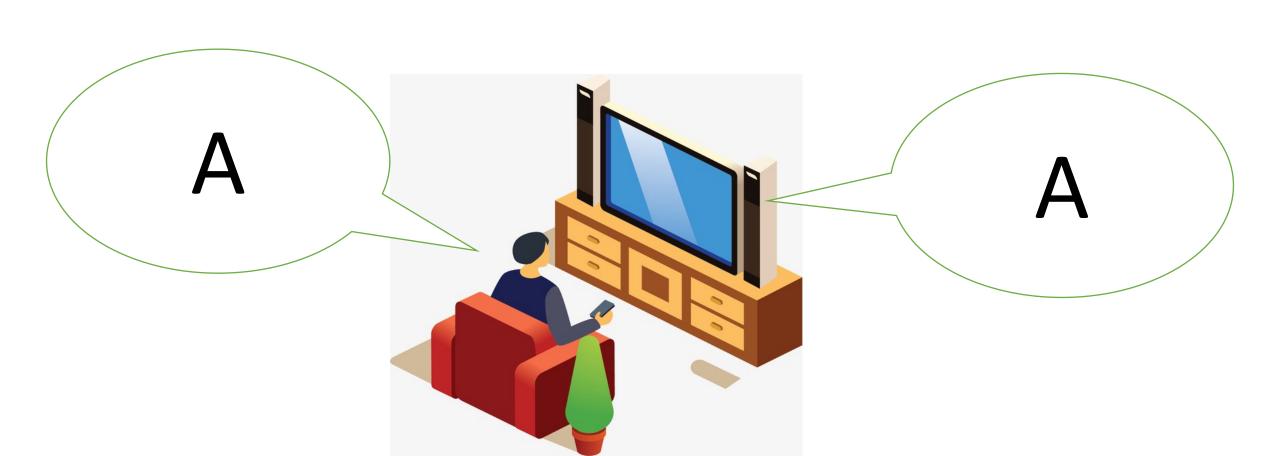
2/14

在这次放假,你有什么有趣的回忆吗?

这次放假有什么想做但来不及做的事吗?

对这学期有什么新的期望吗?


流利.ADJ

他能听得懂中文, 但是没办法流利的说

流利.ADJ

用电视剧练习了一个月后,他终于能把台词说得流利了

你觉得怎么学习才能把一个语言说流利呢?

如果你要跟别人讨论一件事,你要怎么流利的把你的观点讲出来呢?

如果你明天要演讲,你会准备到什么程度呢?

厉害.ADJ

他打篮球很厉害!班上没几个人能在球场上抢到他的球

厉害.ADJ

这次发生在土耳其的地震非常厉害,造成了很严重的伤亡

你看过别人做得最厉害的事情是什么呢?

你觉得什么样的人值得被称为厉害的人呢?

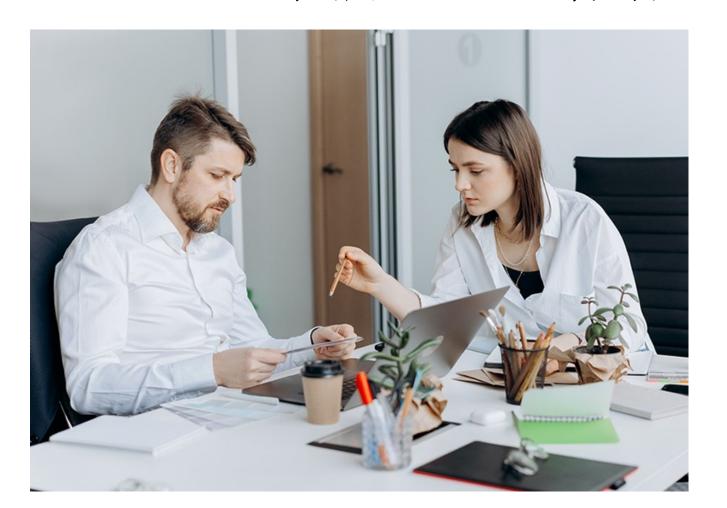
你觉得我们可能还会遇到什么样厉害的灾难呢?

语法.N

他觉得中文的语法很简单,但是变化太多了,很难每一个都熟悉

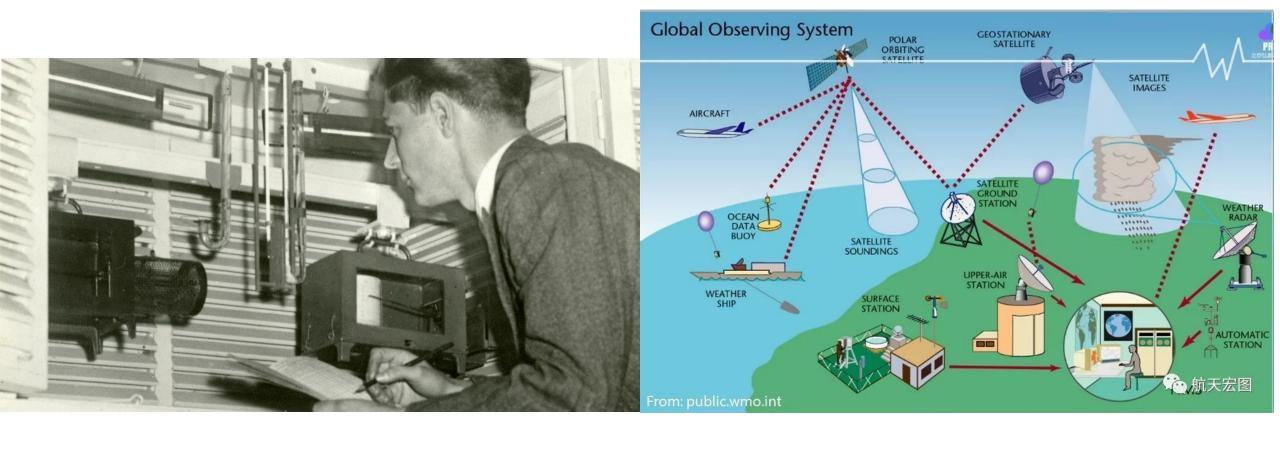
语法.N

他觉得拉丁文的语法非常困难,能学会的人都很厉害


在你目前学过的语言中,你觉得哪一种语言的语法最难呢?

你平常会怎么练习语法呢?

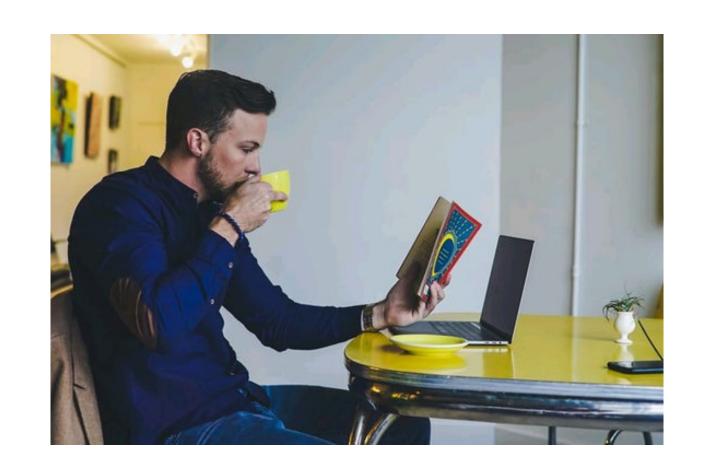
中文的语法有什么特点呢?


准确.ADJ

这件事情你有错——准确地说——你有一半的责任

准确.ADJ

现在的天气预报跟以前的比,已经是比较准确的了


在看完一本书之后你能准确地记得多少内容?

你觉得现在的新闻有多少是准确的呢?

要怎么准确地了解一件事情呢?

词语.N

他觉得多读一些书,像是报纸或小说等,能够帮助他学会新的词语

词语跟生词或短语有什么不一样

词语 = 词 & 语

准确.ADJ

俗话说得好

你平常会怎么增加你自己会的词语的数量呢?

连

F S/O

也/都

+focal point

这门课的老师对他的课很有自信,在广告上说连猴子也能被

他教会

入门篇

高级篇

Git索引

目录

猴子都能懂的GIT入门

让我们学习一下怎样使用版本管理系统吧。

欢迎来到超级简单的Git入门,让我们一起学习如何使用Git进行版本管理吧! 共有3个课程。Git初学者请从"入门篇"开始,有Git使用经验者建议直接从"高级篇" 开始。碰到"哎呀,是什么呢?"的时候,可以尝试查询"Git索引"。

能被他教会

连 + 猴子 + 也/都

连

+

也/都

他们一直都是好朋友,连七十多岁了他们都还会

一起玩桌游

INSTAGRAM. COM/COULDBEWORSE COMIC FACEBOOK. COM/ COULDBEWORSE COMIC

NIELS VERGOUWEN

连

+

也/都

这个工作非常简单,_

请两个人一组,假装你们要卖一个东西,请帮他想 一句广告词

连 +

也/都

阅读.V

他们很喜欢阅读,只要有空他就会拿起书来看

阅读.V

他喜欢很喜欢阅读报纸和小说,但是他完全不想看课本

阅读 V.S 看书

看书

阅读

他很喜欢阅读,他可以从阅读中书本中获得新的想法和看到有趣的故事

他喜欢看书,看书能让他放轻松

你什么时候会阅读呢?

你在阅读的时候有什么习惯呢?

来得及.V

离商店关门还有十分钟,应该来得及去买一瓶牛奶

来得及.V

他没赶上公交车,已经来不及准时上班了

只好.ADV

他来不及准时到公司上班,只好想想等等怎么跟老板道歉

只好.ADV

为了在旅行后能来得及回来上课,他只好买很晚的公车票回学校

你曾经有什么事情来不及做呢?

如果时间来得及,你在睡觉前会做些什么呢?

复杂.ADJ

这是一道很复杂的数学题

由于
$$ds = cdt \sqrt{1 - \frac{v^2}{c^2}}$$
 (2)

立即得到

$$u^{0} = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}, \quad u^{1} = \frac{v_{x}}{c\sqrt{1 - \frac{v^{2}}{c^{2}}}}, \quad u^{2} = \frac{v_{y}}{c\sqrt{1 - \frac{v^{2}}{c^{2}}}}, \quad u^{3} = \frac{v_{z}}{c\sqrt{1 - \frac{v^{2}}{c^{2}}}}$$
 (3)

其中 $v_x = \frac{dx}{dt}$, $v_y = \frac{dy}{dt}$, $v_z = \frac{dz}{dt}$ 对应于牛顿力学中 3 维速度 \overrightarrow{v} 分量。

又由于
$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$$
),便有 $1 = \left(\frac{cdt}{ds}\right)^2 - \left(\frac{dx}{ds}\right)^2 - \left(\frac{dy}{ds}\right)^2 - \left(\frac{dz}{ds}\right)^2$,

即
$$1 = (u^0)^2 - (u^1)^2 - (u^2)^2 - (u^3)^2$$
 , 因而

$$(m_0 u^0)^2 - (m_0 u^1)^2 - (m_0 u^2)^2 - (m_0 u^3)^2 = m_0^2$$
(4)

把式 (2, 3) 代入式 (1), 得到

$$c\sqrt{1-\frac{v^{2}}{c^{2}}}X^{0} = \frac{d}{dt}\left(\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right) + c^{2}\sqrt{1-\frac{v^{2}}{c^{2}}}X^{1} = \frac{d}{dt}\left(\frac{m_{0}v_{x}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right)$$

$$c^{2}\sqrt{1-\frac{v^{2}}{c^{2}}}X^{2} = \frac{d}{dt}\left(\frac{m_{0}v_{y}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right) + c^{2}\sqrt{1-\frac{v^{2}}{c^{2}}}X^{3} = \frac{d}{dt}\left(\frac{m_{0}v_{z}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right)$$
(5)

为了与牛顿力学的公式相比较,在教科书中常把 4 维力的空间分量 X^i 修改为类似于牛

顿力学中的
$$3$$
 维力 F^i , F^i 的定义为 $F^i=c^2\sqrt{1-\frac{v^2}{c^2}}\,X^i$, i =1,2,3 。 再令

$$m=\dfrac{m_0}{\sqrt{1-\dfrac{v^2}{c^2}}}$$
 , m 被称为运动质量。这样便可把式(5)之中的后面三个公式合并写为

复杂.ADJ

这件事很复杂,有很多你不该知道的事情

复杂.ADJ

他们的关系很复杂,很难说清楚

你觉得世界上最复杂的事情是什么?