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Abstract. Classifying information search behavior helps tailor recommender systems to
individual customers’ shopping motives. But how can we identify these motives without
requiring users to exert too much effort? Our research goal is to demonstrate that eye
tracking can be used at the point of sale to do so. We focus on two frequently investigated
shopping motives: goal-directed and exploratory search. To train and test a prediction
model, we conducted two eye-tracking experiments in front of supermarket shelves. The
first experiment was carried out in immersive virtual reality; the second, in physical
reality—in other words, as a field study in a real supermarket. We conducted a virtual
reality study, because recently launched virtual shopping environments suggest that there
is great interest in using this technology as a retail channel. Our empirical results show that
support vector machines allow the correct classification of search motives with 80% ac-
curacy in virtual reality and 85% accuracy in physical reality. Our findings also imply that
eye movements allow shopping motives to be identified relatively early in the search
process: ourmodels achieve 70% prediction accuracy after only 15 seconds in virtual reality
and 75% in physical reality. Applying an ensemble method increases the prediction ac-
curacy substantially, to about 90%. Consequently, the approach that we propose could be
used for the satisfiable classification of consumers in practice. Furthermore, both envi-
ronments’ best predictor variables overlap substantially. This finding provides evi-
dence that in virtual reality, information search behavior might be similar to the one
used in physical reality. Finally, we also discuss managerial implications for retailers
and companies that are planning to use our technology to personalize a consumer as-
sistance system.
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1. Introduction
Understanding theways inwhich humans direct their
attention while searching for information is funda-
mental in guiding the design of information systems.
In the information systems domain, several stud-
ies have indicated that eye tracking is suitable for
studying human-computer interaction (Ajanki et al.
2009, Bednarik et al. 2012) or to improve electroen-
cephalographic recording for analyzing attention and
cognitive processing (Léger et al. 2014). Previous
research in other domains has shown that monitoring

eye movements can provide valuable insight into
information search and choice processes in various
contexts, such as online decision making (Shi et al.
2013), learning (Lai et al. 2013), training (Tien et al.
2014), and multiattribute choice (Meißner et al. 2016).
Despite promising opportunities for information
systems research, these past works focus on un-
derstanding human attention but do not actively use
eye tracking to unobtrusively personalize informa-
tion systems to users’ needs and their context. The
active use of eye tracking could be very helpful, for
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example, for consumer assistance systems such as
recommender or consumer decision support systems.

In this paper, we investigate two categories of
human search behavior: goal-directed and explor-
atory search (Janiszewski 1998). Both are frequently
discussed in the literature because they determine
users’ contexts and needs. In goal-directed search,
subjects are motivated to find a product that fulfills
their shopping needs (Janiszewski 1998). The effi-
ciency of the search process as well as its outcome is
what satisfies a goal-directed searcher (Dickinger
and Stangl 2011). In exploratory search, subjects are
more susceptible to bargain hunting (Wolfinbarger
and Gilly 2001, Chiou and Ting 2011). Furthermore,
Moe (2003) and Chiou and Ting (2011) have shown
that the two search motives differ with respect to the
specific pieces of information subjects search for. Our
research is based on the theory of shopping motiva-
tion that reaches back to Hirschman and Holbrook
(1982), who saw shopping motives as important pre-
cursors of consumer behavior. It is further in line with
research by Janiszewski (1998) as well as Kaltcheva
and Weitz (2006), who also distinguished two main
shopping motives (one with a task/goal orientation
and one with a hedonistic/recreational/exploratory
orientation) based on this basic theory of shopping
motivation. In sum, we argue that identifying the
search motive is a prerequisite for providing assis-
tance that is helpful in the relevant search situation.

Existing research has (i) shown that eye move-
ments are well suited to describe information search
behavior and choice processes and (ii) provided
evidence that consumers’ information needs are
dependent on their search motives (goal-directed
versus exploratory search). From a managerial (re-
tailer) perspective, questions arise as to whether and
how companies can easily and cost-effectively gather
consumers’ eye-tracking data (availability of data),
whether and how they can predict consumers’ search
motive based only on their eyemovements (feasibility
of approach), and what costs and benefits are asso-
ciatedwith this approach (costs and benefits). Against
this background, the primary goal of our paper is to
show the feasibility of the approach. We therefore
answer a call by Shmueli and Koppius (2011), who
stated that the “near-absence of predictive analytics
in mainstream empirical IS [information systems]
research” (p. 554) is a particularly large gap in IS
research despite its “great theoretical and practical
value” (p. 569). On the basis of the literature and
expert knowledge of state-of-the art technology, we
also provide solutions for the availability problem
and discuss costs and benefits.

We carried out two experiments to collect data to
train and test our prediction models in order to
achieve our main goal (feasibility of approach). The

first experiment involved 29 participants in virtual
reality (VR); the second experiment, with 20 partici-
pants, was conducted in physical reality, in a real
supermarket. In both environments, mobile eye track-
ing was used to record the participants’ eye move-
ments. We trained our classification model and tested
its predictive validity in these two search environ-
ments (virtual and physical reality). Altogether, we
compared three prediction approaches: logistic re-
gression, support vector machines (SVMs), and ran-
dom forest.
We decided to conduct the first study in VR for the

following reasons. First, virtual stores have relatively
recently (in 2018) started entering the mass markets
(e.g., eBay, Myer, SATURN, and IKEA). It is therefore
extremely relevant from both a research and a man-
agerial perspective to study consumer behavior in
this new environment. Second, for technical reasons,
eye tracking is a fundamental part of next-generation
VR devices, making the data easily available to all
future VR shopping environments. Third, VR labo-
ratory studies allow researchers to control for con-
founding factors and to automatically analyze eye-
tracking data, making them a powerful supplement
for our physical reality study.
Our studies have three major results: First, eye-

tracking data can accurately classify search motives
in both virtual and physical reality. We already achieve
70% prediction accuracy in an early phase of the
search process in VR and 75% in physical reality
using SVMs. When we apply ensemble methods, we
can increase the average prediction accuracy over
the whole search process to 90% in VR and to 92% in
physical reality. Second, we find a substantial overlap
between the best predictors across the two environ-
ments (virtual and physical), as well as a substantial
overlap with empirical research using clickstream
analysis in an e-commerce environment. However, our
results also show that the variance offixation duration
is a strong predictor for our life-sized environments.
This variable has rarely been discussed in the e-commerce
literature. Third, when comparing the e-commerce
literature’s results with ours, we find that, com-
pared with the point of sale, e-commerce search
behavior is similar in terms of most of the eye-
movement variables.
Our paper not only addresses the three major

managerial problems—availability, feasibility, and
evaluation of benefits and costs—but also makes four
main contributions to research. First, we contribute to
information systems research by demonstrating that
eye-tracking data can provide sufficient informa-
tion to classify search motives. This can be useful in,
for example, designing information systems to per-
sonalize assistance systems. Second, we contribute
to the field of method research dealing with study
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environments (e.g., laboratory versus field) and show
that there is a substantial overlap between behavior in
a virtual reality and physical reality. Third, our paper
contributes to the marketing and decision-making
literature, as we identify key variables that differ-
entiate between goal-directed and exploratory search
motives and explain the procedural differences in line
with information processing theory. Fourth, our re-
search is of particular relevance to researchers aim-
ing to investigate human-computer interaction. Be-
cause eye-tracking data can be analyzed in real time
in VR, it offers research opportunities in this field,
particularly regarding interacting with VR simulations
(Tanriverdi and Jacob 2000) to support communi-
cation in immersive teleconferencing (Duchowski
et al. 2004).

We build on prior research by following the cross-
industry standard process for data mining design
process model (CRISP; see Wirth and Hipp (2000)).
CRISP is an often-used standard for data mining
projects (Mariscal et al. 2010) and consists of the
following six steps: business understanding, data
understanding, data preparation, modeling, evalua-
tion, and deployment. Taking an academic rather
than an industry perspective in this paper, we refrain
from implementing the deployment step and also
replace business understanding with “problem and
motivation.” As such, our approach resembles the
salient parts of the design science paradigm (Hevner
et al. 2004, Peffers et al. 2007). More specifically,
the problem formulation and motivation of our work
is outlined in the introduction. In the two follow-
ing theoretical sections, we ensure the rigor of
our approach by drawing from existing theory and
knowledge (Hevner et al. 2004) on both the two search
motives and the eye-tracking technology. Section 3
provides insights on the step “data understanding.”
Wedescribe the data collection, which is an important
part of the step “data preparation,” in detail in the
respective subsections on the experimental setup and
procedure of studies 1 (VR) and 2 (physical). Fur-
thermore, we elaborate on the data preparation of the
two studies in Sections 4.3 and 5.2. As the “modeling”
approach is identical for both studies, it is described
only for Study 1 in Section 4.4. The “evaluation” step
comprises Sections 4.5 and 5.3 as well as Section 6,
showing and discussing the empirical results. In
Section 7, where we look at managerial implications,
we outline how the implementation of the proposed
system would add concrete value to an organization
or business. As such, we address the call by Hevner
et al. (2004) by presenting a solution of a “heretofore
unsolved and important business problem” (p. 84)
and ensure that we rigorously evaluate its “utility,
quality, and efficacy” (p. 85).

2. Theoretical and Technical Background
on Virtual Reality and Eye Tracking

Recent launches of virtual shopping environments
suggest that companies are becoming increasingly
interested in using VR technology as a retail channel.
Examples are Europe’s largest consumer electron-
ics retailer, SATURN; the Chinese e-commerce com-
pany Alibaba; the U.S. department store Macy’s; the
Swedish company IKEA; and Amazon, with its VR
kiosks. SATURN has created two VR shopping en-
vironments in its Virtual SATURN market: con-
sumers can place and interact with the products and
sales personnel either in a loft or on the planet Saturn.
The shopping environment runs on standard head-
mounted VR devices, and thus consumers can shop
in Virtual SATURN at home. Providers of such VR
shopping environments aim to improve their image as
pioneers and like to provide hedonic values to their
customers. Yet many other benefits of VR shopping
environments might be realized in the future with re-
spect to utilitarian values for the customers, profiling of
customers’ needs and personalizing assistance sys-
tems (as will be discussed in Section 7).
In this paper, we present the results of two exper-

iments that collect eye-tracking data in a VR shopping
environment setup and in a store in the physical reality.
Because using eye tracking for learning about user
behavior in an immersive VR environment is particu-
larly new for information systems and business re-
search (for an exception, see Bigné et al. (2016)) and has
rather been used in other areas such as visual in-
spections and sports research (see, e.g., Duchowski
et al. (2002a) and Diaz et al. (2013)), we first provide
background information on VR, on how to use eye
tracking in this environment, and on the opportuni-
ties to collect eye-tracking data.

2.1. Definition of Virtual Reality
In physical reality, we perceive the physical world
directly as first-order sensations and actions have
direct consequences that follow the laws of physics.
In VR, technology mediates the sensation, which
makes VR a second-order sensation. VR is interactive,
and users’ actions have consequences, yet there is
no direct link between an action and a reaction. In-
stead, a computer simulation mediates between
actions and reactions. VR can therefore be described
as interactive computer-generated multimodal second-
order sensations, which users perceive as first-
order sensations.
Instead of this more technical description, VR has

also been defined according to its ability to allow
users to feel telepresence (Steuer 1992) and its degree
of immersion. Telepresence can be defined as the
degree to which one feels present in an environment
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mediated by any communication technology. Im-
mersion describes the degree to which a VR system’s
output is comparable to physical stimuli (Bowman
and McMahan 2007) and comprises four dimensions:
extensive, surrounding, inclusive, and matching (Slater
et al. 1995). Because immersion is objective and mea-
surable (Slater 2003, Bowman and McMahan 2007),
VR systems can be classified according to their degree
of immersion (Gutiérrez Alonso et al. 2008, p. 130):
from nonimmersive or semi-immersive to fully im-
mersive systems.

2.2. Virtual Reality Display and
Interaction Technologies

There are various hardware setups with which to
implement visual virtual environments (Loomis et al.
1999): the primary two are head-mounted displays
(HMDs) (Sutherland 1968), such as the HTC Vive Pro
or Oculus Rift, which are glasses that provide a
personal, fully immersive experience, and cave au-
tomatic virtual environments (CAVEs) (Cruz-Neira
et al. 1993), which are rooms with projection screens
(not unlike StarTrek’s HoloDeck) that provide semi-
immersive experiences. At the time when our studies
were conducted (2015), we decided to use a CAVE for
its following advantages: First, CAVEs have the ad-
vantage of providing a large field of view and a high
pixel resolution. Both aspects are important for ob-
serving visual search processes accurately. Second,
compared with HMD users, CAVE users perceive
their own body and therefore have fewer problems
with estimating distance and size. Third, a CAVE
provides an isometric environment inwhich users can
walk around naturally, with a 1:1 mapping between
their movements in the physical world and the sim-
ulated movements in the virtual world, without hav-
ing to learn or use a controller-basednavigationmethod
or having to trust the HMD-based system to pre-
vent collisions with physical obstacles. Additionally,
the increased visual stability of a CAVE environ-
ment compared with that of HMDs means that there
are only a few or no problems with cybersickness,
a feeling of nausea and discomfort caused by using
VR technology. Since 2015, the introduction of high-
resolution HMDs and room-scale tracking systems
for HMDs have solved many of these issues for
consumer devices. Today, the same study could be
conducted using consumer HMDs.

All professional VR systems track the user’s head
perspective, which is required to create the second-
order stimulations. Different systems can be used for
the tracking, ranging from inexpensive inertial (such
as accelerometers or gyroscopes) tracking sys-
tems (Zhu and Zhou 2004) to expensive full-body
motion capturing systems (Moeslund and Granum
2001). Modern consumer HMDs make use of hybrid

approaches, combining visual tracking, either inside
out (HTC Vive and Windows Mixed Reality) or outside
in (Oculus Rift), and inertial tracking to measure both
the user’s perspective and the controllers’ position
and orientation.

2.3. Eye Tracking in Physical and Virtual Reality
In eye-tracking research, we can measure the in-
formation a user has actually looked at very precisely.
Two different eye-tracking measures are central: a
fixation refers to when the “eye remains almost still
for a period of time” (Holmqvist et al. 2011, p. 21),
whereas a visit (or dwell) is defined as several con-
secutive fixations on the same area of interest (AOI)—
for example, a product.
Eye tracking has a long history in human-computer

interaction in VR (Duchowski et al. 2002a, b). Well-
known companies’ acquisitions of eye-tracking com-
panies that offer advanced virtual and augmented
reality (AR) technologies (the EyeTribe by Facebook/
Oculus and SMI by Apple, both in 2017) underline the
importance of eye tracking for mixed reality. There
are four important reasons to have eye tracking in VR
devices: identification of the user (implemented e.g.,
in the HoloLens 2), precise measuring of the posi-
tions of the eyes to calibrate the view matrix for the
projection of the three-dimensional (3D) graphics;
foveated rendering (Godin et al. 2004), in which only
fixated areas will be rendered with high quality to
reduce power consumption; and gaze-based inter-
action, to reduce head movements, which are cur-
rently required for the head-pointing approach used
in many VR headsets. Besides that, precise and low
latency data of position and orientation of the eyes
are important for creating adaptive optics, for ex-
ample, to adapt flexible lenses to the depth of fixa-
tion to overcome the vergence-accomodation conflict
(Kramida 2016), which, at the time writing, is still a
technical limitation. These developments will make
eye tracking available in AR and for VR displays on a
larger scale and at a much lower cost in the near
future. The studies in the research at hand were
conducted in 2015 and required expensive scientific
eye-tracking systems, but, in 2019, companies such as
FOVE Inc., Magic Leap Inc., StarVR Corporation,
Microsoft, and HTC have already provided systems
with built-in eye tracking for the professional and
consumer markets.
In physical reality, eye-tracking data recorded on

scene videoswithmobile devices need to bemanually
annotated before they can be analyzed (see Meißner
et al. (2017) for more detailed explanations), which
is very time consuming and subjective. In principle,
the scene videos could be (post)processed using
computer vision and deep learning to segment and
classify regions of interest (semi)automatically. This is
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not feasible with a 100% success rate, but the tech-
nologies are still under development. However, when
mobile eye tracking is used in VR, fixations can be
automatically assigned to the specific area of inter-
est, and this information is available with minimal
effort from the moment the eye fixations are recor-
ded (Meißner et al. 2017). It is therefore possible to
build interactive, gaze-contingent systems (Guenter
et al. 2012).

The precise calibration of the eye-tracking system
for a semanticmapping of gaze andAOIs is a practical
eye-tracking problem. Eye-tracking experts have al-
ready developed systems with an automatic cali-
bration that a broad range of users can use directly.
There are, however, still users who require a calibration
or for whom even a calibration will not achieve the
necessary precision and accuracy (Blattgerste et al.
2018). However, not all features that can be extract-
ed from eye movements require this external cali-
bration. Fixation count, fixation duration, saccade
frequency, and duration, as well as the number of eye
blinks, can be measured solely by means of eye im-
ages. New interaction and calibration procedures
based on smooth pursuit (Vidal et al. 2013) might also
be viable alternatives.

In the near future, both worlds (physical and vir-
tual) will come together in AR technology. First
consumer AR glasses are equipped with eye track-
ing (Magic Leap, HoloLens 2). Combined with the
localization and environment tracking technologies
embedded in suchAR-ready smart glasses, automatic
gaze mapping is basically an interesting side effect
of the technical processes that already run on the
hardware. Eyewear computing (see, e.g., Pfeiffer et al.
(2016)) is the term coined for these types of devices.

3. Theoretical Background on the Two
Search Motives

3.1. Goal-Directed and Exploratory Search
The marketing and decision-making literature dis-
tinguishes two broad categories of shopping motives—
goal-directed search and exploratory/experiential.
Wolfinbarger and Gilly (2001, p. 35) use the terms
“for fun” (exploratory) and “for efficiency” (goal-
directed) to describe and distinguish consumers’ di-
vergent orientations. The two shopping motives differ
largely regarding consumers’ information search pro-
cesses and information needs: Consumers under-
taking a goal-directed search will be motivated to
gather information efficiently by utilizing a search
routine or strategy to achieve their goal. By contrast,
a consumer with an exploratory search motive is
presumed to scan the decision environment and
build up knowledge that might become relevant
later. Exploratory search can be best described as the

browsing and the scanning of a search environ-
ment without pursuing a search goal. To summarize,
prepurchase deliberation and a goal orientation to
complete a task characterize a goal-directed search,
whereas building knowledge about a product cate-
gory or hedonic reasons motivate an exploratory
search (Hoffman and Novak 1996).
Moe (2003) further distinguished two goal-directed

(directed buying and deliberation and search) as well as
two exploratory (hedonic search and knowledge build-
ing) search strategies. Deliberation and search as well
as knowledge building are particularly interesting
(and selected for the experiment) because assistance
systems can potentially help consumersfind products
that best meet their search goals or support the
knowledge building process. We refer the reader to
Moe (2003) for further deliberation on the other two
search strategies.1

3.2. Procedural Differences Between Search
Motives According to Information
Processing Theory

We are aware of only two studies (Moe 2003, Chiou
and Ting 2011) that investigated the differences be-
tween the two search motives with respect to in-
formation processing. These studies were conducted
in an e-commerce context using clickstream data and
not in a physical environment, such as a supermarket.
Moe (2003) collected clickstream data from a real
online store and applied a post hoc clustering to
identify the search motives. Chiou and Ting (2011)
directly manipulated the type of search the subjects
used in a mock online store that only sold products
from two product categories. A product was defined
as considered if the user clicked on the product and
opened the web page with product details. In the
following paragraphs, we review the potential pre-
dictors (the predictor names appear in parentheses)
that both studies used and explain the procedural
differences between the two search motives on the
basis of information processing theory.
The average duration a product is viewed (AVG-

VISITDURPROD) measures how long a consumer
looks at a product before considering the next one. An
exploratory search is rather undirected, because the
goal is to obtain an overview of the assortment;
consequently, it resembles browsing behavior. By
contrast, in a goal-directed search, the consumer has
to search for particular pieces of information (e.g., on
the product packages) to verify whether a prod-
uct meets her criteria. In line with Chiou and Ting
(2011), we therefore expect AVGVISITDURPROD to
be longer when consumers have a goal-directed mo-
tive than when they have an exploratory motive.
The total number of different products viewed

(NUMBDIFFPROD) quantifies how many different
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products the consumer has clicked on or has fixated
on at least once. Pieters and Warlop (1999, p. 3) used
the term “filtration” to explain that “consumers skip
certain elements of information about the brands
in the display, or do not fixate some brands at all.”
Consumers with a concrete search goal, such as find-
ing a muesli that “contains chocolate and almonds,”
can use (task) knowledge to direct their attention to
relevant stimuli. For example, consumers are ex-
pected to direct their attention at stimuli with brown
colors on the product package. Directing attention to
relevant stimuli—that is, filtration—can be achieved
with parafoveal and peripheral viewing during scan-
ning (i.e., without looking directly at each product
on the shelf) (Janiszewski 1998, Pieters and Warlop
1999). Consequently, in a goal-directed task, we ex-
pect NUMBDIFFPROD to be smaller.

The maximum number of revisits (MAXREVISIT)
quantifies how often a consumer returns to the most
often inspected product. Shimojo et al. (2003) and Shi
et al. (2013) found that the ultimately chosen prod-
ucts received more attention and that the likelihood
of fixating on the chosen alternative increases until
the decision is made. Verification processes offer a
possible explanation for this finding. Consumers
with a goal-directed motive are expected to more
frequently use verification processes by looking at
the ingredient, brand, or price information. Con-
sumers with an exploratory motive have no reasons
to return to a particular product frequently. Thus, in
line with previous eye-tracking studies and Moe
(2003), we expect MAXREVISIT to be larger in
goal-directed search.

The number of viewings of detailed product in-
formation (NUMBDETAIL) and price information
(NUMBPRICE) in the goal-directed situation depends
on the decision maker’s individual goals. In our ex-
periments, the participants needed to check detailed
product information. By contrast, we expect con-
sumers with an exploratory motive to compare prod-
ucts based on information that is relatively easy to
access, such as price information displayed on sep-
arate price tags, in order to obtain an overview. In line
with Moe (2003), we therefore expect consumers with
a goal-directed motive to more often view detailed
product information, whereas, in line with Chiou and
Ting (2011), we expect these consumers to less often
look at price information.

3.3. Additional Eye-Tracking Measures for
Investigating Procedural Differences

Eye-tracking research allows for identifying further
information processing measures that might be in-
dicative of the shopping motive.

The number of fixations and visits is one of the
most frequently investigated eye-tracking measures

(Hyönä et al. 2003, Holmqvist et al. 2011, van der Lans
et al. 2011). NUMBPROD quantifies the number of
products visited (including products revisits). Fur-
thermore, the average number of revisits per product
measures how often each product is visited on average
(AVGREVISIT). Further measures include the percentage
of fixations on a brand and a logo (PERCENTBRAND),
prices (PERCENTPRICE), or detailed product infor-
mation (PERCENTDETAIL).2

Furthermore, eye tracking allows for measuring
the duration of fixations (Holmqvist et al. 2011, van
der Lans et al. 2011). Longer average durations have
been interpreted as indicating deeper information
processing (Rayner 1998, Holmqvist et al. 2011). We
will examine the average duration per fixation
(AVGDUR), the average fixation duration per prod-
uct (AVGDURPROD), and the average fixation du-
ration onprice, detailed information, andprice or logo
information (AVGDURPRICE,AVGDURDETAIL, and
AVGDURBRAND, respectively), as well as calculate
the variances over these duration measures. Equiv-
alent measures can be determined for visits instead of
fixations. The duration of a visit is equal to the time
interval between the first fixation on the currently
fixated AOI and the end of the last fixation on this
sameAOI. Thus, in contrast to the durationmeasures,
which are based on fixations, the visit measurements
include the saccadic times on an AOI. A saccade is a
movement of the eyes from one fixation location to
the next.
Distance measures that capture the length of sac-

cades are another type of measure. Goal-directed
and exploratory search could differ substantially with
respect to the length of saccades. Scanning, for ex-
ample, would lead to an increase in the average saccadic
distance between visits to different AOIs. We therefore
examine the average distance between two consec-
utive visits (AVGFIXDIST) and the maximum dis-
tance (MAXDIST). We normalize both measures by
dividing by the shelf size (the maximum possible
distance on the shelf between any two products),
because we have different shelf sizes in the different
experimental setups.
The fourth and final group of measures are pair and

triple comparisons between attributes (Russo and
Leclerc 1994). These measures reflect a search strat-
egy, meaning that they help to identify a search process
presumed to be systematic, such as goal-directed search.
For example, if a sequence of fixations consists of only
two alternatives (e.g., X-Y-X or X-Y-X-Y), the search
process can be described as a paired comparison
(COMPARE2PROD). If the search contains three prod-
ucts (e.g., X-Y-Z-Y or X-Y-Z-X-Z-Y. . .), it is denoted as
COMPARE3PROD.
We refer to Table 4 in the online appendix for a

summary of all 22 measures that we retrieved from
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our literature analysis on clickstream data and the
literature on common eye-tracking measures.

4. Study 1
4.1. Experimental Setup
We conducted the first experiment in the CAVE of the
Virtual Reality Laboratory at the Center of Excellence
Cognitive Interaction Technology (CITEC) at Bielefeld
University and used the Advanced Realtime Tracking
Flystick as an interaction device. The front wall dis-
played a replicated supermarket shelf with 3D models
of the products. The projection on the floor displayed
dark tiles, aswell as amarker indicating a starting point.
To the right of the starting point, the participant saw a
virtual shopping cart. Details of the technical setup
appear in Online Appendix B.

4.2. Procedure
Before the experiment started, we asked participants
to sign a consent form. Thereafter, we determined the
interpupillary distance and each participant’s dom-
inant eye. When entering the CAVE, we gave each
participant 3D glasses (polarized filters) with a built-
in eye tracker and the Flystick. The cable connecting
the eye tracker with the server allowed the partici-
pants to move freely in the CAVE. The participants
were instructed on how to use the equipment, and
the eye tracker was calibrated. We first presented a
practice shelf with 24 identical product packages to
familiarize the participants with the new virtual en-
vironment’s capabilities. In the practice task and the
following experiment, the participants could play
around with the environment, touch products and
turn them around, read detailed information on the
packages, and so on.

The experiment was part of a larger study in which
each participant had to execute five tasks. Only the
first two tasks, in which different products of the
same product category (muesli) were displayed, were

relevant for this paper (Figure 1(a)). The participants
could take the products off the shelf for closer in-
spection by using the Flystick (Figure 1(b)). They
could view the products from different angles, just as
they could if they had a real product in their hands.
Once the participants had finished the task, they were
asked to put the product in the virtual shopping cart
(Figure 1(c)), which triggered the transition to the
next task. After completing the tasks, the equipment
was removed from the participants, and they were
asked to answer a questionnaire.
In each of the two tasks, participants saw one shelf

comprising 24 types of muesli. The displayed types
were randomly drawn without replacement from a
total set of 48 types of muesli to ensure the partici-
pants never saw a product twice. The products were
arranged by brand in order to resemble a real su-
permarket (Chandon et al. 2009) and in keeping with
the two configurations, which differed in respect
of where the brands were positioned. We random-
ized the products’ position on the shelf according to
the specific shelf configuration. In a between-subject
design, we randomly assigned each participant to
either the goal-directed or the exploratory search
condition.
The experimental instructions were developed

based on prior research in the field. In line with Chiou
and Ting (2011) aswell as Kaltcheva andWeitz (2006),
respondents’ shoppingmotives were manipulated by
providing different shopping scenarios. Our manip-
ulation is quite similar to the one Kaltcheva andWeitz
(2006) used, with specific objectives for each of the
products respondents were asked to buy in the task-
oriented condition and no specific objectives in the
recreation-oriented condition. In the goal-directed
task, we asked the participants to select a type of
muesli for a friend who would be visiting. We told
participants that the friend likes raisins, but not
chocolate, and that she prefers a low-calorie muesli.

Figure 1. (Color online) Experimental Setup of the VR Experiment
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The task was to find a type of muesli in line with the
friend’s preferences. We ensured that there was ex-
actly one product on display that fulfilled the re-
quirements for each shelf.3 Participants in the ex-
ploratory motive condition were asked to obtain an
overview of the product assortment, to think about
product attributes that are important for them, and
to finally make a purchase. We decided to let each
participant make two choices, because we wanted to
increase the number of observations.

4.3. Data
In total, 29 students participated in this experiment.
Participants wearing glasses or heavy eye makeup
were excluded from the study to avoid potential
problems with data recording. The participants re-
ceived V5 and one of the products on display during
the experiment as an incentive to participate in the
study. Owing to technical problems, we could not
record eye movements in some tasks. Our data set
therefore consists of 50 observations (26 for task 1 and
24 for task 2). Themean age in the final sample is 22.88
years (SD = 2.49; min = 18; max = 27), with 13 (50%)
female participants. Of the participants, 14 (53.84%)
were asked to conduct the goal-directed search. On
average, the participants in the exploratory motive
condition took 127 seconds (SD = 79.9; min = 27; max =
348) and those in the goal-directed motive condition
took 151.49 seconds (SD= 64.4;min = 64;max = 405) to
finish the task.

4.4. The Classification Model
From the participants’ eye-tracking data, we com-
puted all the predictors listed in Table 4 in the online
appendix and z-standardized them. We excluded all
fixations shorter than 100 milliseconds. We compare
the performance of three types of classifiers for the
modeling: a logistic regression, a random forest, and
an SVM. We utilize two R packages—namely, caret
(Kuhn et al. 2018) for classification and regression
training and e1071 (Meyer et al. 2017)—to build
SVMs.We use polynomial kernels (caret type svmPoly)
for SVMs and Breiman’s random forest algorithm
(caret type rf, with ntree = 500) for random forests
(Breiman 2001), and we optimize the parameters’
degree, scale, and cost for the SVMs and mtry for the
random forests with a parameter grid search.

When using mobile eye tracking in the field or VR,
small sample sizes are unavoidable, because only one
participant is recorded at a time. Although larger
sample sizes are much more common when applying
machine learning algorithms, these algorithms have
been proven to be useful in settingswith small sample
size (see, e.g., Krol and Krol (2017)) if certain pre-
cautions are undertaken (Witten et al. 2016). We used
a leave-one-out cross-validation to increase the size

of the training in order to evaluate the models and
also compared it with 0.632 bootstrap (we refer to
Witten et al. (2016) for details on these concepts).
Because the bootstrap approach tends to be optimistic
(Aggarwal 2015), we decided to use the onefold cross-
validation. Finally, we keep the model complexity
low by only allowing a maximum of four predictors
per model (Hastie et al. 2013, Aggarwal 2015). If the
sample size is small or hardly larger than the number
of features available, the model is prone to overfitting
(James et al. 2013, pp. 203–204). Keeping the number
of predictors small also results in a cost-efficient pre-
dictor (Guyon and Elisseeff 2003), which is particu-
larly important, as our goal is to predict the search
process on the fly (i.e., while the participant is
making a decision). Focusing on a smaller set of
variables also facilitates the interpretation of the
parameters.
We consider only the first 100 seconds of the data:

First, the participants can stop searching whenever
they like, which means we then have fewer obser-
vations with which to train the classifiers later in the
search process. Participants in the exploratorymotive
condition stopped searching earlier than those in the
goal-directed motive condition. After 100 seconds,
37.5% (11.53%) of the participants with an explor-
atory (goal-directed) motive finished their search.
Figure 5 in the online appendix provides more details
of the dropout rate. Second, we try to predict the
search motive as early as possible, because our goal is
to provide assistance based on the predicted situa-
tion. Third, we analyze a restricted time span, because
we try to classify the search motive on the fly and not
post hoc,when the search has been completed.We can
therefore only use eye-movement information ob-
served until time step t. We therefore need to rebuild
the model for every next second, which is when ad-
ditional eye fixations and movements are observed.
Consequently, we need to build 99models for the first
100 seconds (we start at second 2). The variable
NUMBPROD, which is the number of products vis-
ited (including revisits), is an appropriate example.
Up to time t, we can count the number of products
visited. A participant might have visited products 1,
12, 3, and 1 up to second t � 10. The NUMBPROD
would then be 4 for the model computed for second
t � 10. If, in the next second, the participant looks,
for example, at product with ID 6, the prediction
model for t � 11 would use NUMBPROD � 5 as an
input. This approach helps us detect how much time
needs to be observed to classify the observation
satisfactorily.
We determined the time frame of 1 second based on

the fixation duration, which is typically between 150
milliseconds and 500 milliseconds. In 1 second, be-
tween two and seven fixationswill therefore be added
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to the data, which provides enough potential for a
substantial change in the search process and enough
potential for the prediction of the search motive to
change. In future applications, the timely detection of
the search motive is crucial, as the system should
provide help when it is needed. We therefore decided
against using longer time frames.

Because we build a new model for every second,
it is possible that the predictor variables that per-
form best differ from second to second. We therefore
choose the model with the best average prediction
accuracy over the whole time span (up to second 100).
We then compare the performance of the three dif-
ferent modeling approaches, binary logistic regres-
sion, SVM, and random forest.

4.5. Results
Figure 2 shows the best models, and Table 1 reports
the mean of all 99 models with respect to accuracy,
recall, and precision. The SVM performs significantly
better than the regression (80.23% versus 74.74%,
tested with two-sided paired t-test) and the random
forest (79.50%). In the first 15 seconds, SVM achieves
70% accuracy and random forest 80%. The random
forest is more suited for prediction in the first half
of the time period, after which SVM outperforms it
(tested with paired t-tests). This is also clear when
comparing the predictors that the approaches se-
lect as the best subset out of the 22 predictors. Al-
though the SVM’s choice is almost identical to the
regression, it differs substantially from the ran-
dom forest. NUMBPROD is the most important
predictor in all three approaches, but its importance
decreases toward the end of the search process,
whereas the importance of VARAVGDUR in the SVM
and the regression increases. In the SVM, MAXRE-
VISIT is particularly important toward the end of
the process (for details, see Figure 6 in the online
appendix).

The recall and precision measures4 indicate that
SVM and random forest perform well on all four
measures; however, the random forest seems to better
address the trade-off between recall and precision,
whereas SVM tends to more often predict that the
goal-directed motive would be used. Please note that
goal directed is the class that appears slightly more

often than the explorative class with 54% versus 46%
of observations being goal directed.
To summarize, we demonstrated that the two shop-

ping motives can be classified with an accuracy of
about 80% in VR. Because we only used eye-tracking
information in our prediction model, this is a substan-
tial improvement compared with a random guess. Be-
cause no other work has yet predicted the two search
motives solely on eye-tracking data, we cannot pro-
vide any other benchmark.
Several questions remain that we aim to address in

Study 2. First, will the same prediction accuracy be
achieved in physical reality? Second, does our pre-
diction model also work in other product categories?
Third, can we improve the prediction accuracy by
using ensemble methods?

5. Study 2
5.1. Experimental Setup
Study 2 is an experiment in the field in a medium-
sized supermarket. We asked each participant to
perform four search tasks, each in a different product
category (muesli, cereal, marmalade, and tea). The
participants had to use a goal-directed motive in two
tasks and an exploratory motive in another two tasks.
The participants started randomly with either a goal-
directed or an exploratory search. In each product
category, we used the products that were offered by
the supermarket as experimental stimuli. The par-
ticipants could choose from 117 types of muesli, 76
types of cereal, 202 kinds of marmalade, and 190 tea
varieties. The instructions of the different task types
were equivalent to the ones used in Study 1. For an
overview of the key characteristics of each task, see
Table 5 in the online appendix.
The participants wore SMI eye-tracking glasses

with 30 Hz and an accuracy of 0.5 degrees, a scene
camera gaze overlay with 24 Hz at a resolution of
1280 × 960, and a field of view of 60◦ × 46◦. Fixations
were annotated manually, because there is as yet no
reliable solution for automatically annotating gaze
data collected with mobile eye tracking in a natural
environment (Meißner et al. 2017).

5.2. Data
We recruited 20 shoppers directly when they entered
the supermarket. The participants were 31.3 years old
on average (SD = 13.27; max = 53), of whom 14 (70%)
were female. As an incentive to participate, the par-
ticipants received V10. As there were four tasks to
complete, the data contained 80 observations, but
because of problems during recording with the USB
port, 13 observations are incomplete. Furthermore,
three participants had to be excluded because for
these, despite calibration, only a low accuracy for
gaze estimation could be achieved. As a result, 17

Figure 2. Study 1: Best Models for the VR Study
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complete observations remained for the category
muesli, 14 for cereal, 15 for marmalade, and 15 for tea.
In total, 29 (47.5%) of the 61 observations were goal
directed and 32 (52.5%) exploratory. It took the
participants an average of 93.31 seconds (SD = 64.03;
min = 1.84; max = 338.04) to complete tasks with
an exploratory motive, which is less than for those
with a goal-directed motive, which took the partici-
pants 163.72 seconds (SD = 115.91; min = 24.69; max =
458.10) on average. Figure 7 in Online Appendix C
provides an overview of the number of observations
per second we collected in the two search motives.
The coding of the video material was done at each
10th of a second once the data collection had been
finished. The details of the coding procedure can be
found in Online Appendix C.

We used the same prediction models and pro-
cedure for training and testing as in Study 1 (see
Section 4.4) and therefore present the results directly
in the following section.

5.3. Results
Figure 3 and Table 2 show the physical reality’s re-
sults. With an average accuracy of 85.41%, SVM
performs significantly better than both the regres-
sion (76.46%) and the random forest (75.71%). In the
first 15 seconds, SVM already achieves a 75% accu-
racy. Again, SVM and regression pick similar pre-
dictors with the difference that SVM focuses on
only two—namely, NUMBPROD (with decreasing
importance over time) and VARAVGDUR (with in-
creasing importance). Whereas the random forest
uses duration measures, the regression includes the
strategy measure (COMPARE2PROD). VARAVGDUR

is the most important predictor in all three ap-
proaches (see Figure 8 in the online appendix).

6. Discussion and Further Improvement
of Results

6.1. Comparison of the Models of Both Studies
We compare the classification models of the two
studies according to two criteria—namely, the pre-
dictors and classification algorithms that perform
best and the accuracy achieved.
SVMs outperform random forests and regressions

in both environments, with random forests ranking
second and dealing better with the trade-off be-
tween recall and precision. Both environments’ pre-
dictors overlap substantially. In VR, the model with
four predictors performs best. These predictors in-
clude only two types of metrics: fixations and visits
(NUMBPROD andMAXREVISIT) and the duration of
fixations (VARAVGDUR and AVGDUR). Metrics of
AOIs such as price, detailed product information, or
brand/logo; distance metrics; and strategy metrics
(such as COMPARE2PROD) are not included as pre-
dictors, which is a promising result. These would re-
quire extra computational efforts if they were to be
implemented in a real-time application.
The best predictors of the physical reality study are

NUMBPROD and VARAVGDUR, which are a sub-
set of the predictors suggested as predicting search
motives in VR. These predictors’ similarity is a first
indication that the participants behaved similarly in
both environments. It is remarkable that such a high
prediction accuracy can be achieved by only using
these two variables. Furthermore, the variance over
the average fixation duration performs well across
both environments (virtual and physical reality), even
when we vary the number of products displayed be-
tween 24 and 202.
Overall, the prediction accuracy was significantly

(paired t-tests) better in physical reality (85.41%)
than in VR (80.23%), although the VR offered a
higher experimental control, with more accurate eye-
tracking data (Section 2.3). A reason might be the
bigger sample size of the study or the larger number
of observations per participant. Given the baseline of
roughly 50% for a random guess, both results are

Figure 3. Study 2: Best Models for the Study in the Physical
Reality

Table 1. Study 1: Prediction Accuracy of the Best Models

Approach Predictors
Prediction accuracy

(%)
GD recall

(%)
GD precision

(%)
EXP recall

(%)
EXP precision

(%)

Regression NUMBPROD, VARAVGDUR, AVGDUR,
COMPARE2PROD

74.74 80.62 74.66 67.87 75.04

Random
forest

NUMBPROD, COMPARE2PROD,
VARVISITDURPROD, VARVISITDUR

79.50 81.33 80.86 77.37 78.27

SVM NUMBPROD, VARAVGDUR, AVGDUR,
MAXREVISIT

80.23 85.79 79.93 73.71 81.30
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promising, which is noteworthy, as the identified best
approaches use only a few distinct eye-tracking
measures.

6.2. Further Model Improvements
In the analyses described so far, we restricted our
modeling approaches to simple models, because we
only consider the pure application of one machine
learning approach and a fixed set of predictors for
the entire time span. Ensemble methods that com-
bine multiple models have the potential to produce
more precise predictions. The main idea of ensemble
methods is to combine a set of models, each of which
solves the same original task (we refer to Opitz and
Maclin (1999) and Kuncheva (2004) for details on
these concepts). We therefore tried two ensemble
methods. In the first attempt, we applied each of the
three models with their respective parameters and
predictors that we had found to perform best in our
main analysis (Tables 1 and 2) and let it predict the
class label. No new training was required. This ap-
proach resulted in three predictions per second per
observation. We then assigned the class label to the
observation that was predicted by at least two of the
three methods (for details on this majority vote, we
refer to Kuncheva (2004)). However, with an average
prediction accuracy of 75.90% for Study 1 and 76.34%
for Study 2, the prediction accuracy was not an im-
provement on the simple models. It seems that SVM
is clearly the better approach, and an outvote of the
two other approaches, regression and random forest,
weakens the results.

In a second attempt, we kept only the best ap-
proach, SVM, but allowed the predictors to vary per
second. As we had already done a complete enu-
meration of all predictor combinations for each sec-
ond in our main analysis, the implementation of this
approach was easy. As for our first ensemble attempt,
no new training was required. For each second, we
just selected the SVMmodel that had performed best,
with its set of parameters and predictors. The results
(see Figure 4) improved significantly to an 89.81%
average prediction accuracy for VR and 92.47% for
physical reality. However, this improvement comes
at a cost, because the ensemble needs 49 predictor
combinations for the VR setup and 47 for the physical

reality one. Furthermore, in both environments, all 22
predictors are used in at least one model.

6.3. Comparison with Desktop-Based Clickstream
Studies and Theoretical Implications

Table 3 compares the results of the two clickstream
studies discussed in Section 3.2 with those of our own
two studies. Moe (2003) and Chiou and Ting (2011)
examined the differences when observing the entire
search process but were unable to investigate how
information processing changed during the task. We
therefore also report the results referring to the course
of the search process. Please note that Moe (2003) did
not test for significant differences.
As can be seen from Table 3, with regard to most of

the measures, we find strong empirical support for
the two e-commerce studies’ results. Our findings’
similarity to those of Moe (2003) and Chiou and Ting
(2011) surprised us, mainly because the process data
were substantially different and because the search
context differs substantially (e-commerce site versus
life-sized shelf displays).
It is worthwhile reflecting on which expectations

formulated in Section 3.2 hold and speculate which
procedural differences between the two search mo-
tives lead to the observed differences in eye-tracking
measures. First,filtration allows respondents to direct
attention to relevant stimuli. We find evidence for
greater selectivity of attention to a smaller set of
stimuli asNUMBDIFFPROD (as well asNUMBPROD
that includes revisits) is smaller when respondents
have a goal-directed search motive. Interestingly,
the results show that the effect does not change
(GD < EXP for all seconds), suggesting that filtration
is a process that applies from the start to the end of the
search and regardless of whether the search takes
place in virtual or physical reality. Similarly, detailed
search is a process that applies throughout the search,

Table 2. Study 2: Prediction Accuracy of the Best Models for the Study in the Physical Reality

Approach Predictors
Prediction accuracy

(%)
GD recall

(%)
GD precision

(%)
EXP recall

(%)
EXP precision

(%)

Regression NUMBPROD, VARAVGDUR,
COMPARE2PROD

76.46 64.68 82.57 87.17 73.00

Random
forest

NUMBDIFFPROD, VARAVGDUR,
AVGDURDETAIL, AVGVISITDUR

75.71 71.22 76.51 79.79 75.18

SVM NUMBPROD, VARAVGDUR 85.41 75.99 92.34 94.04 81.41

Figure 4. Ensemble Method: Best SVM Model per Second
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as respondents mostly need to look at details to
achieve their search goal. The results for detailed
search also do not differ between virtual and physical
reality. Our results suggest that filtration and detailed
search are fundamental processes that change when
respondents use different search motives.

Second, the results of the variables AVGVISITDUR-
PROD and MAXREVISIT suggest that the relevance
of verification processes largely changes during the
search. Analyzing the VR data on a second-to-second
basis, we find that, in the early phases of the search
process, AVGVISITDURPROD and MAXREVISIT
tend to be smaller in goal-directed search. The results
contradict our initial expectations and also the find-
ings by Moe (2003) and Chiou and Ting (2011). We
theorize that changing the relevance of verification
processes in goal-directed search causes the observed
differences between the search motives. The informa-
tion processing literature (Janiszewski 1998, Pieters
and Warlop 1999) suggests that participants with
goal-directed motives scan the environment when
they begin the search process to identify potential
target products that need to be examined in more
detail. When scanning, they will look at many dif-
ferent products. At the same time, the fixations used
for scanning are, on average, shorter (the result for
AVGDUR), in line with Glöckner and Herbold (2011),
and can therefore reduce the average duration of
visited products (AVGVISITDURPROD). Verification
processes are therefore less relevant in the beginning
of the search but more relevant at the end. The
findings for the variable VARAVGDUR, which is a
key predictor in our approach, also support this
theoretical explanation. We find that the variance in
average fixation duration is much larger for goal-
directed search (GD > EXP for all seconds), which
is plausible because short fixations are used for scan-
ning, but longer fixations are used for verification

processes in goal-directed search. In exploratory
search, changes in the use of scanning and verification
processes are less prevalent, as indicated by a smaller
variance in fixation durations.
We further speculate that the lower familiarity

with VR might have increased the amount of scan-
ning early in the search process, which could explain
the observed differences between the virtual and
physical environment. A future research step might
therefore be manipulating respondents’ familiarity
with the environment to examine the effect on veri-
fication and scanning processes.

7. Managerial Implications
The key suggestion of our paper is that eye-tracking
data can be used as input for consumer assistance
systems such as recommender or consumer decision
support systems. In this section, we consider mana-
gerial implications and discuss the benefits of the
approach. Costs of and guidance on implementation
and operation as well as privacy risks of the proposed
approach are further outlined in Online Appendix E.

7.1. Benefits of Virtual Reality as
Shopping Environment

As outlined in Section 2.3, eye tracking has recently
been integrated in VR and AR devices, and eye-
tracking data can be automatically and instantly
analyzed in VR. Therefore, we will first discuss vir-
tual shopping environments in which implementing
our approach is particularly easy and relevant.
Besides all the advantages of standard e-commerce,

virtual shopping environments provide multiple sen-
sorial experiences in that they use visual, audio, ol-
factory, and haptic channels (MacLean 2008, Berg
and Vance 2017). High-immersive virtual environ-
ments have also been shown to generate hedonic
benefits (Lau and Lee 2019) and positively influence

Table 3. Comparison of Own Results with Studies Using Clickstream Data

Measure

Moe (2003)
(no significance

tested)
Chiou and
Ting (2011)

Expectations
developed in
Section 3.2 VR data Physical reality data

AVGVISITDURPROD — GD > EXP GD > EXP GD < EXP (not sign. 2–48),
GD > EXP (sign. 70–74, 77–86,
99, and 100)

GD > EXP (not sign.; for some
seconds, GD < EXP)

NUMBDIFFPROD GD > EXP GD < EXP
(not sign.)

GD < EXP GD < EXP (sign. 6–32, 43–59, 79,
84–93, and 100)

GD < EXP (sign. 9–94)

MAXREVISIT GD > EXP — GD > EXP GD < EXP for 10–46 (sign. only
for 24–32 (not 27)), GD > EXP
for 47–100 (sign. from 67)

GD < EXP (not sign.; for
seconds 4 and 6, GD > EXP)

NUMBDETAIL GD > EXP — GD > EXP GD > EXP (sign. 47–100) GD > EXP (sign. 21–100)
NUMBPRICE — GD < EXP GD < EXP GD < EXP (not sign.) GD < EXP (sign. 18–94, not

27–29)

Notes. We report the differences in the variables during the process (seconds 1–100). Time spans whose differences are significant appear in
parentheses (one-sided t-tests). GD, goal directed; EXP, exploratory; sign., significant.
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user adoption via a hedonic path (Peukert et al. 2019).
Burke (2018) and Bonetti et al. (2018) argued that VR
and AR technology has the potential to provide more
emotionally engaging customer experiences during
the purchase journey. When technical problems such
as low resolution are resolved in future equipment,
the full potential of VR shopping might unfold. This
will also apply to utilitarian values (Peukert et al.
2019), for example, because of enriched possibilities
to evaluate the size, color, or style of products such as
apparel or furniture (Lau and Lee 2019). Cowan and
Ketron (2019) emphasized that VR environmentsmay
reinforce customer participation and cocreation if the
environment generates a high level of engagement,
interaction, and enjoyment. Virtual shopping envi-
ronments therefore offer opportunities to use coc-
reation as an instrument to foster strong relationships
with customers.

Virtual shopping environments can also be ex-
tended to allow social interaction, because consumers
could communicate with sales personnel or with
friends in the form of avatars. Tracking the user’s
eye movements will improve understanding of the
communication processes between users, or between
users and sales personnel. VR might foster informa-
tion sharing, processing efficiency, and collaborative
learning (Boyd and Koles 2019) if users have the
possibility to interact with other users or retail agents.
Similarly, virtual retail avatars can interact with users
based on eye-tracking information. For example, a
virtual sales agent could approach the customer if the
gaze indicates that the customer needs help.

7.2. Benefits of Personalized Assistance Based on
Search Motives

The benefits of our approach can be classified as
indirect (in line with the framework proposed by
Iacovou et al. (1995)). The rationale of the argument
is that personalizing the shopping experience and
profiling customers’ needs as described in the fol-
lowing sections will enable the generation of addi-
tional value for customers and will also increase
customer satisfaction and loyalty, which will create
competitive advantages (Inman and Nikolova 2017).

The proposed approach can be used to identify
customers with exploratory search motives who have
a less concrete purchase goal. Identifying browsing
offers opportunities for marketers to persuade con-
sumers to buy and not just browse (Lee et al. 2018), for
example, by offering special coupons or showing
advertisements. The point when a consumer decision
support system actively approaches the user might
be dependent on the search motive. We speculate
that users in a goal-directed search situation might
want assistance at an earlier stage than users with an
exploratory motive. In an additional study (Online

Appendix D), we found that consumers in an ex-
ploratory search want other assistance functional-
ities than those in goal-directed situations. In explor-
atory situations, they see value in receiving product
recommendations (based on the similarity to other
customers), special offers, and discounts. By contrast,
consumers in a goal-directed search situation fa-
vor product filters that eliminate products based on
thresholds as well as recommendation agents that
elicit preferences through an explicit user dialogue
before providing recommendations. In addition, we
speculate that in exploratory search situations, social
shopping is more important than in goal-directed
situations. For example, users might be particularly
interested in communicating with friends and get-
ting advice from influencers.

7.3. Benefits of Using Eye Tracking for Profiling of
Customers’ Needs

Beyond what has been suggested so far, individual-
level eye-tracking data can be seen as an instrument
to more precisely profile customers’ needs. For ex-
ample, eye-tracking allows marketers to identify
which products and brands potentially interest cus-
tomers. Research has shown that fixation frequency is
strongly correlated with the individual utility values
of products in consumer choice (see an alternative
focus effect in Meißner et al. (2016)). Retailers can
analyze eye-tracking data and build individual con-
sideration sets consisting of brands the customer
gazes at frequently, in a similar way as it has been
proposed for household panel data (Van Nierop et al.
2010). Consideration sets can then be used as a source
for targeted advertisements. For example, a customer
can bemade aware that a product in her consideration
set is on sale. Moreover, the analysis of the search
process might comprise other simple eye-tracking
measures that indicate price sensitivity (or brand
attractiveness). For example, it can be easily quanti-
fied how often a customer looks at price tags or how
early price information is considered when search-
ing. This information could be used for customized
pricing, in case consumers respond positively (David
et al. 2017). Similarly, consumers can be made aware
of products that address very personal needs. For
example, consumers with special health concerns
could be guided to products that best fit their di-
etary needs.

7.4. Benefits Resulting from the Use of Eye Tracking
Instead of Direct Questioning or Clickstreams

Eye tracking is a value-adding alternative to other
approaches, such as directly asking the consumer or
analyzing clickstreams (Moe 2003, Chiou and Ting
2011). In comparison with the first approach of self-
reports, eye tracking is unobtrusive and does not rely
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on explicit user input, nor does the user have to spend
time when using the system. Both aspects have been
considered as important dimensions of consumer ef-
fort (Xiao and Benbasat 2007). Reducing user input
has been a primary goal, particularly in the field of
decision aids and recommender systems for con-
sumer decisions (De Bruyn et al. 2008, Scholz et al.
2017). A system that interrupts consumers too often
may generate information overload in two ways
(Speier et al. 1999). First, attention is taken away
from making a purchase and turned toward the in-
terruption. If the same sensory channel (e.g., the vi-
sual system) is used, structural inferences may result.
Second, the interruptions can place greater demand
on cognitive processing.

Clickstreams as well as eye tracking are implicit
and unobtrusive, with the above-mentioned advan-
tages. Compared with clickstreams, eye tracking pro-
vides more fine-grained data and also renders data
from the first second of the choice process. Eye move-
ments are rarely under volitional control, which means
that the system will get very reliable input data, as
respondents can hardly withhold their true interests
indicated by their gaze (Section E.2 in the online ap-
pendix contains a discussion on the data privacy im-
plications). Finally, in AR and VR settings, there are
little clickstream data available. This is why in these
environments interaction data such as body move-
ment or sensor data from smartphones are usually
used to make systems context aware.

8. Conclusions and Limitations
In this paper, we analyzed whether eye movements
can be used to classify two search motives: goal-
directed and exploratory search. To this end, we con-
ducted a laboratory experiment that studied users’
information search in a virtual supermarket and
compared the result with an experiment in the field
in a physical supermarket. From the data, we trained
three classifiers by using predictors based on eye-
movement data. Because the proposed system makes
use of eye-tracking data as a primary data input
source, our research is built on the assumption that
users direct their gaze to stimuli that are relevant to
execute the specific search motive, which is that gaze
direction is primarily controlled by top-down pro-
cesses (Orquin and Mueller Loose 2013).

A first limitation is related to the instructions we
used in the empirical studies. In the exploratory
search condition, participants were instructed to “ob-
tain an overview of the product assortment.” Be-
cause the word “overview” is semantically related
to the words “view” and “eye” and the expression
“look it over,” we might have implicitly instructed
participants to look at a large number of products in
the exploratory search condition. Besides this effect,

we do not think the instructions suggested (either
explicitly or implicitly) that participants should pro-
cess the information in a specific way.
A second limitation of our study is that we di-

chotomized the search behavior as being either goal
directedor exploratory (in linewith Janiszewski (1998)).
When shopping outside the experimental context,
customers may exhibit different degrees of goal-
directedness (Hui et al. 2009) and might switch be-
tween exploratory and goal-directed search motives.
One first approach to investigate that question with
our algorithm and our training data would be to
consider class probabilities: in case the algorithm does
not really differ between classes when predicting, this
points to a casewhere the extent of goal-directedness is
probably rather weak.
Despite these limitations, the empirical results of

both studies indicate that the future development
of assistance systems using eye-movement data are
promising: First, using a standard SVM, we predict
search motives with a high degree of accuracy early
on in the process. Second, themodel is based on sets of
variables that are easy to record with eye trackers—
namely, the number and duration of fixations and
visits. As long as objects in the environment can be
easily separated, these measures could be easily de-
termined on the fly, even without deeper knowledge
about the object’s semantics (meaning that the mea-
sure does not include knowledge about the specific
type of muesli somebody looked at or even that these
objects were types of muesli or the category of in-
formation (price, brand, etc.) looked at). Other mea-
sures, such as saccades (the distances between fixated
objects) or strategy measures, were not included in
the best prediction models. In the physical reality
also, only two predictors are required, which is very
promising, as determining eye-tracking measures on
the fly is more difficult in physical reality compared
with VR (see Section 2.3). Third, we did not need
to rely on a user-specific training of the models. The
observations across the different tasks (search mo-
tives) were treated independently. The classifier would
therefore achieve the accuracy reported here in respect
of an unknown, new user. Fourth, although we did
not include the task order information in the models,
we expect prediction accuracy to increase if potential
learning effects would be integrated to personalize
the models. Fifth, the results were robust across four
product categories. As a consequence, the results in-
dicate that there is no need to develop differentmodels
for different product categories. Sixth, the results were
robust across two environments—an immersive vir-
tual environment and a physical environment. Seventh,
if using slightly more advanced ensemble methods
that rely on the computation of all 22 predictors, the
performance increases substantially, reaching about
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90% accuracy on average. In many search and choice
contexts, eye-movement patterns vary substantially
between individuals (Rayner 1998, van der Lans et al.
2008); a classifier that has to work for unknown users,
as in our paper, might therefore not achieve a much
higher degree of accuracy.

The inclusion of other measures, such as users’
interaction with their hands and personal data (e.g.,
past purchases, profile data, knowledge about the
need for cognition (Cacioppo et al. 1996), or the need
for cognitive closure (Webster and Kruglanski 1994)
could further increase prediction accuracy. But achiev-
ing greater accuracy might be unnecessary, as the
current level might already allow for classifying con-
sumers sufficiently. Future research needs to justify
this conjecture.

Shopping in VR might soon enter the mass market,
which makes this paper interesting from a practical
standpoint. Nevertheless, our study is also interest-
ing from a methodological viewpoint. In general, re-
search strongly needs to replicate laboratory studies
in environments offering a high degree of ecological
validity. Indeed, conducting experiments in VR might
help resolve researchers’ trade-off conflict (Loomis
et al. 1999) between experimental control and ecologi-
cal validity. In VR, experimental factors can be con-
trolled, and the high degree of telepresence should
elicit behavior similar to that in physical reality. Fur-
thermore, the full experimental setup can be archived
and made available to other researchers to replicate
the experiment and validate the results. Because
everything that happens in the experiment is pro-
grammed precisely, this allows for rigid experi-
mental descriptions (the VR simulation is the fully
specified description of the experiment), which were
rarely achieved in the past. However, Foulsham et al.
(2011) and Kahn (2017) emphasized that participants’
information search and behavior might differ sub-
stantially between the laboratory and physical (natural)
environments. We therefore call for research that
compares behavior in the virtual versus the physical re-
ality. This papermakes afirst contribution by showing
the similarities between the two environments re-
garding information search behavior.

A few empirical studies have demonstrated the
usefulness of eye tracking to adapt information sys-
tems in the context of online recommender systems
using desktop-based eye tracking (e.g., Xu et al. (2008)
and De Melo et al. (2015)). In this paper, we go a step
further and studywhether, at the point of sale, we can
also predict users’ search situation using mobile eye
trackers. In future work, our prediction model could
be tested for incorporation into a recommender sys-
tem in virtual or AR shopping environments. In ad-
dition to that, our approach can be considered similar
to apps that use the inertial measurement units in

smartphones to count steps and other activities to
provide higher-level personalized services such as
fitness coaching. Both approaches also share the same
privacy issues and concerns. Once smart eye glasses
are fashionable, a classification of user behavior based
on visual search patterns, as prototypically realized
in this paper, will be a stepping stone to providing
higher-level services in the physical world using AR
technology.
Shmueli (2010) stated that “bridg[ing] the gap be-

tween methodological development and practical
application can be easier to achieve through the
combination of explanatory and predictive model-
ing” (p. 304), because “they [predictive models] also
play an important role alongside explanatory mod-
eling in theory building and theory testing” (Shmueli
and Koppius 2011, p. 553). Indeed, these authors
argue that this is especially true in fast-changing
environments, which VR and e-commerce most cer-
tainly are. In sum, our paper makes important con-
tributions by assessing the practical relevance of in-
dividual predictors and by formulating expectations
about these predictors’ causal relationship to search
behavior (Shmueli 2010). This paper sheds light on
the actual performance of existing empirical models
based on clickstream data and shows that the relevant
variables studied to date do not best predict search
motives. Our predictive model also creates a bench-
mark because it quantifies a phenomenon’s level of
predictability (Ehrenberg and Bound 1993). It should
therefore be interesting to develop the model fur-
ther for practical application and to develop explor-
atory models based on our explorative findings in
future research, in order to contribute more strongly
to consumer behavior theory.
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Endnotes
1Please note that, in line with Janiszewski (1998), we use the terms
“goal-directed” (for deliberation and search) and “exploratory” (for
knowledge building) search in this paper to simplify the use of the
terminology.
2We will include these percentages instead of the absolute
values (NUMBERBRAND, NUMBPRICE, and NUMBDETAIL) in our
models.
3Because our goal was to manipulate the goal-directed motive ex-
plicitly, we had to give the participant concrete instructions regarding
the product characteristics to search for. As one of the reviewers
noted, the goal-directed motive in our experiment might still differ
from the average consumer’s goal-directedmotive if such a consumer
only plans her purchase in respect of the brand or product category
but does not have more concrete purchase plans.
4GD (EXP) recall means that we interpret goal directed (exploratory)
as the true class.
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