and

"mindless," among other things. Positions, pro or con,

have been labeled "absurd," "senseless," "nonsensi-

cal," "ridiculous," and "silly." The surety of the pro-

nouncements of some participants on both sides of the

debate is remarkable.

One hypothesis worth entertaining about the con-

troversy is that it is a tempest in a teapot. (I am re-

minded of a comment by Kac, 1964: "Whatever your

views and beliefs on randomness—and they are more

likely than not untenable—no great harm will come to

you.") Perhaps a case could be made for this possi-

bility. What is the great harm if many people who use

NHST believe that p is the probability that the null

hypothesis is true, or that a small p is evidence of

replicability, or that a is the probability that if one has

rejected the null hypothesis one has made a Type I

error? Claims to the contrary notwithstanding, there is

room for doubt as to whether acquisition of psycho-

logical knowledge through experimentation has been

greatly impeded by the prevalence of such beliefs or

by any of the many other shortcomings of NHST that

have been ably identified by its critics.

Moreover, evidence suggests that the confidence

psychologists place in experimental findings tends to

vary with statistical test outcomes in intuitively rea-

sonable ways. Confidence generally varies inversely

with p value and directly with effect size and sample

size (Beauchamp & May, 1964; Nelson et al., 1986;

Rosenthal & Gaito, 1963, 1964). Confidence in a

finding is also increased as a consequence of success-

ful replication (Nelson et al., 1986). Despite the many

problems associated with NHST, these predilections

should facilitate orderly application of research results

to the advance of psychological theory. Most impor-

tantly, under assumptions that may be valid for most

experiments, a small value of p is indeed indicative of

a not-quite-so-small value of p(H0 I D). Perhaps it is

the case, as Rindskopf (1997) has argued, that null

hypothesis tests are still used because "they are testing

approximately the right thing under many real circum-

stances, even though most researchers do not know

the rationale" (p. 321).

On the other hand, as noted at the outset, NHST is

arguably the most widely used method of analysis of

data collected in psychological experiments and has

been so for a long time. If it is misunderstood by

many of its users in as many ways as its critics claim,

this is an embarrassment for the field. A minimal goal

for experimental psychology should be to attempt to

achieve a better understanding among researchers of

the approach, of its strengths and limitations, of the
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various objections that have been raised against it, and

of the assumptions that are necessary to justify spe-

cific conclusions that can be drawn from its results.

The situation is not simple—it is confused and con-

fusing—and a nonsuperficial understanding of the is-

sues requires a considerable investment of time and

effort. Having made a bit of an effort in this direction

myself, one conclusion that I have come to is that it is

not necessarily the case that the more one learns about

NHST, the clearer its proper role in psychological

research becomes; a more likely consequence of

learning, in my view, is the discovery that some of the

principles and relationships one had considered well-

established or that one had taken for granted are not

beyond dispute. One finds conflicting opinions

strongly held by knowledgeable people on various

aspects of the topic, and it is not always easy to be

sure of what one's own should be. However, there is

little virtue in being confident of one's opinions when

the confidence depends on not being aware of rea-

soned alternatives that exist.

The debate about NHST has its roots in unresolved

disagreements among major contributors to the devel-

opment of theories of inferential statistics on which

modern approaches are based. Gigerenzer et al.

(1989) have reviewed in considerable detail the con-

troversy between R. A. Fisher on the one hand and

Jerzy Neyman and Egon Pearson on the other as well

as the disagreements between both of these views and

those of the followers of Thomas Bayes. They noted

the remarkable fact that little hint of the historical and

ongoing controversy is to be found in most textbooks

that are used to teach NHST to its potential users. The

resulting lack of an accurate historical perspective and

understanding of the complexity and sometimes con-

troversial philosophical foundations of various ap-

proaches to statistical inference may go a long way

toward explaining the apparent ease with which sta-

tistical tests are misused and misinterpreted.

On one point most writers agree: NHST cannot be

done mechanically without running the risk of obtain-

ing nonsensical results; human judgment must be an

integral, and controlling, aspect of the process. Abel-

son (1997a) made this point forcefully:

Whatever else is done about null-hypothesis tests, let us
stop viewing statistical analysis as a sanctification pro-
cess. We are awash in a sea of uncertainty, caused by a
flood tide of sampling and measurement errors, and there
are no objective procedures that avoid human judgment
and guarantee correct interpretations of results, (p. 13)

To the extent that the motivation to ban NHST stems

from a desire to rid psychology or psychologists of

misconceptions of the sort reviewed in the first part of

this article, there is little reason to believe that such a

ban would have the desired effect because the pro-

posed alternatives to NHST lend themselves to mis-

interpretations and misuses as well. As R. J. Harris

(1997a) said: "Banning significance tests is clearly

not going to guarantee that misunderstandings of the

role of sampling error and the strength of evidence

required to establish the validity of a null hypothesis

won't continue to bedevil us" (p. 160). NHST surely

has warts, but so do all the alternatives.

The indispensability of human judgment in the in-

terpretation of the results of research, including the

results of statistical tests, has been stressed by many

(Berger & Berry, 1988; Browne & Cudek, 1992; Co-

hen, 1994; Cortina & Dunlap, 1997; Falk & Green-

baum, 1995; Gigerenzer, 1993; Huberty & Morris,

1988; Malgady, 1998). However, judicious use of sta-

tistical tests presupposes a level of mathematical so-

phistication that the training of social scientists often

fails to achieve, and lack of this sophistication

coupled with the ready availability of statistical soft-

ware more or less ensures some inappropriate appli-

cations of statistical tests and unreasoned uses of their

results (Estes, 1997b).

Arguments regarding the appropriateness of NHST

will surely continue. Most Bayesians will undoubt-

edly argue against it, and many non-Bayesians will

continue to use it; but this split is too simple. There

are people who see the advantages of Bayesian analy-

sis when the information that it requires is readily at

hand who are not ready to declare NHST defunct. I. J.

Good (1981/1983b) has put himself in this camp:

I personally am in favor of a Bayes/non-Bayes compro-
mise or synthesis. Partly for the sake of communication
with other statisticians who are in the habit of using
tail-area probabilities, 1 believe it is often convenient to
use them especially when it is difficult to estimate a
Bayes factor. But caution should be expressed when the
samples are very large if the tail-area probability is not
extremely small, (p. 143)

McGrath (1998) has argued that it is not a question

of whether NHST is useless but rather whether there

is something better. This is a question that should be

asked, in my view, whenever one is attempting to

decide how to extract information from data, and it

applies not only to NHST but to any other approach

one might consider using. There are no statistical pro-
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cedures that can safely be used without thought as to

their appropriateness to the situation or the question of

whether there are more effective approaches avail-

able. Statistical methods should facilitate good think-

ing, and only to the degree that they do so are they

being used well. When applied unthinkingly in cook-

book fashion and without awareness of their limita-

tions and of the assumptions that are needed to justify

conclusions drawn from them, they can get in the way

of productive reasoning; when used judiciously, with

cognizance of their limitations, they can be very help-

ful in making sense of data and determining what

conclusions are justified. NHST, like other statistical

tools, can be applied in inappropriate and counterpro-

ductive ways—easily when its rules of application or

its products are not well understood—but it can also

be an effective aid to data interpretation when used

appropriately as an adjunct to good experimental de-

sign and in conjunction with other methods of extract-

ing information from noisy data.

Finally, in trying to assess the merits of NHST and

other approaches to the evaluation of hypotheses, it is

well to bear in mind that nothing of importance in

psychology has ever been decided on the basis of the

outcome of a single statistical significance test. Psy-

chological knowledge is acquired, as is knowledge in

other fields, as a consequence of the cumulative effect

of many experiments and nonexperimental observa-

tions as well. It is the preponderance of evidence gath-

ered from many sources and over an extended period

of time that determines the degree of credibility that is

given to hypotheses, models, and theories.
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